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Abstract—We study cloud-storage systems with a very large
number of files stored in a very large number of servers. In such
systems, files are either replicated or coded to ensure reliability,
i.e., file recovery from server failures. This redundancy in storage
can further be exploited to improve system performance (mean
file access delay) through appropriate load-balancing (routing)
schemes. However, it is unclear whether coding or replication
is better from a system performance perspective since the
corresponding queueing analysis of such systems is, in general,
quite difficult except for the trivial case when the system load
asymptotically tends to zero. Here, we study the more difficult
case where the system load is not asymptotically zero. Using
the fact that the system size is large, we obtain a mean-field
limit for the steady-state distribution of the number of file access
requests waiting at each server. We then use the mean-field limit
to show that, for a given storage capacity per file, coding strictly
outperforms replication at all traffic loads while improving
reliability. Further, the factor by which the performance improves
in the heavy-traffic is at least as large as in the light-traffic case.
Finally, we validate these results through extensive simulations.

I. INTRODUCTION

Data centers with massive numbers of servers are used
by many modern companies to serve their storage and com-
putational needs. In this paper, we focus on the storage
component of data centers. Consider a company like Facebook
which stores a very large number of files, such as pictures,
videos, etc., in a very large number of servers. Requests for
downloading files arrive at the server, and the goal is to serve
these requests with as little delay as possible. Additionally,
for reliability purposes, each file is stored in multiple servers,
using either simple replication or coding, to ensure that data
is not lost even when some servers suffer from failures. The
goal of this paper is to understand how this redundancy can be
exploited to reduce the mean file access delay. In particular,
we are interested in understanding whether coding always
outperforms replication in terms of mean file access delay,
under the same storage requirements.

To illustrate the difference between coding and replication,
let us first consider the replication scheme. Suppose that each
file is replicated in two servers, and assume that the time to
download a file from a server is exponentially distributed with
mean 1 and is independent across servers. Suppose that the
load-balancing policy is to route an arriving request to server
with the smallest queue length (i.e., the server with the smallest

number of waiting requests). If the arrival rate of file download
requests is very small, then the queue lengths (i.e., the number
of requests awaiting service) at each server will be close to
zero and therefore, an arriving request can be routed at random
to any server containing the file. In this case, it is clear that
the mean file access delay is just 1.

Next, let us consider the coding case. In particular, assume
that the file is coded into 4 chunks, where the size of each
chunk is half the size of the original file, and further the code
is such that the file can be recovered from any two chunks.
This can be achieved via Maximum Distance Separable (MDS)
codes (e.g., [1]) with parameters (4, 2), where the file is
partitioned into two equal-size chunks A1 and A2, and the
coded chunks A1, A2, A1 + A2 and A1 + 2A2 are stored in
4 different servers, respectively. Since each chunk is half the
size of the original file, we assume that the amount of time
required to download a chunk from a server is exponential
with mean 1/2. The natural load-balancing policy in this
case is to choose the two least loaded of the four servers
containing the file, and route an arriving request for the file to
these two servers. Again, if the arrival rate of file download
requests is close to zero, then all queue lengths will be close
to zero and each arriving request can be routed to any two
servers containing the file. Since we need both servers to
complete serving the chunks that they contain, the mean file
access delay is given by E[max(X1, X2)], where X1 and
X2 are i.i.d. exponential random variables with mean 1/2.
A straightforward calculation shows that this delay is equal
to 0.75. Thus, it is quite clear that the mean file access delay
is improved by 25% under coding compared with replication
when the arrival rate is asymptotically negligible. However, it
is unclear whether such a result extends to the case of non-
zero request arrival rates. In such a case, queueing effects
cannot be ignored. This poses significant challenges for the
delay analysis. The main purpose of this paper is to address
this open and difficult problem. Our contributions in this work
can be summarized as follows:
•We first present a model of storage, routing, and file access

in very large data centers. The interesting aspect of the model
is that individual files become irrelevant, and the system can
be viewed as a queueing model with a very large number of
servers, thus facilitating the so-called mean-field analysis.



• Next, we carry out the mean-field analysis of the queueing
system under both coding and replication, and derive their
analytical expressions whose solutions yield the steady-state
queue length distribution of each queue.
• Then, we utilize the mean-field-limit to show that coding

strictly outperforms replication in terms of mean file access
delay under the same storage requirements. We further char-
acterize the improvement factor in the heavy-traffic regime,
which is at least as large as that in the light-traffic regime.
To the best of our knowledge, this is the first analytical
result in the area of mean-field analysis that deals with the
expected job delay rather than the expected task delay, where
a job corresponds to a file access request containing a certain
number of tasks (chunk downloading requests) depending on
the coding scheme.
• Finally, we perform extensive simulations to validate our

results, where we also study various service distributions, and
more than one load-balancing scheme.

A. Related Work

Delay reduction via coding in cloud storage systems:
The main goal of a cloud storage system is to provide high
data reliability and fast file access. Recently, much work has
gone into the design of algorithms that speed up the file access
in cloud storage systems. For example, papers (e.g., [2]–[4])
have performed simulation or testbed experiments to compare
the delay performance of different coding schemes. Some
other works investigated the file access delay performance
analytically. For example, the authors in [5] showed that the
MDS code has a smaller mean file access delay than the
simple file replication. In [6], the authors provided delay
bounds under the MDS code. Papers (e.g., [4], [7]–[13])
studied the delay performance of redundant requests in various
settings. To the best of our knowledge, none of these works
are able to characterize or analytically bound the performance
improvement under coding compared with replication. Using
the fact that the system size is large, we are able to obtain
lower bounds on the performance improvement due to coding.

Load-balancing in the large-system limit: A load-
balancing algorithm distributes arriving jobs across servers
with the goal of minimizing queueing delays. The analysis
of load-balancing algorithms in any finite systems is quite
challenging in general. References [14] and [15] first consid-
ered the celebrated power-of-d-choices (d ≥ 2) load-balancing
algorithm in the large-system limit, where each arriving job is
forwarded to the shortest d randomly sampled queues. There
has been a considerable amount of recent work following
the results in [14] and [15] studying various different load-
balancing schemes with different amounts of overhead (e.g.,
[16]–[19]). But, to the best of our knowledge, none of the
previous papers have studied the joint performance of load
balancing and storage schemes in the large-system limit.

II. SYSTEM MODEL

File storage scheme: We consider a cloud storage system
with L servers, each of which stores a very large number of

different types of files. Each file is stored using the Maximum
Distance Separable (MDS) code with parameters (n, k) (see
[1]), i.e., each file is encoded into n chunks with equal size
stored at different servers, one for each server, and any k out
of the n chunks are sufficient to recover the entire file. Since
the storage space consumed at each server is 1/k of the size
of the file, we assume that the time required for downloading
data chunks are i.i.d. exponentially distributed1 with mean of
1/k. Note that the (n, 1) code corresponds to the replication
case, where each file is replicated at n different servers and
thus we can download the desired file from any one of these
n servers with exponential downloading time with mean 1.

Fig. 1(a) shows a small portion of the large storage system
with (2, 1) code, where file A is stored in servers 1 and 2, and
file B is stored in servers 3 and 4. In order to download the file
A, the scheduler can forward the file access request to either
server 1 or server 2. Fig. 1(b) shows a part of the (4, 2) coded
system, where file A is divided into two equal-size halves A1

and A2, and the coded chunks A1, A2, A1+A2, and A1+2A2

are stored in four different servers, respectively. In order to
access file A, the scheduler needs to forward the file download
request to any two of four servers. File A is obtained only
when these two download requests are processed, i.e., when
we receive two chunks of file A from two different servers.
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Fig. 1: A small portion of a storage system. The letter inside
the server box corresponds to the file it stores. Each server
maintains a queue for download requests for the files it stores.

Arrival process: Recall that each file is stored in n servers.
Thus, there are a total of

(
L
n

)
subsets of servers where a file

could be stored. We assume that there are I = Ω(L logL) files
in the system and I is an increasing function of L. These I files
are stored such that the load on each server is approximately
the same. Thus, we can model the arrival process as follows:
we assume that the arrival process of file download requests is

1For the storage scheme with (n, k) code, the mean file access delay of the
load-balancing scheme we consider is smaller under the positively correlated
assumption than the i.i.d. assumption (cf. Section IV). In this sense, we try
to characterize the mean delay performance of a particular storage scheme in
the worse scenario.



Poisson with total arrival rate of Lλ, where λ ∈ (0, 1). Further,
each arrival requests a file uniformly at random from I files.
Due to the property of the Poisson processes, this ensures that
the load of any subset of servers of size n is independent with
the same arrival rate.

Load-balancing algorithm: We assume that each server
maintains a queue for file download requests that desire to
download the chunks stored at the server, and processes
these requests in the First-In-First-Out (FIFO) manner. Due
to the MDS storage coding scheme, any k out of the n
chunks are enough to obtain the entire file. Therefore, a
natural load-balancing scheme is to forward an incoming file
downloading request to the k least-loaded servers among n
servers containing the file. In queueing theory jargon, upon
job (file download request) arrival consisting of k tasks (data
chunk retrieval request), forward these k tasks to the k least-
loaded servers among n servers that can process this incoming
job, one for each server. Each task processing time (chunk
downloading time) follows exponential distribution with mean
1/k. This load-balancing scheme is similar to the well-known
Batch Sampling (BS) (e.g., [18], [20]). The main difference
lies in that our considered load-balancing scheme uniformly
selects one location containing n servers among I rather than(
L
n

)
different locations upon each job arrival, since there are a

total of I files in the cloud storage system. Nevertheless, we
still refer our load-balancing scheme as Batch Sampling in the
rest of the paper.

Another popular load balancing scheme that has attracted
much attention recently is called Redundant Request with
Killing (RRK) (e.g., [7], [11], [13]). Under RRK, a request
is sent to all servers where a file is stored, and when any k
of these are served, the rest of the requests are killed. While
this scheme is known to perform better than BS policy, it is
under the assumption that the service time distributions are
independent across servers. Later, in the simulations section,
we show that the performance of RRK can be quite bad when
service times across servers are correlated. For example, when
a file is stored in equal-sized chunks across multiple servers,
all requests for these chunks may have highly correlated
service times. Thus, for our storage system, RRK has poor
performance, so we do not study it here. On the other hand,
in Section IV, we will show that the performance of the BS
scheme is worst under the assumption that the service times
are independent across different servers. Hence, we study the
system under this assumption in this paper.

Finally, we make a comment on the scenario that is being
modeled in our paper and some of the other prior works (e.g.,
[4], [7], [8], [10]–[12]). Our work views the problem from
the point of view of storage service provider. On the other
hand, the previous works (e.g., [4], [7], [8], [10]–[12]) view
the problem from the point of view of a customer who uses a
cloud storage system. Thus, in these other works, the service
time of a file is a complicated function of one’s own file size,
the storage server’s speed and the service provided to other
customers. Thus, their assumptions regarding service times can
be quite different from ours.

Goal: It is quite obvious that coding can significantly
improve system reliability compared with replication. In this
paper, we would like to investigate whether coding also
reduces file access delay under BS load-balancing algorithm.
While we derive queue length distributions for general (n, k)
codes, we mainly compare the mean file access delays of
(nk, k) and (n, 1) (replication) codes2, both of which have
the same storage requirements, where k ≥ 2. Here, it is
worth pointing out that none of existing works rigorously
deal with the important and analytically hard problem of
characterizing the mean job delay performance of the load-
balancing schemes.

Let W
(n,k)

be the mean file access delay under the (n, k)
code. We first consider a trivial case, where the file request
arrival rate is close to zero (also referred as the light-traffic
regime). In such a case, queue lengths under both (nk, k) and
(n, 1) codes are close to zero and thus the queueing effect can
be ignored. Therefore, it is obvious that W

(n,1)
= 1 under the

replication scheme.
Under the (nk, k) code, we need to download k chunks

from k different servers to recover the entire file, and thus

W
(nk,k)

= E
[

max
i=1,2,··· ,k

Xi

]
,

where Xi,∀i, are i.i.d. with exponential distribution with mean
1/k. According to [21], we have

W
(nk,k)

=
H(k)

k
,

where H(m) ,
∑m
l=1 1/l denotes mth harmonic number.

Thus, the (nk, k) code reduces delay by 100(1−H(k)/k)%
compared with the (n, 1) code in the light-traffic regime. In or-
der to get a sense of how much delay improvement in this case,
we plot the delay improvement percentage 100(1−H(k)/k)%
as a function of k. From Fig. 2, we can observe that the delay
improvement is 25% when k = 2, 38.89% when k = 3, and
the improvement becomes marginal as k further increases.
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Fig. 2: Delay improvement under the (nk, k) code in the light-
traffic regime (i.e., λ ↓ 0)

2If files are stored using (n, 1) code such that arrival loads on each server
are the same, then these files can also be stored using (nk, k) code to
guarantee that arrival loads on each server are the same.



This interesting observation raises the following two natural
questions in the non-zero arrival rate case where the queueing
effect cannot be ignored: (i) does the (nk, k) code always
outperform the (n, 1) code in terms of mean file access delay?
(ii) if it does, then how much performance improvement can
it achieve? The goal of this paper is to address these two open
questions. In particular, we show that the (nk, k) code always
outperforms the (n, 1) code in terms of mean file access delay
at all traffic loads, and the improvement factor in the heavy-
traffic regime is at least as large as in the light-traffic regime.

III. MEAN-FIELD ANALYSIS

In this section, we will use mean-field analysis to study
the mean file access delay performance under the (n, k) code.
The underlying assumptions behind the mean-field analysis are
validated through simulations in Section IV.

Let Q(L)
l (t) be the length of the lth queue at time t in a

system with L queues. It is easy to check that the queue-
length process {Q(L)(t)}t≥0 is an irreducible and nonexplo-
sive Markov chain. The following proposition further states
that this Markov chain is positive recurrent and hence has a
unique steady-state distribution.

Proposition 1: The Markov chain {Q(L)(t)}t≥0 is positive
recurrent. Moreover, the mean steady-state queue-length is
finite, i.e.,

E

[
L∑
l=1

Q̃
(L)
l

]
≤ L(1 + λ)

2(1− λ)
, (1)

where Q̃(L)
l is steady-state queue length of the lth queue.

Proof: We first consider a quadratic Lyapunov function
and study its conditional expected drift. Then, the desired
result follows from the Foster-Lyapunov theorem. Please see
our technical report [22] for details.

Due to the symmetry, all queues have the same steady-
state distribution. Let {π(L)

m }m≥0 be the steady-state queue-
length distribution of one queue, where π

(L)
m denotes the

probability that queue-length is exactly equal to m. Let
s
(L)
m ,

∑∞
j=m π

(L)
m be the probability that queue-length is

at least m. Note that s(L)0 = 1 and s
(L)
m is non-increasing

with respect to m, i.e., 1 = s
(L)
0 ≥ s

(L)
1 ≥ s

(L)
2 ≥ · · · ≥ 0.

In addition, we have
∑∞
j=m s

(L)
j < ∞,∀m = 1, 2, · · · .

Indeed, according to Proposition 1, we have
∑∞
j=m s

(L)
j ≤∑∞

j=1 s
(L)
j = E

[
Q̃

(L)
l

]
< ∞,∀m ≥ 1, where we use the

fact that E[Z] =
∑∞
m=1 Pr{Z ≥ m} for any non-negative

integer-valued random variable Z.
In this paper, our goal is to investigate the mean file access

delay performance under the (n, k) code. In order to evaluate
it accurately, it is important to obtain the queue-length dis-
tribution, i.e., the distribution of number of waiting download
requests (queue-length) at each queue. However, queue lengths
are correlated across queues and their distribution is hard to
obtain in a system with finite number of queues. Fortunately,
such correlations among queues become weaker and weaker as
the number of servers increases. Therefore, we assume that any

fixed number of queues become independent of each other as
the number of servers goes to infinity, i.e., L→∞, where the
queue-length distribution can be exactly characterized. Such
an analysis in the large-system limit is commonly referred
as mean-field analysis. In addition, a cloud storage system
typically contains a very large number of servers, and there-
fore the mean-field analysis is accurate enough, as will be
demonstrated in Section IV via simulations.

A. Steady-State Queue Length Distribution

In this subsection, we obtain the queue-length distribution
under the (n, k) code in the large-system limit, i.e., L→∞.

Recall that all queues have the same steady-state distribution
because of symmetry. Let Q

(n,k)
be a random variable with

the same distribution as the steady-state distribution of the
queue-length under the (n, k) code in the large-system limit.
Let πm , Pr{Q(n,k)

= m} be the steady-state probability
that queue length is equal to m in the large-system limit,
where m = 0, 1, 2, · · · . Under the (n, k) code, whenever there
is an arriving file access request, we forward these tasks to
the k least-loaded servers among n servers containing the
file, one for each server. Note that the time required for
downloading the chunks are i.i.d. with exponential distribution
with mean 1/k. We assume that n servers containing the
file requested by the incoming job have independent queue-
length distributions. Note that the queue-length of each server
increases or decreases at most by one. Each queue forms an
independent Markov chain, as shown in Figure 3.

m+2m+1m10

q0,1

k kkk k k

q1,2 qm-1,m qm,m+1 qm+1,m+2 qm+2,m+3

Fig. 3: The queue-length Markov chain of a single server in
the large-system limit

According to the local balance equation, we have

πmqm,m+1 = kπm+1. (2)

Therefore, in order to characterize the steady-state distri-
bution {πm}m≥0 in the large-system limit, we need to first
obtain the transition rate qm,m+1 when a file access request
(job) arrives to a server with queue-length of m. Consider
a particular server with queue-length of m. Its queue-length
increases by 1 only when there is an arrival job and this
server is one of the k least-loaded server among n servers
containing the file that an incoming job requests. Note that
πm can also be interpreted as the fraction of servers with
queue-length exactly equal to m in the large-system limit,
which simply follows from the Strong Law of Large Numbers.
Hence, Lπm is the average number of servers with queue-
length of m and Lπmqm,m+1∆ is the average number of
these servers that become of size m + 1 due to an arrival



in a small time interval ∆, which can also be represented as
Lλ∆

∑k
i=1 Pr{Q(n,k)

(i) = m} . Thus, we have

πmqm,m+1 = λ

k∑
i=1

Pr{Q(n,k)

(i) = m}, (3)

where Q
(n,k)

(i) is the ith smallest queue-length among n servers
containing the file requested by the incoming job, i.e.,

Q
(n,k)

(1) ≤ Q(n,k)

(2) ≤ · · · ≤ Q(n,k)

(i) ≤ · · · ≤ Q(n,k)

(n) .

The next lemma gives the exact expression for∑k
i=1 Pr{Q(n,k)

(i) = m}. Let sm ,
∑∞
j=m πj denote

the steady-state probability that queue-length is at least m in
the large-system limit.

Lemma 1: The term
∑k
i=1 Pr{Q(n,k)

(i) = m} can be ex-
pressed as follows:

k∑
i=1

Pr{Q(n,k)

(i) = m} = f (n,k)(sm)− f (n,k)(sm+1), (4)

where f (n,k)(x) ,
∑k
l=1

(
n

n−k+l
)(
n−k+l−2

l−1
)
(−1)l−1xn−k+l,

x ∈ [0, 1].
Proof: We first simplify the expression of Pr{Q(i) ≥ m}

by using the mean-field assumption, and then derive the
expression for

∑k
i=1 Pr{Q(i) ≥ m} through a little bit

complicated algebraic operations. Please see our technical
report [22] for details.

For example, f (n,1)(x) = xn and f (n,2)(x) = nxn−1 −
(n− 2)xn. In general, the function f (n,k)(x) is quite compli-
cated. However, it has several nice properties, which play an
important role in later analysis.

Lemma 2: The function f (n,k)(x) (cf. Lemma 1) has the
following three properties:

(i) f (n,k)(x) is strictly increasing, differentiable and convex
on the interval [0, 1];

(ii) f (n,k)(0) = 0 and f (n,k)(1) = k;
(iii) f (n,k)(x) has a bounded derivative, i.e.,

0 ≤
(
f (n,k)(x)

)′
≤ n, ∀x ∈ [0, 1].

Proof: We consider the first and second derivatives of the
function f (n,k)(x), and utilize the subset-of-a-subset identity.
Please see our technical report [22] for the proof.

Fig. 4 sketches the graph of the function f (n,k)(x). We
are now ready to characterize the steady-state queue-length
distribution in the large-system limit.

Proposition 2: The steady-state queue-length distribution of
a single server under the (n, k) code in the large-system limit
is unique and can be characterized as follows:{

sm+1 = λf (n,k)(sm)/k for m = 0, 1, 2, · · · ;
s0 = 1 .

(5)

Proof: According to (2), (3) and Lemma 1, we have

λ
(
f (n,k)(sm)− f (n,k)(sm+1)

)
= k(sm+1 − sm+2), (6)

10 x

k

nxf kn )(0 ),()(),( xf kn

Fig. 4: The graph of the function f (n,k)(x)

for any m = 0, 1, 2, · · · . Clearly if λf (n,k)(sm)/k = sm+1,
then equation (6) holds. According to Lemma 2, the function
λf (n,k)(x)/k has a bounded derivative and thus it is Lipschitz.
Also, λf (n,k)(x)/k ∈ [0, 1] since f (n,k)(x) ≤ k for all
x ∈ [0, 1] and λ ∈ (0, 1). Therefore, the function λf (n,k)(x)/k
maps the convex and compact set [0, 1] to itself, and hence,
according to the Schauder fixed point theorem, there exists
a fixed point for the system of equations λf(sm)/k =
sm+1,∀m ≥ 0.

Next, we will show that this fixed point is unique. First, we
note that

sm+1 =
λ

k
f (n,k)(sm)

(a)

≤ λsn/km

(b)

≤ λsm, (7)

where the step (a) utilizes the inequality f (n,k)(x) ≤ kxn/k

for any x ≥ 0 (see Lemma 5 in our technical report [22]),
and step (b) is true since n > k and 0 ≤ sm ≤ 1.
Inequality (7) directly implies

∑∞
j=m sj <∞. Hence, we have∑∞

j=m f
(n,k)(sj) <∞. Indeed,

∞∑
j=m

f (n,k)(sj)
(a)
=

∞∑
j=m

(
f (n,k)(zj)

)′
sj ≤ n

∞∑
j=m

sj <∞,

where the step (a) uses the fact that f (n,k)(sj)− f (n,k)(0) =(
f (n,k)(zj)

)′
sj for some zj ∈ [0, sj ] according to the Mean-

Value Theorem and the fact that f (n,k)(0) = 0; step (b)
uses bounded derivative property of the function f (n,k)(x) (cf.
Lemma 2). Therefore, by summing (6) over all m ≥ 0, we
obtain s1 = λ

k f
(n,k)(s0). The uniqueness of the fixed point

then follows from (6) by mathematical induction.
Proposition 2 provides an iterative formula for exactly

calculating the steady-state queue-length distribution under the
(n, k) code. For example, under the (n, 1) code, i.e., power of
n choices, according to Proposition 2, we have sm+1 = λsnm
for all m ≥ 0 and s0 = 1, which implies that sm = λ

nm−1
n−1 .

This exactly matches the results in [15] and [14]. Under the
(n, 2) code, we have sm+1 = λ

2 (nsn−1m − (n − 2)snm) for all
m ≥ 0 and s0 = 1 from the Proposition 2.

We are now ready to evaluate the mean file access delay.



B. Mean File Access Delay Analysis

In this subsection, we analyze the mean file access delay
performance under coding by using its steady-state queue-
length distribution in the large-system limit (cf. Proposition 2).
In particular, we characterize the delay improvement between
(nk, k) and (n, 1) codes, both of which have the same storage
requirements.

Proposition 3: (i) The mean file access delay under the
(nk, k) code is at least (1−H(k)/k) smaller than that under
the (n, 1) code for any arrival rate λ ∈ (0, 1), i.e.,

W
(nk,k) −W (n,1) ≤ −

(
1− H(k)

k

)
. (8)

(ii) In the light-traffic regime (i.e., λ ↓ 0), the mean file access
delay under the (nk, k) code improves 100 (1−H(k)/k) %
compared with the (n, 1) code, i.e.,

lim
λ↓0

W
(nk,k) −W (n,1)

W
(n,1)

= −
(

1− H(k)

k

)
. (9)

In the heavy-traffic regime (i.e., λ ↑ 1), the mean file
access delay improvement under the (nk, k) code is at least
100 (1−H(k)/k) % compared with the (n, 1) code, i.e.,

lim
λ↑1

W
(nk,k) −W (n,1)

W
(n,1)

≤ −
(

1− H(k)

k

)
. (10)

Remark: Our analysis shows that the (nk, k) code strictly
outperforms the replication code at all traffic loads and its
delay improvement in the heavy-traffic regime is at least
as large as in the light-traffic regime. However, simulations
in Section IV indicate that the performance improvement in
heavy-traffic is even better.

Proof: Recall that under the (n, k) code, each job (file
download request) contains k i.i.d. tasks (chunk download
request) with exponential downloading time distribution with
mean 1/k. Upon job arrival, we forward its k tasks to the
least-loaded k servers among n servers containing the file that
the job request. Since a job is complete only when these k
tasks are processed, if the queue lengths of these n servers
are Q̂(n,k)

(i) , ∀i = 1, 2, · · · , n when a job arrives, then this job
experiences a delay equal to

max
i=1,2,··· ,k

Q̂
(n,k)

(i)
+1∑

j=1

X
(k,i)
j , (11)

where X
(k,i)
j , ∀i, j, are i.i.d. exponential random variables

with mean 1/k, and Q̂
(n,k)
(i) is the ith smallest queue-length

among n servers seen by an incoming job, i.e., Q̂(n,k)
(1) ≤

Q̂
(n,k)
(2) ≤ · · · ≤ Q̂(n,k)

(n) .

Note that (11) is true since the remaining service time for
the task in service is still exponential. We also note that Q̂(n,k)

(i) ,

∀i = 1, 2, · · · , n and X(k,i)
j ,∀i, j, are independent. Therefore,

the mean job delay W
(n,k)

can be written as follows:

W
(n,k)

=E

 max
i=1,2,··· ,k

Q̂
(n,k)

(i)
+1∑

j=1

X
(k,i)
j

 . (12)

Next, we compare the mean job delay under (nk, k) and
(n, 1) codes.

W
(nk,k)

= E

 max
i=1,2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=1

X
(k,i)
j


(a)

≤E

[
max

{ Q̂
(nk,k)

(1)
+1∑

j=1

X
(k,1)
j ,

max
i=2,··· ,k

Q̂
(nk,k)

(1)
+1∑

j=1

X
(k,i)
j + max

i=2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=Q̂
(nk,k)

(1)
+2

X
(k,i)
j

}]

(b)

≤E

 max
i=1,2,··· ,k

Q̂
(nk,k)

(1)
+1∑

j=1

X
(k,i)
j


+ E

 max
i=2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=Q̂
(nk,k)

(1)
+2

X
(k,i)
j

 , (13)

where the step (a) utilizes the fact that Q̂(nk,k)
(1) ≤ Q̂

(nk,k)
(2) ≤

· · · ≤ Q̂(nk,k)
(k) , and follows from the fact that maxi(xi+yi) ≤

maxi xi + maxi yi, for any non-negative real numbers xi and
yi; step (b) utilizes the fact that max{x, y+z} ≤ max{x, y}+
z, for any non-negative real numbers x, y and z. By repeating
steps in deriving (13) on the term

E

 max
i=2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=Q̂
(nk,k)

(1)
+2

X
(k,i)
j

 ,
we obtain

W
(nk,k) ≤E

 max
i=1,2,··· ,k

Q̂
(nk,k)

(1)
+1∑

j=1

X
(k,i)
j


+

k∑
l=2

E

 max
i=l,l+1,··· ,k

Q̂
(nk,k)

(l)
+1∑

j=Q̂
(nk,k)

(l−1)
+2

X
(k,i)
j


≤E

Q̂
(nk,k)

(1)
+1∑

j=1

max
i=1,2,··· ,k

X
(k,i)
j


+

k∑
l=2

E

 Q̂
(nk,k)

(l)
+1∑

j=Q̂
(nk,k)

(l−1)
+2

max
i=l,l+1,··· ,k

X
(k,i)
j

 , (14)



where the last step follows from the fact that

max
i=1,2,··· ,a

b∑
j=1

x
(i)
j ≤

b∑
j=1

max
i=1,2,··· ,a

x
(i)
j

holds for any positive integers a, b, and non-negative real
numbers x(i)j , ∀i = 1, 2, · · · , a,∀j = 1, 2, · · · , b.

Since X(k,i)
j are i.i.d. exponential random variables, accord-

ing to [21], we have

E
[

max
i=1,2,··· ,m

X
(k,i)
j

]
=

1

k
H(m), (15)

where we recall that H(m) ,
∑m
i=1 1/i is the mth harmonic

number. Note that since X(k,i)
j , i = l, l + 1, · · · , k, are i.i.d.

and independent from Q̂
(nk,k)
(l) , by utilizing (15), inequality

(14) becomes

W
(nk,k) ≤1

k

((
1 + E

[
Q̂

(nk,k)
(1)

])
H(k)

+

k∑
l=2

(
E
[
Q̂

(nk,k)
(l)

]
− E

[
Q̂

(nk,k)
(l−1)

])
H(k − l + 1)

)

=
1

k

(
H(k) +

k∑
l=1

1

k − l + 1
E
[
Q

(nk,k)

(l)

])
, (16)

where we recall that Q
(nk,k)

(l) is the lth smallest steady-state
queue-length among nk servers, and the last step follows from
PASTA property since the arrival process to any subset of
queues of size nk is a Poisson process under the (nk, k)
coding scheme.

On the other hand, the mean delay under the (n, 1) code
can be written as follows:

W
(n,1)

=E

Q̂
(n,1)

(1)
+1∑

j=1

X
(1,1)
j


(a)
=E

[
Q̂

(n,1)
(1)

]
+ 1

(b)
=E

[
Q

(n,1)

(1)

]
+ 1, (17)

where the step (a) follows from the fact that Q̂(n,1)
(1) and

X
(1,1)
j ,∀j, are independent; step (b) follows from the PASTA

property since the arrival process to any subset of queues of
size n is a Poisson process under the (n, 1) coding scheme.

By using (16) and (17), we have

W
(nk,k) −W (n,1)

≤−
(

1− H(k)

k

)
+

1

k

k∑
l=1

1

k − l + 1
E
[
Q

(nk,k)

(l)

]
− E

[
Q

(n,1)

(1)

]
. (18)

Note that

1

k

k∑
l=1

1

k − l + 1
E
[
Q

(nk,k)

(l)

]
≤1

k

k∑
l=1

E
[
Q

(nk,k)

(l)

]
≤ E

[
Q

(n,1)

(1)

]
, (19)

where the last step utilizes Lemma 3. By substituting (19) into
(18), we have (8).

Lemma 3: The average queue-length of k shortest queues
among nk servers under the (nk, k) code is not greater than
the queue-length of the shortest queue among n servers under
the (n, 1) code, i.e.,

1

k

k∑
i=1

E
[
Q

(nk,k)

(i)

]
≤ E

[
Q

(n,1)

(1)

]
. (20)

The proof of Lemma 3 is available in technical report [22].
The mean job delay improvement under the (nk, k) code

compared with the (n, 1) code in the light-traffic regime
directly follows from the discussions in Section II. Next, we
will investigate the mean job delay improvement in the heavy-
traffic regime, i.e., λ ↑ 1. According to (18), we have

W
(nk,k) −W (n,1)

W
(n,1)

≤−
(

1− 1

k
H(k)

)

+
1

k

∑k
l=1

1
k−l+1E

[
Q

(nk,k)

(l)

]
−H(k)E

[
Q

(n,1)

(1)

]
1 + E

[
Q

(n,1)

(1)

] , (21)

which implies

lim
λ↑1

W
(nk,k) −W (n,1)

W
(n,1)

≤−
(

1− 1

k
H(k)

)
+

1

k
lim
λ↑1

∑k
l=1

1
k−l+1E

[
Q

(nk,k)

(l)

]
E
[
Q

(n,1)

(1)

] −H(k)

1

E
[
Q

(n,1)

(1)

] + 1
.

By utilizing Lemma 4, we have the desired result.
Lemma 4: (i) The mean queue-length of the shortest queue

among n servers under the (n, 1) code in the heavy-traffic
regime satisfies

lim
λ↑1

E
[
Q

(n,1)

(1)

]
− log(1− λ)

=
1

log n
; (22)

(ii) The mean queue lengths of the k shortest queues among
n servers under the (nk, k) code satisfy

lim
λ↑1

∑k
i=1

1
k−i+1E

[
Q

(nk,k)

(i)

]
E
[
Q

(n,1)

(1)

] ≤ H(k). (23)

The proof of Lemma 4 is available in technical report [22].



IV. SIMULATION RESULTS

In this section, we provide simulation results to compare
the mean file access delay performance between coding and
replication in the system with L = 1, 000 servers and I =
1, 000, 000 files. In particular, we first verify the accuracy
of the mean-field analysis and then investigate the delay
improvement under coding. Then, we evaluate the impact of
correlation of the chunk downloading time on the mean delay
performance for two different load-balancing algorithms.

A. Validation of the Mean-Field Analysis

In this subsection, we first validate the accuracy of the
mean-field analysis, and then illustrate the differences in mean
file access delay performance between coding and replication,
where we assume that the chunk downloading time follows
exponential distribution. Given the queue-length distribution
(cf. Proposition 2), we are able to calculate the mean file access
delay under the (n, k) code according to (12) through Monte
Carlo methods. In particular, at each time slot, generate n i.i.d.
queue-length random variables according to its steady-state
probability distribution in the large-system limit (cf. Propo-
sition 2), then pick k smallest ones and calculate the delay
through (12). Then, the time-average delay can be regarded
as the mean delay. The markers in Fig. 5 (corresponding to
theoretical results) were obtained in this manner, whereas the
simulation results were obtained via an event-driven simulation
of the whole system.
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Fig. 5: Exponential downloading time

From Fig. 5, we first observe that the simulation results
match the theoretical results very well under different cod-
ing schemes, which validates the accuracy of the mean-field
analysis in the system even with 1, 000 servers. In addition,
Fig. 5 shows the mean file access delay performance under
the (nk, k) code, where k = 1, 2, 3, 4, 5. Recall that k = 1
corresponds to the replication code. We can see from Fig. 5
that the mean file access delay performance improves as k
increases, where the delay improvement is most significant
from k = 1 to k = 2. This is also expected from our

theoretical analysis. In addition, for a fixed storage coding
scheme, its delay improvement compared with the replication
code increases as the arrival rate λ increases. We also consider
another downloading time distribution in our technical report
[22] and have similar observations.
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Fig. 6: The impact of correlated downloading time on the delay
performance of (4, 2) code

B. Impact of Correlated Downloading Time Distribution

In this subsection, we consider another popular load-
balancing scheme, called Redundant Request with Killing
(RRK), under the storage scheme with (n, k) code. Recall
that under the RRK load-balancing scheme, upon a file access
request arrival, it forwards n requests to n servers containing
the file and the entire file is obtained once k out of n
downloading requests are processed.

Here, we consider both i.i.d. and correlated downloading
time cases. In the case with i.i.d. downloading time, the time
required for downloading data chunks are i.i.d. with exponen-
tial with mean 1/k. In the case with correlated downloading
time, the time required for downloading chunks associated
with a file are exactly the same and follows exponential
distribution with mean 1/k.



Fig. 6 studies the impact of correlations on delay perfor-
mance of the Batch Sampling (BS) and RRK load-balancing
algorithms under the (4, 2) storage scheme. From Fig. 6(a),
we can observe that for the BS load-balancing policy, the
mean delay under the correlated downloading time is always
better than that under the i.i.d. downloading time, with larger
improvement in the lower traffic regime. In this sense, the
correlation of the chunk downloading time actually helps
improve the delay performance of the BS policy. Thus, the
results in the paper may be interpreted as characterizing the
worst-case performance of the BS policy. However, from Fig.
6(b), we can see that this correlation significantly degrades
the system performance of the RRK algorithm especially
when the traffic load is high. The simulations for (6, 3) code
in our technical report [22] also show similar observations.
Thus, the efficiency of the RRK policy heavily depends on
the independence assumption on the chunk downloading time
as we discussed in Section II. For this reason, we only
analytically study the BS policy in this paper.

V. CONCLUSIONS

In this paper, we studied the mean file access delay per-
formance under coding in cloud storage systems with a very
large number of files stored in a very large number of servers.
We formulated an appropriate load-balancing problem, and
studied its delay performance in the large-system limit, i.e.,
when the number of servers goes to infinity. In particular,
we obtained the steady-state distribution of the number of
file access requests waiting at each server, and utilized this
to show that coding always improves the mean file access
delay compared with the simple replication scheme at all
traffic loads, without sacrificing any storage and reliability.
We further show that the improvement factor by coding in
the heavy-traffic regime is at least as large as in the light-
traffic regime. Finally, extensive simulations are performed to
validate our theoretical results.
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