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Abstract—We explore the problem of rate and power allocation observation was made in the work of Roumy and Gesbert
for a sensor network where pairwise distributed source codig is  in [8]. In that work they formulated the pairwise distribdte
employed (introduced by Roumy and Gesbert ‘07). For noiseBs — g4,;rce coding problem and presented algorithms for rate and
node-terminal channels, we show that the minimum sum rate I ti der diff ¢ ) | il
assignment with this property can be found by finding a minimun powgr allocation under diiteren sce_narl_os. n particliaey
We|ght arborescence in an appropriate|y defined directed gph ConSIdered the case When there exist d|reCt Channels hetWee
For orthogonal noisy node-terminal channels, the minimum each source node and the terminal. Furthermore, the termina
sum power allocation can be found by finding a minimum can only decode the sources pairwise. We briefly review their

weight matching forest in a mixed graph. Numerical results work below. The work of [8] considers two cases.
are presented for the noiseless case showing that our solori

outperforms previous solutions when source correlationsra high. i) Case 1 - Noiseless node-terminal channels.
Under this scenario, they considered the problem of de-

ciding which particular nodes should be decoded together
|. INTRODUCTION at the terminal and their corresponding rate allocations so

The availability of low-cost sensors has enabled the emer- that the total sum rate is minimized.
gence of large-scale sensor networks in recent years. Sendd Case 2 - Orthogonal noisy node-terminal channels.
networks typically consist of sensors that have limited pow [N this case the channels were assumed to be noisy
and are moreover energy constrained since they are usually @nd orthogonal and the objective was to decide which
battery-operated. The data that is sensed by sensor network nodes would be paired and their corresponding power
and communicated to a terminal is usually correlated. Thus, @allocation.
for sensor networks it is important to allocate resourcés [8], the problem was mapped onto the problem of choosing
such as rates and power by taking the correlation into d@te minimum weight matching [9] of an appropriately defined
count.The famous Slepian-Wolf theorem [1] shows that theeighted undirected graph.
distributed compression (or distributed source codingyaf In this paper we consider a class of pairwise distributed
related sources can in fact be as efficient as joint commmessisource coding solutions that is larger than the ones coreside
Coding techniques that approach the Slepian-Wolf bounihs[8]. A simple example demonstrates that it is not necessar
have been investigated [2] and their usage proposed in isertsoonly consider matchings if one is interested in explgitin
networks [3]. Typically one wants to minimize metrics sush ahe fact that practical Slepian-Wolf solutions are for paif
the total rate or total power expended by the sensors in swshurces. Consider four correlated sour&gs X», X3 and X,.
situations. A number of authors have considered problembe solution of [8] constructs a complete graph on the four
of this flavor [4], [5]. These papers assume the existence mddesX,,..., X, and assigns the edge weights as the joint
Slepian-Wolf codes that work for a large number of sensorgntropies i.e. the eddeX;, X;) is assigned weightd (X, X;).

In practice, the design of low-complexity Slepian-WolfA minimum weight matching algorithm is then run on this
codes (e.g. [6]) is well understood only for the case of twgraph to find the minimum sum rate and rate allocation.
sourcesX andY and there have been constructions that afuppose that this yields the matchif,, X3) and (X2, X4)
able to operate on the boundary of the Slepian-Wolf regioso that the sum rate becomes

In particular, the design of codes is easiest for the corner 4
points where the rate pair is eithéid (X), H(Y|X)) or ZRZ' = H(X1,X3) + H(X2, Xy).
(H(X|Y),H(Y)). Although there are some coding schemes i=1

exist for multiple sources, for example [7], these requwgmce conditioning reduces entropy, it is simple to obsénae
strict assumptions on the correlation model. Thus, given th

current state of the art in code design it is of interest to H (X1, X3) + H (X2, X4)
consider coding strategies for sensor networks where péirs > H(Xy) + H(X3|X1) + H(X2| X3) + H(X4]|X5).

nodes can be decoded at a time instead of all at once. T\W/g now show that an alternative rate allocatioh:
1 =
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H(X4|X2) can still allow pairwise decoding of the sources Definition 1: Pairwise property of rate assignmei@on-

at the terminal. Note that at the decoder we have, sider a set of discrete memoryless souréés X, ..., X,
a) X is known sinceR; = H(X). and the corresponding rate assignmBnt (Rq, R, ..., Ry).
b) X3 can be recovered sinc¥; is known and the decoder The rate assignment is said to satisfy the pairwise property
has access té/ (X3|X;) amount of data. for each sourceX;,i € [n], there exists an ordered sequence
c) X, can be recovered sincé; is known (from above) and of sources(X;,, X;,, ..., X;, ) such that
the decoder has access By X»|X3) amount of data. R;, > H(X;,), (2)
d) Similarly, X, can be recovered. Ry, > H(X;|X;, ), for2<j<k, and 3)

As we see above, the sources can be decoded at the terminal
in a pipelined manner. The method of source-splitting [10],
[11] is closely related to this approach. Givéh sources and Note that a rate assignment that satisfies the pairwise fyope
an arbitrary rate point in their Slepian-Wolf region, it vents allows the possibility that each source can be reconstlucte
the problem into a rate allocation at a Slepian-Wolf corneit the decoder by solving a sequence of decoding operations
point for appropriately definedM — 1 sources. However as at the SW corner points e.g. for decoding soul&eone can
pointed out before, code designs even for corner points@re ose X;, (since R;, > H(X;,)), then decodeX;, using the

that well understood for more than two sources. Thus, whikhowledge ofX;,. Continuing in this manner finallyX; can
using source-splitting can result in sum-rate optimaliéy the be decoded. A rate assignm@ishall be called pairwise valid
sum rate is the joint entropy, it may not be very practicgbr valid in this section), if it satisfies the pairwise projye
given the current state of the art. Moreover, farsources it ~ An equivalent definition can be given in graph-theoretic
requires the design of approximately twice as many encodesgms by constructing a graph called the pairwise property
and more decoding sub-modules that also comes at the aest graph corresponding to the rate assignment.

of complexity.

R; > H(X;|X3,) (4)

_ _ o 1) Inputs : the number of nodes H(X;) for all i € [n],
In this paper, motivated by complexity issues, we present an H(X,|X;) for all i, j € [n]? and the rate assignmeRt

alternate formulation of the pairwise distributed souroding 2) Initialize a graphG' = (V, A) with a total of 2 nodes
problem that is more general than [8]. We demonstrate thatfo ~ ; o V| = 2n. There aren regular nodes denoted

noiseless channels the minimum sum rate allocation problem | 5~ 204, starrednodes denoted*. 2*. ... . n*.
becomes one of finding a minimum weight arborescence of ang, For eachi e n] perform the foIIowin7g étepé. Let
appropriately defined directed graph. Next, we show thatén t Wa(j — i) denote the weight on directed edge— ).
case of noisy channels, the minimum sum power allocation o . . N
problem can be mapped onto finding the minimum weight ) II;/Ri.*Z H(fi}Iﬂ;{en insert edge” — i) with
matching forest of an appropriately defined mixed gfaph iy 1f ‘}z(l >_>Hz());|XS tirz.en insert edgéj — 1) with
Simulation results show that our solutions are signifigantl WA(Zj_—> ) —ZH(JX»|X-)

= i X5).

better than those in [8] in the cases when correlations are o ) ]
high. 4) Remove all nodes that do not participate in any edge i.e.

This paper is organized as follows. In Section Il and Ill we  they have neither incoming nor outgoing edges.
present our solution for noiseless channels and noisy etann We denote the resulting graph for a given rate allocation
respectively. Numerical results for the noiseless casgisem by G(R) = (V, A). Note that if R is valid, the graph still

in Section IV and Section V concludes this paper. contains at least one starred node. Next, based/d) we
1. NOISELESS CASE define a set of nodes that are called the parent nodes.
P
Consider a set of correlated sourc&s, Xs,..., X, in a ParentR) = {i*|(i" — 1) € A}

sensor network. The source; encodes its data at a rate dej e pareniR) corresponds to the starred nodes for the set of
notedR; (in bits per symbol). We assume that there is a diregh;rces for which the rate allocation is at least the entropy
noiseless channel between each source and the terminal. M?’ﬁhematically ifi* ¢ ParentR), thenR; > H(X;). We now

’ (e 1)

rate allocation vector is denoted B = (11, Ra, ..., Bn).  demonstrate the equivalence between the pairwise property

We are interested in finding a rate allocation that minimizes,q the construction of the graph above. The proof is omitted
the sum ratg ", R; subject to the constraint that the sourceg e to lack of space.

can be reconstructed at the terminal. Moreover we requa® th | cyma 1:Consider a set of discrete correlated sources

the decoder be able to decode two sources at a time. We der)@i[e_ ..X, and a corresponding rate assignmeRt —
the Slepian-Wolf region of the paitX;, X;) by SWi; which p " " ‘g ) Suppose that we constru6t(R) based on the

is given by algorithm above. The rate assignmé&tsatisfies the pairwise
R; > H(X;|X;) property if and only if for all regular nodeisc V' there exists
SWi; £ (Ri, Rj) R; > H(X;|X;) p. (1) astarred nodg* ¢ ParenfR) such that there exists directed
R+ R; > H(X;, X;) path fromj* to i in G(R).

tWe now proceed to define another set of graphs that shall

e useful for presenting the main result of this section.
Definition 2: Specification ofG;-(R). Suppose that we

A mixed graph has both directed and undirected edges construct graplz(R) as above and find ParéR). For each

We now formulate the pairwise decoding constraint mathem
ically. Let [n] denote the index s€ll, ..., n}.



i* € ParentR) we construcG;- (R) in the following manner: a) The graphG‘! = (V' A’ is such thatV’ consists
For eachj* € ParentR)\{i*} remove the edgé&* — j) and n regular nodes denoted 2, ..., n andn starred nodes
the nodej* from G(R). denotedl*, 2%, ..., n* so that|V'*!| = 2n. The edge set
For the next result we need to introduce the concept of the A consists of edge&i* — i), Wa(i* — i) = H(X;)
arborescence or directed spanning tree of a graph (see [9]). for i € [n] and edgesi — j), Wa(i — j) = H(X;|X,)
Definition 3: An arborescence (also called directed span-  for all i, j € [n]2.

ning tree) of a directed grapiG = (V, A) rooted at vertex b) For eachi = 1,...,n we defineG;- as the graph
r € V is a subgrapil” of G such that it is a spanning tree obtained fromG®! by deleting all edges of the form
if the orientation of the edges is ignored and there is a path (j* — j) for j # ¢ and all nodes in1*,... , n*}\{i*}.

from r to all v € V' when the direction of edges is taken into Theorem 2:Consider a set of sourcés, . . ., X,,. Suppose

account. that we are interested in finding a valid rate assignni®nrt
Theorem 1:Consider a set of discrete correlated sourcgg, ... R, ) for these sources so that the sum raig | R;

Xi,..., X, and let the corresponding rate assignmBnbe s minimum. LetR‘" denote the rate assignment specified by

pairwise valid. Let7(R) be constructed as above. There existfie minimum cost arborescence®f.. Then the optimal valid
another valid rate assignmeRt that can be described by therate assignment can be found as

edge weights of an arborescencesf (R) rooted at* where
i* € ParenfR) such thatR; < R;, for all j € [n]. Ropt = argze{l?mn} ZRZ 9)
Proof: We shall show that a new graph can be constructed from T
which R" can be obtained. This shall be done by a series Bfoof. From Theorem 1 we have that any valid rate assignment
graph-theoretic transformations. R can be transformed into new rate assignment that can be
1) Pick an arbitrary starred nodg € ParentR) and described on an arborescence®f (R) rooted ati* which
constructG;-(R). We claim that in the current graphis component-wise lower thaR. This implies that if we are
G- (R) there exists a path from the starred ngdeto  interested in a minimum sum rate solution, it suffices to focu
all regular nodes € [n]. To see this note that sind® is our attention on solutions specified by all solutions that ca
pairwise valid, for each regular nodé¢here exists a path be described by all possible arborescences of graphs of the
from some starred node ion G(R). If for some regular form G- (R) over alli* = 1%,...,»* and all possible valid
nodei, the starred node if", the path is still inG;- (R). rate assignmentR.
Now consider a regular node and suppose there exists Now consider the grapli:;- defined above. We note that
a directed pattk* — k — ;... — iy in G(R) where all graphs of the forntz;- (R) whereR is valid are subgraphs
k* € ParentR), k* # j*. Sincek* € ParenfR), of G;«. Therefore finding the minimum cost arborescence of
Ry > H(X}) > H(X|X;) Vi€ (n] (5) G~ will yield us the best rate assignment possible within the
This implies that(l — k) € G;-(R),Vl € [n], in cIas; of solgtions specified lgy;- (R_). Next, we find thg best
particular, (j — k) € G;-(R). Therefore, inG,-(R) sqlu_'uonsRl for a_II i€ [n] and p!ck the solutl_on with the
there exists the patht — j — k — 31 ... — i1. minimum cost. This yields the optimal rate assignmentm

This claim implies that there exists an arborescence IIl. NOISY CASE
rooted atj* in G;+(R) [9].

2) Suppose we find such one such arborescéfieeof
Gj-(R). In T;. every node excepf* has exactly one
incoming edge (by the property of an arborescence [91
Letinc(i) denote the node such th@hc(i) — i) € T)-
We now define a new rate assignmét given by

In this section we consider the case when the sources are
connected to the terminal by orthogonal noisy channels. The
apacity of the channel between nodand the terminal with
ansmission poweP; and channel gain; is
Ci(P;) £ log(1 + v Py), (10)
where the noise power is normalized to one and channel gains

R; = Wa(ine(i) — i) , o 6) are constants known to the terminal. Therefore, fatshould
= H(Xi|Xipew)) forien]andi##j (7) satisfy R; < C;(P;). The transmission power is constrained
37 =Wa(j* — j) = HX;). (8) by_a r_naglmum power constrainfy; < Pmam,z € [n]. The _
_ o ) objective is to find a rate and power assignment that minimize
The existence of edgej* — j) € G(R) implies R; =  the sum power , i.e.qmin} ", P; while ensuring that the

H(X;) < R;. Similarly, we haveR;, < R; for i € sources can be recovered at the terminal and that the decoder
[n\{7}- And it is easy to see thﬁ is a valid rate only decodes two sources at a time. It is easy to see that at
assignment. B the optimumR; = C;(P’) i.e. the inequality constraint is
Thus, the above theorem implies that valid rate assignmefi§t with equality. Thus, the power assignment is given by
that are described on arborescences of the graph@) are the inverse function of’; which we denote byQ;(R;) i.e.
the best from the point of view of minimizing the sum rateP;’ = Qi(R}) = (2% —1)/v:. The feasible rate region for the
Finally we have the following theorem that says that thedvalinode pa|r(z J) is the intersection of1;; and capacity region
rate assignment that minimizes the sum rate can be found®y (P, P;) = {(Ri, R;) : Ri < Ci(Pi), R; < C;(Pj)}.
finding minimum cost arborescences of appropriately definedThe solution presented in [8] goes as follows.
graphs. For the statement of the theorem we need to defind) Find the rate-power allocations over all possible node
the following graphs. pairs:V(i, ) € [n]? such thati < j



(R;; (i), R;;(4)) = argmin Q;(Ri; (1)) + Q;(Ri;(j)) Gr(R) = (V, E, A), where E is undirected edge set antl
st (Ri; (1), Ri; (7)) € SWi; N Cii (Prags Pmaz) (11) 18 directed edge s.et. Denote the rggular node séfras V.
Lemma 2:Consider a set of discrete correlated sources
The power allocations are given BY; (i) = Q:(R};(i)) X,,...X, and a corresponding rate assignmeRt =
and P};(j) = Q;(R};(5))% (Ry,...,R,). Suppose that we construé;(R) based on
2) Construct an und|rected complete gragh= (V,E), the algorithm above. The rate assignm@&htis generalized
where Wi(i,j) = Pj;(i) + Pj;(j), and find the min- pairwise valid if and only if,YR; € R, Q;(R:) < Pynaz, and
imum weight matchingP in G. The final power allo- for all regular nodes € Vi, at least one of these conditions
cation for node paifz, j) € P denoted by(P;, P;) is holds:

(P (@), P (5))- 1) i participates in an undirected ed¢ei’);
The solution for the first step (11) is given in [8] and 2) There exists a starred nodé¢ such that there is a
denoted as(P;;(i), P75(j), R;; (i), Rf;(j))- In this case, the directed path frony* to i;
rate aSS|gnments for and j dont necessarlly happen at the 3) There exists a regular nogigarticipating in edgé;, j )
corner of the SW bound, i.eR;;(i) may not equal ta (.X;) such that there is a directed path frgnto ;

and the problem is more complicated than noiseless case.Now, we introduce some definition crucial to the rest of the
We now present our solution for this case. For a given ragevelopment.

assignmenR, we say thatX; is initially decodableif R; > Definition 5: Given a mixed graptG; = (V, E, A), if e =

H(X;), or together with another sourcg;, (R;, ;) € SWi;. (i — j) € A, i is the tail andj is the head of. If e = (4, j) €

Obviously, an initially decodable source can be recoveted B, we call bothi and; the head ot. For a node € V, hg (i)

the sink. In addition, if we use previously decoded sourda dajenotes the number of edges for whicls the head.

as we did in noiseless case, starting with an initially detbel Definition 6: The underlying undirected grapbf a mixed

source, more sources can potentially be recovered. We ngidphG denoted by/UG/(G) is the undirected graph obtained

introduce the generalized pairwise property. from the mixed graph by forgetting the orientations of the
Definition 4: Generalized pairwise property of rate asdirected edges, i.e., treating directed edges as undiredges.

signment. Consider a set of discrete memoryless sourcesDefinition 7: Given a mixed graplis = (V, E, A), a subset

X1, Xo,..., X, and the corresponding rate assignmBnt= F ¢ E U A is called amatching fores{12] if F contains no

(R1, R, ..., R,). The rate assignment is said to satisfy theycles inUUG(F) and any nodé € V is the head of at most

generalized pairwise property if for each soutkg i € [n], one edge inF, i.e.¥i € V, hp(i) < 1.

X; is initially decodable or, there exists an ordered sequengethe context of this section we also define a strict matching

of sources( X;,, X,,,...,X;,) such that forest. For a mixed graplé: containing regular nodes and
X, is initially decodable (12) starred nodes, a matching fordstsatisfyinghp (i) = 1,Vi €
R, > H(X; |X; ,) for2<j<k (13) Vr (i.e. every regular node is the head of exactly one edge)
15 = 75 15—1 ~ >~ I

is called astrict matching forest(SMF)

In the noisy case, SMF plays a role similar to the arbores-
A rate assignmerR shall be called generalized pairwise valiccence in the noiseless case. Now, we introduce a theorem
(or valid in this section), if it satisfies the generalizedrpise Similar to theorem 1.
property and for every rat®?;, € R, Q:(R:) < Ppnas. A Theorem 3:Given a generalized pairwise valid rate assign-
valid rate assignment allows every source to be recovered?@ntR and corresponding power assignméhtlet G (R)
the sink. A power assignmeit = (Py, P,,..., P,) shall be be constructed as above. There eX|sts another valid rate as-
called valid, if the corresponding rate assignment is valid SignmentR’ and power assignmei’ that can be described

We can rephrase this definition using a graph called gengi the edge weights of a strict matching foresti#(R) such
alized pairwise property test graph constructed below. that >, P <> b

The input and initialization are the same as pairwise prop-Proof. In order to find such a SMF, we first change
erty test graph construction. For eache [n] perform the the weights OfGT( ), vielding a new grapI“G (R). Let

R, > H(X;|X;,) (14)

following steps. WA(z — j), WE(z j) denote weights inG. r(R). A weight
i) If R; > H(X;) then insert directed edgé* — ¢) with transformation is ,do,n_e on all edges: o

weight W (i* — i) = Q;(H(X,)). Wg(i,j) = 2A-Wg(i.j) (15)

i) If R; > H(X;|X;) then insert directed edgg — 1) Wyi—3j) = A—=Wa(i—j) (16)

with weight Wa(j — i) = Qi(H(X;| X))

ii) If (R R,) € SWi, then insert undirected edge, /) where A is a sufficient large constant. Next, we find a

. : T T (s s (. maximum weight matching forest éfﬁf(R). This can be done
v}glfh.welgr:t WE(Z’j) - QZ(Rij(Z)) + Qj (Rij (7)) = in polynomial time [12]. Now we have a lemma whose proof
(@) + P5(9)- is skipped due to space reasons.
Flnally, remove all nodes that do not participate in any edge Lemma 3:The maximum weight matching foregty; in
We denote the resulting graph for a given rate allocation lgy is a strict matching forest, i.e., it satisfiesi ¢

V h 1) = 1.
“Here we use subscriptj becauseR;; (i) denotes the rate allocated to R FMEW) h | de is head of .
node: if ¢ andj are paired. The decision on pairing of nodes is taken in the Note that each regular node is head of exact one edg“g,[m

next step. The power allocation is performed as follows. Ahg Vi is



the head of one of three kinds of edgesfify corresponding the nodes transmits data individually to the sidk, = H;
to three kinds of rate-power assignment: and R,y = n. The matching solution and the minimum
1) If there exists a directed eddé” — i), then Setpi, — arborescence (MA) solution are compared in the figure. Note
Qi(H(X;)) and R; = H(X;). The existence of edgethat if the nodes are highly correlatdd = 1), the present
(i* — 1) in Gp(R) means tha?; > H(X;), so R; < solution outperforms the matching solution considerably.
R; and P < P; < Praa.

2) If there exists an undirected edjej), setP, = P (i) _
andR; = R};(i). The existence of edge, j) in Gr(R) T »
means thaR?; andR; are in the SW regiont; < P,,q N ieyolieiid B R R P
ar/lde < P4 Certainly, in this casa?; =P} () and 'ig :;zgi Matching [PEg i
R; = R};(j), sincej is not head of any other edges. i T i e
We know thatP}; (i), P};(j) is the minimum sum power g or [P
solution for node: and ;7 when the rate allocation is § o et
in SW region and the power allocation satisfiBs .. e
constraints. S&, + P; < P; + P;, P, < Prax, P < wf g
Prag- ) = S S T
3) If there exists a directed edgg — i), set P, = Number of sensors n

Qi(H(X;|X;)) andR; = H(X;|X;) . The existence of
edge(j — %) in Gr(R) means that?;, > H(X;|X;),
SOR; < R; and P, < P; < Pz V. CONCLUSION

Therefore, the new power allocatidﬂ/ reduces the sum \ye investigated the problems of rate and power allocation
power. Notice that when we are assigning new rates 10 i a sensor network where pairwise distributed sourcengpdi
nodes, the conditions in definition 4 still hold. So the neys ysed. A more general definition of pairwise distributed
rateR is also valid. SaP is a valid power allocation with source coding was introduced than the one presented in [8].
less sum power. B For the case when the sources and the terminal are connected

The following theorem says that the valid power assignmegy, noiseless channels, we found a rate allocation with the
that minimizes the sum power can be found by findingyinjmum sum rate. For noisy orthogonal source terminal
minimum weight SMF of an appropriately defined graph.  channels, we found a rate and power allocation with minimum

The graphG™* = (V' A% E'") is such thatV™" gym hower. All algorithms introduced have polynomial-time
consistsn regular nodes denoted by,...,n andn starred  complexity. Numerical results show that our solution has a
nodes denoted by”, ..., n* so that|V**’| = 2n. The directed significant gain over the solution of [8], especially when

Fig. 1. Normalized sum rate vs. number of sensors

edge setA’’ consists of edgesi® — i), Wa(i* — i) = correlations are high.
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