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Abstract The data sensed by different sensors in a sensor networticsitly corre-
lated. A natural question is whether the data correlationbeaexploited in innova-
tive ways along with network information transfer techreéqtio design efficient and
distributed schemes for the operation of such networks mbcessarily involves a
coupling between the issues of compression and networkedm@asmission, that
have usually been considered separately. In this work weweahe basics of classi-
cal distributed source coding and discuss some practickd design techniques for
it. We argue that the network introduces several new dinoaissio the problem of
distributed source coding. The compression rates and ti@rieinformation flow
constrain each other in intricate ways. In particular, wevsthat network coding
is often required for optimally combining distributed soarcoding and network
information transfer and discuss the associated issuestail.dWe also examine
the problem of resource allocation in the context of disitiéol source coding over
networks.

1 Introduction

There are various instances of problems where correlateds®need to be trans-
mitted over networks, e.g., a large scale sensor networlogeg for temperature
or humidity monitoring over a large field or for habitat mamihg in a jungle. This
is an example of a network information transfer problem weitirelated sources.
A natural question is whether the data correlation can béoégd in innovative
ways along with network information transfer techniquesiésign efficient and
distributed schemes for the operation of such networks mbcessarily involves a
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Fig. 1 (a) Classical Slepian-Wolf problem with sourcésandY with direct links to a terminal.
(b) Practical scenario with multiple sources and termimalsimunicating over a network with
link capacity and cost constraints. The joint problem ofriisited source coding and network
information transfer introduces various issues that aesvaewed in this work.

coupling between the issues of compression and networkedm@@asmission, that
have usually been considered separately (see Fig. 1 foluatrdtion).

The correlation in a sensor network can be exploited in pleltivays. One can
consider protocols where sensor nodes exchange informatimng themselves,
compress the information and then transmit the compresgetblihe terminal. At
the other extreme, the sensors may operate independenitlitiMely, one would
expect that the first scenario would be significantly bettemfa compression per-
spective. A surprising and groundbreaking result of SkegiaNolf [1] shows that
in fact under certain situations, the case in which the ssrestt independently can
be as efficient as the case in which the sensors do commumigateach other.
The work of [1] introduced the idea of distributed sourceingcand demonstrated
the existence of encoders and decoders that could levdragmtrelation without
needing explicit cooperation between the sources.

In this chapter we review various ideas in distributed sewading that are in-
teresting within the context of sensor networks. We begirabyoverview of the
basic concepts, and an outline of certain practical codstoactions that have been
the focus of much work recently. Next, we examine distridugeurce coding in a
network context. The network introduces several dimersstorthe problem of dis-
tributed source coding that do not exist in the classicat clisnay be tempting to
argue that one could simply find paths in the network that a¢ha direct links in
the classical problem, assuming that the paths have enapgitity. However, such
an approach is not optimal. The compression rates and th@reinformation flow
constrain each other in intricate ways. In particular, ihgiout that network cod-
ing [2] is essential in certain cases for optimality. Intiregly enough, the flavor
of results in this area depends upon the number of sourceeanihals in the net-
work. We survey these in a fair amount of detail in this chepted examine the
relationship between network coding and distributed smaoding.

The issue of resource allocation is very important in the fafinetworking. For
example, optimal routing of packets that maximizes sonligyufinction of the net-
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work is a well investigated issue in the field of networking} [Several techniques
for solving these problems in a distributed manner have Isaatied in the litera-
ture [4]. In this chapter we discuss resource allocatiorlems in the context of
transmitting correlated sources over a network. The mdierénce here is that one
needs to jointly allocate the rates and the flows in the ndéwlor particular, the
network capacity region and the feasible rate regionsaeten non-trivial ways.
This chapter is organized as follows. We discuss the basidiswibuted source
coding in Section 2 and introduce the problem of networkattitiuted coding in
Section 3. Section 4 presents the discussion for the casetwbrks with a single
terminal and Section 5 considers the case of networks witkiptauterminals.

2 Basics of distributed source coding

A sensor network consists of various sensors that monitoresphysical phe-
nomenon, e.g., an agricultural sensor network may be degloya field for tem-
perature or humidity monitoring. In this chapter we will ube terms sensor and
source interchangeably. Furthermore, a sensor outputigéa ime is assumed to
be a random variable. Hence, over time, the observationsefsor can be treated
as a vector of random variables. We assume that the sourpetsewt sequence
of independent and identically distributed (i.i.d.) randwariables. While this as-
sumption may not hold in a strict sense, we will see that wegto simplify our
exposition. Many of the results discussed in this chapts hbld for the case of
sources with memory. However, we will not discuss them here.

Formally, we denote successive realizations of a souedy Xz, X, ..., Xn,
such that their joint distributiop(Xy, ..., %) = 12, p(X). If there is another cor-
related sourc&, the joint distributionp(Xy,Y1,X2,Y2, ..., Xn,Yn) = M2, p(X;,Yi),
i.e., at a given time instant, the sources are correlateddyoss time they are inde-
pendent.

In a sensor network, the main problem is to convey either¢nsar readings or
their functions (e.g., mean, variance etc.) to a terminhk fransmission protocol
needs to be efficient in terms of the number of bits transhitiethe correlation
between the sources is ignored and if the terminal needstweethe source with-
out any distortion, the compression rate should be at lbastntropy [5, 6] of the
source. For example, if there are two sourgeandY, this implies that the terminal
needs to receivel (X) + H(Y) bits per unit time for recovering botk andY .

Clearly, if there is correlation across sensors, the olfeitedite required for trans-
mission to the terminal can be reduced. This is certainlgi#a if the sources com-
municate with each other. The famous result of Slepian antd Wpshows that
distributed source coding, where the sources do not conmatewith each other,
can be as efficient as the case in which the sources commemittateach other.
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2.1 Slepian-Wolf Theorem

Consider two sources andY. Let Rx andRy denote the rates at which the sources
operate. This means that the soukcandY transmitRx andRy bits per unit time
to the terminal.

Theorem 1. Slepian-Wolf Theorem [1]. Consider memoryless correlamaces X
andY from finite-sized alphabe#s , % respectively, with joint distribution (X, Y).
Suppose that

Ry > H(Y|X),
Rx + Ry = H(X,Y).

There exist encoding functiong :f2 ™" — {1,2,...,2"™} at source X and :
" {1,2,...,2"%} atthe source Y and a decoding function{d. 2,...,2"*} x
{1,2,...,2"R} — 2" x & at the terminal, such that the terminal is able to recover
the source sequences with vanishing error probability asasgto infinity. Con-
versely, if R, Ry do not satisfy those conditions, it is impossible to recawer
sources with vanishing error probability.

The implication of the Slepian-Wolf theorem is rather sigipg and profound.
Intuitively, it is clear that there is no hope of compresdimgsources to a rate of less
thanH (X,Y) even if they communicate with each other. The Slepian-Welbtem
shows that in fact one can do this even when the sources d@nohanicate with
each other.

The achievability proof goes as follows. A lengthX-sequence is compressed
to a binary vector of lengthRx by encoding functiorfy, that is chosen at random.
This process is referred to as random binning [6] in theditere, as each sequence
is assigned a bin whose index is determinedfpySimilarly, f, returns the bin
index of aY-sequence. At the terminal, suppose bin indigep are received. The
decoding function finds all the lengthsequences, y such thatf1(x) =i, fo(y) =
and find the pair of sequences that are most likely to have trapsmitted. When
is large, with high probability, such sequence pair is thea@dransmitted sequence
pair. In other words, the error probability is vanishingagoes to infinity.

The rates satisfying conditions are called achievableatel they form a region
in the two dimensional plane shown in Fig.2.

The two corner points on the boundary are interesting. Theyespond to a rate
allocation(Rx,Ry) = (H(X),H(Y|X)) or (Rx,Ry) = (H(X|Y),H(Y)). In order to
achieve one of these points, say the first one, sice- H(X), any lossless com-
pression scheme can be used to compxe3tien,x is used aside informatiorto
help decodg at the decoder. The rate6fis H(Y|X), i.e., the amount of uncertainty
givenX.

Code design in the case when side information is availabteeatlecoder, is
called theasymmetricSlepian-Wolf coding problem [7]. Code design for achieving
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Fig. 2 Slepian-Wolf Region in the case of two sourcesndY.

any general (non-corner) point is called thanmetricSlepian-Wolf coding prob-
lem. There are many practical code designs for both asynurgetding and sym-
metric coding when we have only two sources. In general, asytmic Slepian-Wolf
coding is easier than the symmetric case, because of arceguaivalence with chan-
nel coding, that we will discuss shortly. We refer the read¢v] and the references
therein for detailed descriptions.

The theorem above is stated for two sources. In general, \hene areN
sources, we have a generalized Slepian-Wolf theorem [§)p&se the sources
X1,X2,..., XN are generating i.i.d. symbols according to the joint praliigilis-
tribution p(Xy, Xz,...,Xn). Let R denote the rate for sourc§ and S denote a
nonempty subset of node indice3C {1,2,...,N}. Let Xs denote the set of ran-
dom variabled X : i € S}. If the rate vecto(Ry, R, ..., Ry) satisfies

ESR > H(Xg|Xs) for all S# 0,
IS

the decoder is able to recover all sources error-free (agytioglly). Conversely, if
the rates do not satisfy the condition, lossless recoveip@ssible. When there
are multiple sources, practical code design is a challenginblem. Some coding
schemes exist, e.g., [9, 10, 11], but they either suffer ptitmal rate or have strong
assumptions on the correlation model.

2.2 Equivalence between Slepian-Wolf coding and channediicg

The proof of the Slepian-Wolf theorem is information thdmré nature and the
corresponding achievability scheme requires exponefitiad) complexity decod-
ing in general. For the case of two sources, and asymmegjmasi-Wolf coding,
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Wyner [12] discovered the relation between channel codimy@lepian-Wolf cod-
ing. Most existing work on Slepian-Wolf coding for two soescrelies on Wyner’s
idea and exploits powerful channel codes such as Turbo camagd DPC codes
[13, 14, 15, 16, 17, 18, 19]. Here, we introduce the basicidea asymmetric
Slepian-Wolf coding.

First we review the concepts of channel coding [20], esfiigaia linear block
codes. A(n,k) linear block code over a finite fiel&F(q) maps each message of
lengthk (i.e., ak-length vectoe GF(q)) to a codewora of lengthn (i.e. ann-length
vectore GF(q)). The codeword is transmitted through a channel, whicloéhces
an errore. The receive vector is = c+ e (addition overGF(q)), wheree denotes
the error vector. The decoder takeas input and attempts to find the correctn
classical coding theory, the errors are modeled accordittggir Hamming weight,
i.e., the number of nonzero elementgirn important design parameter of a code is
the minimum Hamming distanak(the number of positions where two codewords
take different values). A code with minimum distangés able to correct up to
|(d—1)/2] errors, i.e., as long as the Hamming weigheofit(e) < |(d—1)/2],
the decoder can find the error patterand the transmitted codewocd

The parity check matrix of a linear block code igra— k) x n matrix H such
thatcHT = 0 (matrix multiplication oveGF(q)) for every codeword. A practical
decoding algorithm for a linear block is called syndromeatkieg. The decoder
computes the syndrome of length— k) s=rHT. SincerHT = cHT +eHT, s=
eHT, implying that the syndrome only depends on the error pattethen attempts
to find thee with the least weight. This can be done efficiently for speaifasses
of codes. For example, Berlekamp-Massey algorithm for B@des and Reed-
Solomon codes [20], can be used to find the error paééom sas long asvt(e) <
(d—1)/2. Likewise, binary LDPC codes admit efficient decoding.

We now demonstrate that syndrome decoding can be appliée tasyymmetric
Slepian-Wolf coding problem. Assume that the source setpgny have lengtm
and the correlation model is that the Hamming distance berivtleem is no more
thant, i.e., they differ at most positions. Supposgis available at the decoder. At
sourceX, we transmitxHT to the terminal. The terminal computesl T +xHT =
(x+y)HT = eHT, wheree = x +y is the difference betweenandy'. We know
thatx andy differ in at mostt positions, sovt(e) <t. The decoder is able to firel
as long as the minimum distance of the channel code is at2east based on the
discussions above. Oneds obtainedx =y + e can be easily computed. Thus, a
lengthn vectorx is compressed to a lengti— k) vectorxHT. Since the minimum
distance of a code should satisfy Singleton bodirdn — k+ 1 [20], the lengtin —k
should be at leastt2

In order to establish a concrete relationship with Slephéoif theorem, next we
consider a probabilistic correlation model. Consider bireourcesX andY that
are uniformly distributed. The correlation between therthat the probability that
they are differentig < 0.5. In other words, each bit in the vect®e= x+y is one

1 n this chapter, assume that the size of the finite field is agp@fitwo so addition and subtraction
are the same.
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with probability p and zero with probability - p. Then,H(X|Y) = Hy(p) %and
H(X,Y) =14 Hp(p).

Now, consider the channel coding problem for the binary swtnim channel
(BSC) with crossover probabilitp. The codeword is transmitted and = c+e
is received anct is i.i.d. taking value 1 with probabilityp. The capacity of this
channel is 1- Hy(p) [6]. The receiver computes the syndrosie rHT =eHT. It
can be shown that there existstdrand the decoding functiofye-) such that the
code ratk/n — 1— Hp(p) asn — o and the decoding error can be made arbitrarily
small [21]. Such a code is called a capacity-achieving code.

In an asymmetric Slepian-Wolf coding setting, suppose ttiaidecoder knows
y. LetRy = H(Y) = 1 and apply any lossless entropy coding schemey[6hn be
recovered at the terminal. Take the parity check matrix @ff@acity-achieving code
H and the sourc¥ transmitsxH . The terminal finds the estimate xf

X =y+ fagecdXHT +yHT).

The probability thak # x is arbitrary small. Note that the length of vector transmit-
ted by source&X is n—k, so the rate

Ry = (n—K)/n=1—k/n=Hy(p) = H(X]Y).

Thus, using a capacity-achieving channel code, we can gl corner point
(H(X]Y),H(Y)) of the Slepian-Wolf region.

In practice, LDPC codes [22] come very close to the BSC cépalhe belief
propagation algorithm (BPA) [22] acts as the decoding fiamcyed(-). Note that in
the channel coding setting, the belief propagation algoriis designed to output a
codewordc with zero syndrome, whereas in the distributed source gpsirtting,
the BPA needs to be modified so that it outputs a vector satgfygiven syndrome.
More generally, even if the correlation model can not be e@ws a binary sym-
metric channel, we can provide proper initialization to B algorithm according
to the correlation model. Turbo codes can also be used tewaEkompression via
puncturing at the encoder; the extrinsic information exgjesat the decoder exploits
the correlation between the sources [23, 24, 25].

The equivalence in the asymmetric case does not carry oeestiraightforward
manner to the symmetric case. However, an approach calledessplitting [26, 27]
allows us to transform the symmetric Slepian-Wolf codingljpem forN sources
to an asymmetric (corner point) problem where there &fe-2 sources.

2.3 Distributed source coding with a fidelity criterion

In the previous sections we considered the problem of Iesgleconstruction. In
many practical applications, we may allow a certain amodrdistortion in the

2 Hp(p) is the binary entropy function defined Hg(p) = —plog, p— (1 — p)log,(1— p).
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recovery process. In lossy multiterminal source codingheaurce encodes its own
data at a certain rate and transmits it to the terminal. Thmiital tries to recover

all the sources under a fidelity criterion. The fidelity is m@ad with respect to a
distortion metric.

More specifically, the encoders observe source sequencrs,...,xy emit-
ted by the sourceXi,Xp,..., Xy and encode them at rafe,Ry,...,Ry sepa-
rately (with no communication between the encoders). Gulistortion metrics,
D = (D4,Ds,...,Dn) for each source, we hope to find the regi@iD) of all rates
R = (R1,Ry,...,Ry) that allow the decoder to reconstrigt X, ..., XN such that
the expected distortion betwegnandx; is less tham; forall i =1,2,...,N. How-
ever, the general region even in the case of very specifiortist metrics remains
unknown.

The inner bound for a given problem refers to a set of rateéscirabe shown to
be achievable. The outer bound refers to a set of rates thadrachievable under
any strategy. Some inner/outer bounds for the general @moban be found in [28,
29, 30]. In most cases the inner and outer bounds do not meethie exact region
is unknown. A tighter outer bound was obtained recently E81d some insights on
the optimal encoders and decoders are given in [32]. Thergtiadsaussian case
was considered in [33, 34], where the rate-distortion negfor several special cases
are determined. Practical code design for multitermin@-dhstortion problems are
discussed in [35, 36].

Next we discuss two special cases of multiterminal sourcéngoproblems, for
which the rate distortion regions are relatively well sedli

2.3.1 Wyner-Ziv coding

Consider two correlated sourcésandY that follow joint distributionp(X,Y). The
source sequenceneeds to be encoded without knowipgnd transmitted to the
decoder, at which side informatignis available. Let the distortion between two
length sequencesandk be measured g5y ; d(x, %), whered is a non-negative
function. The rate-distortion functidRy z(D) gives the minimum required rate such
that the expected distortion between the actual sourceesegu and the decoder
outputX is upper bounded b, i.e., E(% yi1d(x,%)) <D. Clearly, ifD =0, it
is the special instance of Slepian-Wolf problem at cornéntpdd (X|Y),H(Y)). In
general, the rate-distortion function was shown by Wynet 2im [37] to be

Rwz(D) = min I(X;U) = 1(Y;U),
Rupx () F():E(X,F(U.Y)))<D

whereU is an auxiliary random variable and is such thlat- X — Y, i.e.,U, X,Y
form a Markov chain and the expectation is taken over thet jdistribution of
X,Y,U. The functionf is the decoding function.

In the Slepian-Wolf setting (i.eD = 0), we know that minimum required rate
is H(X]Y), whether or noty is available at theX encoder. WherD > 0, let us
denote the rate required wh&nis available at the source encoderRgy (D). It
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can be shown that in some ca$ggy (D) < Ryz(D). In other words, we may lose
efficiency when encoding correlated sources separatélgrtian jointly wherD >
0. In the special case when the sources are correlated-byy + Z whereY and
Z are both Gaussian arttlis independent of, Ry (D) = Rwz(D) [37]. In many
other correlation models, the equality does not hold.

Practical coding schemes for the Wyner-Ziv problem basedested codes
[38, 39] are known. Nested lattice codes can be used and iquikdratic Gaussian
case and can be shown to achieve the Wyner-Ziv bound. Othetigal Wyner-Ziv
code designs include trellis-based codes [13], nestechgddilowed by Slepian-
Wolf coding [40], quantization followed by Slepian-Wolfding [41, 42], etc. The
discussion of these techniques is beyond the scope of thisysu

2.3.2 The CEO problem

In the CEO problem [43], there is one soudt@ndN encoders that do not observe
the source directly. Instead, each encoder observes gtedrversion oK, denoted
asY,i=12,...,N. TheY's are assumed to be conditionally independent gXen
The encoder encodggsat rateR and such that the total encoding ratg[‘il R <R
The decoder finds the (the estimate oX,), based on the encoded codewords. The
aim is to find the rate-distortion functioR(D), i.e., the minimum total encoding
rate needed such that the expected distortion betwesmdX is at mostD. This

is analogous to a situation when a Chief Executive (or EdtonaOfficer obtains
information fromN agents and wants to estimate the source sequetiw he or
she is interested in. In a sensor network application, wetuak of the data fusion
center acting as the CEO and the sensors act as the agenistobem formula-
tion takes into account the noise in the sensing procedime ofiginal paper [43]
determined the asymptotic behavior of the error frequerteyniR — oo for discrete
memoryless source. The quadratic Gaussian case of the GiEepr, whereX is
Gaussian and the observation noi¥es X are independently Gaussian distributed,
is studied in [44, 45, 46] and the rate-distortion functisalétermined in [45, 46].

3 Networked distributed source coding: An introduction

In the previous sections we have discussed the classigab8\Volf result and its
lossy variants. Note that so far we have assumed that thardiisct noiseless link
between the sources and the terminal. This is a useful siogde to analyze and
captures the core of the problem as far as the basic concejistabuted source
coding is concerned. However, in a practical sensor netwalexpect that the
sensors will be communicating with the terminal over a nekywpossibly with the
help of various relay nodes. Therefore, it is natural to stigmte whether the process
of information transmission over the network influencesdbmpression and vice
versa. Our network model represents a wireline network oireless network with
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medium access control (MAC) protocols that make the chanpek independent
(we discuss the network model in more detail later). In tlsig pf the chapter, we
overview relatively recent work that has contributed ta¥gaour understanding of
this field.

The problem of networked distributed source coding diffeosn the classical
problem in the following ways.

e Suboptimality of separation between distributed souradirgpand network in-
formation transfer.
Note that the problem of distributed source coding over pet& would be a
straightforward extension of the classical Slepian-Walilgpem if one could
essentially “simulate” the presence of direct links betwé#e sources and the
terminal. Indeed, one could encode the sources using aadbSiepian-Wolf
code and simply “flow” the encoded bits over the appropriat&g This would
amount to separating the tasks of distributed source coslgrdand the problem
of network information transfer. It turns out that such at&gy is suboptimal in
general.

e Issues of optimal resource allocation over the network.
The network introduces several issues with respect to theadion of rates and
flows such that they are in some sense “optimal” for the oaratf a network.
For example, in sensor networks, the problem of decidin@pi@opriate paths
over which the data needs to flow for minimum-energy or maximifietime
[47]is of interest. In the context of correlated sourcessthissues become more
complicated since one needs to jointly optimize the rateistae flows.

Our model of a network is a directed gragh= (V,E), whereV is a the set
of nodes anckE is the set of edges. There is a set of source n@lesV that
observes the sources and a set of termiffats V that needs to reconstruct the
sources. An edgévi, V) is a communication channel which allows information
transmission fromv; to vo. The channel can be noisy, or deterministic (but typ-
ically capacity-constrained). The different channelsha hetwork are in general
dependent, e.g., in a wireless network, broadcast andenéeice induces depen-
dence between different channels. However, charactgrihi@ capacity region in
such scenarios, even with independent messages has poofedat difficult task
[6]. In fact, in many practical situations, protocols suchtime-division multiple
access-TDMA, frequency-division multiple access-FDMA. elre used to provide
the semblance of independent channels. In a wireline n&thoe channels are typ-
ically independent. In the discussion in the sequel, we mdbktly work under the
assumption that the channels are independent. It turnfatitte results in this area
depend critically on the number of terminals in network. &watingly, we divide the
discussion into two different sections. In Section 4 weeenihe results for the sin-
gle terminal case and in Section 5 we review the correspgméisults for multiple
terminals.
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4 Networked distributed source coding: Single terminal

In networks with a single terminal, under the assumption ti@ channels are in-
dependent, Han [48] gave necessary and sufficient condifmmma network to be
able to transmit the correlated sources to the sink. A simapléevable transmis-
sion scheme was proposed and its optimality was provedoBaat al. [49] ob-
tained the same result under a more general encoding motletevihe form of
joint source/channel coding can be arbitrary and the codamgbe across multiple
blocks. The achievability proof is almost the same as [48]tae converse is proved
in a different manner and is stronger because of the morergleraaling model.

Suppose that there aket 1 nodesy, v1, . .., vy in the network observing sources
Xo,X1,...,Xn. The graphG(V,E) is complete and each edde,v;) is a discrete
memoryless channel with capaciy;. Note that the source entropy could be zero
and the capacity could also be zero, so realistic netwonkgaaily fit into this gen-
eral framework. Nodey is the sink that wants to reconstruct the souXgs. ., Xy.

The proposed transmission scheme is very simple and weuifipply good
channel codes to each channel so that we can model every\edgéas a noiseless
link with capacityCj;. Each node performs Slepian-Wolf coding at fgteNext, the
Slepian-Wolf coded bits need to be routed to the sinkknowing the rates at each
source node, we can find a feasible flow that supportsRiaé¢ source nodg and
terminates at sink nodg as follows.

Add a virtual super sourcg and introduce an edgs*, vi) with capacityCsj =
R fori =1,...,N. Then compute the max-flow betwegrandvg [50]. This returns
a flow assignment on each edge. The Slepian-Wolf coded lgitsoated according
to the flow assignment ta.

The nodevy receives all Slepian-Wolf coded bits and jointly decodd<tad
sources(, Xp, ..., Xn. In order to reconstruct the sources, the rate ve®gr. .., Ry)
needs to be in the Slepian-Wolf region, i.e., for any nongrepbset of0,...,N},

S, such that & S (sinceX; is available atg as side information and is not encoded),

Z,Ri > H(Xs|Xs). (1)

In order to successfully find the flow of valggd! ;R from s to vo, we need the
capacity of any cut separatirgj and vy to be greater thalziN:lR@. Note that a
cut separates the source nodes iBtand &, whereSC {0,...,N},0 € & buts*
does not connect tay, its capacity is§ jes\ {0y Csj + Jiesjes Cij = Y jes\ (o} Ri +
Yiesjes Cij- Thus, as long as

ZRa < Gij, (2
ie ieSjesk

for all nonempty subse® of {0,...,N} such that 0= §°, the flow exists. This is
illustrated in Fig. 3. Moreover, if



12 Shizheng Li and Aditya Ramamoorthy

H(XslXsr) < SZ Gij ©)
ieSjes

there exists a rate allocation satisfying (1) and (2) [48lrEfore, (3) is a sufficient
condition for the single-sink data collection with Slepifolf coding.

S s¢
C

i€S,jeSe i

Yy

Fig. 3 lllustration of the sufficient condition for routing SlepidVolf coded bits to the terminal.
s" is the supersource. The cut of interest containg, in Sandvs, v, in . The cut capacity is
Y jes\{o} Rj + Yiesjes Cij, and it should be no less th{lﬁilRi. ThustieSjeS:Qj > YiesRi.

Conversely, it is proved that the above condition is the seag/ condition for
successful transmission under any joint coding schemeifitbe capacity does not
satisfy this condition, the sink cannot recover the soul@eslessly, under any kind
of coding scheme. Note that the proposed achievability reehseparates source
coding, channel coding and routing. The converse part gaghat it is optimal to
separately perform channel coding, distributed sourcéngaahd treat the Slepian-
Wolf coded bits as commaodities and route to the terminal.mbi theorem in [49]
can also be viewed as a general source-channel separatioreth for networks
with one terminal, with independent channels. It implieattthe source coding,
routing and channel coding can be put into different laydréhe protocol stack
separately.

We emphasize however, that such a separation does not tygdéanal, i.e., when
there are more terminals. As we shall see in Section 5, evem e channels are
independent, if we have more terminals, the compressias rand the network
flows are closely coupled.
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4.1 Optimal rate and flow allocation

From the discussion in previous sections, it is clear thstributed source coding
can compress the data effectively. In this subsection, a&uds resource allocation
problems for networked distributed source coding.

A natural resource allocation problem is to determine the & which each
source should be encoded, and the corresponding flows satlsdme network
metric is optimized. For simplicity, we first consider theseavhen there are direct
channels between the sources and the sink.

4.1.1 Direct source-sink channels

Suppose the sources communicate to the sink directly. Weidentwo metrics as
follows.

1. Sum rate minimization: In this case we consider noisedessce-sink channels
and seek to find a feasible rate vector that minimighs R.

2. Sum power minimization: Here we assume orthogonal agdithite Gaussian
noise (AWGN) channels between the sources and the sink akdseninimize
the total power mirZiN:lPl (whereP, is the power of thé" source), expended in
ensuring that the sources can be reconstructed at the trmin

For the noisy channel case, the source nodes first use SiéfmHtodes to en-
code the sources. As long as each rate is less than the clrapaeity the sources
can be recovered losslessly at the terminal (assuming itgq@ahieving codes are
used). The capacity of the channel between ricaled the sink with transmission
powerPR and channel gairy is Ci(RP) = log(1+ yiR), where the noise power is
normalized to one and channel gains are constants that avenkio the terminal.
Thus, the ratdR should satisfyR < Ci(R). It is easy to see at the optimum, the
sensor node should transmit at the capacity, Res= Cj(P"). Thus, the power as-
signment is given by the inverse function @f which we denote byQ;(R)), i.e.,

P* = Q(R) = (2% —1)/y. Once we know the optimal rate assignm&itwe
know the power assignmeRt and vice versa. Therefore, the objective function of
the sum power minimization problem can also be written as

N
min 21(25— 1)/y.
i=
For both problems, ifN-dimensional Slepian-Wolf codes are used, the rates
should be in theN-dimensional Slepian-Wolf region, which is denoted Y.
Then, the sum rate minimization problem can be written as
; N p
ming,,..Ry Yic1 R

subject to(Ry, ...,Ry) € SW,.
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The solution to this problem is trivial, i.e., any point aetboundary of theN-
dimensional Slepian-Wolf region is the optimal solution.the sum power mini-
mization problem, besides Slepian-Wolf region constrauet also add peak power
constraints for the transmission power of each sensor riakieg into account the
fact that every sensor has limited transmission power inral@gs sensor network.
Then, the problem is a convex optimization problem:

N N

min 3 P= _Z(ZR ~1)/y

subject to(2% — 1) /yi < Prax Vi
(Ry,...,R) € SW.

This problem can be efficiently solved by, for example, ilmtepoint methods [51].

In practice we do need to impose additional restrictionshenget of feasible
rate vectors. This is primarily because the problem of jiractode design for the
N-dimensional Slepian-Wolf region remains open. It is fairsay that at present,
we only know how to design Slepian-Wolf codes for two sourdédsis, it makes
sense to impose “pairwise” constraints on the rate vecsorthat two sources can
be decoded together. Given the state-of-the-art code meig two sources case,
we could perform encoding and decoding in a pairwise fastBafore the trans-
mission starts, we determine the source pairs that ardyjalatoded together each
time and determine the rates of the sources and the corr@isigocodes. During the
transmission, the sources encode the message separatalyufvcommunication
with other sources) using the preassigned code and the sifirms joint decoding
for two nodes each time according to the preassigned coniduirsa We call this
pairwise distributed source codinghich is simple and practical. The resource al-
location problem is to determine the optimal pairing conaltisns and the rates for
the sensors such that the sum rate or the sum power is midnTihés problem was
first considered and solved using the notion of matching @linested graph in [52].
Later, an improved solution using the notion of minimum wigrborescences and
matching forests was proposed in [53] that we shall discaks\b

First, we consider the sum rate minimization problem. Nb&t any point on the
slope of the Slepian-Wolf boundary achieves the minimum satsof two sources.
Thus, for a pair of sources that will be decoded togetherplirdhoosing the cor-
ner point as a rate allocation achieves minimum sum rate Adge that a decoded
source can be used as side information to help decode otheresoat the terminal
so that the rate of other sources being helped can be as Idve ashditional en-
tropy given the decoded source. Since we consider painissebadited source cod-
ing here and each time only two sources are involved in thedleg, we do not use
more than one decoded sources as helper. We say a rate asstdras the pairwise
property if it allows the terminal decode the sources in avae fashion. Specifi-
cally, the rate assignment is said to satisfy the pairwispenty if for each source
Xi,i=1,2,...,N, there exists an ordered sequence of sou¥gsXi,, ..., X ) such
that
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Ril 2 H(x|1)7 (4)
R;, ZH(X;J.|X;J<71), for2<j <k, and (5)
R > H(X[X). (6)

Such a rate assignment allows the possibility that eactceaan be reconstructed
at the decoder by solving a sequence of decoding operatitims W corner points
e.g. for decoding sourc¥ one can use, (sinceR;, > H(X;,)), then decodg;,
using the knowledge of;, . Continuing in this manner finally; can be decoded. We
hope to find rate assignment with pairwise property and withimum sum rate.
Clearly, the optimal rate assignment satisfies conditidi$Y),(6) with equality. It
is easy to see the sequential decoding procedure of a rad@mment with pairwise
property can be expressed on a tree. The nodes at the higkeal® decoded first
and used as side information to help decode the nodes attkelyer. If we assign
edges weights to be entropies and conditional entropiesyéight of the tree is the
sum rate. Therefore, this inspires us to find a tree with mimmuveight on a proper
defined graph.

Now we formally describe our approach. Construct a diregreghG = (V,E)
as follows. The node s&t consists ofN regular nodes: ,2,...,N andN starred
nodes 1,2* ... N*. The edge s consists of edges* — i) with weightH (X;) for
alli=1,2,...,N, and edgesi — j) with weightH (X;|X) foralli,j =1,2,...,N.

An example ofG is shown in the left figure of Fig. 4. Define a subgrash of G

as a graph obtained frof@ by deleting all starred nodes excéptand all edges of
the form(j* — j) for j #i. For each, find a minimum weight directed spanning
tre€’ onG;-. This tree gives a rate allocatioR: = H(X;), Rj = H(Xj[Xing(j)), Where
inc(j) is the node such that edg@imc(j) — j) belongs to the tree. Each subgraph
Gi+ gives a rate allocation by a minimum weight directed spagiiee and the
one with minimum weight gives the final optimal rate allooatiof the network.
Note that if each source has the same entropy, the weightsrofnom weight
directed spanning trees @« are the same for eadh so we only need to pick
up an arbitrary subgrapB;« and find the assignment on it. Clearly, the resulting
rate assignment has the pairwise property and is optimahdrexample in Fig.
4, each source has the same entropy and the minimum weigittetir spanning
tree rooted at node*lis shown in the right figure. The optimal rate allocation is
Ri =H(X1),Re =H(X4|X1),Re = H(X2|X4) andR3 = H(X3|X4). The corresponding
decoding procedure is that first decode soXgeand usex; as side information to
help decodéy. Then, X, is used as side information to help deco@eandXs.

Next, we show some simulation results. Consider a wireless@ network ex-
ample in a square area where the coordinates of the sengoraretomly chosen
and uniformly distributed iff0, 1]. The sources are assumed to be jointly Gaussian
distributed such that each source has zero mean and urahear{this model was

8 A directed spanning tree (also called arborescence) oeateid grap!@ = (V, A) rooted at vertex

r €V is a subgrapfi of G such that it is a spanning tree if the orientation of the edgé@mnored
and there is a path fromto all v € V when the direction of edges is taken into account. The
minimum weight directed spanning tree can be found by a greégbrithm in polynomial time
[54].
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(a) The graptG (b) The minimum weight directed span-

ning tree found orG;«

Fig. 4 An example of the rate allocation algorithm. The left figun@ws the graplG. The edge
weights on the edges from nodeto nodei are individual entropies and the edge weights on the
edges between regular nodes are conditional entropiebidrexample, the individual entropies
are the same. Thusi(X|X;) = H(X;|X;) and we only label one number between regular nodes
and j. The right figure shows the minimum weight directed spantieg found orG;-.

also used in [55]). The parameteindicates the spatial correlation in the data. A
lower value ofc indicates higher correlation. The individual entropy ofleaource
isH; = %Iog(Zrteoz) = 2.05. In Fig.5, we plot the normalized sum rate found by
minimum weight spanning tree (MSRy = ziN:lR;/Hl vs. the number of sensors
n. If no distributed source coding is used, i.e., the nodeasstrats data individually
to the sink,R; = H; andRy = N. Clearly, by pairwise distributed source coding,
the sum rate is reduced. We also plotted the optimal norethkzm rate wheN-
dimensional Slepian-Wolf code is use{Xy,...,Hn)/H1 in the figure. It is inter-
esting to note that even though we are doing pairwise digtbsource coding, our
sum rate is quite close to the theoretical limit which is agbd byN-dimensional
distributed source coding.

Now we consider the sum power minimization problem. Note thaa pair of
sources that will be decoded together, the optimal rateatilon that minimizes the
sum power of the pair is no longer a corner point but ratheraqoéar point on the
slope (which can be found by solving a simple optimizatioolgbem). For a node
pairi andj, denote the optimal power allocation@(i), Pi]?(j). We cannot simply
choose the corner points and perform asymmetric Slepialfi-tdding. We want
some source pairs working at corner points while some otherising at the optimal
point on the slope of the 2-D SW region. Taking this into actpwe generalize the
concept of pairwise property. Recall that previously, uraleate assignment with
pairwise property, the first source in a sequence is encddbd aate of its entropy.
Now we allow the first source in a decoding sequence to be gaiih another
node and encoded at the rate on the slope of the 2-D Slepidinr¥gion. The
appropriate structure for finding the optimal resourcecaltmn turns out to be one
that combines the directed spanning tree and the matchurgp & structure is the
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Fig. 5 Normalized sum rate vs. number of sensors

matching foresfirst introduced in the work of Giles [56]. In fact, we are irgsted
in a specific form of matching forest calletrict matching fores{SMF). For the
formal definitions, we refer the reader to [53]. Roughly $ieg, a strict matching
forest is a subgraph of a mixed grdpiat connects every node only once. The
SMF plays a role similar to the spanning tree in the sum ratemization problem.
The sequential decoding procedure of a rate assignmenieithralized pairwise
property can be expressed on a SMF. The node pairs connedgtimgindirected
edges work at the slope of the Slepian-Wolf region and a symw@ding scheme
is used for them. The nodes that are connected with diredgelwork at the corner
point of the Slepian-Wolf region and the tail (origin) of aelited edge is used as
side information to help decode the head (destination)eétige. If we assign edge
weights to be transmission powers, the weight of the SMFagdkal transmission
power.

Now we formally describe our approach. Construct a mixeplyg@= (V,E,A)
as follows. The node s&t consists ofN regular nodes: . P,...,N andN starred
nodes 1,2* ... N*. Recall thatQ;(R) is the power consumed in transmission at
rateR. Foreachi = 1,2....,N, if Q/(H (X)) < Pmax add edgéi* — i) with weight
Qi(H(X)). For eachi,j = 1,2,...,N, if Qi(H(X[X;j)) < Pmax add edge(j — i)
with weight Q;(H(Xi|X;)). For each paii and j, if the optimal power allocation
Rj(i),Rj(j) that minimizes the sum power of the pair of nodes exists, autti-u
rected edggi, j) with weightR;j (i) +Bj(j). Then, find the minimum weight SMF
onG, which gives the rate/power assignment with the geneidfizérwise property
and minimum sum power. It is shown in [53] that the problem ndlfing minimum
weight SMF can be transformed and solved in polynomial ti&¥g.[From the sim-

4 “Mixed” graph refers to a graph with directed edges and wuléd edges
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ulations we observe that in most cases, the optimal allmeadi such that only one
pair works on the slope and all other sources work at the cquiats.

4.1.2 General multihop communication between sour ces and sink

The resource allocation problem in a network with geneabdtogy and relay nodes
was first considered by Han [48] and a similar formulationiigeg in [49]. We
reformulate the problem as follows.

The network is given by a directed gragh= (V,E,C), whereC = {G;j : (i,]) €
E} is the capacity of each edge. Edgs) is also associated with a weighi;. The
cost of a flow of valueg;j going through the edge can be writtenFg(g;; )wij, where
F(-) is a non-negative, increasing function. Then, the optitiongproblem can be
written as

min % F(zj)w;
(i,))eE
s.t. 0<z; <Gj,V(i,]) € E (capacity constraint)
zj — Z zji = 0;,Vi e V (flow balance constraint)
il(i.)eE il(J)€E

(R1,Ry,...,RN) € SW (Slepian-Wolf constraint)

whereg; = R if i is thel™™ source nodegi = — Y| R if i is the sink and otherwise,
g =0.

For simplicity, we can consider linear cds{z;) = zj. Then, the above opti-
mization is a linear program. F(-) is a convex function, it is a convex optimization
problem.

If there is no capacity constraint, the solution of the peobhas a simple form
and interpretation [58]. The basic idea is that in the abs@fcapacity constraints,
there is no need to split the flow across different edges. @moeaite (path) from a
given source to the sink with minimum cost is found, the setimply routes all
the data through that path. For example, suppose that thienomim cost path for
sourceX; is Z'. Then for all edgesi, j) belonging toZ', we setzj = R. In this
case, the cost of transmitting the data frto the sink isy .. ;1 F(R)we. Thus,
the overall cost function becomes

N

F(R)d;,

min
{R.A}I=12...N Zl

whered, is the total weight of path?', i.e.,d, = S ec 7 We. Solving this problem
involves finding the optimal pathg”',| = 1,2,...,N and finding the optimal rate
allocationR;,I = 1,2,... N. It is shown in [58] that these two steps are separable,
i.e., one can first find the optimal patt#8'* and then find the optimal rate allocation
based on the optimal path#®'*. This separation holds even if the functibi-) is
nonlinear. It is easy to see the optimal pa#l* is the path with minimum total
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weight. Then, the optimal routing structure is the shorpegh tree rooted at the
sink, which can be found effectively and in a distributed memNow, suppose that
the cost functiorf- is such thaF (R) = R. In this case, the problem becomes

N
min'y Rdspr(l,t)

I; SPT
st.(Ry,Ry,...,Ry) € SW,

wheredspr(l,t) (known as a constant) is the weight of the path from solitoeer-
minalt on the shortest path tree. This is a linear programming prolgVith number

of constraints exponentially witN. However, because of the contra-polymatroidal
structure of the Slepian-Wolf region [59], the solution ¢efound in a easy greedy
manner as follows [58].

1. Find a permutatiorrsuch thatlspr(71(1),t) > dspr(71(2),t) > - - - > dsp7(11(N),1).
2. The optimal rate allocations is given by

Ru2) = H(Xm2)3 [ X m3), ma),....mnyy)

Runy = HX ) (7)

If the functionF (-) is not linear but convex, the problem can still be solved by
convex optimization [51] but the simple greedy algorithmymat work here.

From the previous discussion, we know that Slepian-Wolfimgdlong with
routing is the optimal solution for the single sink data eotlon problem. In fact, it
is shown in [60] that in terms of the cost under convex andgasing cost functions,
Slepian-Wolf coding plus routing is still the optimal saaut even if the wireless net-
work broadcast advantage is considered. Interestingbaume theN-dimensional
(N > 2) Slepian-Wolf code design problem remains open, [60, %8} aonsider
several schemes that do not use distributed source codingllbw some coop-
eration among the sources. Clearly, the communication derivthe sources will
increase the cost. The cost of the Hierarchical Differena@Bcasting in [60] has
been shown to have the same order compared to Slepian-WiitigcoHowever,
the explicit communication scheme in [58] will have sigrafit loss compared to
Slepian-Wolf under some conditions.

5 Networked distributed source coding: Multipleterminals

We now consider the variant of the problem when there areipheiierminals that

want to reconstruct all the sources. This is called multicas before, one could
attempt to treat this scenario as a generalization of thidesberminal case. For ex-
ample, one could divide the capacity of each edge into vaniauts, with each part
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T1 T2

Fig. 6 A network with unit-capacity edges and sour@&sandS, and terminalsl; andT,. Each
terminal wants to simultaneously recover the pair of bitd). Under routing this is impossible.
However, by computing and sendiag> b along the bottleneck edge, we can achieve simultaneous
recovery.

responsible for conveying the bits to a specific terminakveleer, on closer inspec-
tion it is possible to realize that such a strategy will ingethbe suboptimal. To see
this consider Fig. 6, that depicts the celebrated buttedtyark of network coding
[2]. In this example, each edge has unit capacity. Each t&insieeks to obtain the
bits from both the sources. It is easy to see that if we ongwatouting in the net-
work, it is impossible to support this since the edge in thddid is a bottleneck.
However, if we allow coding at the intermediate nodes anaisingt the XOR of the
two bits, then both terminals can obtain the two bits by saDR decoding. This
example shows the potential gain of coding when there aréipfuterminals. Of
course, in this case the sources are independent. Howawe,insdependence is a
degenerate case of correlation, one expects that simifexiesions will hold in the
correlated case. As we shall see this is indeed the caséefomore, several inter-
esting conclusions about the relationship of the codingsrand flow structures can
be found.

5.1 A network coding primer

Traditionally, the intermediate nodes (routers) in thenoek only copy and for-
ward packets. In a single source single sink unicast coimreatouting achieves
maximum flow, which equals to the minimum cut between thes®and the termi-
nal [61]. However, in a multicast scenario, pure routing mayachieve maximum
flow as shown above. But it has been shown in [2] that netwodingpachieves
max-flow min-cut upper bound in multicast. Next, we shall heamhatically describe
this result.
As usual, we model a network as a grapk= (V,E,C), whereC = {c.: ec E}

is the capacity of the edges, whexgis the capacity on edge The seminal work
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on network coding [2], finds a tight capacity charactermafior the single source,
multiple terminals multicast problem.

Theorem 2. Consider a network G= (V,E,C) with source s and L terminals:
t1,...,t. Suppose that the source node observes a source X, sucltstieatriopy
H(X) = R. Each terminal can recover X if and only if

min—cut(s,tj) > RVl € {1,...,L}. (8)

The work of [62, 63] shows that the multicast can be suppoetezh with linear
codes. Basically, each intermediate node transmits lioce@binations of the pack-
ets, where a packet is treated as a vector over a finite figkdptissible to show that
in this case at each terminal, the received packets are tineesmessages multiplied
by a transfer matrix. By inverting the transfer matrix, teeninal is able to recover
the source packets. Moreover, as long as the coefficientedirtear combinations
are chosen randomly from a large field and the min-cut betweesource and each
destination is greater than the source rate, the probalilitt the transfer matrix
is invertible is very high [64]. This fact provides a simpliestdbuted scheme for
network coding based multicast. A practical multicast pcot based on these ideas
was developed in [65].

5.2 Multicasting correlated sources over a network

In the discussion in the previous section, we only consitlenalticast with single
source. The multiple independent sources case can be ktiusiegle source case
[63], by introducing a virtual super-source that is coneddb each source node.

In this section we consider the problem of multicasting elated sources over a
network. We begin by stating the main result. Consider ao® = (V,E,C), with
terminalstj,i =1,...,L and a set of source nodé C V. Without loss of generality,
we assume a numbering so that these are the|fif$tsources inV. Furthermore,
source nodeobserves a soureg. The communication requirement for multicasting
correlated sources is that each termitpal= 1,...,L needs to recover all sources
(X1,...,X ) losslessly. The admissible rate region is given by [66, 67].

Theorem 3. The correlated sources(y, .. ., X »~|) can be multicast to the terminals
t1,....t if and only if

H(Xs/Xss) < min—cut(Stj) VSC.7. 9

An achievability scheme based on random linear networkngpftir this result was
proposed in [64]. Alternative proofs are provided in [67].66e briefly overview
the achievability scheme in [64] now.

Consider two correlated sources generating binary vegioxs of lengthr; and
r, according to joint probability distributio®(x1,x2) each time. Aften time slots,
the source messages ateandx} of lengthnry andnr;, respectively. We assume
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thatce is rational for alle. Furthermore assume thats large enough so thatx ce
is an integer for ale. This implies that when considered over a blockdime slots
we communicat@ace bits over edge.

Simply perform random linear coding at each node over a dmgjh ofn in-
cluding the source nodes and intermediate nodes, i.e.jtheran outgoing edge
of nodev are a linear combination of bits on incoming edges to ngdehere the
coefficients are chosen uniformly randomly fr@# (2). Each terminal receives a
vectorz{ of lengthn|F5(t)|, where|[;(t)] is the number of incoming edges to termi-
nalt (before the edges are copied). Using the algebraic netwamting framework
[63], we can conclude that

Z'p = [X?. Xg] Mt, (10)

whereM; is a(nri + nrz) x n|fi(t)| transfer matrix from the sources to terminal
When sources are independevif,needs to have full rank so that by inversion we
can recover the sources. In the case of correlated souMeseged not have full
rank because we can take advantage of the correlation betWeesources to find
x] andx.

The decoding is done as follows. Find all possif§ x5| satisfying (10).
Note thatxj,x5 can be viewed as a lengthvector of elements fronGF(2")
and GF(22) respectivelyLet xi;, Xy denote theit" element and = 1,2,....n.
The number of appearances @fb),a € GF(2't),b € GF(22) is defined to be
N(a,b) = [{i : x1i = a,xzi = b}|. The empirical joint distribution (histograr®as xa
is Ra xa(a,b) = N(a,b)/n for a € GF(2'1) andb € GF(2'2). The empirical joint
distribution is an approximation of the true joint distrilmn based on the observa-
tion of two sequences andxj. Note that the empirical joint distribution defined for
each sequendg?, x5] has a similar form to a probability mass function. Then, the
functions applied on probability mass function, such asagyt function, relative
entropy function, can be applied B x1.-

In the decision procedure, given all sequenesxy] that satisfyingz! =
[X9X5]M, find

{X1.%2} = arg[xgxémpzzp a(Paxn)
wherea(-) is a function that needs to be chosen, depending on the ntetbe
optimized. The two functions discussed below both achikeecapacity region in
Theorem 3.

1. Maximum-Q probability decodest (P x3) = D(Pa.xa|/Q) +H (Paxa),
whereD(+||-) is the relative entropy [6],

ng,xg (a7 b)

D(RyalQ) = Paxg(ab)log 27—
e Z bZ e Q(ab)

andH (-) is the joint entropy function [6]

5 A length+ vector with elements frorGF (2) can be viewed as an element fr@ir (2")
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H (ng,xg) = - Z ng,xg (av b) |Og ng,xg (a7 b)-
ack,rq bekyrp

From [6, Theorem 12.1.2], sind&?,x5) are drawn i.i.d. according tQ(x1,X2),
the probability ofx], x5 is given by

Qn(xl’xz) — an(D(PXl‘XzHQ)JFH(PXJ_,XZ»

Therefore, findingy, x3 that minimizinga (P x3) is equivalent to finding, x3
that maximizing the sequence probability.

2. Minimum entropy decodest (P, x,) = H (P x,)-
Note that here the decoder does not need to know the priocsguint distribu-
tion Q. Thus, it is an universal decoder. For a long sequence, thpérieal dis-
tribution B, x, is very close to the true distributia®, which cause® (P, x,||Q)
to approach zero. Therefore, the minimum entropy decodsm epproximation
of maximum<Q probability decoder.

It is shown in [64] that as long as

min— cut(sy,t) > H(X|X2), (11)
min— cut(sy,t) > H(Xz|X1), and (12)
min— cut(s; andsp, ti) > H (X1, X2), (13)

foreveryi=1,2,... L, each terminat can recove; andX; with vanishing error
probability when the one of the two decoders shown abovedd.usherefore, the
admissible rate region achieves bound (9). However, thedleg algorithms above
are based on exhaustive search and have a complexity thaiéseptably high.

5.3 Separating distributed source coding and network caglin

The achievability scheme described in the previous segignfiorms distributed
source coding and network coding jointly and has high detpdomplexity. Per-
haps the simplest way to multicast correlated sources isetéopn distributed
source coding and network coding separately, i.e., theceonmodes perform dis-
tributed source coding (Slepian-Wolf coding) and the cobliézlare multicasted to
the terminals through network coding. The terminals firstodke the network code
to obtain the Slepian-Wolf coded bits then jointly decode 8iepian-Wolf code
(usually is a channel code) to recover the sources. The degadgorithms for
network code and Slepian-Wolf code have been well studiedhare polynomial
time complexity. However, the separation of distributedrse coding and network
coding is suboptimal in general [68].

At an intuitive level, this result can be understood as feoSuppose that the
network is such that each terminal can operate at the sameipdhe Slepian-Wolf
region. In such a situation, one could use a Slepian Wolf @tk encode each
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source. Next, one could treat the encoded sources as indiempteand multicast
the encoded bits to each terminal. The terminal then decdebtain the origi-

nal sources. Roughly speaking, in this case we can reduceotihelated sources
multicast to an independent sources multicast.

However, if different terminals in the network are forcedojmerate at different
rate points in the Slepian Wolf region, because of the natfitheir connectivity,
then a reduction to the independent sources multicast iposdible in general.
In this case, clearly one cannot work with a single distelousource code. It can
be shown that there exist instances of networks and soustébdtions such that
performing separate distributed source coding and netwoding can be strictly
suboptimal with respect to the approach in [64]. A surpgstonclusion of [68], is
that if there are two sources and two terminals in a netwin tit can be shown
that there is no loss in using a separation based approaisreBult forms the basis
of practical approaches to combining distributed sourckrmpand network coding
as explained in the next subsection.

5.4 Practical joint distributed source coding and networkding

In this subsection, we describe practical algorithms tdquar joint distributed
source coding and network coding. Suppose there are twesowdes;, s, € V
and observe two binary sourcésandY respectively. The sources generate bits i.i.d.
according the joint distributiop(X,Y) where the joint distribution satisfies the fol-
lowing symmetry property, i.3(X+Y = 1) = p< 0.5. Then, as discussed before,
the sequencesy are related by = x+ e, whereg equals to 1 with probability
p < 0.5. Note thaH (X,Y) = 1+ Hp(p) andl (X;Y) = 1 —Hy(p). LetH be the par-
ity check matrix for a channel code approaching the capatigybinary symmetric
channel with crossover probabiliywith code rat&k/n=1(X;Y) =1—Hp(p), i.e.,
there is a decoding functiof(-) such thatPr(e # f(eHT)) is arbitrarily close to
zero.

The basic idea is to transmiHHT +yHT = eHT to each terminal such thatcan
be recovered. Then, we transmit some additional informagmthat each terminal
can recover eithex or y. We shall see the exact form of this additional information
later. The simplest but not necessarily optimal way to cgive sumeH ™ =xHT +
yHT to the terminal is multicast botkH™ andyHT to each terminal and compute
the sum at the terminal. Based on this, a practical jointidigted source coding and
network coding is proposed in [69]. We first describe thisesel and then discuss
the optimal schemes to multicast the sum to the terminals.steme in [69] is
not optimal in the sense that in general, it requires moreawt capacity than the
result of [64] requires.

The design scheme can be summarized as follows. The netapakity resource
C is partitioned into two share€; andC,, whereC; +C, < C. Each share is used
to support two multicast sessions. lkébe a matrix such thdH "HT] has full rank.
And letx; = xH,y1 = yH. The two multicast sessions are described as follows.
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1. In the first session, multicasH ™ andyHT to each terminal. This impliesH T
can be computed, arglcan be recovered at each terminal siktés the parity
check matrix of a capacity achieving code. Using this= y1 +x1 = eH' can
be computed.

The length ofxHT is (n—k) = nH(X|Y) (likewise for foryHT). We need to
multicastnH(X|Y) bits from nodes; to the terminal anchH(Y|X) bits from
nodes; to the terminal. This requires(V, E,C;) to support a multicast with rate
H (X]Y)+H(Y|X) from a virtual supersource connectedtos, to each terminal.

2. In the second session, the sources transmit linear catidms ofx; andy; to
the network andk;A; + y1B; is received by terminal. A, and B; are transfer
matrices froms; to terminalt ands, to terminalt respectively and they are as-
sumed known to the terminalA; andB; are such that giveey andx1A +y1Bt,
X1,Y1 can be recovered. Since we can comguter y1)B; = e;B; = eHB; and
thenxy (A + Br) = x1A + V1Bt + e1B, as long as + B is invertible,x; and
y1 can be recovered. The invertibility @ + B; is guaranteed with high prob-
ability (for details see [69]). Aftex; is obtained, we computg; = €1 + X1.
Oncexy,y; are knownx,y can be recovered by the inversion[f"HT] since
XHTXHT] =x[HTHT] andy = x +e.

The two multicast sessions are illustrated in Fig.7. Theiaslitvie rate region for
this design scheme is:

C* ={C1+C:Cy € C(ST,H(X|Y) + H(Y|X)) andC, € C(u, T,1(X;Y))}

In generalC* requires more capacity than the optimal capacity regiohj@dause
separate multicast sessions are usually suboptimal. Bogié are only two termi-
nals (and we are only dealing with two sourceS},is optimal, i.e., the practical
design scheme is optimal [68, 69].

Fig. 7 Multicast model for the practical scheme [69].
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Computing the sum at the terminals (see [70, 71, 72] foredlatork) may not be
optimal in terms of the capacity region. It may in fact be &eith terms of resource
utilization if the sum is computed at some intermediate st then sent to each
terminal. In a network with two sources multiple terminal$wo terminals multiple
sources, itis shown in [70, 72] that the optimal scheme toepthe symbol sum of
the sources to the terminals is to compute the sum in someriatéate nodes and
multicast to the terminals. In general, finding the rightafetodes at which the sum
should be computed is an open problem. But, the idea of cangptite sum at the
intermediate nodes leads us to a heuristic approach to thiedistributed source
coding and network coding. We can find a set of nodesnd multicaskHT and
yHT to each node i) (multicast session)1 Then, compute the susH™ atuc U
and multicast to the terminals so that each terminal canvezeqmulticast session
2). Transmit linear combinationg + yB; to the terminalsrfiulticast session)and
if (Ax+ Bt) is invertible then bottx andy can be recovered in a similar manner to
the previous scheme. Note that the coded packetuiiticast session ¢an be used
in multicast session 8incexH™ andyHT are also linear combinations gfandy.
Next we demonstrate an example of this scheme in which weseelthe optimal
capacity region.

1)

Fig. 8 An example where the strategy in [69] is suboptimal. Howewar proposed heuristic for
selecting the right set of nodes for computing the sum woekteh

Consider the network in Fig. 8. The capacity on each edgebisThe source
nodes;, s, observe the sourceé andY and they are correlated such th¢X) =
H(Y) =1 andH(Y|X) = H(X]Y) = 0.5. The terminals arg,t, andtz andmin—
cut(s,tj) =05fori=1,2, ] =1,2,3, min—cut({s;,s},t)) = 1.5 fori = 1,2,3.
According to Theorem 3, the capacity of this network supptré recovery of the
sources at the terminals. Consider the following schesne, transmitxH' and
yHT to nodev, (multicast session)LNodev, computes the sureH " and routes it
to the terminalsrfulticast session)2Formulticast session,3ransmitxHT, yHT on
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v1 —t1, 3 —t3 respectively. In addition,s;, s, transmit random linear combinations
on edges; — V4, S — Vg, 1.€.,M1, M2 are matrices of dimensiamx 0.5n consisting
of entries randomly fron&F(2). Then, matrice$/;, M, and[M1M;] have full rank
with high probability. Terminat, receiveseH T, xM; andxH'. From the first one
t1 can decode and from the last twd; can recovek, theny = x + e can also be
obtained. Termina, acts in a similar fashion ds, whilet; can decode fromeHT
and it also knowsM; andyM,. Therefore, it can computevl, = eM; + yM, then

x can be recovered by the inversion[bf;M,].

As shown in [69], the scheme that multicasts bath” andyHT to the terminals
cannot achieve the capacity region in the example abovdr@utsome simulations
on random graphs, where the optimal Wets found by integer programming, we
observe that in many cases, multicasting bath andyHT to the terminals and
computing the sum there is as good as computing the sum at stenmediate
nodes. Clearly, the best choice of nodes for computing tine depends on the
network topology. The problem of choosing these nodes infiagiest manner is
still an open problem.

5.5 Resource allocation for multicasting correlated so@sover a
network

Given the admissible region in Section 5.2, it is naturalsgioa to determine the
rate at each source and the flow on each edge such that thedsta minimized.
The problem is solved in an efficient manner in [73, 74].

The network is modeled as a directed acyclic gréph (V, E,C) and each edge
is associated with a weigh; . For simplicity we assume that the cost of the use of
an edg€i, j) when the actual data rate on ed@g) is zj is wijz;. To facilitate the
problem formulation we append a virtual super source r®de G, so that

V* =VU{s},
E*={(s",v)|ve S;UE, and

c - G (i) €E,
2 H(X;) ifi=s*andjeS

We letG* = (V*,E*,C*). Denote the source node set.& and the terminal
set asT. The admissible region in Theorem 3 requires the min-cuveeih any
subsetS of nodes andeveryterminal greater thakl (§S°). From max-flow min-
cut theorem, we know the min-cut can be characterized asflmaxAs long as
there is a flow of valudr from a sources to a terminalt, the min-cut betwees
andt is R. Thus, to model the conditions on the min-cut, we introdudeal flows
) = {fiﬁ-tk)} for each terminaty. Note that we only require the existence of the
flow for every terminal; the flows corresponding to differéstminals can co-exist

6 We could also simply perform random linear network codinglese edges
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on an edge. So the actual flow rateon edg(i, j) is the maximum (not the sum) of
fi(jt">,Vtk €T, ie.,zj> fi(jt"),Vtk € T. Based on the discussions above, the problem
can be formulated as follows.
minimize Z Wij Zij
(i.))eE
s.t. 0< ¥ <z <G, (i,j) €E"teT
i Y W =g forievi e T, (14)
{il(i,1)eE*} {il.)eE}

% >RY forie s teT (15)
RW RN . RW)esw, forteT (16)
where
H(Xy, Xo,...,.Xn)  ifi=s
" = —H(X, Xo,..., Xn) i i =1t
0 otherwise

The constraint (14) is the flow balance constraint for eadiuai flow. The con-
straints (15) (16) make sure for each termigathere is a flow of valuéd (Xs|Xs:)
from each subse® of sources tdy. The detailed proof of the correctness of the for-
mulation can be found in [73, 74]. The formulationMfN-COST-SW-NETWORK
as presented above is a linear program and can potentiaigibed by a regular LP
solver. However the number of constraints due to the remeére thatR € .7 % 4
is |T|(2N — 1) that grows exponentially with the number of sources. Foulag_P
solvers the time complexity scales with the number of camnsts and variables.
Thus, using a regular LP solver is certainly not time-effitiéoreover even stor-
ing the constraints consumes exponential space and thug asegular LP solver
would also be space-inefficient. We now present efficierfirigpies for solving this
problem.

Letw,z,f%) denote the column vectorswf;, zj, figtk) for (i, ) € E andR®)

denote the column vectors Bftk), féi?) fori=1,2,...,].7|. LetL be the number of
terminals. We form the Lagrangian of the optimization pesbiwith respect to the

constraintR® < f%), fort, € T. This is given by
L(A,zfl)  f0) RO R)
=Wz 5k AT (RW 1),

whereA = A A ... A]T andAx = [Ak1,Ak2. ..., Ak ~|]T are the dual variables
such thatA > 0 (where> denotes component-wise inequality).
For a given, letg(A ) denote the dual function obtained by

g(A) = minimize, ;o) o) gty R(tL)L()\,Z,f(tl), L0 R Ry,
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Since strong duality holds in our problem we are guaranteatithe optimal value
of MIN-COST-SW-NETWOR¢an be equivalently found by maximizinggA ) sub-
jecttoA = 0[51]. Thus, ifg(A) can be determined in an efficient manner for a given
A then we can hope to sol\WIN-COST-SW-NETWOR&ficiently.

Consider the optimization problem for a givén= 0.

L
minimize w'z+ $ A (R® — £y
=]

s.t. 0< W <z <Gy, (i.j) €E tkeT

i) — =0 ievifyeT
MnE=8: {il(ieE"}
R € SW, t e T. (17)

We realize on inspection that this minimization decompastsa set of inde-
pendent subproblems shown below.

L
minimize w'f— 3 A&
k=1

s.t. 0<% <z <Gy, (i,j) €E"teT
£ — fW =g ieviyeT (18

1]
{ili.))eE*} {il.)eE}

and for eachy € T,

minimize AJR®
subjectto R™) e Sw. (19)

The optimization problem in (18) is a linear program withiahtesz andx(™ for
k=1,...,Nr and a total of(2|T| + 1)|E*| 4+ |T||V*| constraints that can be solved
efficiently by using a regular LP solver. It can also be solbgdreating it as a
minimum cost network flow problem with fixed rates for whichmyafficient tech-
niques have been developed [50].

However each of the subproblems in (19) still h&s-21 constraints and there-
fore the complexity of using an LP solver is still exponehitiaN. However recall
the contra-polymatroid property of Slepian-Wolf regionntiened in Section 4.1.2.
Using the contra-polymatroid property, the solution testhP can be found by a
greedy allocation of the rates as shown in (7), where the petionrris such that
Ama) = Am2) = = ANy -

The previous algorithm presents us a technique for findiregviidue ofg(A)
efficiently. It remains to solve the maximization

A).
TBI)
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For this purpose we use the fact that the dual function is @em¢possibly non-
differentiable) and can therefore be maximized by usingpitegected subgradient
algorithm [75]. Roughly speaking, the subgradient aldponifs a iterative method to
minimize non-differentiable convex (or maximize concauctions. Itis similar to
the gradient descent method, though there are notableatdiffes. The subgradient
for A can be found aR %) — fgl‘) [75].

Let A' represent the value of the dual variableat theit" iteration andé be
the step size at thé iteration. A step by step algorithm to solN-COST-SW-
NETWORKs presented below.

1. Initialize A > 0.

2. For given\' solve the problem (18) using an LP solver and for epehT, solve
the problem (19) using the greedy algorithm presented in (7)

3. Set\l 1 = Al + /(R — %))+ forallt, € T, where[x* = xif x > 0 and zero
otherwise. Goto step 2 and repeat until convergence.

While subgradient optimization provides a good approxiombn the optimal
value of the primal problem, a primal optimal solution or e\ feasible, near-
optimal solution is usually not available because the dhjedunction is linear. In
our problem, we seek to jointly find the flows and the rate allmns that support
the recovery of the sources at the terminals at minimum dduis, finding the
appropriate flows and rates specified by the primal-optimalear primal-optimal
z,ft . fW R RO jsimportant. Towards this end we use the method of
Sherali and Choi [76]. We skip the details and refer the edtd reader to [73, 74].

6 Conclusion

In this survey we have examined the problem of distributeate® coding over
networks. Distributed source coding has been traditigretlidied under a model
where there exist direct source destination links. In a gdmetwork, the sources
communicate with the destinations over a network whoseltgyomay be quite
complicated. It turns out that in this case the problem dfritisted source coding
and network information transfer needs to be addressethjolin particular, treat-
ing these problems separately can be shown to be suboptirgahieral. Moreover,
in certain cases the usage of the network coding [2] becorsengal. We also dis-
cussed, various resource allocation problems that occinisrspace and provided
an overview of the solution approaches.

There are several problems that need to be addressed inré¢laisla the area
of sensor networks, it would be interesting to examine ifdarprotocols can be
developed that leverage joint distributed source codirtgraeiwork coding. In this
survey we assumed that the source statistics are known totdreled destination.
In practice, the protocols will need to ensure that thedéstts are communicated
periodically. In a practical sensor network, it is reasdaab assume that some
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limited communication between the sensors is possibleolilevbe interesting to
see if this reduces the overall complexity of decoding atistinations.
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