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Abstract The data sensed by different sensors in a sensor network is typically corre-
lated. A natural question is whether the data correlation can be exploited in innova-
tive ways along with network information transfer techniques to design efficient and
distributed schemes for the operation of such networks. This necessarily involves a
coupling between the issues of compression and networked data transmission, that
have usually been considered separately. In this work we review the basics of classi-
cal distributed source coding and discuss some practical code design techniques for
it. We argue that the network introduces several new dimensions to the problem of
distributed source coding. The compression rates and the network information flow
constrain each other in intricate ways. In particular, we show that network coding
is often required for optimally combining distributed source coding and network
information transfer and discuss the associated issues in detail. We also examine
the problem of resource allocation in the context of distributed source coding over
networks.

1 Introduction

There are various instances of problems where correlated sources need to be trans-
mitted over networks, e.g., a large scale sensor network deployed for temperature
or humidity monitoring over a large field or for habitat monitoring in a jungle. This
is an example of a network information transfer problem withcorrelated sources.
A natural question is whether the data correlation can be exploited in innovative
ways along with network information transfer techniques todesign efficient and
distributed schemes for the operation of such networks. This necessarily involves a
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Fig. 1 (a) Classical Slepian-Wolf problem with sourcesX andY with direct links to a terminal.
(b) Practical scenario with multiple sources and terminalscommunicating over a network with
link capacity and cost constraints. The joint problem of distributed source coding and network
information transfer introduces various issues that are overviewed in this work.

coupling between the issues of compression and networked data transmission, that
have usually been considered separately (see Fig. 1 for an illustration).

The correlation in a sensor network can be exploited in multiple ways. One can
consider protocols where sensor nodes exchange information among themselves,
compress the information and then transmit the compressed bits to the terminal. At
the other extreme, the sensors may operate independently. Intuitively, one would
expect that the first scenario would be significantly better from a compression per-
spective. A surprising and groundbreaking result of Slepian & Wolf [1] shows that
in fact under certain situations, the case in which the sensors act independently can
be as efficient as the case in which the sensors do communicatewith each other.
The work of [1] introduced the idea of distributed source coding and demonstrated
the existence of encoders and decoders that could leverage the correlation without
needing explicit cooperation between the sources.

In this chapter we review various ideas in distributed source coding that are in-
teresting within the context of sensor networks. We begin byan overview of the
basic concepts, and an outline of certain practical code constructions that have been
the focus of much work recently. Next, we examine distributed source coding in a
network context. The network introduces several dimensions to the problem of dis-
tributed source coding that do not exist in the classical case. It may be tempting to
argue that one could simply find paths in the network that act as the direct links in
the classical problem, assuming that the paths have enough capacity. However, such
an approach is not optimal. The compression rates and the network information flow
constrain each other in intricate ways. In particular, it turns out that network cod-
ing [2] is essential in certain cases for optimality. Interestingly enough, the flavor
of results in this area depends upon the number of sources andterminals in the net-
work. We survey these in a fair amount of detail in this chapter and examine the
relationship between network coding and distributed source coding.

The issue of resource allocation is very important in the field of networking. For
example, optimal routing of packets that maximizes some utility function of the net-
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work is a well investigated issue in the field of networking [3]. Several techniques
for solving these problems in a distributed manner have beenstudied in the litera-
ture [4]. In this chapter we discuss resource allocation problems in the context of
transmitting correlated sources over a network. The main difference here is that one
needs to jointly allocate the rates and the flows in the network. In particular, the
network capacity region and the feasible rate regions interact in non-trivial ways.

This chapter is organized as follows. We discuss the basics of distributed source
coding in Section 2 and introduce the problem of networked distributed coding in
Section 3. Section 4 presents the discussion for the case of networks with a single
terminal and Section 5 considers the case of networks with multiple terminals.

2 Basics of distributed source coding

A sensor network consists of various sensors that monitor some physical phe-
nomenon, e.g., an agricultural sensor network may be deployed in a field for tem-
perature or humidity monitoring. In this chapter we will usethe terms sensor and
source interchangeably. Furthermore, a sensor output at a given time is assumed to
be a random variable. Hence, over time, the observations of asensor can be treated
as a vector of random variables. We assume that the source outputs a sequence
of independent and identically distributed (i.i.d.) random variables. While this as-
sumption may not hold in a strict sense, we will see that it serves to simplify our
exposition. Many of the results discussed in this chapter also hold for the case of
sources with memory. However, we will not discuss them here.

Formally, we denoten successive realizations of a sourceX by X1,X2, . . . ,Xn,
such that their joint distributionp(X1, . . . ,Xn) = Πn

i=1p(Xi). If there is another cor-
related sourceY, the joint distributionp(X1,Y1,X2,Y2, . . . ,Xn,Yn) = Πn

i=1p(Xi ,Yi),
i.e., at a given time instant, the sources are correlated butacross time they are inde-
pendent.

In a sensor network, the main problem is to convey either the sensor readings or
their functions (e.g., mean, variance etc.) to a terminal. The transmission protocol
needs to be efficient in terms of the number of bits transmitted. If the correlation
between the sources is ignored and if the terminal needs to recover the source with-
out any distortion, the compression rate should be at least the entropy [5, 6] of the
source. For example, if there are two sourcesX andY, this implies that the terminal
needs to receiveH(X)+H(Y) bits per unit time for recovering bothX andY.

Clearly, if there is correlation across sensors, the overall bitrate required for trans-
mission to the terminal can be reduced. This is certainly feasible if the sources com-
municate with each other. The famous result of Slepian and Wolf [1] shows that
distributed source coding, where the sources do not communicate with each other,
can be as efficient as the case in which the sources communicate with each other.
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2.1 Slepian-Wolf Theorem

Consider two sourcesX andY. Let RX andRY denote the rates at which the sources
operate. This means that the sourceX andY transmitRX andRY bits per unit time
to the terminal.

Theorem 1. Slepian-Wolf Theorem [1]. Consider memoryless correlatedsources X
andY from finite-sized alphabetsX ,Y respectively, with joint distribution p(X,Y).
Suppose that

RX ≥ H(X|Y),

RY ≥ H(Y|X),

RX +RY ≥ H(X,Y).

There exist encoding functions f1 : X n → {1,2, . . . ,2nRX} at source X and f2 :
Y

n →{1,2, . . . ,2nRY} at the source Y and a decoding function g: {1,2, . . . ,2nRX}×
{1,2, . . . ,2nRY}→ X ×Y at the terminal, such that the terminal is able to recover
the source sequences with vanishing error probability as n goes to infinity. Con-
versely, if RX ,RY do not satisfy those conditions, it is impossible to recoverthe
sources with vanishing error probability.

The implication of the Slepian-Wolf theorem is rather surprising and profound.
Intuitively, it is clear that there is no hope of compressingthe sources to a rate of less
thanH(X,Y) even if they communicate with each other. The Slepian-Wolf theorem
shows that in fact one can do this even when the sources do not communicate with
each other.

The achievability proof goes as follows. A length-n X-sequence is compressed
to a binary vector of lengthnRX by encoding functionf1, that is chosen at random.
This process is referred to as random binning [6] in the literature, as each sequence
is assigned a bin whose index is determined byf1. Similarly, f2 returns the bin
index of aY-sequence. At the terminal, suppose bin indices(i, j) are received. The
decoding function finds all the lengthn sequencesx,y such thatf1(x) = i, f2(y) = j
and find the pair of sequences that are most likely to have beentransmitted. Whenn
is large, with high probability, such sequence pair is the actual transmitted sequence
pair. In other words, the error probability is vanishing asn goes to infinity.

The rates satisfying conditions are called achievable rates and they form a region
in the two dimensional plane shown in Fig.2.

The two corner points on the boundary are interesting. They correspond to a rate
allocation(RX,RY) = (H(X),H(Y|X)) or (RX ,RY) = (H(X|Y),H(Y)). In order to
achieve one of these points, say the first one, sinceRX = H(X), any lossless com-
pression scheme can be used to compressx. Then,x is used asside informationto
help decodey at the decoder. The rate ofY is H(Y|X), i.e., the amount of uncertainty
givenX.

Code design in the case when side information is available atthe decoder, is
called theasymmetricSlepian-Wolf coding problem [7]. Code design for achieving
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Fig. 2 Slepian-Wolf Region in the case of two sourcesX andY.

any general (non-corner) point is called thesymmetricSlepian-Wolf coding prob-
lem. There are many practical code designs for both asymmetric coding and sym-
metric coding when we have only two sources. In general, asymmetric Slepian-Wolf
coding is easier than the symmetric case, because of a certain equivalence with chan-
nel coding, that we will discuss shortly. We refer the readerto [7] and the references
therein for detailed descriptions.

The theorem above is stated for two sources. In general, whenthere areN
sources, we have a generalized Slepian-Wolf theorem [8]. Suppose the sources
X1,X2, . . . ,XN are generating i.i.d. symbols according to the joint probability dis-
tribution p(X1,X2, . . . ,XN). Let Ri denote the rate for sourceXi and S denote a
nonempty subset of node indices:S⊆ {1,2, . . . ,N}. Let XS denote the set of ran-
dom variables{Xi : i ∈ S}. If the rate vector(R1,R2, . . . ,RN) satisfies

∑
i∈S

Ri ≥ H(XS|XSc) for all S 6= /0,

the decoder is able to recover all sources error-free (asymptotically). Conversely, if
the rates do not satisfy the condition, lossless recovery isimpossible. When there
are multiple sources, practical code design is a challenging problem. Some coding
schemes exist, e.g., [9, 10, 11], but they either suffer suboptimal rate or have strong
assumptions on the correlation model.

2.2 Equivalence between Slepian-Wolf coding and channel coding

The proof of the Slepian-Wolf theorem is information theoretic in nature and the
corresponding achievability scheme requires exponential(in n) complexity decod-
ing in general. For the case of two sources, and asymmetric Slepian-Wolf coding,
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Wyner [12] discovered the relation between channel coding and Slepian-Wolf cod-
ing. Most existing work on Slepian-Wolf coding for two sources relies on Wyner’s
idea and exploits powerful channel codes such as Turbo codesand LDPC codes
[13, 14, 15, 16, 17, 18, 19]. Here, we introduce the basic ideas for asymmetric
Slepian-Wolf coding.

First we review the concepts of channel coding [20], especially on linear block
codes. A(n,k) linear block code over a finite fieldGF(q) maps each message of
lengthk (i.e., ak-length vector∈GF(q)) to a codewordc of lengthn (i.e. ann-length
vector∈ GF(q)). The codeword is transmitted through a channel, which introduces
an errore. The receive vector isr = c + e (addition overGF(q)), wheree denotes
the error vector. The decoder takesr as input and attempts to find the correctc. In
classical coding theory, the errors are modeled according to their Hamming weight,
i.e., the number of nonzero elements ine. An important design parameter of a code is
the minimum Hamming distanced (the number of positions where two codewords
take different values). A code with minimum distanced is able to correct up to
⌊(d−1)/2⌋ errors, i.e., as long as the Hamming weight ofe,wt(e) ≤ ⌊(d−1)/2⌋,
the decoder can find the error patterne and the transmitted codewordc.

The parity check matrix of a linear block code is a(n− k)× n matrix H such
thatcHT = 0 (matrix multiplication overGF(q)) for every codewordc. A practical
decoding algorithm for a linear block is called syndrome decoding. The decoder
computes the syndrome of length(n− k) s = rHT . SincerHT = cHT + eHT , s =
eHT , implying that the syndrome only depends on the error pattern. It then attempts
to find thee with the least weight. This can be done efficiently for specific classes
of codes. For example, Berlekamp-Massey algorithm for BCH codes and Reed-
Solomon codes [20], can be used to find the error patterne from s as long aswt(e)≤
(d−1)/2. Likewise, binary LDPC codes admit efficient decoding.

We now demonstrate that syndrome decoding can be applied to the asymmetric
Slepian-Wolf coding problem. Assume that the source sequencesx,y have lengthn
and the correlation model is that the Hamming distance between them is no more
thant, i.e., they differ at mostt positions. Supposey is available at the decoder. At
sourceX, we transmitxHT to the terminal. The terminal computesyHT + xHT =
(x + y)HT = eHT , wheree = x + y is the difference betweenx andy1. We know
thatx andy differ in at mostt positions, sowt(e) ≤ t. The decoder is able to finde
as long as the minimum distance of the channel code is at least2t +1 based on the
discussions above. Oncee is obtained,x = y + e can be easily computed. Thus, a
lengthn vectorx is compressed to a length-(n−k) vectorxHT . Since the minimum
distance of a code should satisfy Singleton boundd≤ n−k+1 [20], the lengthn−k
should be at least 2t.

In order to establish a concrete relationship with Slepian-Wolf theorem, next we
consider a probabilistic correlation model. Consider binary sourcesX andY that
are uniformly distributed. The correlation between them isthat the probability that
they are different isp < 0.5. In other words, each bit in the vectore = x + y is one

1 In this chapter, assume that the size of the finite field is a power of two so addition and subtraction
are the same.
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with probability p and zero with probability 1− p. Then,H(X|Y) = Hb(p) 2and
H(X,Y) = 1+Hb(p).

Now, consider the channel coding problem for the binary symmetric channel
(BSC) with crossover probabilityp. The codewordc is transmitted andr = c + e
is received ande is i.i.d. taking value 1 with probabilityp. The capacity of this
channel is 1−Hb(p) [6]. The receiver computes the syndromes = rHT = eHT . It
can be shown that there exists anH and the decoding functionfdec(·) such that the
code ratek/n→ 1−Hb(p) asn→ ∞ and the decoding error can be made arbitrarily
small [21]. Such a code is called a capacity-achieving code.

In an asymmetric Slepian-Wolf coding setting, suppose thatthe decoder knows
y. Let RY = H(Y) = 1 and apply any lossless entropy coding scheme [6],y can be
recovered at the terminal. Take the parity check matrix of a capacity-achieving code
H and the sourceX transmitsxHT . The terminal finds the estimate ofx,

x̂ = y + fdec(xHT + yHT).

The probability that̂x 6= x is arbitrary small. Note that the length of vector transmit-
ted by sourceX is n−k, so the rate

RX = (n−k)/n= 1−k/n= Hb(p) = H(X|Y).

Thus, using a capacity-achieving channel code, we can achieve the corner point
(H(X|Y),H(Y)) of the Slepian-Wolf region.

In practice, LDPC codes [22] come very close to the BSC capacity. The belief
propagation algorithm (BPA) [22] acts as the decoding function fdec(·). Note that in
the channel coding setting, the belief propagation algorithm is designed to output a
codewordc with zero syndrome, whereas in the distributed source coding setting,
the BPA needs to be modified so that it outputs a vector satisfying a given syndrome.
More generally, even if the correlation model can not be viewed as a binary sym-
metric channel, we can provide proper initialization to theBP algorithm according
to the correlation model. Turbo codes can also be used to achieve compression via
puncturing at the encoder; the extrinsic information exchange at the decoder exploits
the correlation between the sources [23, 24, 25].

The equivalence in the asymmetric case does not carry over ina straightforward
manner to the symmetric case. However, an approach called source-splitting [26, 27]
allows us to transform the symmetric Slepian-Wolf coding problem forN sources
to an asymmetric (corner point) problem where there are 2N−1 sources.

2.3 Distributed source coding with a fidelity criterion

In the previous sections we considered the problem of lossless reconstruction. In
many practical applications, we may allow a certain amount of distortion in the

2 Hb(p) is the binary entropy function defined asHb(p) = −plog2 p− (1− p) log2(1− p).
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recovery process. In lossy multiterminal source coding, each source encodes its own
data at a certain rate and transmits it to the terminal. The terminal tries to recover
all the sources under a fidelity criterion. The fidelity is measured with respect to a
distortion metric.

More specifically, the encoders observe source sequencesx1,x2, . . . ,xN emit-
ted by the sourcesX1,X2, . . . ,XN and encode them at rateR1,R2, . . . ,RN sepa-
rately (with no communication between the encoders). Givendistortion metrics,
D = (D1,D2, . . . ,DN) for each source, we hope to find the regionR(D) of all rates
R = (R1,R2, . . . ,RN) that allow the decoder to reconstructx̂1, x̂2, . . . , x̂N such that
the expected distortion betweenxi andx̂i is less thanDi for all i = 1,2, . . . ,N. How-
ever, the general region even in the case of very specific distortion metrics remains
unknown.

The inner bound for a given problem refers to a set of rates that can be shown to
be achievable. The outer bound refers to a set of rates that are not achievable under
any strategy. Some inner/outer bounds for the general problem can be found in [28,
29, 30]. In most cases the inner and outer bounds do not meet, i.e., the exact region
is unknown. A tighter outer bound was obtained recently [31]and some insights on
the optimal encoders and decoders are given in [32]. The quadratic Gaussian case
was considered in [33, 34], where the rate-distortion regions for several special cases
are determined. Practical code design for multiterminal rate-distortion problems are
discussed in [35, 36].

Next we discuss two special cases of multiterminal source coding problems, for
which the rate distortion regions are relatively well studied.

2.3.1 Wyner-Ziv coding

Consider two correlated sourcesX andY that follow joint distributionp(X,Y). The
source sequencex needs to be encoded without knowingy and transmitted to the
decoder, at which side informationy is available. Let the distortion between twon
length sequencesx andx̂ be measured as1n ∑n

i=1d(xi , x̂i), whered is a non-negative
function. The rate-distortion functionRWZ(D) gives the minimum required rate such
that the expected distortion between the actual source sequencex and the decoder
outputx̂ is upper bounded byD, i.e.,E(1

n ∑n
i=1d(xi , x̂i)) ≤ D. Clearly, if D = 0, it

is the special instance of Slepian-Wolf problem at corner point (H(X|Y),H(Y)). In
general, the rate-distortion function was shown by Wyner and Ziv [37] to be

RWZ(D) = min
PU |X(·), f (·):E(d(X, f (U,Y)))≤D

I(X;U)− I(Y;U),

whereU is an auxiliary random variable and is such thatU → X →Y, i.e.,U,X,Y
form a Markov chain and the expectation is taken over the joint distribution of
X,Y,U . The functionf is the decoding function.

In the Slepian-Wolf setting (i.e.,D = 0), we know that minimum required rate
is H(X|Y), whether or notY is available at theX encoder. WhenD > 0, let us
denote the rate required whenY is available at the source encoder asRX|Y(D). It
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can be shown that in some casesRX|Y(D) < RWZ(D). In other words, we may lose
efficiency when encoding correlated sources separately rather than jointly whenD >
0. In the special case when the sources are correlated byX = Y + Z whereY and
Z are both Gaussian andZ is independent ofY, RX|Y(D) = RWZ(D) [37]. In many
other correlation models, the equality does not hold.

Practical coding schemes for the Wyner-Ziv problem based onnested codes
[38, 39] are known. Nested lattice codes can be used and in thequadratic Gaussian
case and can be shown to achieve the Wyner-Ziv bound. Other practical Wyner-Ziv
code designs include trellis-based codes [13], nested coding followed by Slepian-
Wolf coding [40], quantization followed by Slepian-Wolf coding [41, 42], etc. The
discussion of these techniques is beyond the scope of this survey.

2.3.2 The CEO problem

In the CEO problem [43], there is one sourceX andN encoders that do not observe
the source directly. Instead, each encoder observes a corrupted version ofX, denoted
asYi , i = 1,2, . . . ,N. TheYi ’s are assumed to be conditionally independent givenX.
The encoder encodesyi at rateRi and such that the total encoding rate is∑N

i=1Ri ≤R.
The decoder finds thêx (the estimate ofx,), based on the encoded codewords. The
aim is to find the rate-distortion functionR(D), i.e., the minimum total encoding
rate needed such that the expected distortion betweenx and x̂ is at mostD. This
is analogous to a situation when a Chief Executive (or Estimation) Officer obtains
information fromN agents and wants to estimate the source sequencex that he or
she is interested in. In a sensor network application, we canthink of the data fusion
center acting as the CEO and the sensors act as the agents. Theproblem formula-
tion takes into account the noise in the sensing procedure. The original paper [43]
determined the asymptotic behavior of the error frequency whenR→ ∞ for discrete
memoryless source. The quadratic Gaussian case of the CEO problem, whereX is
Gaussian and the observation noisesYi −X are independently Gaussian distributed,
is studied in [44, 45, 46] and the rate-distortion function is determined in [45, 46].

3 Networked distributed source coding: An introduction

In the previous sections we have discussed the classical Slepian-Wolf result and its
lossy variants. Note that so far we have assumed that there isa direct noiseless link
between the sources and the terminal. This is a useful simplecase to analyze and
captures the core of the problem as far as the basic concept ofdistributed source
coding is concerned. However, in a practical sensor networkwe expect that the
sensors will be communicating with the terminal over a network, possibly with the
help of various relay nodes. Therefore, it is natural to investigate whether the process
of information transmission over the network influences thecompression and vice
versa. Our network model represents a wireline network or a wireless network with
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medium access control (MAC) protocols that make the channels look independent
(we discuss the network model in more detail later). In this part of the chapter, we
overview relatively recent work that has contributed towards our understanding of
this field.

The problem of networked distributed source coding differsfrom the classical
problem in the following ways.

• Suboptimality of separation between distributed source coding and network in-
formation transfer.
Note that the problem of distributed source coding over networks would be a
straightforward extension of the classical Slepian-Wolf problem if one could
essentially “simulate” the presence of direct links between the sources and the
terminal. Indeed, one could encode the sources using a classical Slepian-Wolf
code and simply “flow” the encoded bits over the appropriate paths. This would
amount to separating the tasks of distributed source code design and the problem
of network information transfer. It turns out that such a strategy is suboptimal in
general.

• Issues of optimal resource allocation over the network.
The network introduces several issues with respect to the allocation of rates and
flows such that they are in some sense “optimal” for the operation of a network.
For example, in sensor networks, the problem of deciding theappropriate paths
over which the data needs to flow for minimum-energy or maximum-lifetime
[47] is of interest. In the context of correlated sources, these issues become more
complicated since one needs to jointly optimize the rates and the flows.

Our model of a network is a directed graphG = (V,E), whereV is a the set
of nodes andE is the set of edges. There is a set of source nodesS⊂ V that
observes the sources and a set of terminalsT ⊂ V that needs to reconstruct the
sources. An edge(v1,v2) is a communication channel which allows information
transmission fromv1 to v2. The channel can be noisy, or deterministic (but typ-
ically capacity-constrained). The different channels in the network are in general
dependent, e.g., in a wireless network, broadcast and interference induces depen-
dence between different channels. However, characterizing the capacity region in
such scenarios, even with independent messages has proved to be a difficult task
[6]. In fact, in many practical situations, protocols such as time-division multiple
access-TDMA, frequency-division multiple access-FDMA etc. are used to provide
the semblance of independent channels. In a wireline network, the channels are typ-
ically independent. In the discussion in the sequel, we willmostly work under the
assumption that the channels are independent. It turns out that the results in this area
depend critically on the number of terminals in network. Accordingly, we divide the
discussion into two different sections. In Section 4 we review the results for the sin-
gle terminal case and in Section 5 we review the corresponding results for multiple
terminals.



Networked distributed source coding 11

4 Networked distributed source coding: Single terminal

In networks with a single terminal, under the assumption that the channels are in-
dependent, Han [48] gave necessary and sufficient conditions for a network to be
able to transmit the correlated sources to the sink. A simpleachievable transmis-
sion scheme was proposed and its optimality was proved. Barros et al. [49] ob-
tained the same result under a more general encoding model, where the form of
joint source/channel coding can be arbitrary and the codingcan be across multiple
blocks. The achievability proof is almost the same as [48] and the converse is proved
in a different manner and is stronger because of the more general coding model.

Suppose that there areN+1 nodesv0,v1, . . . ,vN in the network observing sources
X0,X1, . . . ,XN. The graphG(V,E) is complete and each edge(vi ,v j) is a discrete
memoryless channel with capacityCi j . Note that the source entropy could be zero
and the capacity could also be zero, so realistic networks can easily fit into this gen-
eral framework. Nodev0 is the sink that wants to reconstruct the sourcesX1, . . . ,XN.

The proposed transmission scheme is very simple and intuitive. Apply good
channel codes to each channel so that we can model every edge(vi ,v j) as a noiseless
link with capacityCi j . Each node performs Slepian-Wolf coding at rateRi . Next, the
Slepian-Wolf coded bits need to be routed to the sinkv0. Knowing the rates at each
source node, we can find a feasible flow that supports rateRi at source nodevi and
terminates at sink nodev0 as follows.

Add a virtual super sources∗ and introduce an edge(s∗,vi) with capacityCs∗i =
Ri for i = 1, . . . ,N. Then compute the max-flow betweens∗ andv0 [50]. This returns
a flow assignment on each edge. The Slepian-Wolf coded bits are routed according
to the flow assignment tov0.

The nodev0 receives all Slepian-Wolf coded bits and jointly decodes all the
sourcesX1,X2, . . . ,XN. In order to reconstruct the sources, the rate vector(R1, . . . ,RN)
needs to be in the Slepian-Wolf region, i.e., for any nonempty subset of{0, . . . ,N},
S, such that 0∈Sc (sinceX0 is available atv0 as side information and is not encoded),

∑
i∈S

Ri ≥ H(XS|XSc). (1)

In order to successfully find the flow of value∑N
i=1Ri from s∗ to v0, we need the

capacity of any cut separatings∗ and v0 to be greater than∑N
i=1Ri . Note that a

cut separates the source nodes intoS andSc, whereS⊆ {0, . . . ,N},0 ∈ Sc but s∗

does not connect tov0, its capacity is∑ j∈Sc\{0}Cs∗ j +∑i∈S, j∈Sc Ci j = ∑ j∈Sc\{0}Rj +

∑i∈S, j∈Sc Ci j . Thus, as long as

∑
i∈S

Ri ≤ ∑
i∈S, j∈Sc

Ci j , (2)

for all nonempty subsetS of {0, . . . ,N} such that 0∈ Sc, the flow exists. This is
illustrated in Fig. 3. Moreover, if
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H(XS|XSc) ≤ ∑
i∈S, j∈Sc

Ci j , (3)

there exists a rate allocation satisfying (1) and (2) [48]. Therefore, (3) is a sufficient
condition for the single-sink data collection with Slepian-Wolf coding.S SC

s*
v0

v4v3v2v1

Fig. 3 Illustration of the sufficient condition for routing Slepian-Wolf coded bits to the terminal.
s∗ is the supersource. The cut of interest containsv1,v2 in S andv3,v4 in Sc. The cut capacity is
∑ j∈Sc\{0} Rj +∑i∈S, j∈Sc Ci j , and it should be no less than∑N

i=1Ri . Thus,∑i∈S, j∈Sc Ci j ≥ ∑i∈SRi .

Conversely, it is proved that the above condition is the necessary condition for
successful transmission under any joint coding scheme, i.e., if the capacity does not
satisfy this condition, the sink cannot recover the sourceslosslessly, under any kind
of coding scheme. Note that the proposed achievability scheme separates source
coding, channel coding and routing. The converse part implies that it is optimal to
separately perform channel coding, distributed source coding and treat the Slepian-
Wolf coded bits as commodities and route to the terminal. Themain theorem in [49]
can also be viewed as a general source-channel separation theorem for networks
with one terminal, with independent channels. It implies that the source coding,
routing and channel coding can be put into different layers of the protocol stack
separately.

We emphasize however, that such a separation does not hold ingeneral, i.e., when
there are more terminals. As we shall see in Section 5, even when the channels are
independent, if we have more terminals, the compression rates and the network
flows are closely coupled.
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4.1 Optimal rate and flow allocation

From the discussion in previous sections, it is clear that distributed source coding
can compress the data effectively. In this subsection, we discuss resource allocation
problems for networked distributed source coding.

A natural resource allocation problem is to determine the rate at which each
source should be encoded, and the corresponding flows such that some network
metric is optimized. For simplicity, we first consider the case when there are direct
channels between the sources and the sink.

4.1.1 Direct source-sink channels

Suppose the sources communicate to the sink directly. We consider two metrics as
follows.

1. Sum rate minimization: In this case we consider noiselesssource-sink channels
and seek to find a feasible rate vector that minimizes∑N

i=1Ri .
2. Sum power minimization: Here we assume orthogonal additive white Gaussian

noise (AWGN) channels between the sources and the sink and seek to minimize
the total power min∑N

i=1Pi (wherePi is the power of theith source), expended in
ensuring that the sources can be reconstructed at the terminal.

For the noisy channel case, the source nodes first use Slepian-Wolf codes to en-
code the sources. As long as each rate is less than the channelcapacity the sources
can be recovered losslessly at the terminal (assuming capacity-achieving codes are
used). The capacity of the channel between nodei and the sink with transmission
powerPi and channel gainγi is Ci(Pi) ≡ log(1+ γiPi), where the noise power is
normalized to one and channel gains are constants that are known to the terminal.
Thus, the rateRi should satisfyRi ≤ Ci(Pi). It is easy to see at the optimum, the
sensor node should transmit at the capacity, i.e.,R∗

i = Ci(P∗
i ). Thus, the power as-

signment is given by the inverse function ofCi which we denote byQi(Ri), i.e.,
P∗

i = Qi(R∗
i ) = (2R∗

i − 1)/γi . Once we know the optimal rate assignmentR∗
i we

know the power assignmentP∗
i and vice versa. Therefore, the objective function of

the sum power minimization problem can also be written as

min
N

∑
i=1

(2R
i −1)/γi.

For both problems, ifN-dimensional Slepian-Wolf codes are used, the rates
should be in theN-dimensional Slepian-Wolf region, which is denoted bySWN.
Then, the sum rate minimization problem can be written as

minR1,...,RN ∑N
i=1Ri

subject to(R1, . . . ,RN) ∈ SWN.
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The solution to this problem is trivial, i.e., any point at the boundary of theN-
dimensional Slepian-Wolf region is the optimal solution. In the sum power mini-
mization problem, besides Slepian-Wolf region constraint, we also add peak power
constraints for the transmission power of each sensor node,taking into account the
fact that every sensor has limited transmission power in a wireless sensor network.
Then, the problem is a convex optimization problem:

min
R1,...,RN

N

∑
i=1

Pi =
N

∑
i=1

(2Ri −1)/γi

subject to(2Ri −1)/γi ≤ Pmax,∀i

(R1, . . . ,RN) ∈ SWN.

This problem can be efficiently solved by, for example, interior-point methods [51].
In practice we do need to impose additional restrictions on the set of feasible

rate vectors. This is primarily because the problem of practical code design for the
N-dimensional Slepian-Wolf region remains open. It is fair to say that at present,
we only know how to design Slepian-Wolf codes for two sources. Thus, it makes
sense to impose “pairwise” constraints on the rate vectors,so that two sources can
be decoded together. Given the state-of-the-art code designs for two sources case,
we could perform encoding and decoding in a pairwise fashion. Before the trans-
mission starts, we determine the source pairs that are jointly decoded together each
time and determine the rates of the sources and the corresponding codes. During the
transmission, the sources encode the message separately (without communication
with other sources) using the preassigned code and the sink performs joint decoding
for two nodes each time according to the preassigned combinations. We call this
pairwise distributed source coding, which is simple and practical. The resource al-
location problem is to determine the optimal pairing combinations and the rates for
the sensors such that the sum rate or the sum power is minimized. This problem was
first considered and solved using the notion of matching in undirected graph in [52].
Later, an improved solution using the notion of minimum weight arborescences and
matching forests was proposed in [53] that we shall discuss below.

First, we consider the sum rate minimization problem. Note that any point on the
slope of the Slepian-Wolf boundary achieves the minimum sumrate of two sources.
Thus, for a pair of sources that will be decoded together, simply choosing the cor-
ner point as a rate allocation achieves minimum sum rate. Also note that a decoded
source can be used as side information to help decode other sources at the terminal
so that the rate of other sources being helped can be as low as the conditional en-
tropy given the decoded source. Since we consider pairwise distributed source cod-
ing here and each time only two sources are involved in the decoding, we do not use
more than one decoded sources as helper. We say a rate assignment has the pairwise
property if it allows the terminal decode the sources in a pairwise fashion. Specifi-
cally, the rate assignment is said to satisfy the pairwise property if for each source
Xi , i = 1,2, . . . ,N, there exists an ordered sequence of sources(Xi1,Xi2, . . . ,Xik) such
that
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Ri1 ≥ H(Xi1), (4)

Ri j ≥ H(Xi j |Xi j−1), for 2≤ j ≤ k, and (5)

Ri ≥ H(Xi |Xik). (6)

Such a rate assignment allows the possibility that each source can be reconstructed
at the decoder by solving a sequence of decoding operations at the SW corner points
e.g. for decoding sourceXi one can useXi1 (sinceRi1 ≥ H(Xi1)), then decodeXi2
using the knowledge ofXi1. Continuing in this manner finallyXi can be decoded. We
hope to find rate assignment with pairwise property and with minimum sum rate.
Clearly, the optimal rate assignment satisfies conditions (4),(5),(6) with equality. It
is easy to see the sequential decoding procedure of a rate assignment with pairwise
property can be expressed on a tree. The nodes at the higher layer are decoded first
and used as side information to help decode the nodes at the lower layer. If we assign
edges weights to be entropies and conditional entropies, the weight of the tree is the
sum rate. Therefore, this inspires us to find a tree with minimum weight on a proper
defined graph.

Now we formally describe our approach. Construct a directedgraphG = (V,E)
as follows. The node setV consists ofN regular nodes: 1,2, . . . ,N andN starred
nodes 1∗,2∗, . . . ,N∗. The edge setE consists of edges(i∗ → i) with weightH(Xi) for
all i = 1,2, . . . ,N, and edges(i → j) with weightH(Xj |Xi) for all i, j = 1,2, . . . ,N.
An example ofG is shown in the left figure of Fig. 4. Define a subgraphGi∗ of G
as a graph obtained fromG by deleting all starred nodes excepti∗ and all edges of
the form( j∗ → j) for j 6= i. For eachi, find a minimum weight directed spanning
tree3 onGi∗ . This tree gives a rate allocation:Ri = H(Xi), Rj = H(Xj |Xinc( j)), where
inc( j) is the node such that edge(inc( j) → j) belongs to the tree. Each subgraph
Gi∗ gives a rate allocation by a minimum weight directed spanning tree and the
one with minimum weight gives the final optimal rate allocation of the network.
Note that if each source has the same entropy, the weights of minimum weight
directed spanning trees ofGi∗ are the same for eachi, so we only need to pick
up an arbitrary subgraphGi∗ and find the assignment on it. Clearly, the resulting
rate assignment has the pairwise property and is optimal. Inthe example in Fig.
4, each source has the same entropy and the minimum weight directed spanning
tree rooted at node 1∗ is shown in the right figure. The optimal rate allocation is
R1 = H(X1),R4 = H(X4|X1),R2 = H(X2|X4) andR3 = H(X3|X4). The corresponding
decoding procedure is that first decode sourceX1, and useX1 as side information to
help decodeX4. Then,X4 is used as side information to help decodeX2 andX3.

Next, we show some simulation results. Consider a wireless sensor network ex-
ample in a square area where the coordinates of the sensors are randomly chosen
and uniformly distributed in[0,1]. The sources are assumed to be jointly Gaussian
distributed such that each source has zero mean and unit variance (this model was

3 A directed spanning tree (also called arborescence) of a directed graphG= (V,A) rooted at vertex
r ∈V is a subgraphT of G such that it is a spanning tree if the orientation of the edgesis ignored
and there is a path fromr to all v ∈ V when the direction of edges is taken into account. The
minimum weight directed spanning tree can be found by a greedy algorithm in polynomial time
[54].
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(a) The graphG

1
1.82 1.421.961* 2

3 4
5

(b) The minimum weight directed span-
ning tree found onG1∗

Fig. 4 An example of the rate allocation algorithm. The left figure shows the graphG. The edge
weights on the edges from nodei∗ to nodei are individual entropies and the edge weights on the
edges between regular nodes are conditional entropies. In this example, the individual entropies
are the same. Thus,H(Xi |Xj ) = H(Xj |Xi) and we only label one number between regular nodesi
and j . The right figure shows the minimum weight directed spanningtree found onG1∗ .

also used in [55]). The parameterc indicates the spatial correlation in the data. A
lower value ofc indicates higher correlation. The individual entropy of each source
is H1 = 1

2 log(2πeσ2) = 2.05. In Fig.5, we plot the normalized sum rate found by
minimum weight spanning tree (MST)Rs0 ≡ ∑N

i=1Ri/H1 vs. the number of sensors
n. If no distributed source coding is used, i.e., the nodes transmits data individually
to the sink,Ri = H1 andRs0 = N. Clearly, by pairwise distributed source coding,
the sum rate is reduced. We also plotted the optimal normalized sum rate whenN-
dimensional Slepian-Wolf code is usedH(X1, . . . ,HN)/H1 in the figure. It is inter-
esting to note that even though we are doing pairwise distributed source coding, our
sum rate is quite close to the theoretical limit which is achieved byN-dimensional
distributed source coding.

Now we consider the sum power minimization problem. Note that for a pair of
sources that will be decoded together, the optimal rate allocation that minimizes the
sum power of the pair is no longer a corner point but rather a particular point on the
slope (which can be found by solving a simple optimization problem). For a node
pair i and j, denote the optimal power allocation asP∗

i j (i),P
∗
i j ( j). We cannot simply

choose the corner points and perform asymmetric Slepian-Wolf coding. We want
some source pairs working at corner points while some othersworking at the optimal
point on the slope of the 2-D SW region. Taking this into account, we generalize the
concept of pairwise property. Recall that previously, under a rate assignment with
pairwise property, the first source in a sequence is encoded at the rate of its entropy.
Now we allow the first source in a decoding sequence to be paired with another
node and encoded at the rate on the slope of the 2-D Slepian-Wolf region. The
appropriate structure for finding the optimal resource allocation turns out to be one
that combines the directed spanning tree and the matching. Such a structure is the
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Fig. 5 Normalized sum rate vs. number of sensors

matching forestfirst introduced in the work of Giles [56]. In fact, we are interested
in a specific form of matching forest calledstrict matching forest(SMF). For the
formal definitions, we refer the reader to [53]. Roughly speaking, a strict matching
forest is a subgraph of a mixed graph4 that connects every node only once. The
SMF plays a role similar to the spanning tree in the sum rate minimization problem.
The sequential decoding procedure of a rate assignment withgeneralized pairwise
property can be expressed on a SMF. The node pairs connectingwith undirected
edges work at the slope of the Slepian-Wolf region and a symmetric coding scheme
is used for them. The nodes that are connected with directed edge work at the corner
point of the Slepian-Wolf region and the tail (origin) of a directed edge is used as
side information to help decode the head (destination) of the edge. If we assign edge
weights to be transmission powers, the weight of the SMF is the total transmission
power.

Now we formally describe our approach. Construct a mixed graphG = (V,E,A)
as follows. The node setV consists ofN regular nodes: 1,2, . . . ,N andN starred
nodes 1∗,2∗, . . . ,N∗. Recall thatQi(R) is the power consumed in transmission at
rateR. For eachi = 1,2, . . . ,N, if Qi(H(Xi)) ≤ Pmax, add edge(i∗ → i) with weight
Qi(H(Xi)). For eachi, j = 1,2, . . . ,N, if Qi(H(Xi |Xj)) ≤ Pmax, add edge( j → i)
with weight Qi(H(Xi |Xj)). For each pairi and j, if the optimal power allocation
P∗

i j (i),P
∗
i j ( j) that minimizes the sum power of the pair of nodes exists, add undi-

rected edge(i, j) with weightP∗
i j (i)+ P∗

i j ( j). Then, find the minimum weight SMF
onG, which gives the rate/power assignment with the generalized pairwise property
and minimum sum power. It is shown in [53] that the problem of finding minimum
weight SMF can be transformed and solved in polynomial time [57]. From the sim-

4 “Mixed” graph refers to a graph with directed edges and undirected edges
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ulations we observe that in most cases, the optimal allocation is such that only one
pair works on the slope and all other sources work at the corner points.

4.1.2 General multihop communication between sources and sink

The resource allocation problem in a network with general topology and relay nodes
was first considered by Han [48] and a similar formulation is given in [49]. We
reformulate the problem as follows.

The network is given by a directed graphG = (V,E,C), whereC = {Ci j : (i, j) ∈
E} is the capacity of each edge. Edge(i, j) is also associated with a weightwi j . The
cost of a flow of valuezi j going through the edge can be written asF(zi j )wi j , where
F(·) is a non-negative, increasing function. Then, the optimization problem can be
written as

min ∑
(i, j)∈E

F(zi j )wi j

s.t. 0≤ zi j ≤Ci j ,∀(i, j) ∈ E (capacity constraint)

∑
j |(i, j)∈E

zi j − ∑
j |( j ,i)∈E

zji = σi ,∀i ∈V (flow balance constraint)

(R1,R2, . . . ,RN) ∈ SWN (Slepian-Wolf constraint)

whereσi = Rl if i is thel th source node,σi =−∑N
i=1Ri if i is the sink and otherwise,

σi = 0.
For simplicity, we can consider linear costF(zi j ) = zi j . Then, the above opti-

mization is a linear program. IfF(·) is a convex function, it is a convex optimization
problem.

If there is no capacity constraint, the solution of the problem has a simple form
and interpretation [58]. The basic idea is that in the absence of capacity constraints,
there is no need to split the flow across different edges. Oncea route (path) from a
given source to the sink with minimum cost is found, the source simply routes all
the data through that path. For example, suppose that the minimum cost path for
sourceXl is P l . Then for all edges(i, j) belonging toP l , we setzi j = Rl . In this
case, the cost of transmitting the data fromXl to the sink is∑e∈P l F(Rl )we. Thus,
the overall cost function becomes

min
{Rl ,dl},l=1,2,...,N

N

∑
l=1

F(Rl )dl ,

wheredl is the total weight of pathP l , i.e.,dl = ∑e∈P l we. Solving this problem
involves finding the optimal pathsP l , l = 1,2, . . . ,N and finding the optimal rate
allocationRl , l = 1,2, . . . ,N. It is shown in [58] that these two steps are separable,
i.e., one can first find the optimal pathsP l∗ and then find the optimal rate allocation
based on the optimal pathsP l∗. This separation holds even if the functionF(·) is
nonlinear. It is easy to see the optimal pathP l∗ is the path with minimum total
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weight. Then, the optimal routing structure is the shortestpath tree rooted at the
sink, which can be found effectively and in a distributed manner. Now, suppose that
the cost functionF is such thatF(Rl ) = Rl . In this case, the problem becomes

min
N

∑
l=1

Rl dSPT(l ,t)

s.t.(R1,R2, . . . ,RN) ∈ SWN,

wheredSPT(l , t) (known as a constant) is the weight of the path from sourcel to ter-
minalt on the shortest path tree. This is a linear programming problem with number
of constraints exponentially withN. However, because of the contra-polymatroidal
structure of the Slepian-Wolf region [59], the solution canbe found in a easy greedy
manner as follows [58].

1. Find a permutationπ such thatdSPT(π(1),t)≥ dSPT(π(2),t)≥ ·· ·≥ dSPT(π(N),t).
2. The optimal rate allocations is given by

Rπ(1) = H(X{π(1)}|X{π(2),π(3),...,π(N)})

Rπ(2) = H(X{π(2)}|X{π(3),π(4),...,π(N)})

· · ·

Rπ(N) = H(X{π(N)}) (7)

If the functionF(·) is not linear but convex, the problem can still be solved by
convex optimization [51] but the simple greedy algorithm may not work here.

From the previous discussion, we know that Slepian-Wolf coding along with
routing is the optimal solution for the single sink data collection problem. In fact, it
is shown in [60] that in terms of the cost under convex and increasing cost functions,
Slepian-Wolf coding plus routing is still the optimal solution even if the wireless net-
work broadcast advantage is considered. Interestingly, because theN-dimensional
(N > 2) Slepian-Wolf code design problem remains open, [60, 58] also consider
several schemes that do not use distributed source coding but allow some coop-
eration among the sources. Clearly, the communication between the sources will
increase the cost. The cost of the Hierarchical Difference Broadcasting in [60] has
been shown to have the same order compared to Slepian-Wolf coding. However,
the explicit communication scheme in [58] will have significant loss compared to
Slepian-Wolf under some conditions.

5 Networked distributed source coding: Multiple terminals

We now consider the variant of the problem when there are multiple terminals that
want to reconstruct all the sources. This is called multicast. As before, one could
attempt to treat this scenario as a generalization of the single terminal case. For ex-
ample, one could divide the capacity of each edge into various parts, with each part
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Fig. 6 A network with unit-capacity edges and sourcesS1 andS2 and terminalsT1 andT2. Each
terminal wants to simultaneously recover the pair of bits(a,b). Under routing this is impossible.
However, by computing and sendinga⊕b along the bottleneck edge, we can achieve simultaneous
recovery.

responsible for conveying the bits to a specific terminal. However, on closer inspec-
tion it is possible to realize that such a strategy will in general be suboptimal. To see
this consider Fig. 6, that depicts the celebrated butterfly network of network coding
[2]. In this example, each edge has unit capacity. Each terminal seeks to obtain the
bits from both the sources. It is easy to see that if we only allow routing in the net-
work, it is impossible to support this since the edge in the middle is a bottleneck.
However, if we allow coding at the intermediate nodes and transmit the XOR of the
two bits, then both terminals can obtain the two bits by simple XOR decoding. This
example shows the potential gain of coding when there are multiple terminals. Of
course, in this case the sources are independent. However, since independence is a
degenerate case of correlation, one expects that similar conclusions will hold in the
correlated case. As we shall see this is indeed the case. Furthermore, several inter-
esting conclusions about the relationship of the coding rates and flow structures can
be found.

5.1 A network coding primer

Traditionally, the intermediate nodes (routers) in the network only copy and for-
ward packets. In a single source single sink unicast connection, routing achieves
maximum flow, which equals to the minimum cut between the source and the termi-
nal [61]. However, in a multicast scenario, pure routing maynot achieve maximum
flow as shown above. But it has been shown in [2] that network coding achieves
max-flow min-cut upper bound in multicast. Next, we shall mathematically describe
this result.

As usual, we model a network as a graphG = (V,E,C), whereC = {ce : e∈ E}
is the capacity of the edges, wherece is the capacity on edgee. The seminal work
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on network coding [2], finds a tight capacity characterization for the single source,
multiple terminals multicast problem.

Theorem 2. Consider a network G= (V,E,C) with source s and L terminals:
t1, . . . ,tL. Suppose that the source node observes a source X, such that its entropy
H(X) = R. Each terminal can recover X if and only if

min−cut(s,tl) ≥ R,∀l ∈ {1, . . . ,L}. (8)

The work of [62, 63] shows that the multicast can be supportedeven with linear
codes. Basically, each intermediate node transmits linearcombinations of the pack-
ets, where a packet is treated as a vector over a finite field. Itis possible to show that
in this case at each terminal, the received packets are the source messages multiplied
by a transfer matrix. By inverting the transfer matrix, the terminal is able to recover
the source packets. Moreover, as long as the coefficients of the linear combinations
are chosen randomly from a large field and the min-cut betweenthe source and each
destination is greater than the source rate, the probability that the transfer matrix
is invertible is very high [64]. This fact provides a simple distributed scheme for
network coding based multicast. A practical multicast protocol based on these ideas
was developed in [65].

5.2 Multicasting correlated sources over a network

In the discussion in the previous section, we only considered multicast with single
source. The multiple independent sources case can be reduced to single source case
[63], by introducing a virtual super-source that is connected to each source node.

In this section we consider the problem of multicasting correlated sources over a
network. We begin by stating the main result. Consider a networkG= (V,E,C), with
terminalsti , i = 1, . . . ,L and a set of source nodeS ⊂V. Without loss of generality,
we assume a numbering so that these are the first|S | sources inV. Furthermore,
source nodei observes a sourceXi . The communication requirement for multicasting
correlated sources is that each terminalti , i = 1, . . . ,L needs to recover all sources
(X1, . . . ,X|S |) losslessly. The admissible rate region is given by [66, 67].

Theorem 3. The correlated sources(X1, . . . ,X|S |) can be multicast to the terminals
t1, . . . ,tL if and only if

H(XS|XSc) ≤ min−cut(S,ti) ∀S⊆ S . (9)

An achievability scheme based on random linear network coding for this result was
proposed in [64]. Alternative proofs are provided in [67, 66]. We briefly overview
the achievability scheme in [64] now.

Consider two correlated sources generating binary vectorsx1,x2 of lengthr1 and
r2 according to joint probability distributionQ(x1,x2) each time. Aftern time slots,
the source messages arexn

1 andxn
2 of lengthnr1 andnr2 respectively. We assume
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thatce is rational for alle. Furthermore assume thatn is large enough so thatn×ce

is an integer for alle. This implies that when considered over a block ofn time slots
we communicatence bits over edgee.

Simply perform random linear coding at each node over a blocklength ofn in-
cluding the source nodes and intermediate nodes, i.e., the bits on an outgoing edge
of nodev are a linear combination of bits on incoming edges to nodev, where the
coefficients are chosen uniformly randomly fromGF(2). Each terminalt receives a
vectorzn

t of lengthn|Γi(t)|, where|Γi(t)| is the number of incoming edges to termi-
nal t (before the edges are copied). Using the algebraic network coding framework
[63], we can conclude that

zn
t = [xn

1 xn
2]Mt , (10)

whereMt is a (nr1 + nr2)×n|Γi(t)| transfer matrix from the sources to terminalt.
When sources are independent,Mt needs to have full rank so that by inversion we
can recover the sources. In the case of correlated sources ,Mt need not have full
rank because we can take advantage of the correlation between the sources to find
xn

1 andxn
2.

The decoding is done as follows. Find all possible[xn
1 xn

2] satisfying (10).
Note thatxn

1,x
n
2 can be viewed as a length-n vector of elements fromGF(2r1)

and GF(2r2) respectively5Let x1i,x2i denote theith element andi = 1,2, . . . ,n.
The number of appearances of(a,b),a ∈ GF(2r1),b ∈ GF(2r2) is defined to be
N(a,b) = |{i : x1i = a,x2i = b}|. The empirical joint distribution (histogram)Pxn

1,x
n
2

is Pxn
1,x

n
2
(a,b) = N(a,b)/n for a ∈ GF(2r1) andb ∈ GF(2r2). The empirical joint

distribution is an approximation of the true joint distribution based on the observa-
tion of two sequencesxn

1 andxn
2. Note that the empirical joint distribution defined for

each sequence[xn
1,x

n
2] has a similar form to a probability mass function. Then, the

functions applied on probability mass function, such as entropy function, relative
entropy function, can be applied toPxn

1,x
n
2
.

In the decision procedure, given all sequences[xn
1,x

n
2] that satisfyingzn

t =
[xn

1xn
2]Mt , find

{x̂n
1, x̂

n
2} = arg min

[xn
1xn

2]Mt=zn
t

α(Pxn
1,x

n
2
)

whereα(·) is a function that needs to be chosen, depending on the metricto be
optimized. The two functions discussed below both achieve the capacity region in
Theorem 3.

1. Maximum-Q probability decoder.α(Pxn
1,x

n
2
) = D(Pxn

1,x
n
2
||Q)+H(Pxn

1,x
n
2
),

whereD(·||·) is the relative entropy [6],

D(Pxn
1,x

n
2
||Q) = ∑

a∈F2r1

∑
b∈F2r2

Pxn
1,x

n
2
(a,b) log

Pxn
1,x

n
2
(a,b)

Q(a,b)
,

andH(·) is the joint entropy function [6]

5 A length-r vector with elements fromGF(2) can be viewed as an element fromGF(2r )
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H(Pxn
1,x

n
2
) = − ∑

a∈F2r1

∑
b∈F2r2

Pxn
1,x

n
2
(a,b) logPxn

1,x
n
2
(a,b).

From [6, Theorem 12.1.2], since(xn
1,x

n
2) are drawn i.i.d. according toQ(x1,x2),

the probability ofxn
1,x

n
2 is given by

Qn(x1,x2) = 2−n(D(Px1,x2 ||Q)+H(Px1,x2))

Therefore, findingxn
1,x

n
2 that minimizingα(Pxn

1,x
n
2
) is equivalent to findingxn

1,x
n
2

that maximizing the sequence probability.
2. Minimum entropy decoder.α(Px1,x2) = H(Px1,x2).

Note that here the decoder does not need to know the prior source joint distribu-
tion Q. Thus, it is an universal decoder. For a long sequence, the empirical dis-
tributionPx1,x2 is very close to the true distributionQ, which causesD(Px1,x2||Q)
to approach zero. Therefore, the minimum entropy decoder isan approximation
of maximum-Q probability decoder.

It is shown in [64] that as long as

min−cut(s1,ti) ≥ H(X1|X2), (11)

min−cut(s2,ti) ≥ H(X2|X1), and (12)

min−cut(s1 ands2,ti) ≥ H(X1,X2), (13)

for everyi = 1,2, . . . ,L, each terminalti can recoverX1 andX2 with vanishing error
probability when the one of the two decoders shown above is used. Therefore, the
admissible rate region achieves bound (9). However, the decoding algorithms above
are based on exhaustive search and have a complexity that is unacceptably high.

5.3 Separating distributed source coding and network coding

The achievability scheme described in the previous sectionperforms distributed
source coding and network coding jointly and has high decoding complexity. Per-
haps the simplest way to multicast correlated sources is to perform distributed
source coding and network coding separately, i.e., the source nodes perform dis-
tributed source coding (Slepian-Wolf coding) and the codedbits are multicasted to
the terminals through network coding. The terminals first decode the network code
to obtain the Slepian-Wolf coded bits then jointly decode the Slepian-Wolf code
(usually is a channel code) to recover the sources. The decoding algorithms for
network code and Slepian-Wolf code have been well studied and have polynomial
time complexity. However, the separation of distributed source coding and network
coding is suboptimal in general [68].

At an intuitive level, this result can be understood as follows. Suppose that the
network is such that each terminal can operate at the same point in the Slepian-Wolf
region. In such a situation, one could use a Slepian Wolf codeand encode each



24 Shizheng Li and Aditya Ramamoorthy

source. Next, one could treat the encoded sources as independent and multicast
the encoded bits to each terminal. The terminal then decodesto obtain the origi-
nal sources. Roughly speaking, in this case we can reduce thecorrelated sources
multicast to an independent sources multicast.

However, if different terminals in the network are forced tooperate at different
rate points in the Slepian Wolf region, because of the natureof their connectivity,
then a reduction to the independent sources multicast is notpossible in general.
In this case, clearly one cannot work with a single distributed source code. It can
be shown that there exist instances of networks and source distributions such that
performing separate distributed source coding and networkcoding can be strictly
suboptimal with respect to the approach in [64]. A surprising conclusion of [68], is
that if there are two sources and two terminals in a network, then it can be shown
that there is no loss in using a separation based approach. This result forms the basis
of practical approaches to combining distributed source coding and network coding
as explained in the next subsection.

5.4 Practical joint distributed source coding and network coding

In this subsection, we describe practical algorithms to perform joint distributed
source coding and network coding. Suppose there are two source nodess1,s2 ∈ V
and observe two binary sourcesX andY respectively. The sources generate bits i.i.d.
according the joint distributionp(X,Y) where the joint distribution satisfies the fol-
lowing symmetry property, i.e.p(X +Y = 1) = p < 0.5. Then, as discussed before,
the sequencesx,y are related byy = x + e, whereei equals to 1 with probability
p < 0.5. Note thatH(X,Y) = 1+Hb(p) andI(X;Y) = 1−Hb(p). Let H be the par-
ity check matrix for a channel code approaching the capacityof a binary symmetric
channel with crossover probabilityp with code ratek/n= I(X;Y) = 1−Hb(p), i.e.,
there is a decoding functionf (·) such thatPr(e 6= f (eHT)) is arbitrarily close to
zero.

The basic idea is to transmitxHT +yHT = eHT to each terminal such thate can
be recovered. Then, we transmit some additional information so that each terminal
can recover eitherx or y. We shall see the exact form of this additional information
later. The simplest but not necessarily optimal way to convey the sumeHT = xHT +
yHT to the terminal is multicast bothxHT andyHT to each terminal and compute
the sum at the terminal. Based on this, a practical joint distributed source coding and
network coding is proposed in [69]. We first describe this scheme and then discuss
the optimal schemes to multicast the sum to the terminals. The scheme in [69] is
not optimal in the sense that in general, it requires more network capacity than the
result of [64] requires.

The design scheme can be summarized as follows. The network capacity resource
C is partitioned into two shares:C1 andC2, whereC1 +C2 ≤C. Each share is used
to support two multicast sessions. LetH̄ be a matrix such that[H̄THT ] has full rank.
And let x1 = xH̄,y1 = yH̄. The two multicast sessions are described as follows.
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1. In the first session, multicastxHT andyHT to each terminal. This implieseHT

can be computed, ande can be recovered at each terminal sinceH is the parity
check matrix of a capacity achieving code. Using this,e1 ≡ y1 + x1 = eH̄T can
be computed.
The length ofxHT is (n− k) = nH(X|Y) (likewise for for yHT). We need to
multicastnH(X|Y) bits from nodes1 to the terminal andnH(Y|X) bits from
nodes2 to the terminal. This requiresG(V,E,C1) to support a multicast with rate
H(X|Y)+H(Y|X) from a virtual supersource connected tos1,s2 to each terminal.

2. In the second session, the sources transmit linear combinations ofx1 andy1 to
the network andx1At + y1Bt is received by terminalt. At and Bt are transfer
matrices froms1 to terminalt ands2 to terminalt respectively and they are as-
sumed known to the terminalt. At andBt are such that givene1 andx1At +y1Bt ,
x1,y1 can be recovered. Since we can compute(x1 +y1)Bt = e1Bt = eH̄TBt and
thenx1(At + Bt) = x1At + y1Bt + e1Bt , as long asAt + Bt is invertible,x1 and
y1 can be recovered. The invertibility ofAt + Bt is guaranteed with high prob-
ability (for details see [69]). Afterx1 is obtained, we computey1 = e1 + x1.
Oncex1,y1 are known,x,y can be recovered by the inversion of[H̄THT ] since
[xH̄TxHT ] = x[H̄THT ] andy = x + e.

The two multicast sessions are illustrated in Fig.7. The admissible rate region for
this design scheme is:

C∗ = {C1 +C2 : C1 ∈ C(s̄,T,H(X|Y)+H(Y|X)) andC2 ∈ C(u,T, I(X;Y))}

In general,C∗ requires more capacity than the optimal capacity region [64] because
separate multicast sessions are usually suboptimal. But ifthere are only two termi-
nals (and we are only dealing with two sources),C∗ is optimal, i.e., the practical
design scheme is optimal [68, 69].

G(V,E,C) = G1(V,E,C1) + G2(V,E,C2)

H(X|Y) H(Y|X)I(X;Y)

s*

s1
s2

t1 t2 tL

Fig. 7 Multicast model for the practical scheme [69].
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Computing the sum at the terminals (see [70, 71, 72] for related work) may not be
optimal in terms of the capacity region. It may in fact be better in terms of resource
utilization if the sum is computed at some intermediate nodes and then sent to each
terminal. In a network with two sources multiple terminals or two terminals multiple
sources, it is shown in [70, 72] that the optimal scheme to convey the symbol sum of
the sources to the terminals is to compute the sum in some intermediate nodes and
multicast to the terminals. In general, finding the right setof nodes at which the sum
should be computed is an open problem. But, the idea of computing the sum at the
intermediate nodes leads us to a heuristic approach to the joint distributed source
coding and network coding. We can find a set of nodesU and multicastxHT and
yHT to each node inU (multicast session 1). Then, compute the sumeHT at u∈U
and multicast to the terminals so that each terminal can recovere (multicast session
2). Transmit linear combinationsxAt +yBt to the terminals (multicast session 3) and
if (At + Bt) is invertible then bothx andy can be recovered in a similar manner to
the previous scheme. Note that the coded packets inmulticast session 1can be used
in multicast session 3sincexHT andyHT are also linear combinations ofx andy.
Next we demonstrate an example of this scheme in which we achieve the optimal
capacity region.

s1 s2

v1
v2

v3

v4 v v6

t1 t3

v4 v5
v6

1

t2

3

Fig. 8 An example where the strategy in [69] is suboptimal. However, our proposed heuristic for
selecting the right set of nodes for computing the sum works better.

Consider the network in Fig. 8. The capacity on each edge is 0.5. The source
nodes1, s2 observe the sourcesX andY and they are correlated such thatH(X) =
H(Y) = 1 andH(Y|X) = H(X|Y) = 0.5. The terminals aret1,t2 andt3 andmin−
cut(si , t j) = 0.5 for i = 1,2, j = 1,2,3, min− cut({s1,s2},ti) = 1.5 for i = 1,2,3.
According to Theorem 3, the capacity of this network supports the recovery of the
sources at the terminals. Consider the following scheme:s1,s2 transmitxHT and
yHT to nodev2 (multicast session 1). Nodev2 computes the sumeHT and routes it
to the terminals (multicast session 2). Formulticast session 3, transmitxHT , yHT on
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v1− t1, v3− t3 respectively6. In addition,s1,s2 transmit random linear combinations
on edgess1−v4,s2−v6, i.e.,M1,M2 are matrices of dimensionn×0.5n consisting
of entries randomly fromGF(2). Then, matricesM1, M2 and[M1M2] have full rank
with high probability. Terminalt1 receiveseHT , xM1 andxHT . From the first one
t1 can decodee and from the last twot1 can recoverx, theny = x + e can also be
obtained. Terminalt2 acts in a similar fashion ast1, while t3 can decodee from eHT

and it also knowsxM1 andyM2. Therefore, it can computexM2 = eM2 + yM2 then
x can be recovered by the inversion of[M1M2].

As shown in [69], the scheme that multicasts bothxHT andyHT to the terminals
cannot achieve the capacity region in the example above. Butfrom some simulations
on random graphs, where the optimal setU is found by integer programming, we
observe that in many cases, multicasting bothxHT andyHT to the terminals and
computing the sum there is as good as computing the sum at someintermediate
nodes. Clearly, the best choice of nodes for computing the sum depends on the
network topology. The problem of choosing these nodes in an efficient manner is
still an open problem.

5.5 Resource allocation for multicasting correlated sources over a
network

Given the admissible region in Section 5.2, it is natural question to determine the
rate at each source and the flow on each edge such that the totalcost is minimized.
The problem is solved in an efficient manner in [73, 74].

The network is modeled as a directed acyclic graphG = (V,E,C) and each edge
is associated with a weightwi j . For simplicity we assume that the cost of the use of
an edge(i, j) when the actual data rate on edge(i, j) is zi j is wi j zi j . To facilitate the
problem formulation we append a virtual super source nodes∗ to G, so that

V∗ = V ∪{s∗},

E∗ = {(s∗,v)| v∈ S}∪E, and

C∗
i j =

{

Ci j (i, j) ∈ E,
H(Xj) if i = s∗ and j ∈ S.

We let G∗ = (V∗,E∗,C∗). Denote the source node set asS and the terminal
set asT. The admissible region in Theorem 3 requires the min-cut between any
subsetS of nodes andeveryterminal greater thanH(S|Sc). From max-flow min-
cut theorem, we know the min-cut can be characterized as max-flow. As long as
there is a flow of valueR from a sources to a terminalt, the min-cut betweens
andt is R. Thus, to model the conditions on the min-cut, we introduce virtual flows
f(tk) = { f (tk)

i j } for each terminaltk. Note that we only require the existence of the
flow for every terminal; the flows corresponding to differentterminals can co-exist

6 We could also simply perform random linear network coding onthese edges
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on an edge. So the actual flow ratezi j on edge(i, j) is the maximum (not the sum) of

f (tk)
i j ,∀tk ∈ T, i.e.,zi j ≥ f (tk)

i j ,∀tk ∈ T. Based on the discussions above, the problem
can be formulated as follows.

minimize ∑
(i, j)∈E

wi j zi j

s. t. 0≤ f (tk)
i j ≤ zi j ≤C∗

i j , (i, j) ∈ E∗,tk ∈ T

∑
{ j |(i, j)∈E∗}

f (tk)
i j − ∑

{ j |( j ,i)∈E∗}

f (tk)
ji = σ (tk)

i , for i ∈V∗,tk ∈ T, (14)

f (tk)
s∗i ≥ R(tk)

i , for i ∈ S ,tk ∈ T (15)

(R(tk)
1 ,R(tk)

2 , . . . ,R(tk)
N ) ∈ SWN, for tk ∈ T (16)

where

σ (tk)
i =







H(X1,X2, . . . ,XN) if i = s∗

−H(X1,X2, . . . ,XN) if i = tk
0 otherwise

The constraint (14) is the flow balance constraint for each virtual flow. The con-
straints (15) (16) make sure for each terminaltk there is a flow of valueH(XS|XSc)
from each subsetSof sources totk. The detailed proof of the correctness of the for-
mulation can be found in [73, 74]. The formulation ofMIN-COST-SW-NETWORK
as presented above is a linear program and can potentially besolved by a regular LP
solver. However the number of constraints due to the requirement thatR ∈ S WN

is |T|(2N −1) that grows exponentially with the number of sources. For regular LP
solvers the time complexity scales with the number of constraints and variables.
Thus, using a regular LP solver is certainly not time-efficient. Moreover even stor-
ing the constraints consumes exponential space and thus using a regular LP solver
would also be space-inefficient. We now present efficient techniques for solving this
problem.

Letw,z, f(tk) denote the column vectors ofwi j ,zi j , f (tk)
i j for (i, j)∈E andR(tk), f(tk)s∗

denote the column vectors ofR(tk)
i , f (tk)

s∗i for i = 1,2, . . . , |S |. Let L be the number of
terminals. We form the Lagrangian of the optimization problem with respect to the

constraintsR(tk) ≤ f(tk)s∗ , for tk ∈ T. This is given by

L(λ ,z, f(t1), . . . , f(tL),R(t1), . . . ,R(tL))

= wTz + ∑L
k=1 λ T

k (R(tk) − f(tk)s∗ ),

whereλ = [λ T
1 λ T

2 . . . λ T
L ]T andλk = [λk,1,λk,2, . . . ,λk,|S |]

T are the dual variables
such thatλ � 0 (where� denotes component-wise inequality).

For a givenλ , let g(λ ) denote the dual function obtained by

g(λ ) = minimizez,f(t1),...,f(tL),R(t1),...,R(tL)L(λ ,z, f(t1), . . . , f(tL),R(t1), . . . ,R(tL)).
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Since strong duality holds in our problem we are guaranteed that the optimal value
of MIN-COST-SW-NETWORKcan be equivalently found by maximizingg(λ ) sub-
ject toλ � 0 [51]. Thus, ifg(λ ) can be determined in an efficient manner for a given
λ then we can hope to solveMIN-COST-SW-NETWORKefficiently.

Consider the optimization problem for a givenλ � 0.

minimize wTz +
L

∑
k=1

λ T
k (R(tk)− f(tk)s∗ )

s. t. 0≤ f (Tk)
i j ≤ zi j ≤Ci j , (i, j) ∈ E∗,tk ∈ T

∑
{ j |(i, j)∈E∗}

f (tk)
i j − ∑

{ j |( j ,i)∈E∗}

f (tk)
ji = σ (tk)

i , i ∈V∗,tk ∈ T

R(tk) ∈ SWN, tk ∈ T. (17)

We realize on inspection that this minimization decomposesinto a set of inde-
pendent subproblems shown below.

minimize wT f−
L

∑
k=1

λ T
k f(tk)s∗

s. t. 0≤ f (tk)
i j ≤ zi j ≤Ci j , (i, j) ∈ E∗,tk ∈ T

∑
{ j |(i, j)∈E∗}

f (tk)
i j − ∑

{ j |( j ,i)∈E∗}

f (tk)
ji = σ (tk)

i , i ∈V∗,tk ∈ T (18)

and for eachtk ∈ T,

minimize λ T
k R(tk)

subject to R(tk) ∈ SWN. (19)

The optimization problem in (18) is a linear program with variableszandx(Tk) for
k = 1, . . . ,NR and a total of(2|T|+ 1)|E∗|+ |T||V∗| constraints that can be solved
efficiently by using a regular LP solver. It can also be solvedby treating it as a
minimum cost network flow problem with fixed rates for which many efficient tech-
niques have been developed [50].

However each of the subproblems in (19) still has 2N −1 constraints and there-
fore the complexity of using an LP solver is still exponential in N. However recall
the contra-polymatroid property of Slepian-Wolf region mentioned in Section 4.1.2.
Using the contra-polymatroid property, the solution to this LP can be found by a
greedy allocation of the rates as shown in (7), where the permutationπ is such that
λk,π(1) ≥ λk,π(2) ≥ ·· · ≥ λk,π(N).

The previous algorithm presents us a technique for finding the value ofg(λ )
efficiently. It remains to solve the maximization

max
λ�0

g(λ ).
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For this purpose we use the fact that the dual function is concave (possibly non-
differentiable) and can therefore be maximized by using theprojected subgradient
algorithm [75]. Roughly speaking, the subgradient algorithm is a iterative method to
minimize non-differentiable convex (or maximize concave)functions. It is similar to
the gradient descent method, though there are notable differences. The subgradient

for λk can be found asR(tk) − f(tk)s∗ [75].
Let λ i represent the value of the dual variableλ at the ith iteration andθi be

the step size at theith iteration. A step by step algorithm to solveMIN-COST-SW-
NETWORKis presented below.

1. Initializeλ 0 � 0.
2. For givenλ i solve the problem (18) using an LP solver and for eachtk ∈ T, solve

the problem (19) using the greedy algorithm presented in (7).

3. Setλ i+1
k = [λ i

k +θi(R(tk)− f(tk)s∗ )]+ for all tk ∈ T, where[x]+ = x if x≥ 0 and zero
otherwise. Goto step 2 and repeat until convergence.

While subgradient optimization provides a good approximation on the optimal
value of the primal problem, a primal optimal solution or even a feasible, near-
optimal solution is usually not available because the objective function is linear. In
our problem, we seek to jointly find the flows and the rate allocations that support
the recovery of the sources at the terminals at minimum cost.Thus, finding the
appropriate flows and rates specified by the primal-optimal or near primal-optimal
z, f(t1), . . . , f(tL),R(t1), . . . ,R(tL) is important. Towards this end we use the method of
Sherali and Choi [76]. We skip the details and refer the interested reader to [73, 74].

6 Conclusion

In this survey we have examined the problem of distributed source coding over
networks. Distributed source coding has been traditionally studied under a model
where there exist direct source destination links. In a general network, the sources
communicate with the destinations over a network whose topology may be quite
complicated. It turns out that in this case the problem of distributed source coding
and network information transfer needs to be addressed jointly. In particular, treat-
ing these problems separately can be shown to be suboptimal in general. Moreover,
in certain cases the usage of the network coding [2] becomes essential. We also dis-
cussed, various resource allocation problems that occur inthis space and provided
an overview of the solution approaches.

There are several problems that need to be addressed in this area. In the area
of sensor networks, it would be interesting to examine if simple protocols can be
developed that leverage joint distributed source coding and network coding. In this
survey we assumed that the source statistics are known to theintended destination.
In practice, the protocols will need to ensure that these statistics are communicated
periodically. In a practical sensor network, it is reasonable to assume that some
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limited communication between the sensors is possible. It would be interesting to
see if this reduces the overall complexity of decoding at thedestinations.
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