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Abstract—We explore the problem of rate and power allocation
for a sensor network where pairwise distributed source coding is
employed (introduced by Roumy and Gesbert ‘07). For noiseless
node-terminal channels, we show that the minimum sum rate
assignment with this property can be found by finding a minimum
weight arborescence in an appropriately defined directed graph.
For orthogonal noisy node-terminal channels, the minimum
sum power allocation can be found by finding a minimum
weight matching forest in a mixed graph. Numerical results
are presented for the noiseless case showing that our solution
outperforms previous solutions when source correlations are high.

I. I NTRODUCTION

The availability of low-cost sensors has enabled the emer-
gence of large-scale sensor networks in recent years. Sensor
networks typically consist of sensors that have limited power
and are moreover energy constrained since they are usually
battery-operated. The data that is sensed by sensor networks
and communicated to a terminal is usually correlated. Thus,
for sensor networks it is important to allocate resources
such as rates and power by taking the correlation into ac-
count.The famous Slepian-Wolf theorem [1] shows that the
distributed compression (or distributed source coding) ofcor-
related sources can in fact be as efficient as joint compression.
Coding techniques that approach the Slepian-Wolf bounds
have been investigated [2] and their usage proposed in sensor
networks [3]. Typically one wants to minimize metrics such as
the total rate or total power expended by the sensors in such
situations. A number of authors have considered problems
of this flavor [4], [5]. These papers assume the existence of
Slepian-Wolf codes that work for a large number of sensors.

In practice, the design of low-complexity Slepian-Wolf
codes (e.g. [6]) is well understood only for the case of two
sourcesX andY and there have been constructions that are
able to operate on the boundary of the Slepian-Wolf region.
In particular, the design of codes is easiest for the corner
points where the rate pair is either(H(X), H(Y |X)) or
(H(X |Y ), H(Y )). Although there are some coding schemes
exist for multiple sources, for example [7], these require
strict assumptions on the correlation model. Thus, given the
current state of the art in code design it is of interest to
consider coding strategies for sensor networks where pairsof
nodes can be decoded at a time instead of all at once. This
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observation was made in the work of Roumy and Gesbert
in [8]. In that work they formulated the pairwise distributed
source coding problem and presented algorithms for rate and
power allocation under different scenarios. In particular, they
considered the case when there exist direct channels between
each source node and the terminal. Furthermore, the terminal
can only decode the sources pairwise. We briefly review their
work below. The work of [8] considers two cases.

i) Case 1 - Noiseless node-terminal channels.
Under this scenario, they considered the problem of de-
ciding which particular nodes should be decoded together
at the terminal and their corresponding rate allocations so
that the total sum rate is minimized.

ii) Case 2 - Orthogonal noisy node-terminal channels.
In this case the channels were assumed to be noisy
and orthogonal and the objective was to decide which
nodes would be paired and their corresponding power
allocation.

In [8], the problem was mapped onto the problem of choosing
the minimum weight matching [9] of an appropriately defined
weighted undirected graph.

In this paper we consider a class of pairwise distributed
source coding solutions that is larger than the ones considered
in [8]. A simple example demonstrates that it is not necessary
to only consider matchings if one is interested in exploiting
the fact that practical Slepian-Wolf solutions are for pairs of
sources. Consider four correlated sourcesX1, X2, X3 andX4.
The solution of [8] constructs a complete graph on the four
nodesX1, . . . , X4 and assigns the edge weights as the joint
entropies i.e. the edge(Xi, Xj) is assigned weightH(Xi, Xj).
A minimum weight matching algorithm is then run on this
graph to find the minimum sum rate and rate allocation.
Suppose that this yields the matching(X1, X3) and(X2, X4)
so that the sum rate becomes

4
∑

i=1

Ri = H(X1, X3) + H(X2, X4).

Since conditioning reduces entropy, it is simple to observethat

H(X1, X3) + H(X2, X4)

≥ H(X1) + H(X3|X1) + H(X2|X3) + H(X4|X2).

We now show that an alternative rate allocation:R1 =
H(X1), R2 = H(X2|X3), R3 = H(X3|X1) and R4 =



H(X4|X2) can still allow pairwise decoding of the sources
at the terminal. Note that at the decoder we have,

a) X1 is known sinceR1 = H(X1).
b) X3 can be recovered sinceX1 is known and the decoder

has access toH(X3|X1) amount of data.
c) X2 can be recovered sinceX3 is known (from above) and

the decoder has access toH(X2|X3) amount of data.
d) Similarly, X4 can be recovered.

As we see above, the sources can be decoded at the terminal
in a pipelined manner. The method of source-splitting [10],
[11] is closely related to this approach. GivenM sources and
an arbitrary rate point in their Slepian-Wolf region, it converts
the problem into a rate allocation at a Slepian-Wolf corner
point for appropriately defined2M − 1 sources. However as
pointed out before, code designs even for corner points are not
that well understood for more than two sources. Thus, while
using source-splitting can result in sum-rate optimality i.e. the
sum rate is the joint entropy, it may not be very practical
given the current state of the art. Moreover, forM sources it
requires the design of approximately twice as many encoders
and more decoding sub-modules that also comes at the cost
of complexity.

In this paper, motivated by complexity issues, we present an
alternate formulation of the pairwise distributed source coding
problem that is more general than [8]. We demonstrate that for
noiseless channels the minimum sum rate allocation problem
becomes one of finding a minimum weight arborescence of an
appropriately defined directed graph. Next, we show that in the
case of noisy channels, the minimum sum power allocation
problem can be mapped onto finding the minimum weight
matching forest of an appropriately defined mixed graph1.
Simulation results show that our solutions are significantly
better than those in [8] in the cases when correlations are
high.

This paper is organized as follows. In Section II and III we
present our solution for noiseless channels and noisy channels
respectively. Numerical results for the noiseless case aregiven
in Section IV and Section V concludes this paper.

II. N OISELESS CASE

Consider a set of correlated sourcesX1, X2, . . . , Xn in a
sensor network. The sourceXi encodes its data at a rate de-
notedRi (in bits per symbol). We assume that there is a direct
noiseless channel between each source and the terminal. The
rate allocation vector is denoted byR = (R1, R2, . . . , Rn).
We are interested in finding a rate allocation that minimizes
the sum rate

∑n
i=1 Ri subject to the constraint that the sources

can be reconstructed at the terminal. Moreover we require that
the decoder be able to decode two sources at a time. We denote
the Slepian-Wolf region of the pair(Xi, Xj) by SWij which
is given by

SWij ,







Ri ≥ H(Xi|Xj)
(Ri, Rj) Rj ≥ H(Xj |Xi)

Ri + Rj ≥ H(Xi, Xj)







. (1)

We now formulate the pairwise decoding constraint mathemat-
ically. Let [n] denote the index set{1, . . . , n}.

1A mixed graph has both directed and undirected edges

Definition 1: Pairwise property of rate assignment.Con-
sider a set of discrete memoryless sourcesX1, X2, . . . , Xn

and the corresponding rate assignmentR = (R1, R2, . . . , Rn).
The rate assignment is said to satisfy the pairwise propertyif
for each sourceXi, i ∈ [n], there exists an ordered sequence
of sources(Xi1 , Xi2 , . . . , Xik

) such that

Ri1 ≥ H(Xi1), (2)

Rij
≥ H(Xij

|Xij−1
), for 2 ≤ j ≤ k, and (3)

Ri ≥ H(Xi|Xik
) (4)

Note that a rate assignment that satisfies the pairwise property
allows the possibility that each source can be reconstructed
at the decoder by solving a sequence of decoding operations
at the SW corner points e.g. for decoding sourceXi one can
use Xi1 (since Ri1 ≥ H(Xi1)), then decodeXi2 using the
knowledge ofXi1 . Continuing in this manner finallyXi can
be decoded. A rate assignmentR shall be called pairwise valid
(or valid in this section), if it satisfies the pairwise property.

An equivalent definition can be given in graph-theoretic
terms by constructing a graph called the pairwise property
test graph corresponding to the rate assignment.

1) Inputs : the number of nodesn, H(Xi) for all i ∈ [n],
H(Xi|Xj) for all i, j ∈ [n]2 and the rate assignmentR.

2) Initialize a graphG = (V, A) with a total of 2n nodes
i.e. |V | = 2n. There aren regular nodes denoted
1, 2, . . . , n andn starrednodes denoted1∗, 2∗, . . . , n∗.

3) For eachi ∈ [n] perform the following steps. Let
WA(j → i) denote the weight on directed edge(j → i).

i) If Ri ≥ H(Xi) then insert edge(i∗ → i) with
WA(i∗ → i) = H(Xi).

ii) If Ri ≥ H(Xi|Xj) then insert edge(j → i) with
WA(j → i) = H(Xi|Xj).

4) Remove all nodes that do not participate in any edge i.e.
they have neither incoming nor outgoing edges.

We denote the resulting graph for a given rate allocation
by G(R) = (V, A). Note that if R is valid, the graph still
contains at least one starred node. Next, based onG(R) we
define a set of nodes that are called the parent nodes.

Parent(R) = {i∗|(i∗ → i) ∈ A}

i.e. Parent(R) corresponds to the starred nodes for the set of
sources for which the rate allocation is at least the entropy.
Mathematically ifi∗ ∈ Parent(R), thenRi ≥ H(Xi). We now
demonstrate the equivalence between the pairwise property
and the construction of the graph above. The proof is omitted
due to lack of space.

Lemma 1:Consider a set of discrete correlated sources
X1, . . .Xn and a corresponding rate assignmentR =
(R1, . . . , Rn). Suppose that we constructG(R) based on the
algorithm above. The rate assignmentR satisfies the pairwise
property if and only if for all regular nodesi ∈ V there exists
a starred nodej∗ ∈ Parent(R) such that there exists directed
path fromj∗ to i in G(R).

We now proceed to define another set of graphs that shall
be useful for presenting the main result of this section.

Definition 2: Specification ofGi∗(R). Suppose that we
construct graphG(R) as above and find Parent(R). For each



i∗ ∈ Parent(R) we constructGi∗(R) in the following manner:
For eachj∗ ∈ Parent(R)\{i∗} remove the edge(j∗ → j) and
the nodej∗ from G(R).
For the next result we need to introduce the concept of the
arborescence or directed spanning tree of a graph (see [9]).

Definition 3: An arborescence (also called directed span-
ning tree) of a directed graphG = (V, A) rooted at vertex
r ∈ V is a subgraphT of G such that it is a spanning tree
if the orientation of the edges is ignored and there is a path
from r to all v ∈ V when the direction of edges is taken into
account.

Theorem 1:Consider a set of discrete correlated sources
X1, . . . , Xn and let the corresponding rate assignmentR be
pairwise valid. LetG(R) be constructed as above. There exists
another valid rate assignmentR

′

that can be described by the
edge weights of an arborescence ofGi∗(R) rooted ati∗ where
i∗ ∈ Parent(R) such thatR

′

j ≤ Rj , for all j ∈ [n].
Proof: We shall show that a new graph can be constructed from
which R

′

can be obtained. This shall be done by a series of
graph-theoretic transformations.

1) Pick an arbitrary starred nodej∗ ∈ Parent(R) and
constructGj∗(R). We claim that in the current graph
Gj∗(R) there exists a path from the starred nodej∗ to
all regular nodesi ∈ [n]. To see this note that sinceR is
pairwise valid, for each regular nodei there exists a path
from some starred node toi in G(R). If for some regular
nodei, the starred node isj∗, the path is still inGj∗(R).
Now consider a regular nodei1 and suppose there exists
a directed pathk∗ → k → β1 . . . → i1 in G(R) where
k∗ ∈ Parent(R), k∗ 6= j∗. Sincek∗ ∈ Parent(R),

Rk ≥ H(Xk) ≥ H(Xk|Xl) ∀l ∈ [n] (5)
This implies that(l → k) ∈ Gj∗(R), ∀l ∈ [n], in
particular,(j → k) ∈ Gj∗(R). Therefore, inGj∗(R)
there exists the pathj∗ → j → k → β1 . . . → i1.
This claim implies that there exists an arborescence
rooted atj∗ in Gj∗(R) [9].

2) Suppose we find such one such arborescenceTj∗ of
Gj∗(R). In Tj∗ every node exceptj∗ has exactly one
incoming edge (by the property of an arborescence [9]).
Let inc(i) denote the node such that(inc(i) → i) ∈ Tj∗ .
We now define a new rate assignmentR

′

given by
R

′

i = WA(inc(i) → i) (6)

= H(Xi|Xinc(i)) for i ∈ [n] and i 6= j (7)

R
′

j = WA(j∗ → j) = H(Xj). (8)

The existence of edge(j∗ → j) ∈ G(R) implies R
′

j =

H(Xj) ≤ Rj . Similarly, we haveR
′

i ≤ Ri for i ∈
[n]\{j}. And it is easy to see thatR

′

is a valid rate
assignment.

Thus, the above theorem implies that valid rate assignments
that are described on arborescences of the graphsGi∗(R) are
the best from the point of view of minimizing the sum rate.
Finally we have the following theorem that says that the valid
rate assignment that minimizes the sum rate can be found by
finding minimum cost arborescences of appropriately defined
graphs. For the statement of the theorem we need to define
the following graphs.

a) The graphGtot = (V tot, Atot) is such thatV consists
n regular nodes denoted1, 2, . . . , n andn starred nodes
denoted1∗, 2∗, . . . , n∗ so that|V tot| = 2n. The edge set
Atot consists of edges(i∗ → i), WA(i∗ → i) = H(Xi)
for i ∈ [n] and edges(i → j), WA(i → j) = H(Xj |Xi)
for all i, j ∈ [n]2.

b) For eachi = 1, . . . , n we define Gi∗ as the graph
obtained fromGtot by deleting all edges of the form
(j∗ → j) for j 6= i and all nodes in{1∗, . . . , n∗}\{i∗}.

Theorem 2:Consider a set of sourcesX1, . . . , Xn. Suppose
that we are interested in finding a valid rate assignmentR =
(R1, . . . , Rn) for these sources so that the sum rate

∑n

i=1 Ri

is minimum. LetRi∗ denote the rate assignment specified by
the minimum cost arborescence ofGi∗ . Then the optimal valid
rate assignment can be found as

Ropt = arg min
i∈{1,...,n}

n
∑

j=1

Ri∗

j (9)

Proof.From Theorem 1 we have that any valid rate assignment
R can be transformed into new rate assignment that can be
described on an arborescence ofGi∗(R) rooted ati∗ which
is component-wise lower thanR. This implies that if we are
interested in a minimum sum rate solution, it suffices to focus
our attention on solutions specified by all solutions that can
be described by all possible arborescences of graphs of the
form Gi∗(R) over all i∗ = 1∗, . . . , n∗ and all possible valid
rate assignmentsR.

Now consider the graphGi∗ defined above. We note that
all graphs of the formGi∗(R) whereR is valid are subgraphs
of Gi∗ . Therefore finding the minimum cost arborescence of
Gi∗ will yield us the best rate assignment possible within the
class of solutions specified byGi∗(R). Next, we find the best
solutionsR

i∗ for all i ∈ [n] and pick the solution with the
minimum cost. This yields the optimal rate assignment.

III. N OISY CASE

In this section we consider the case when the sources are
connected to the terminal by orthogonal noisy channels. The
capacity of the channel between nodei and the terminal with
transmission powerPi and channel gainγi is

Ci(Pi) , log(1 + γiPi), (10)
where the noise power is normalized to one and channel gains
are constants known to the terminal. Therefore, rateRi should
satisfy Ri ≤ Ci(Pi). The transmission power is constrained
by a maximum power constraint,Pi ≤ Pmax, i ∈ [n]. The
objective is to find a rate and power assignment that minimizes
the sum power , i.e.,min

∑n
i=1 Pi while ensuring that the

sources can be recovered at the terminal and that the decoder
only decodes two sources at a time. It is easy to see that at
the optimumR∗

i = Ci(P
∗
i ) i.e. the inequality constraint is

met with equality. Thus, the power assignment is given by
the inverse function ofCi which we denote byQi(R

∗
i ) i.e.

P ∗
i = Qi(R

∗
i ) = (2R∗

i −1)/γi. The feasible rate region for the
node pair(i, j) is the intersection ofSWij and capacity region
Cij(Pi, Pj) , {(Ri, Rj) : Ri ≤ Ci(Pi), Rj ≤ Cj(Pj)}.

The solution presented in [8] goes as follows.

1) Find the rate-power allocations over all possible node
pairs:∀(i, j) ∈ [n]2 such thati < j



(R∗
ij(i), R

∗
ij(j)) = arg minQi(Rij(i)) + Qj(Rij(j))

s.t. (Rij(i), Rij(j)) ∈ SWij ∩ Cij(Pmax, Pmax) (11)

The power allocations are given byP ∗
ij(i) = Qi(R

∗
ij(i))

andP ∗
ij(j) = Qj(R

∗
ij(j))

2.
2) Construct an undirected complete graphG = (V, E),

where WE(i, j) = P ∗
ij(i) + P ∗

ij(j), and find the min-
imum weight matchingP in G. The final power allo-
cation for node pair(i, j) ∈ P denoted by(Pi, Pj) is
(P ∗

ij(i), P
∗
ij(j)).

The solution for the first step (11) is given in [8] and
denoted as(P ∗

ij(i), P
∗
ij(j), R

∗
ij(i), R

∗
ij(j)). In this case, the

rate assignments fori and j don’t necessarily happen at the
corner of the SW bound, i.e.,R∗

ij(i) may not equal toH(Xi)
and the problem is more complicated than noiseless case.

We now present our solution for this case. For a given rate
assignmentR, we say thatXi is initially decodableif Ri ≥
H(Xi), or together with another sourceXj , (Ri, Rj) ∈ SWij .
Obviously, an initially decodable source can be recovered at
the sink. In addition, if we use previously decoded source data
as we did in noiseless case, starting with an initially decodable
source, more sources can potentially be recovered. We now
introduce the generalized pairwise property.

Definition 4: Generalized pairwise property of rate as-
signment. Consider a set of discrete memoryless sources
X1, X2, . . . , Xn and the corresponding rate assignmentR =
(R1, R2, . . . , Rn). The rate assignment is said to satisfy the
generalized pairwise property if for each sourceXi, i ∈ [n],
Xi is initially decodable or, there exists an ordered sequence
of sources(Xi1 , Xi2 , . . . , Xik

) such that
Xi1 is initially decodable, (12)

Rij
≥ H(Xij

|Xij−1
) for 2 ≤ j ≤ k. (13)

Ri ≥ H(Xi|Xik
) (14)

A rate assignmentR shall be called generalized pairwise valid
(or valid in this section), if it satisfies the generalized pairwise
property and for every rateRi ∈ R, Qi(Ri) ≤ Pmax. A
valid rate assignment allows every source to be recovered at
the sink. A power assignmentP = (P1, P2, . . . , Pn) shall be
called valid, if the corresponding rate assignment is valid.

We can rephrase this definition using a graph called gener-
alized pairwise property test graph constructed below.

The input and initialization are the same as pairwise prop-
erty test graph construction. For eachi ∈ [n] perform the
following steps.

i) If Ri ≥ H(Xi) then insert directed edge(i∗ → i) with
weight WA(i∗ → i) = Qi(H(Xi)).

ii) If Ri ≥ H(Xi|Xj) then insert directed edge(j → i)
with weight WA(j → i) = Qi(H(Xi|Xj)).

iii) If (Ri, Rj) ∈ SWij , then insert undirected edge(i, j)
with weight WE(i, j) = Qi(R

∗
ij(i)) + Qj(R

∗
ij(j)) =

P ∗
ij(i) + P ∗

ij(j).

Finally, remove all nodes that do not participate in any edge.
We denote the resulting graph for a given rate allocation by

2Here we use subscriptij becauseR∗

ij(i) denotes the rate allocated to
nodei if i andj are paired. The decision on pairing of nodes is taken in the
next step.

GT (R) = (V, E, A), whereE is undirected edge set andA
is directed edge set. Denote the regular node set asVR ⊂ V .

Lemma 2:Consider a set of discrete correlated sources
X1, . . .Xn and a corresponding rate assignmentR =
(R1, . . . , Rn). Suppose that we constructGT (R) based on
the algorithm above. The rate assignmentR is generalized
pairwise valid if and only if,∀Ri ∈ R, Qi(Ri) ≤ Pmax, and
for all regular nodesi ∈ VR, at least one of these conditions
holds:

1) i participates in an undirected edge(i, i
′

);
2) There exists a starred nodej∗ such that there is a

directed path fromj∗ to i;
3) There exists a regular nodej participating in edge(j, j

′

)
such that there is a directed path fromj to i;

Now, we introduce some definition crucial to the rest of the
development.

Definition 5: Given a mixed graphG = (V, E, A), if e =
(i → j) ∈ A, i is the tail andj is the head ofe. If e = (i, j) ∈
E, we call bothi andj the head ofe. For a nodei ∈ V , hG(i)
denotes the number of edges for whichi is the head.

Definition 6: The underlying undirected graphof a mixed
graphG denoted byUUG(G) is the undirected graph obtained
from the mixed graph by forgetting the orientations of the
directed edges, i.e., treating directed edges as undirected edges.

Definition 7: Given a mixed graphG = (V, E, A), a subset
F ∈ E ∪ A is called amatching forest[12] if F contains no
cycles inUUG(F ) and any nodei ∈ V is the head of at most
one edge inF , i.e.,∀i ∈ V, hF (i) ≤ 1.
In the context of this section we also define a strict matching
forest. For a mixed graphG containing regular nodes and
starred nodes, a matching forestF satisfyinghF (i) = 1, ∀i ∈
VR (i.e. every regular node is the head of exactly one edge)
is called astrict matching forest(SMF).

In the noisy case, SMF plays a role similar to the arbores-
cence in the noiseless case. Now, we introduce a theorem
similar to theorem 1.

Theorem 3:Given a generalized pairwise valid rate assign-
mentR and corresponding power assignmentP, let GT (R)
be constructed as above. There exists another valid rate as-
signmentR

′

and power assignmentP
′

that can be described
by the edge weights of a strict matching forest ofGT (R) such
that

∑n

i=1 P
′

i ≤
∑n

i=1 Pi.
Proof. In order to find such a SMF, we first change

the weights ofGT (R), yielding a new graphG
′

T (R). Let
W

′

A(i → j), W
′

E(i, j) denote weights inG
′

T (R). A weight
transformation is done on all edges:

W
′

E(i, j) = 2Λ − WE(i, j) (15)

W
′

A(i → j) = Λ − WA(i → j) (16)

where Λ is a sufficient large constant. Next, we find a
maximum weight matching forest ofG

′

T (R). This can be done
in polynomial time [12]. Now we have a lemma whose proof
is skipped due to space reasons.

Lemma 3:The maximum weight matching forestFM in
G

′

T (R) is a strict matching forest, i.e., it satisfies:∀i ∈
VR, hFM

(i) = 1.
Note that each regular node is head of exact one edge inFM .

The power allocation is performed as follows. Anyi ∈ VR is



the head of one of three kinds of edges inFM corresponding
to three kinds of rate-power assignment:

1) If there exists a directed edge(i∗ → i), then setP
′

i =
Qi(H(Xi)) and R

′

i = H(Xi). The existence of edge
(i∗ → i) in GT (R) means thatRi ≥ H(Xi), so R

′

i ≤
Ri andP

′

i ≤ Pi ≤ Pmax.
2) If there exists an undirected edge(i, j), setP

′

i = P ∗
ij(i)

andR
′

i = R∗
ij(i). The existence of edge(i, j) in GT (R)

means thatRi andRj are in the SW region,Pi ≤ Pmax

andPj ≤ Pmax. Certainly, in this case,P
′

j = P ∗
ij(j) and

R
′

j = R∗
ij(j), sincej is not head of any other edges.

We know thatP ∗
ij(i), P

∗
ij(j) is the minimum sum power

solution for nodei and j when the rate allocation is
in SW region and the power allocation satisfiesPmax

constraints. SoP
′

i + P
′

j ≤ Pi + Pj , P
′

i ≤ Pmax, P
′

j ≤
Pmax.

3) If there exists a directed edge(j → i), set P
′

i =
Qi(H(Xi|Xj)) andR

′

i = H(Xi|Xj) . The existence of
edge(j → i) in GT (R) means thatRi ≥ H(Xi|Xj),
so R

′

i ≤ Ri andP
′

i ≤ Pi ≤ Pmax.
Therefore, the new power allocationP

′

reduces the sum
power. Notice that when we are assigning new rates to the
nodes, the conditions in definition 4 still hold. So the new
rateR

′

is also valid. SoP
′

is a valid power allocation with
less sum power.

The following theorem says that the valid power assignment
that minimizes the sum power can be found by finding
minimum weight SMF of an appropriately defined graph.

The graphGtot = (V tot, Atot, Etot) is such thatV tot

consistsn regular nodes denoted by1, . . . , n and n starred
nodes denoted by1∗, . . . , n∗ so that|V tot| = 2n. The directed
edge setAtot consists of edges(i∗ → i), WA(i∗ → i) =
Qi(H(Xi)) for {i : i ∈ [n] andQi(H(Xi)) ≤ Pmax},
and directed edges(i → j), WA(i → j) = Qj(H(Xj |Xi))
for {i, j : i, j ∈ [n]2 andQj(H(Xj |Xi)) ≤ Pmax}. The
undirected edge setEtot consists of edges(i, j), WE(i, j) =
P ∗

ij(i) + P ∗
ij(j) for all i, j ∈ [n]2.

Theorem 4:Consider a set of sourcesX1, . . . , Xn. Suppose
that we are interested in finding a valid rate assignmentR and
its corresponding power assignmentP for these sources so
that the sum power

∑n
i=1 Pi =

∑n
i=1 Qi(Ri) is minimum.

The optimal valid power assignment can be specified by
the minimum weight SMF ofGtot which can be found in
polynomial time.

IV. N UMERICAL RESULTS FOR NOISELESS CASE

Consider a wireless sensor network example in a square
area where thex andy coordinates of the sensors are chosen
uniformly at random from[0, 1]. We use the following entropy
model where the individual entropies are assumed to be the
same, denoted byH1 and the joint entropy between two
sensorsi andj is

H(Xi, Xj) = H1 + (1 − 1/(1 + dij/c))H1. (17)
wheredij is the distance betweeni andj andc is a parameter
indicating the spatial correlation in the data. Higherc indicates
higher correlation.

In Fig. 1, we plot the normalized sum rateRs0 vs. the
number of sensorsn. If there is no pairwise decoding i.e.

the nodes transmits data individually to the sink,Ri = H1

and Rs0 = n. The matching solution and the minimum
arborescence (MA) solution are compared in the figure. Note
that if the nodes are highly correlated(c = 1), the present
solution outperforms the matching solution considerably.
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Fig. 1. Normalized sum rate vs. number of sensors

V. CONCLUSION

We investigated the problems of rate and power allocation
for a sensor network where pairwise distributed source coding
is used. A more general definition of pairwise distributed
source coding was introduced than the one presented in [8].
For the case when the sources and the terminal are connected
by noiseless channels, we found a rate allocation with the
minimum sum rate. For noisy orthogonal source terminal
channels, we found a rate and power allocation with minimum
sum power. All algorithms introduced have polynomial-time
complexity. Numerical results show that our solution has a
significant gain over the solution of [8], especially when
correlations are high.
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