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Abstract—We consider the min-cost multicast problem (under
network coding) with multiple correlated sources where each
terminal wants to losslessly reconstruct all the sources. This
can be considered as the network generalization of the classical
distributed source coding (Slepian-Wolf) problem. We study the
inefficiency brought forth by the selfish behavior of the terminals
in this scenario by modeling it as a noncooperative game among
the terminals. The solution concept that we adopt for this game
is the popular local Nash equilibrium (Waldrop equilibrium )
adapted for the scenario with multiple sources. The degradation
in performance due to the lack of regulation is measured by the
Price of Anarchy(POA), which is defined as the ratio between the
cost of the worst possible Waldrop equilibrium and the socially
optimum cost. Our main result is that in contrast with the case
of independent sources, the presence of source correlations can
significantly increase the price of anarchy. Towards establishing
this result we make several contributions. We characterizethe
socially optimal flow and rate allocation in terms of four intuitive
conditions. This result is a key technical contribution of this paper
and is of independent interest as well. Next, we show that the
Waldrop equilibrium is a socially optimal solution for a dif ferent
set of (related) cost functions. Using this, we construct explicit
examples that demonstrate that the POA> 1 and determine near-
tight upper bounds on the POA as well. The main techniques
in our analysis are Lagrangian duality theory and the usage
of the supermodularity of conditional entropy. Finally, all the
techniques and results in this paper will naturally extend to
a large class of network information flow problems where the
Slepian-Wolf polytope is replaced by any contra-polymatroid (or
more generally polymatroid-like set), leading to a nice class of
succinct multi-player games and allow the investigation ofother
practical and meaningful scenarios beyond network coding as
well.

I. I NTRODUCTION

In large scale networks such as the Internet, the agents in-
volved in producing and transmitting information often exhibit
selfish behavior e.g. if a packet needs to traverse the network
of various ISP’s, each ISP will behave in a greedy manner
and ensure that the packet spends the minimum time on its
network. While this minimizes the ISP’s cost it may not be the
best strategy from a overall network cost perspective. Selfish
routing, that deals with the question of network performance
under a lack of regulation has been studied extensively (see
[15], [20]) and has developed as an area of intense research
activity. However, by and large most of these studies have
considered the network traffic injected into the network at
various sources to be independent.

From an information theoretic perspective there is no need
to consider the sources involved in the transmission to be

independent. In this paper we initiate the study of network
optimization issues related to the transmission of correlated
sources over a network when the agents involved are selfish.
In particular, we concentrate on the problem of multicasting
correlated sources over a network to different terminals, where
each terminal is interested in losslessly reconstructing all the
sources. We assume that the network is capable of network
coding. Under this scenario, a generalization of the classical
Slepian-Wolf theorem of distributed source coding [8] holds
for arbitrary networks. In particular when the network per-
forms random linear network coding each terminal can recover
the sources under appropriate conditions on the Slepian-Wolf
region and the capacity region of the terminals with respectto
the sources, thereby allowing distributed source coding over
networks. The selfish agents in our set-up are the terminals
who pay for the resources. Each terminal aims to minimize
her own cost while ensuring that she can satisfy her demands.
It is important to note that this is a generalization of the
problem of minimum cost selfish multicast of independent
sources considered by Bhadra et al. [3].
Our Results: In this work, we model the scenario as
a noncooperative game amongst the selfish terminals who
request rates from sources and flows over network paths such
that their individual cost is minimized (i.e. with no regard
for social welfare) while allowing for reconstruction of all
the sources. We investigate properties of the socially optimal
solution and define appropriate solution concepts (Nash equi-
librium and Waldrop equilibrium) for this game and investigate
properties of the flow-rates at equilibrium. We briefly describe
our contributions below.
i) Characterization of social-optimality conditions.The prob-
lem of computing the socially optimal cost is a convex pro-
gram. We present a precise characterization of the optimality
conditions of this convex program in terms of four intuitive
conditions, using Lagrangian duality theory and by judiciously
exploiting the super-modularity of conditional entropy.
ii) Demonstrating the equivalence of flow-rates at equilibrium
with social-optimal solutions for alternative instances.We
consider certain meaningful market models that split resource
costs amongst the different terminals and show that the flows
and rates under the game-theoretic equilibriums are in fact
socially optimal solutions for a different set of cost functions.
This characterization allows us to quantify the degradation
caused by the lack of regulation. The measure of performance
degradation due to such loss in regulation that we adopt is



the Price of Anarchy(POA), which is defined as the ratio
between the cost of the worst possible equilibrium and the
socially optimum cost [9], [17], [21], [20].
iii) Showing that source correlation induces anarchy.The main
result of this paper is that the presence of source correlations
can significantly increase the POA under reasonable cost-
splitting mechanisms. This is in stark contrast to the case of
multicast with independent sources, where for a large classof
cost functions, cost-splitting mechanisms can be designedthat
ensure that the price of anarchy is one. We construct explicit
examples where the POA is greater than one and also obtain
an upper bound on the POA which is near tight.

Finally, we expect that the techniques developed in this
paper will be applicable to a large class of network information
flow problems with correlated sources where the Slepian-
Wolf polytope is replaced by polymatroid-like objects. These
include multi-terminal source coding with high resolution[23]
and the CEO problem [18].

Background and Related Work: Distributed source
coding (or distributed compression) (see [5], Ch. 14 for an
overview) considers the problem of compressing multiple
discrete memoryless sources that are observing correlatedran-
dom variables. The landmark result of Slepian and Wolf [22]
characterizes the feasible rate region for the recovery of the
sources. However, the problem of Slepian and Wolf considers
a direct link between the sources and the terminal. More
generally one would expect that the sources communicate with
the terminal over a network. Different aspects of the Slepian-
Wolf problem over networks have been considered in ([2], [6],
[19]). Network coding (first introduced in the seminal work of
Ahlswede et al. [1]) for correlated sources was considered by
Ho et al. [8]. They considered a network with a set of sources
and a set of terminals and showed that as long as the minimum
cuts between all non-empty subsets of sources and a particular
terminal were sufficiently large (essentially as long as the
Slepian-Wolf region of the sources has an intersection withthe
capacity region of a given terminal), random linear network
coding over the network followed by appropriate decoding at
the terminals achieves the Slepian-Wolf bounds.

The problem of minimum cost multicast under network
coding has been addressed in the work of [13], [12]. The
multicast problem has also been examined by considering
selfish agents [3], [10], [11]. Our work is closest in spirit
to the analysis of Bhadra et al. [3] that considers selfish
terminals. In this scenario, for a large class of edge cost
functions, they develop a pricing mechanism for allocating
the edge costs among the different terminals and show that it
leads to a globally optimal solution to the original optimization
problem, i.e. the price of anarchy is one. Their POA analysis
is similar to that in the case of selfish routing [21], [20]. Our
model is more general and our results do not generalize from
theirs in a straightforward manner. In particular, we need to
judiciously exploit several non-trivial properties of theSlepian-
Wolf polytope in our analysis.

II. T HE MODEL

Consider a directed graphG = (SUTUV, E). There is a
set of source nodesS that may be correlated and a set of
sinksT that are the terminals (i.e. receivers). Each source node
observes a discrete memoryless sourceXi. The Slepian-Wolf
region of the sources is assumed to be known and is denoted
RSW. For notational simplicity, letNS = |S|, NT = |T |,
S = {1, 2, . . . , NS}, and T = {t1, t2, . . . , tNT }. The set
of paths from sources to terminal t is denoted byPs,t.
Further, definePt = ∪s∈SPs,t i.e. the set of all possible
paths going to terminalt, and P = ∪t∈T Pt, the set of all
possible paths. Aflow is an assignment of non-negative reals
to each pathP ∈ P. The flow onP is denotedfP . A rate
is a functionR : S × T −→ R+, i.e. the rate requested by
the terminalt from the sources is Rs,t. We will refer to a
flow and rate pair(f, R) asflow-rate. Also, let us denote the
rate vector for terminalt by Rt and the vector of requested
rates at sources by ρs i.e. Rt = (R1,t, R2,t, . . . , RNS ,t) and
ρs = (Rs,t1 , Rs,t2 , . . . , Rs,tNT

).
Associated with each edgee ∈ E is a costce, which takes

as argument a scalar variableze that depends on the flows to
various terminals passing throughe. Similarly, let ds be the
cost function corresponding to the sources, which takes as
argument a scalar variableys that depends on the rates that
various terminals request froms. These functionsce’s and
ds’s are assumed to beconvex, positive, differentiable and
monotonically increasing. Further, the functions

∫ ce(x)
x dx

are also convex, positive, differentiable and monotonically
increasing. In particular, these conditions are satisfied by
functions likexa, a > 1 andxebx, b > 0 among others.

The network connection we are interested in supporting is
one where each terminal can reconstruct all the sources. i.e.
we need to jointly allocate rates and flows for each terminal
so that it can reconstruct the sources. We now present a formal
description of the optimization problem under consideration.

Min-Cost Multicast with Multiple Sources: Let us
call the quadruple(G, c, d, RSW) an instance. The problem of
minimizing the total cost for the instance(G, c, d, RSW) can
be formulated as

minimize C(f, R) =
∑

e∈E

ce(ze) +
∑

s∈S

ds(ys)

subject to fP ≥ 0 ∀P ∈ P

(NIF − CP )
∑

P∈Ps,t

fP ≥ Rs,t ∀s ∈ S, ∀t ∈ T (1)

Rt ∈ RSW ∀t ∈ T

where ze, ∀e ∈ E is a function of xe,t1 , xe,t2 , . . . , xe,tNT
,

that we shall denoteze(xe,t1 , xe,t2 , . . . , xe,tNT
) with xe,t =

∑

P∈Pt:e∈P fP ∀e ∈ E, ∀t ∈ T , and ys, ∀s ∈ S is a
function of ρs that we will denoteys(ρs).

The formulation above is similar to the one presented in
[3]. However since we consider source correlations as well,
their formulation is a specific case of our formulation. Since
network coding allows the sharing of edges, the penalty at
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an edge is only the maximum and not the sum i.e.ze is
the maximum flow (among the different terminals) across
the edgee. Similarly, the penalty at the sources for higher
resolution quantization is also driven by the maximum level
requested by each terminal i.e.ys is also maximum. In this
work, for differentiability requirements the maximum function
will be approximated asLp norm with p → ∞. Nevertheless,
most of our analysis is done whereze and ys are non-
decreasing functions partially differentiable with respect to
their arguments, such thatce(ze) and ds(ys) are convex,
positive, differentiable and monotonically increasing. Note that
in the formulation above, the objective function is convex and
all constraints are linear which implies that this is a convex
optimization problem.

The constraint (1) above models the fact that the total flow
from the sources to a terminalt needs to be at leastRs,t.
Finally, the rate point of each terminalRt needs to be within
the Slepian-Wolf polytope. A flow-rate(f, R) satisfying all
the conditions in the above optimization problem (i.e.(NIF-
CP) ) will be called a feasible flow-rate for the instance
(G, c, d, RSW) and the costC(f, R) will be referred to as
social costcorresponding to this flow-rate. Also, we will call
a solution(f∗, R∗) of the above problem as anOPT flow-rate
for the instance(G, c, d, RSW).

Consider a feasible flow-rate(f, R) for the above
optimization problem. It can be seen that the value
of the flow from A ⊆ S to a terminal t ∈ T is
∑

P∈∪s∈APs,t
fP ≥

∑

s∈A Rs,t. Since Rt ∈ RSW the
result of [8] shows that random linear network coding
followed by appropriate decoding at the terminals can recover
the sources with high probability. Conversely the result of[2]
shows the necessity of the existence of such a flow.

Terminals’ Incentives and the Distributed Com-
pression Game: The above formulation for social cost
minimization for the instance(G, c, d, RSW) disregards the
fact that the agents who pay for the costs incurred at the
edges and the sources may not be cooperative and may have
incentives for strategic manipulation. In this work we consider
the scenario where the terminals pay for the network resources
they are being provided. The terminals are noncooperative and
will behave selfishly trying to minimize their own respective
costs without regard to the social cost, while ensuring that
they can reconstruct all the sources. We have the following
assumptions.
(i) Let (f, R) denote a feasible flow rate for the instance
(G, c, d, RSW). The network operates via random linear net-
work coding over the subgraph ofG induced by the cor-
responding{ze} for e ∈ E. The terminals are capable of
performing appropriate decoding to recover the sources.
(ii) Each terminalt ∈ T can request for any specific set of
flows on the pathsP ∈ Pt and ratesRt as long as such a
request allows reconstruction of the sources att. There is a
mechanism in the network by means of which this request
is accommodated i.e. the subgraph over which random linear
network coding is performed is adjusted appropriately.

In this work we wish to characterize flow-rates that represent
an equilibrium among selfish terminals while they act strate-
gically to minimize their own costs. Furthermore, we shall
systematically study the loss that occurs due to the mismatch
between the social goals and terminal’s selfish goals.

Towards this end, we now formally model the game orig-
inating from the selfish behavior of the terminals. We model
this game as anormal formal game[16], i.e. a static one shot
strategic game of complete information, which we refer to as
Distributed Compression Game(DCG).

A normal form game, denoted(N, {Ai}i∈N, {�i}i∈N),
consists of the set ofplayersN, the tuple ofset of strategiesAi

for each playeri ∈ N, and the tuple ofpreference relations�i

for each playeri ∈ N on the setA = ×i∈NAi. For a, b ∈ A,
a �i b means that the playeri prefers the tuple of strategies
a to the tuple of strategiesb. In the context ofDistributed
Compression Game, given an instance(G, c, d, RSW), these
parameters are defined as follows.

1) The Distributed Compression Game:

Players: N = T , i.e. the terminals are the players. This is
because, as mentioned above, the terminals are the users and
they are the ones who pay for the network resources they are
being provided.
Strategies: The strategy set of a playert ∈ T consists of
tuples(ft, Rt) where

• ft is the vector of flows on paths going tot, i.e. the vector
of valuesfP for all P ∈ Pt, and recall thatRt denotes
the rate vector for terminalt;

• fP ≥ 0 ∀P ∈ Pt,
∑

P∈Ps,t
fP ≥ Rs,t ∀s ∈ S and

Rt ∈ RSW.

Therefore,

At =







(ft, Rt) :

fP ≥ 0 ∀P ∈ Pt,
∑

P∈Ps,t
fP ≥ Rs,t ∀s ∈ S,

Rt ∈ RSW







. (2)

Note that a feasible flow-rate(f, R) for the instance
(G, c, d, RSW) is an element of the setA = ×t∈T At defined
for the same instance.
Preference Relations:To specify the preference relation of
terminal t ∈ T , we need to know how much does she pay
given a feasible flow-rate(f, R) i.e. what fractions of the costs
at various edges and sources are being paid byt? To this end,
we need market models, i.e. mechanisms for splitting the costs
among various terminals.
Edge Costs:At a flow f , the cost of an edgee ∈ E is ce(ze).
It is split among the terminalst ∈ T , each paying a fraction
of this cost. Let us say that the fraction paid by the player
t is Ψe,t(xe) i.e. the playert pays ce(ze)Ψe,t(xe) for the
edgee wherexe denotes the vector(xe,t1 , xe,t2 , . . . , xe,tNT

).
Of course,

∑

t∈T Ψe,t(xe) = 1 to ensure that the total cost
is borne by someone or the other. The total cost borne byt

across all the edges is
∑

e∈E ce(ze)Ψe,t(xe), denotedC(t)
E (f).

Source Costs:At a rateR, the cost for the sources is ds(ys),
which is split among the terminalst ∈ T , such thatt pays
a fractionΦs,t(ρs) i.e. the playert paysds(ys)Φs,t(ρs) for
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the sources. Of course,
∑

t∈T Φs,t(ρs) = 1. Therefore, the

total cost borne byt for all sources, denotedC(t)
S (R), is

∑

s∈S ds(ys)Φs,t(ρs).
Thus, with the edge-cost-splitting mechanismΨ and the
source-cost-splitting mechanismΦ, the total cost incurred by
the playert ∈ T at flow-rate(f, R) denotedC(t)(f, R) is

C(t)(f, R) = C
(t)
E (f) + C

(t)
S (R)

=
∑

e∈E

ce(ze)Ψe,t(xe) +
∑

s∈S

ds(ys)Φs,t(ρs).

Now, each terminalt would like to minimize its own
cost i.e. the functionC(t)(f, R) and therefore the pref-
erence relations{�t} are as follows. For two flow-rates
(f, R) ∈ A and (f̃ , R̃) ∈ A, (f, R) �t (f̃ , R̃) if and
only if C(t)(f, R) ≤ C(t)(f̃ , R̃). Also, (f, R) ≻t (f̃ , R̃) iff
C(t)(f, R) < C(t)(f̃ , R̃).

We will call (G, c, d, RSW, Ψ, Φ) as an instance of the
Distributed Compression Game.

2) Solution Concepts for the Distributed Compression
Game: We now outline the possible solution concepts in
our scenario. These are essentially dictated by the level of
sophistication of the terminals. Sophistication refers tothe
amount of information and computational resources available
to a terminal. In this work we shall work with two different
solution concepts that we now discuss.

a) Nash Equilibrium.The solution concept of Nash equlib-
rium requires the complete information setting and requires
each terminal to compute her best response to any given tuple
of strategies of the other players. For notational simplicity, let
f−t be the vector of flows on paths not going to terminalt

i.e. the vector of valuesfP for all P ∈ P − Pt, therefore
f = (f−t, ft). Similarly, R−t is the vector of rates corre-
sponding to all players other thant, thereforeR = (R−t, Rt).
In our setting, the best response problem of a terminalt

is to minimize her cost functionC(t)(f−t, ft, R−t, Rt) over
(ft, Rt) ∈ At given any(f−t, R−t). Therefore a Nash flow-
rate is defined as follows.

Definition 1: (Nash flow-rate) A flow-rate (f, R) feasible
for the instance(G, c, d, RSW) is at Nash equilibrium, or is a
Nash flow-rate for instance(G, c, d, RSW, Ψ, Φ), if ∀t ∈ T ,

C(t)(f, R) ≤ C(t)(f−t, f̃t, R−t, R̃t) ∀(f̃t, R̃t) ∈ At.

We note that computing the best response will in general
require a given terminal to know flow assignments on all possi-
ble paths and rate vectors for all the terminals. Moreover, con-
vexity of the objective function inNIF −CP (i.e. social cost
C(f, R)) does not imply convexity ofC(t)(f−t, ft, R−t, Rt)
in the variables(ft, Rt) ∈ At in general. Therefore the
computational requirements at the terminals may be large.
Consequently Nash equilibrium does not seem to be an appro-
priate solution concept for the Distributed Compression Game
when we look through the algorithmic lens.

b) Waldrop Equilibrium. From a practical standpoint, a
terminal may only have partial knowledge of the system
and may be computationally constrained. A solution concept

more appropriate under such situations is that of local Nash
equilibrium or Waldrop equilibrium that is widely adopted in
selfish routing and transportation literature[20], [14], [7]. We
note that this solution concept has also been utilized in [3]. We
first present the precise definition of the Waldrop equilibrium
in our case and then provide an intuitive justification. Towards
this end, we need to define the marginal cost of a path.

Definition 2: (Marginal Cost of a Path) For aP ∈ Pt its
marginal cost isCP (f) :=

∑

e∈P
ce(ze)Ψe,t(xe)

xe,t
.

Therefore, for the terminalt, the total cost for the edges,C
(t)
E ,

can be equivalently written asC(t)
E (f) =

∑

P∈Pt
CP (f)fP .

Definition 3: (Waldrop flow-rate) A flow-rate(f, R) feasi-
ble for the instance(G, c, d, RSW) is at local Nash equilibrium,
or is a Waldrop flow-rate for instance(G, c, d, RSW, Ψ, Φ), if
it satisfies the following conditions.
(1) ∀t ∈ T, ∀s ∈ S, we have

∑

P∈Ps,t
fP = Rs,t.

(2) ∀t ∈ T , we have
∑

s∈S Rs,t = H(XS).
(3) ∀t ∈ T, ∀s ∈ S, P, Q ∈ Ps,t with fP > 0, CP (f) ≤
CQ(f).
(4) For t ∈ T , let j ∈ S participates inall tight rate
inequalities involving i ∈ S (i.e. if A ⊆ S, such that
i ∈ A and

∑

l∈A Rl,t = H(XA|X−A)1, then j ∈ A) and
let P ∈ Pi,t, Q ∈ Pj,t with fP > 0 then we have

CP (f) +
∂C

(t)
S (R)

∂Ri,t
≤ CQ(f) +

∂C
(t)
S (R)

∂Rj,t
.

Intuitively, conditions (1) and (2) require that each terminal re-
quests as little rate and flow as possible. Condition (3) ensures
that an infitesimally small change in flow allocations from path
P (wherefP > 0) to pathQ whereP, Q ∈ Ps,t, will increase
the sum cost along paths inPt. Now, consider an infitesimally
small change in flow allocation fromP ∈ Pi,t (wherefP > 0)
to Q ∈ Pj,t. This also requires a corresponding change in the
rates requested from sourcesi and j by terminal t. Under
certain constraints on the sourcej, Condition (4) ensures that
the overall effect of this change will serve to increase terminal
t’s cost. The conditions on the sourcej are well-motivated in
light of the characterization of Nash flow-rate at the end of
section III in the case when the best response problem of every
terminal is convex.

We remark that a Nash flow-rate may not always be a Wal-
drop flow-rate and vice versa. When sources are independent,
condition (2) implies thatRs,t = H(Xs) for all s ∈ S, t ∈ T

and it is not required to check the condition (4). Also we can
recover condition (3) by settingi = j in condition (4). They
are stated separately for the sake of clarity.

As we discussed earlier, the solution concept based on
Waldrop equilibrium seems more suitable to our scenario and
consequently we define the price of anarchy [9], [17], [20] in
terms of Waldrop flow-rate instead of Nash flow-rate.

Definition 4: Price of Anarchy(POA): Let C be a class of
edge cost functions,D be a class of source cost functions,G

be a class of networks/graphs,Ψ be an edge cost splitting

1We useH(XA|X−A) and H(XA|XAc) interchangeably in the text to
denote the joint entropy of the sources in setA given the remaining sources.
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mechanism,Φ be a source cost splitting mechanism, and
M be a set of Slepian-Wolf polytopes. We will refer to
(G, C, D, Ψ, Φ, M) as a scenario. The price of anarchy for
the scenario(G, C, D, Ψ, Φ, M), denotedρ(G, C, D, Ψ, Φ, M),
is defined as

ρ(G, C, D,Ψ, Φ, M) = max
G∈G,c∈C,d∈D,RSW∈M

(

1

COPT (G, c, d, RSW)

max
(f, R) is a Waldrop flow-rate for(G, c, d, RSW, Ψ, Φ)

C(f, R)

)

,

where COPT (G, c, d, RSW) refers to the optimal cost of
NIF −CP for the instance(G, c, d, RSW). Let us denote the
set of Slepian-Wolf polytopes corresponding to the case where
there are no source correlations (i.e.H(XA|X−A) = H(XA)
for all A ∈ S) by Mind (subscriptind denotes -independent)
and the set of Slepian-Wolf polytopes corresponding to the
case where sources are correlated (i.e. there existsA ⊆ S with
H(XA|X−A) < H(XA)) by Mc. Also, we useGall to denote
the class of all graphs where everyt ∈ T is connected to every
s ∈ S, andGdsw (subscriptdsw denotes -direct Slepian-Wolf)
to denote the class of complete bipartite graphs between theset
of sources and the set of terminals. Note thatGdsw corresponds
to the case where every terminals is directly connected to
every source by an edge and no network coding is required.
A question we will be most concerned with in this paper
is whether ρ(G, C, D, Ψ, Φ, Mc) > ρ(G, C, D, Ψ, Φ, Mind),
and in particular whetherρ(G, C, D, Ψ, Φ, Mc) > 1 but
ρ(G, C, D, Ψ, Φ, Mind) = 1 for meaningful classes of cost
functions C, D and reasonable splitting mechanismsΨ and
Φ i.e. does correlation induce anarchy?

III. C HARACTERIZING THE OPTIMAL FLOWS AND RATES

In this section, we investigate the properties of anOPT flow-
rate via Lagrangian duality theory [4]. Since the optimization
problem (NIF-CP) is convex and the constraints are such
that the strong duality holds, theKarush-Kuhn-Tucker(KKT)
conditions exactly characterize optimality [4]. Therefore, we
start out by writing the Lagrangian dual ofNIF-CP,

L =
∑

e∈E

ce(ze) +
∑

s∈S

ds(ys) −
∑

P∈P

µP fP

+
∑

s∈S

∑

t∈T

λs,t(Rs,t −
∑

P∈Ps,t

fP )

+
∑

t∈T





∑

A⊆S

νA,t

(

H(XA|XAc ) −
∑

i∈A

Ri,t

)





whereµP ≥ 0, λs,t ≥ 0 andνA,t ≥ 0 are the dual variables
(i.e. Lagrange multipliers). For notational simplicity, let us
denote the partial derivative ofze with respect toxe,t, ∂ze

∂xe,t

by z
′

e,t. Note that the partial derivative ofxe,t w.r.t. to fP is 1
for a P ∈ Pt. Similarly, we denote the partial derivative ofys

with respect toRs,t,
∂ys

∂Rs,t
by y

′

s,t. The KKT conditions are

then given by the following equations that hold∀ s ∈ S, t ∈ T ,

∂L

∂fP
=
∑

e∈P

c
′

e(ze)z
′

e,t(xe) − µP − λs,t = 0 ∀P ∈ Ps,t, (3)

∂L

∂Rs,t
= d

′

s(ys)y
′

s,t(ρs) + λs,t −
∑

A⊆S:s∈A

νA,t = 0 (4)

along with the feasibility of the flow-rate(f, R) and the
complementary slackness conditionsµP fP = 0 for all P ∈ P,
λs,t(Rs,t −

∑

P∈Ps,t
fP ) = 0 for all s ∈ S, t ∈ T , and

νA,t

(

H(XA|XAc) −
∑

i∈A Ri,t

)

= 0 for all A ⊆ S, t ∈ T .
Let us now interpret the KKT conditions at theOPT flow-

rate (f∗, R∗). Suppose thatf∗
P > 0 for P ∈ Ps,t. Then due to

complementary slackness, we haveµ∗
P = 0 and consequently

from equation (3) we get
∑

e∈P c
′

e(z
∗
e )z

′

e,t(x
∗
e) = λ∗

s,t i.e.
if there exists another pathQ ∈ Ps,t such thatf∗

Q > 0

then
∑

e∈P c
′

e(z
∗
e )z

′

e,t(x
∗
e) =

∑

e∈Q c
′

e(z
∗
e)z

′

e,t(x
∗
e). On fur-

ther investigation we can obtain four necessary and sufficient
conditions for optimality. Due to lack of space we will omit
the proof of the necessity of these four conditions under strict
convexity of the various cost functions and instead concentrate
on the proof of sufficiency of these conditions for optimality.

Theorem 5:A feasible flow-rate(f, R) for the instance
(G, c, d, RSW), which satisfies the following four conditions is
an OPT flow-rate for the instance(G, c, d, RSW). Also, there
is always an OPT flow-rate that satisfies these four conditions.
Further, when the edge cost functionsce for all e ∈ E and the
source cost functionsds for all s ∈ S are strictly convex, that
is when the optimization problem(NIF-CP) is strictly convex,
these conditions are also necessary for optimality.

1) ∀t ∈ T, ∀s ∈ S, we have
∑

P∈Ps,t
fP = Rs,t.

2) ∀t ∈ T , we have
∑

s∈S Rs,t = H(XS).
3) ∀t ∈ T, ∀s ∈ S, P, Q ∈ Ps,t with fP > 0,
∑

e∈P c
′

e(ze)z
′

e,t(xe) ≤
∑

e∈Q c
′

e(ze)z
′

e,t(xe).
4) For t ∈ T , suppose that there existi, j ∈ S that satisfy

the following property. IfA ⊆ S, such thati ∈ A and
∑

l∈A Rl,t = H(XA|X−A), thenj ∈ A. For suchi and
j let P ∈ Pi,t, Q ∈ Pj,t with fP > 0. Then

∑

e∈P

c
′

e(ze)z
′

e,t(xe) + d
′

i(yi)y
′

i,t(ρi)

≤
∑

e∈Q

c
′

e(ze)z
′

e,t(xe) + d
′

j(yj)y
′

j,t(ρj).

Proof: We prove that the above four conditions imply
optimality of (f, R). Our assumptions guarantee that the opti-
mization problem (NIF-CP) for the instance(G, c, d, RSW) is
convex and since all the feasibility constraints are linear, strong
duality holds [4]. This implies that the KKT conditions are
necessary and sufficient for optimality. We show that a feasible
flow-rate (f, R) with the above four properties satisfies the
KKT conditions for the instance(G, c, d, RSW) for a suitable
choice of the dual variables given below.
Choosing λi,t’s: λi,t := minP∈Pi,t

∑

e∈P c
′

e(ze)z
′

e,t(xe).
Note that, usingCondition 3, for i ∈ S, if there exist
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a Pi ∈ Pi,t such that fPi > 0 then we haveλi,t =
∑

e∈Pi
c
′

e(ze)z
′

e,t(xe).
Choosing µP ’s: For P ∈ Pi,t take µP :=
∑

e∈P c
′

e(ze)z
′

e,t(xe) − λi,t.

ChoosingνA,t’s: Let hi,t := d
′

i(yi)y
′

i,t(ρi)+λi,t. Let π denote
a permutation such that0 ≤ hπ(1),t ≤ hπ(2),t ≤ . . . hπ(NS),t.

Now take

νA,t =















hπ(1),t if A = {π(1), π(2), . . . , π(NS)}
hπ(i),t − hπ(i−1),t if A = {π(i), . . . , π(NS)}

and2 ≤ i ≤ NS

0 otherwise.

Now, with the above choice of dual variables we will check
all the KKT conditions one by one.
Dual Feasibility:
• λi,t ≥ 0 as ce and ze are non-decreasing functions i.e.
c
′

e(ze) ≥ 0 andz
′

e,t(xe) ≥ 0.
• µP ≥ 0 by the definition becauseλi,t ≤
∑

e∈P c
′

e(ze)z
′

e,t(xe) ∀P ∈ Pi,t.
• νA,t ≥ 0 by definition.
KKT Conditions as per equation 3:

∂L

∂fP
=
∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t − µP

=
∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t −

(

∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t

)

= 0

KKT Conditions as per equation 4:
∂L

∂Rπ(i),t

= d
′

π(i)(yπ(i))y
′

π(i),t(ρπ(i)) + λπ(i),t −
∑

A⊆S:π(i)∈A

νA,t

= hπ(i),t −
∑

A⊆S:π(i)∈A

νA,t

= hπ(i),t −
∑

j∈{1,2,...,i}

ν{π(j),π(j+1),...,π(NS)},t

= hπ(i),t − [hπ(1),t + (hπ(2),t − hπ(1),t)

+ (hπ(3),t − hπ(2),t) + · · · + (hπ(i),t − hπ(i−1),t)]

= hπ(i),t − hπ(i),t = 0.

Complementary Slackness Conditions:
• µP fP = 0 for all P ∈ P. Let P ∈ Pi,t and
fP > 0 then using Condition 3 and definition of λi,t

we get
∑

e∈P c
′

e(ze)z
′

e,t(xe) = λi,t and therefore,µP =
∑

e∈P c
′

e(ze)z
′

e,t(xe) − λi,t = 0.
• λs,t(Rs,t −

∑

P∈Ps,t
fP ) = 0 for all s ∈ S, t ∈ T . This

follows from theCondition 1.
• νA,t

(

H(XA|XAc) −
∑

i∈A Ri,t

)

= 0 for all A ⊆ S, t ∈ T .
Note that νA,t = 0 except for A = {π(i), π(i +
1), . . . , π(NS)}, for i = 1, 2, . . . , NS . Therefore the only
condition that needs to be checked is that if

∑NS

j=i Rπ(j),t >

H(Xπ(i), Xπ(i+1), . . . , Xπ(NS)|Xπ(i−1), . . . , Xπ(1)), then
hπ(i),t − hπ(i−1),t = 0.

Towards this end letj ∈ {π(i), π(i + 1), . . . , π(NS)}, and
let Aj be the minimum cardinality set such thatj ∈ Aj and
∑

l∈Aj
Rl,t = H(XAj |X−Aj) i.e.

Aj = arg min
A⊆S:j∈A,

∑

l∈A Rl,t=H(XA |X−A)
|A|.

Such a setAj always exists because fromCondition 2 we
have

∑NS

l=1 Rl,t = H(X1, . . . , XNS) and therefore the set
{

A ⊆ S : j ∈ A,
∑

l∈A Rl,t = H(XA|X−A)
}

is not empty.
We claim that there exists aj∗ ∈ {π(i), π(i +

1), . . . , π(NS)} such thatAj∗ ∩ {π(1), π(2), . . . , π(i − 1)}
is not empty. If this is not true then clearly we
have ∪

π(NS)
j=π(i)Aj = {π(i), π(i + 1), . . . , π(NS)} and

using the supermodularity property of conditional
entropy (ref. Lemma 10), we obtain

∑π(NS)
j=π(i) Rj,t =

H(Xπ(i), Xπ(i+1), . . . , Xπ(NS)|Xπ(i−1), . . . , Xπ(1))
which is a contradiction, therefore we must have
such a j∗ ∈ {π(i), π(i + 1), . . . , π(NS)} such that
Aj∗ ∩ {π(1), π(2), . . . , π(i − 1)} is not empty.

Next, we show that there exists a sourcek ∈
{π(1), π(2), . . . , π(i − 1)} such that if j∗ ∈ A and
∑

l∈A Rl,t = H(XA|X−A), then k ∈ A. Towards this
end suppose that there exist subsetsS1 and S2 of such
that j∗ ∈ S1 ∩ S2 and

∑

l∈S1
Rl,t = H(XS1 |X−S1) and

∑

l∈S2
Rl,t = H(XS2 |X−S2), then using the supermodular-

ity property of conditional entropy we can show that rate
inequality involvingS1 ∩S2 is also tight (Lemma 10) i.e.
∑

l∈S1∩S2
Rl,t = H(XS1∩S2 |X−(S1∩S2)). This implies that

Aj∗ , being of minimum cardinality, is the intersection of all
sets that havej∗ as a member on which the rate inequality is
tight i.e.

Aj∗ =
⋂

A⊆S

{A : j∗ ∈ A,
∑

l∈A

Rl,t = H(XA|X−A)}.

Moreover note thatAj∗ is not a singleton set sinceAj∗ ∩
{π(1), π(2), . . . , π(i − 1)} 6= φ. Therefore there exists ak ∈
Aj∗ such thatk 6= j∗. By our above arguments this implies that
if A ⊆ S is such thatj∗ ∈ A and

∑

l∈A Rl,t = H(XA|X−A)
thenk ∈ A.

Clearly, Rj∗,t > H(Xj∗ |X−j∗) as k does not participate
in this rate inequality. Therefore,Rj∗,t > 0 which implies
that there exists aP ∈ Pj∗,t with fP > 0, therefore
using Condition 3 and the definition ofλj∗,t we have
∑

e∈P c
′

e(ze)z
′

e,t(xe) = λj∗,t. Also, by the definition ofλk,t

there is aQ ∈ Pk,t such that
∑

e∈Q c
′

e(ze)z
′

e,t(xe) = λk,t.
Now usingCondition 4, we get
∑

e∈P

c
′

e(ze)z
′

e,t(xe) + d
′

j∗(yj∗)y
′

j∗,t(ρj∗)

≤
∑

e∈Q

c
′

e(ze)z
′

e,t(xe) + d
′

k(yk)y
′

k,t(ρk) ∀Q ∈ Pk,t

which implies that

λj∗,t + d
′

j∗(yj∗)y
′

j∗,t(ρj∗) ≤ λk,t + d
′

k(yk)y
′

k,t(ρk)

and therefore we gethj∗,t ≤ hk,t. Now note thatk ∈
{π(1), π(2), . . . , π(i − 1)} while j∗ ∈ {π(i), . . . , π(NS)}.
This implies in turn thathπ(i),t ≤ hj∗,t ≤ hk,t. But, we know
thathk,t ≤ hπ(i−1),t i.e. hπ(i),t−hπ(i−1),t ≤ 0 but we already
havehπ(i),t −hπ(i−1),t ≥ 0 and hencehπ(i),t −hπ(i−1),t = 0.

Corollary 6: If the sources are independent (i.e.RSW ∈
Mind), there is a feasible flow-rate for instance(G, c, d, RSW)
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that is an OPT flow-rate for both the instances(G, c, d, RSW)
and (G, c̃, d̃, RSW), where c̃e(x) = αce(x) for constant
α > 0, and d̃s is any convex, differentiable, positive and
non-decreasing function. Further, this OPT flow-rate satisfies
the four conditions in Theorem 5 for both the instances
(G, c, d, RSW) and(G, c̃, d̃, RSW).

We omit the proof due to lack of space. The idea is that
when the sources are independent, Condition (2) in Theorem 5
implies thatRs,t = H(Xs) for all s ∈ S, t ∈ T , and therefore,
there is no pair(i, j) such thatj participates in all tight rate
inequalities involvingi and consequently it is not required to
check Condition (4).

We conclude this section with an important note that
whenever the best response problem of each terminal is
convex, using an approach essentially similar to the proof
of Theorem 5, it can be shown that the four conditions in
the definitions of Waldrop flow-rate but withCP (f) replaced

by ∂C
(t)
E (f)

∂fP
characterizes the Nash flow-rate. Further, under

similar convexity conditions, we can also show that a Nash
flow-rate always exists for theDistributed Compression Game.
The proofs are omitted due to space constraints.

IV. WALDROP FLOW-RATE AND THE PRICE OFANARCHY

In this section, we investigate the inefficiency brought forth
by the selfish behavior of terminals. First, we will show that
the Waldrop equilibrium is a socially optimal solution for a
different set of (related) cost functions. Using this, we will
construct explicit examples that demonstrate that the POA> 1
and determine near-tight upper bounds on the POA as well.
We start out with the characterization of Waldrop flow-rate.

Theorem 7:Let ze(xe) =
(
∑

t∈T xn
e,t

)
1
n , Ψe,t(xe) =

xn
e,t

(
∑

j∈T xn
e,j)

and Φs,t(ρs) = 1
NT

. A Waldrop flow-rate for

(G, c, d, RSW, Ψ, Φ) is an OPT flow-rate for(G, c̃, d, RSW),
where c̃e(x) = NT

∫ ce(x)
x dx. Further, when the edge

cost functions ce for all e ∈ E and the source cost
functions ds for all s ∈ S are strictly convex, an OPT
flow-rate for (G, c, d, RSW) is also a Waldrop flow-rate for
(G, ĉ, d, RSW, Ψ, Φ), whereĉe(x) = 1

NT
xc

′

e(x).
Proof: We will show that the definition of a Waldrop flow-

rate for instance(G, c, d, RSW, Ψ, Φ) exactly corresponds to
the four conditions for the instance(G, c̃, d, RSW) in Theorem
5.

We have, z
′

e,t(xe) = 1
n

(

∑

j∈T xn
e,j

)
1
n−1

nxn−1
e,t =

ze

xe,t

xn
e,t

∑

j∈T xn
e,j

. Therefore,

CP (f) =
∑

e∈P

ce(ze)
xn−1

e,t
(

∑

j∈T xn
e,j

)

=
∑

e∈P

ce(ze)
z

′

e,t(xe)

ze
=

1

NT

∑

e∈P

c̃
′

e(ze)z
′

e,t(xe)

where the last equality follows from the fact that
c̃e(x) = NT

∫ ce(x)
x dx =⇒ c̃

′

e(x) = NT
ce(x)

x .
Also, C

(t)
S (R) = 1

NT

∑

i∈S di(yi), =⇒

∂C
(t)
S (R)

∂Ri,t
= 1

NT
d

′

i(yi)y
′

i,t(ρi). Therefore,CP (f) +
∂C

(t)
S (R)

∂Ri,t
=

1
NT

[

∑

e∈P c̃
′

e(ze)z
′

e,t(xe) + d
′

i(yi)y
′

i,t(ρi)
]

. The result
follows from the equivalence of conditions coming from
Definition 3 and Theorem 5.

In contrast with the result of [3] that holds for a single
source with the edge cost splitting mechanism used above,
from Theorem 7, we can note that for most reasonable cost
splitting mechanisms, the POA will not equal one for all
monomial edge cost functions. We construct explicit examples
for POA > 1 in the Figure 1. The example in Figure 1(a) is
near tight as will be evident from an upper bound on POA
derived in Theorem 9.

It is interesting to note that in the case when sources
are independent, in the Waldrop or OPT solutions, the rates
requested at various sources will equal their respective lower
bounds (i.e. their entropy). Therefore, the cost term corre-
sponding to the sources will be fixed, and one only needs
to find flows that minimize the edge costs. In this situation, it
is not hard to see that the POA will again equal one forall
monomial edge cost functions. i.e.it is the correlation among
the sources that is responsible for bringing more anarchy. We
formalize this below.

Let Ck = {c : ce(x) = aex
k, ae > 0, ∀e ∈ E} be

the set of edge cost functions where all edge cost functions
are monomial of the same degreek possibly with different
coefficients, andCmon = ∪k≥1Ck. Similarly, Dk = {d :
di(y) = bix

k, bi > 0, ∀s ∈ S}. Also, let Dconvex = {d :
di is convex∀i ∈ S}.

Corollary 8: Correlation Induces Anarchy: Let ze(xe) =
(
∑

t∈T xn
e,t

)
1
n , Ψe,t(xe) =

xn
e,t

(
∑

j∈T xn
e,j)

, ys(ρs) =
(
∑

t∈T Rm
s,t

)
1
m , andΦs,t(ρs) = 1

NT
, then we have

1) ρ(Gall, Cmon, Dconvex, Ψ, Φ, Mind) = 1.

2) ρ(Gall, CNT , Dconvex, Ψ, Φ, Mc) = 1.

3) ρ(Gall, Cmon, Dconvex, Ψ, Φ, Mc) > 1 for large values
of m andn. In fact,ρ(Gall, C1, D2, Ψ, Φ, Mc) > 1+NT

5 .
4) ρ(Gdsw, Cmon, Dconvex, Ψ, Φ, Mc) > 1 for large values

of m andn.

Proof: Let c ∈ Cmon i.e. ce(x) = aex
k for ae > 0

for all e ∈ E, therefore,
∫ ce(x)

x dx =
∫

aex
k−1 dx =

ae
1
kxk = 1

k ce(x). Also, d ∈ Dconvex. Now, since the
sources are independent (i.e.RSW ∈ Mind), from The-
orem 7 and Corollary 6 it follows that a Waldrop flow-
rate for instance(G, c, d, RSW, Ψ, Φ) is also an OPT flow-
rate for the instance(G, c, d, RSW) which implies that
ρ(Gall, Cmon, Dconvex, Ψ, Φ, Mind) = 1.

Even if the sources are correlated, when we havek = NT ,
we haveNT

∫ ce(x)
x dx = ce(x) and using Theorem 7, a

Waldrop flow-rate for instance(G, c, d, RSW, Ψ, Φ) is also an
OPT flow-rate for the instance(G, c, d, RSW) which implies
that ρ(Gall, CNT , Dconvex, Ψ, Φ, Mc) = 1.

We proveρ(Gall, C1, D2, Ψ, Φ, Mc) > 1+NT

5 and conse-
quently ρ(Gall, Cmon, Dconvex, Ψ, Φ, Mc) > 1, by explicitly
constructing an example as provided in Figure 1(a). All
sources are identical with entropyh, therefore,RSW ∈ Mc.
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Further,ds(y) = C1y
2 for all s ∈ S, therefore,d ∈ D2. All

edge cost functions arece(x) = x except for the edge(u, v)
for which ce(x) = C2 x. Therefore,c ∈ C1. Let us consider
the following flow-rate(f, R)

R1,t = h ∀t ∈ T, Rs,t = 0 ∀s ∈ S − {1}, t ∈ T

f(1,t) = h ∀t ∈ T, fP = 0 ∀P ∈ Pt − {(1, t)}, t ∈ T.

Clearly, (f, R) is feasible for the instance(G, c, d, RSW).
We claim that(f, R) is a Waldrop flow-rate for the instance
(G, c, d, RSW, Ψ, Φ) when 2C1h

NT
≤ 1 + C2. To see this, first

note that(f, R) satisfies the Conditions (1) and (2) in the
definition of Waldrop flow-rate (Definition 3) for the instance
(G, c, d, RSW, Ψ, Φ). To check the conditions (3) and (4) in
the definition, we compute the marginal cost for the various
paths and the differential cost for various sources. Note that
Ψe,t(xe) = 1

NT
wheneverxe,t = x for all t ∈ T for some

x > 0 and by continuity this is true even ifx = 0. Therefore,

C(1,t)(f) =
∑

e∈{(1,t)}

ce(ze)Ψe,t(xe)

xe,t
=

h . 1

h
= 1,

C(1,u,v,t)(f) =
∑

e∈{(1,u),(u,v),(v,t)}

ce(ze)Ψe,t(xe)

xe,t

= lim
x−→0

[

x . (1/NT )

x
+

C2x . (1/NT )

x
+

x . 1

x

]

= 1 +
1 + C2

NT
,

C(s,u,v,t)(f) = 1 +
1 + C2

NT
, s ∈ S − {1}.

Clearly, the condition (3) is satisfied asC(1,t)(f) <

C(1,u,v,t)(f). Also,

∂C
(t)
S (R)

∂Ri,t
=

1

NT
d
′

i(yi)y
′

i,t(ρi) =
1

NT
2C1yiy

′

i,t(ρi)

=
2C1

NT
y2

i

Rm−1
i,t

∑

j∈T Rm
i,j

=
2C1

NT

(

∑

j∈T

Rm
i,j

)2/m
Rm−1

i,t
∑

j∈T Rm
i,j

.

∴

∂C
(t)
S (R)

∂R1,t
=

2C1

NT
(NT hm)2/m hm−1

NT hm
=

2C1h

N2
T

asm → ∞, and
∂C

(t)
S (R)

∂Rs,t
≥ 0, ∀s ∈ S − {1}.

Therefore, when2C1h
NT

≤ 1 + C2, we get C(1,t)(f) +
∂C

(t)
S (R)

∂R1,t
≤ C(s,u,v,t)(f) +

∂C
(t)
S (R)

∂Rs,t
for all s ∈ S −

{1} which implies that the condition (4) is also satisfied.
Thus, (f, R) is indeed a Waldrop flow-rate for the instance
(G, c, d, RSW, Ψ, Φ). Further after simple calculation we get,
C(f, R) = NT h + C1h

2, as m → ∞. Now let us consider
another flow-rate(f∗, R∗)

R∗
s,t =

h

NS
∀s ∈ S, t ∈ T

f∗
(1,t) = 0 ∀t ∈ T, andf∗

(s,u,v,t) =
h

NS
∀s ∈ S, t ∈ T.

u v

1

2

NS -1

NS

t1

t1

tNT
- 1

t
N{T}

(a)

1

2

t1

t2

(b)

Fig. 1. (a) Example of a network where POA is linear inNT . (b) Classical
Slepian-Wolf network with appropriate costs also has POA> 1.

Clearly,(f∗, R∗) is feasible for the instance(G, c, d, RSW).
Further, we getC(f∗, R∗) = h(1 + C2 + NT ) + C1h2

NS
asm →

∞, n → ∞.
Thus, when1+C2

C1
< h (1 − 1

NS
), we haveC(f∗, R∗) <

C(f, R). As OPT (G, c, d, RSW) ≤ C(f∗, R∗), this im-
plies that the POA is greater than one. In particular,

ρ(Gall, C1, D2, Ψ, Φ, Mc) >
C1+

NT
h

1+C2+NT
h +

C1
NS

. Now, takeh =

1, NS = NT > 4, 1 + C2 = 3NT , C1 = N2
T , and note

that 2C1h
NT

= 2NT < 3NT = 1 + C2, as well as,1+C2

C1
=

3
NT

< (1 − 1
NT

) = (1 − 1
NS

) as NT > 4. Therefore, we get
ρ(Gall, C1, D2, Ψ, Φ, Mc) > 1+NT

5 . This is near tight as evi-
dent from Theorem 9. To establish (4), we will prove a stronger
result, ρ(Gdsw, C3, D3, Ψ, Φ, Mc) > 1, by constructing an
example as described below. As shown in Figure 1(b) there are
two sources and two terminals which are directly connected
to each source. Both sources are identical with entropy1,
d1(y) = C1y

3, d2(y) = C2y
3 with C1, C2 > 0, C1 6= C2

and ce(x) = x3 for all edges. We now outline the argument
that shows that the POA> 1.

First, observe that the instance is symmetric with respect to
terminals and all cost functions are strictly convex. Therefore
the OPT flow rate for the instance, denoted(f∗, R∗) is such
that R∗

s,t1 = R∗
s,t2 for s = 1, 2. Next, by the characterization

of Waldrop as per Theorem 7, the Waldrop flow-rate, denoted
(f, R) is an OPT flow-rate for̃ce(x) = 2

3x3 with the source
cost functions remaining the same. This new instance with
c̃e(x) = 2

3x3 is also symmetric with respect to the terminals
and the cost functions remain strictly convex. Therefore we
conclude that for the Waldrop flow-rate as wellRs,t1 = Rs,t2

for s = 1, 2. Let R1,t1 = R1,t2 = h andR∗
1,t1 = R∗

1,t2 = h∗.
Using the properties of Waldrop flow-rate and OPT flow rate
as per Condition (2) in Theorem 5, we haveR2,t1 = R2,t2 =
1 − h and R∗

2,t1 = R∗
1,t2 = 1 − h∗. We argue below that

h 6= h∗. Consequently, by uniqueness of the OPT flow-rate
(due to strict convexity of the objective function) we will have
C(f, R) > C(f∗, R∗) implying ρ(Gdsw, C3, D3, Ψ, Φ, Mc) >

1. We have, fort = t1, t2, ∂C
(t)
S (R)

∂R1,t
= 1

NT
d

′

1(y1)y
′

1,t(ρ1) =

3
2C1y

2
1y1

Rm−1
1,t

∑ 2
j=1 Rm

1,j

= 3
4C1h

2 asm → ∞.

Similarly, ∂C
(t)
S (R)

∂R2,t
= 3

4C2(1 − h)2. By the definition of
Waldrop flow-rate, we havef(1,t) = h, f(2,t) = (1−h). Thus,

8



C(1,t)(f) = h2, C(2,t)(f) = (1 − h)2. Further, ∂C
(t)
S (R)

∂R1,t
+

C(1,t)(f) =
∂C

(t)
S (R)

∂R2,t
+ C(2,t)(f) implies that 3

4C1h
2 + h2 =

3
4C2(1 − h)2 + (1 − h)2. Therefore, h

1−h =

√

3
4C2+1
3
4C1+1

. Now,

from Theorem 7,(f∗, R∗) is a Waldrop flow-rate for the
instance where everything remains the same except for the
edge cost functions which are now32x3 instead ofx3 and per-
forming the similar calculations as above for(f, R), we obtain

h∗

1−h∗ =

√

3
4C2+

3
2

3
4C1+

3
2

. Clearly, sinceC1 6= C2, we geth 6= h∗.

In particular, takeC1 = 4, C2 = 8, then h = 0.5695 and
h∗ = 0.5635. Thus,C(f, R) = 1.9061, C(f∗, R∗) = 1.9052
implying thatPOA ≥ 1.004 > 1, in this example.

We now state an upper bound that is nearly attained by the
example of Figure 1(a).

Theorem 9:Let ze(xe) =
(
∑

t∈T xn
e,t

)
1
n , Ψe,t(xe) =

xn
e,t

(
∑

j∈T xn
e,j)

and Φs,t(ρs) = 1
NT

. Then,

ρ(Gall, Ck, Dconvex, Ψ, Φ, Mc) ≤ max{NT

k , k
NT

}.
Proof: Omitted due to lack of space.

Now we consider another splitting mechanismΦ that looks
more like the edge cost splitting mechanismΨ. Specifi-

cally, take ys(ρs) =
(
∑

t∈T (Rs,t)
m
)

1
m and Φi,t(ρs) =

(Ri,t)
m

∑

j∈T (Rj,t)m . Arguing in a manner similar to Corollary 8(1)
(rates need to equal their corresponding entropies) we ob-
tain ρ(Gall, Cmon, Dconvex, Ψ, Φ, Mnc) = 1. Now, we will

argue that withys(ρs) =
(
∑

t∈T (Rs,t)
m
)

1
m and Φi,t(ρs) =

(Ri,t)
m

∑

j∈T (Rj,t)m we haveρ(Gdsw, Cmon, Dconvex, Ψ, Φ, Mc) > 1

for large values ofm and n. Let us consider the same
example as in Figure 1(b) but with the new source cost
splitting mechanism. The previously calculated OPT flow-rate
for this instance(f∗, R∗) is given by R∗

1,t = f∗
(1,t) = h∗

and R∗
2,t = f∗

(2,t) = 1 − h∗. We will argue that this is not a
Waldrop flow-rate and since the OPT flow-rate is unique (by
strict convexity) we will obtainPOA > 1. After some simple
calculations we get

∂C
(t)
S (R)

∂Ri,t
= d

′

i(yi)
yi

Ri,t
Φ2

i,t(ρi) + m
di(yi)

Ri,t
Φi,t(ρi) (1 − Φi,t(ρi)) .

Therefore, ∂C
(t)
S (R∗)

∂R1,t
= (m + 3)(NT )3/m C1

4 (h∗)2

and ∂C
(t)
S (R∗)

∂R2,t
= (m + 3)(NT )3/m C2

4 (1 − h∗)2. Also,
C(1,t)(f

∗) = (h∗)2 and C(1,t)(f
∗) = (1 − h∗)2. Note

that NT = 2 in this example. Now, with C1 =
4, C2 = 8, we have h∗ = 0.5635 and therefore
C(1,t)(f

∗)+
∂C

(t)
S

(R∗)

∂R1,t

C(2,t)(f∗)+
∂C

(t)
S

(R∗)

∂R2,t

=
(h∗)2+(m+3)(NT )3/m C1

4 (h∗)2

(1−h∗)2+(m+3)(NT )3/m C2
4 (1−h∗)2

=

(m+3)(NT )3/m+1
2(m+3)(NT )3/m+1

0.56352

(1−0.5635)2 = 1
2

0.56352

(1−0.5635)2 = 0.8333 6= 1
asm → ∞.
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APPENDIX

Lemma 10:Let Rt ∈ RSW i.e.
∑

l∈A Rl,t ≥ H(XA|X−A)
for all A ⊆ S. If S1, S2 ∈ S satisfy

∑

l∈S1
Rl,t =

H(XS1 |X−S1) and
∑

l∈S2
Rl,t = H(XS2 |X−S2) then

we have
∑

l∈S1∩S2
Rl,t = H(XS1∩S2 |X−(S1∩S2)) and

∑

l∈S1∪S2
Rl,t = H(XS1∪S2 |X−(S1∪S2)).

Proof: We have,
∑

l∈S1∩S2
Rl,t +

∑

l∈S1∪S2
Rl,t =

∑

l∈S1
Rl,t +

∑

l∈S2
Rl,t = H(XS1 |X−S1) +

H(XS2 |X−S2) ≤ H(XS1∩S2 |X−(S1∩S2)) +
H(XS1∪S2 |X−(S1∪S2)) where in the second step we have used
the supermodularity property of conditional entropy. Now we
are also given that

∑

l∈S1∩S2
Rl,t ≥ H(XS1∩S2 |X−(S1∩S2))

and
∑

l∈S1∪S2
Rl,t ≥ H(XS1∪S2 |X−(S1∪S2)). Therefore we

can conclude that
∑

l∈S1∪S2
Rl,t ≤ H(XS1∪S2 |X−(S1∪S2))

and
∑

l∈S1∩S2
Rl,t ≤ H(XS1∩S2 |X−(S1∩S2)) and

consequently that
∑

l∈S1∪S2
Rl,t = H(XS1∪S2 |X−(S1∪S2))

and
∑

l∈S1∩S2
Rl,t = H(XS1∩S2 |X−(S1∩S2)).
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