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Multiple-Source Slepian-Wolf Coding Under a
Linear Equation Correlation Model
Shizheng Li and Aditya Ramamoorthy, Member, IEEE

Abstract—In this work we present practical coding schemes
for the problem of lossless distributed source coding for multiple
sources. We consider two scenarios - the classical Slepian-Wolf
case where there is no feedback from the terminal to the sources
and a case where there is feedback from the terminal to the
source encoders. The correlation model of interest is given by
a system of linear equations, a generalization of the work of
Stankovic et al. ‘06. We propose a transformation of correlation
model and a way to determine proper decoding schedules, both of
which are required to obtain the optimal sum rate. Our scheme
allows us to exploit more correlations than those in the previous
work. Simulation results show that the proposed coding scheme
has lower sum rate than previous work in both scenarios.

Index Terms—Slepian-Wolf, distributed source coding, rate
adaptive codes, LDPC.

I. INTRODUCTION

WE consider the design of practical codes for lossless
distributed source coding in this paper. Distributed

source coding schemes are useful in applications such as
sensor networks. In these networks there are typically a large
number of resource-limited sensors that observe correlated
sources and seek to convey information to a terminal that
wants to recover their readings. Distributed source coding
schemes allow the sensors to operate without any information
exchange amongst themselves, yet allow them to exploit their
correlation and transmit at a low overall sum rate to the
terminal. The rate region for lossless distributed source coding
is given by the Slepian-Wolf theorem [1] when there are two
sources. The work of Cover [2] generalized the region to the
case of multiple sources as follows. Suppose that the sources
X1, X2, . . . , XN are generating i.i.d. symbols according to the
joint distribution p(x1, x2, . . . , xN ). Let Ri denote the rate for
source Xi and S denote a nonempty subset of node indices:
S ⊆ {1, 2, . . . , N}. Let XS denote the set of random variables
{Xi : i ∈ S}. The rate region is given by∑

i∈S

Ri ≥ H(XS |XSc) for all S �= φ.

The connection between channel coding and Slepian-Wolf
coding for two sources was investigated in [3]. Subsequently,
a lot of research work has addressed problems (see [4]
and its references) along this line. A majority of the work
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[4] considers two binary sources with a binary symmetric
correlation model, i.e., the sources X1 and X2 are related by
X1 + X2 = E, where E is a Bernoulli(p) random variable.
Such correlation can be equivalently viewed as a virtual
binary symmetric channel by using the idea of [3], when one
considers code design where one source is available at the
terminal. Let H be the parity check matrix of a channel code.
The basic idea of [3] is that the decoder finds the difference
(sum in the binary field) of the source values by a slightly
modified channel decoding procedure. LDPC and Turbo codes
[5], [6] have been designed for this case and they exhibit
near-capacity performance under the BSC correlation model.
Furthermore, a rate-adaptive LDPC code design for Slepian-
Wolf coding was proposed in [7] and demonstrates good
performance in the presence of a small amount of feedback
from the decoder to the encoders.

The general problem with N (> 2) sources is well known to
be challenging. Specifically, under a general correlation model,
relating the Slepian-Wolf coding problem to a channel coding
problem is no longer straightforward. One could achieve cor-
ner points of the Slepian-Wolf region by decoding the sources
sequentially, using decoded sources as side information to
help decode others. However, this forces the coding scheme
to work only at corner points. While focusing on the case
of two sources, the work of [8], [9], [10] discussed the
applications of their approaches to the N sources case. The
work of [8], [9] assumes that the correlations only exist among
pairs of the sources, which can be viewed as special cases
of the correlation models considered in this paper. In fact,
for the correlation models considered in [8] the sum rate of
our proposed scheme is as good as those presented in their
work. In the work of [10], the authors described a N -machine
decoding algorithm for the N -source case operating on a non-
corner rate point. However, the complexity is increased and
its performance is not studied in the paper. In our work, we
use the standard belief propagation algorithm and provide
the simulation results for N -source case. In [11], a restricted
correlation model for the case of N sources is considered and
a channel coding based scheme is proposed. More specifically,
assuming that a capacity-achieving channel code is used, the
proposed scheme in [11] achieves optimal sum rate when the
source correlation is specified only by the modulo-2 sum of
all sources. It requires all subsets of size N−1 and smaller to
be independent. If there are more correlations except the total
sum, the scheme ignores them, resulting in a suboptimal rate.

Main Contributions: In this paper, we propose a Slepian-
Wolf coding scheme that works for more general correlation
models. We consider a model where the correlation between
the sources is given by sums of the subsets of sources, i.e.,
specified by a system of linear equations. Our proposed coding
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scheme is able to exploit these correlations in a judicious
manner, assuming that a series of rate-adaptive codes [7] are
used. Our scheme reduces the Slepian-Wolf coding problem
to several channel coding problems in order to capture more
correlations. In general, our scheme has a lower sum rate than
the scheme in [11]. A key aspect of our work is the design of
an appropriate decoding schedule that allows us to be strictly
better than straightforward applications of the scheme in [11]
in our setting.

In the Slepian-Wolf theorem, the term “rate” refers to the
transmission rate per source symbol. Since in this paper we
focus on the practical code design, it is occasionally easier to
describe the rate as the number of transmitted bits per block
of source symbols. For example, when coding over n binary
source symbols, the rate will be expressed as n− �, where �
is a positive integer.

This paper is organized as follows. A brief review of the
work in [11] is presented in Section II, together with more
insights that motivates our solution. Section III presents a
motivating example and the our proposed scheme is formally
described in Section IV. Some simulation results are given in
Section V and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Coding scheme for sum correlation

First, we describe the scheme for N sources in [11].
Choose an (n, k) code as the main code with generator
matrix G. Choose nonnegative integers m1, . . . ,mN such
that

∑N
i=1 mi = k. Partition G according to m1, . . . ,mN

to obtain G1, . . . , GN , such that G = [GT
1 GT

2 . . . GT
N ]T .

Submatrix Gi corresponds to a parity check matrix Hi, i.e.,
GiH

T
i = 0. The ith source transmits Hixi = si, so that

the rate Ri = n − mi. The sum rate is Nn − k. At the
decoder, for each i = 1, . . . , N , first find a vector ti in
the coset with syndrome si. Then, xi + ti is a codeword
of the code generated by Gi, i.e., xi + ti = aiGi for
some vector ai. It is also a codeword of the main code, i.e.,
xi + ti = [0∑i−1

j=1 mj
ai 0∑

N
j=i+1 mj

]G, where 0� is a zero

vector of length �. Thus,
∑N

i=1(xi + ti) = [a1 a2 . . . aN ]G.
Viewing

∑N
i=1 ti as the channel output and

∑N
i=1 xi as the

error, we perform standard channel decoding and obtain the
channel input [a1, . . . , aN ]G, from which we can recover
a1, . . . , aN . Finally, the ith source xi = ti + aiGi. This
scheme works well when the correlation is only given by
the sum of the sources and the sum follows a Bernoulli(p)
distribution, with p small enough.

B. A rate-equivalent scheme

Next, we show that given any choices of R1, . . . , RN in
the rate region of the previously described scheme, we have
an equivalent scheme that also works. Let m1, . . . ,mN be
non-negative integers such that

∑N
i=1 mi = k. We explain

the scheme from the parity check matrix perspective and this
will motivate our proposed scheme. Choose an (n, k) code
as the main code with parity check matrix Hmain of size
(n − k) × n. We can simply choose the main code used in
[11]. Stack k rows above the matrix Hmain such that we have
a n-by-n full rank matrix H . Partition the newly added k

rows according to m1, . . . ,mN to obtain H1, H2, . . . , HN ,
i.e., Hj corresponds to newly added rows numbered from
1 +

∑j−1
k=1 mk, 2 +

∑j−1
k=1 mk, . . . ,

∑j
k=1 mk. Let [N ] =

{1, 2, . . . , N} and [N ]\{i} = {1, 2, . . . , i − 1, i + 1, . . . , N}.
To construct the parity check matrix Hi of the subcode for
source i, we stack the matrices Hmain and Hj : j ∈ [N ]\{i}
together. In other words, Hi is obtained by removing Hi from
H . It has n − k +

∑
j∈[N ]\{i} mj = n −mi rows. Transmit

Hixi = si at each source so that Ri = n−mi. Note that for all
i, Hi has Hmain part in common. Denote the last (n−k) en-
tries of si as s

(n−k)
i . Then

∑N
i=1 s

(n−k)
i = Hmain(

∑N
i=1 xi).

By standard channel decoding, we can recover
∑N

i=1 xi as
long as the sum has low enough Hamming weight. Note that
Hi appears in every parity check matrix Hj : j ∈ [N ]\{i}
but not in Hi. From the syndromes Hjxj : j ∈ [N ]\{i},
we know Hixj for all j ∈ [N ]\{i} because the latter
is a subvector of the former, which allows us to compute
Hixi = Hi(

∑N
j=1 xi) +

∑
j∈[N ]\{i} H

ixj since we have

already recovered
∑N

j=1 xi. Now, we know both Hixi and
Hixi, putting them together we know Hxi and since H is
invertible, xi can be recovered. This equivalent scheme reveals
that in essence, only the correlation given by sum of all sources
is exploited in the coding scheme. Other than that, the sources
are recovered by matrix inversion, even if there are other form
of correlations. Indeed, it can be shown that the scheme in [11]
is optimal only when all subsets of sources with size N − 1
and smaller are independent.

C. Rate adaptive Slepian-Wolf codes

A set of rate adaptive Slepian-Wolf codes is defined to be
a set of L linear block codes whose parity check matrices
are given by {H1, H2, . . . , HL} with dimensions n− k1, n−
k2, . . . , n − kL, where k1 ≥ k2 . . . ≥ kL are such that Hi is
a submatrix of Hi+1 for i ∈ [L]. Using such a set of codes
to perform Slepian-Wolf coding, the syndromes si = Hie
are such that si is a subvector of si+1. Such codes are
very useful in the feedback setting. If the terminal is unable
to decode at a certain rate Ri corresponding to Hi, it can
indicate decoding failure to the source encoder that can then
communicate additional syndrome bits, such that the decoder
can obtain the syndrome corresponding to Hi+1 and attempt
decoding again.

Good rate adaptive codes based on LDPC codes for binary
sources were presented in [7]. The simulations show that these
codes perform very well when there is a feedback channel
from the decoder to the encoders that indicates whether the
decoding is successful1. If the decoding fails, the encoder
sends more bits until the decoding is successful. The average
minimum required rates are very close to Slepian-Wolf bound
[7]. On the other hand, our simulations show that for these
codes if there is no feedback and the decoder attempts
decoding only once, the performance is not very good.

Our proposed scheme uses rate adaptive codes. In our
simulations, we consider two scenarios, one is the classical
Slepian-Wolf scenario and in the other scenario there is a

1Successful decoding only indicates that the decoder is able to make a
decision and does not imply that the decision is correct. For instance, for
an LDPC code, successful decoding would imply that the iterative decoding
procedure converged to a valid codeword.
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feedback from the decoder to the encoder. We shall see our
proposed scheme works very close to the Slepian-Wolf bound
in the feedback scenario. Even though the code performance
is not as good under classical Slepian-Wolf scenario, our
scheme still outperforms the work of [11], where capacity-
achieving codes are used, because we capture more of the
model correlations.

III. A MOTIVATING EXAMPLE

Consider an example as follows. Suppose that four binary
sources X1, X2, X3 and X4 are given as follows. X1 =
Y1, X2 = Y1 +E1, X3 = Y1 +E2, X4 = Y1 +E1 +E2 +E3,
where Y1, E1, E2 and E3 are independent. The source Y1 has
entropy 1, while H(Ei) < 1 for i = 1, . . . , 3. Thus, X2 and
X3 can be viewed as noisy versions of X1 with different noise
levels and their correlation with X1 can be modeled as a BSC.
Source X4 is an even noisier version of X1. Equivalently,

X1 +X2 = E1, (1)

X1 +X3 = E2, (2)

X1 +X2 +X3 +X4 = E3. (3)

Let ki ≤ n(1−H(Ei)) be such that the channel code with rate
ki/n is able to correct the channel error Ei. For a capacity-
approaching code, ki should be close to n(1 −H(Ei)). The
scheme of [11] captures the last equation and the sum rate is
Nn− k = 4n− k3 bits per block.

Suppose that k1 ≥ k2 ≥ k3 and we use a set of rate
adaptive codes with rates k1/n, k2/n, k3/n and parity check
matrices H1, H2, H3 respectively. According to the definition,
H1 is a submatrix of H2, and H2 is a submatrix of H3.
In the first stage, source 1 transmits H3x1, which contains
H1x1, H2x1, and its rate is n − k3. Sources 2, 3 and 4
transmit H1x2, H2x3, H3x4 respectively and their rates are
n − k1, n − k2, n − k3. The decoding of e1, e2, e3 proceeds
as follows.
Step 1. From (1), x1 + x2 = e1, the terminal knows H1x1

and H1x2, both of which have length n − k1. It computes
H1x1 +H1x2 = H1e1 and recovers e1.
Step 2. From (2), x1 + x3 = e2, the terminal knows H2x1

and H2x3, and recovers e2.
Step 3. From (1)-(3) it can be observed that

x1 + x4 = e1 + e2 + e3. (4)

The terminal knows the syndromes H3x1, H3x4 from the
sources, and computes H3e1, H3e2 since e1 and e2 are both
known from the first two steps. Adding these together we get
H3e3, then we can recover e3 by syndrome decoding. If we
do not add equations (1) and (2) to (3), we need the rate of
all the sources to be n−k3 in order to obtain H3e3 in the last
equation, which is unnecessary for recovering the errors e1, e2
and e3. In general, given a linear equation correlation model,
an appropriate transformation needs to be performed in order
to obtain a low sum rate. We shall discuss a systematic way
to do this in Section IV.

In the second stage, we need to transmit some more
encodings such that all the sources can be recovered. Note
that if we can recover x1 we can recover all other sources
since we have recovered e1, e2 and e3. We can transmit

a linear combination of x1: H ′x1 (of length k3) from the
source X1 and such that [H ′T HT

3 ] is invertible. Alternatively,
we can partition the rows of H ′ into H ′

1, H
′
2, H

′
3, H

′
4 and

let source Xi transmit H ′
ixi, with rates ai, i = 1, . . . , 4

such that
∑4

i=1 ai = k3. Note that H ′
ix1, i = 2, 3, 4 can

be found as follows. H ′
2x1 = H ′

2x2 + H ′
2e1, H ′

3x1 =
H ′

3x3 + H ′
3e2,H ′

4x1 = H ′
4x4 + H ′

4e1 + H ′
4e2 + H ′

4e3. The
last equation is from (4). Thus, H ′x1 can be obtained from
the encodings of other sources. This gives us rate flexibility
since we do not have to transmit x1 at rate n. The rates of the
sources in this scheme are R1 = n−k3+a1, R2 = n−k1+a2,
R3 = n− k2 + a3,R4 = n− k3 + a4, a1 + a2 + a3 + a4 = k3,
ai ≥ 0, i = 1, 2, 3, 4.

In other words, the rate region of this scheme in terms of
bits per block can be expressed by{

R1, R4 ≥ n− k3, R2 ≥ n− k1, R3 ≥ n− k2,
R1 +R2 +R3 +R4 ≥ 4n− k1 − k2 − k3

}
(5)

Thus, the sum rate of the proposed approach is 4n−k1−k2−k3
bits per block.
Remark: In this example, by applying the scheme in [11]
three times to each equation and using previously decoded
sources as side information, one can also achieve a sum rate
of 4n−k1−k2−k3. Specifically, applying the scheme in [11] to
(1), x1,x2 can be recovered using 2n−k1 symbols. Then, x1

is used as side information and from (2), x3 can be recovered
using n − k2 additional symbols. Then, using x1,x2,x3 as
side information, x4 can be recovered using n−k3 additional
symbols from (3).

However, consider the following example: X1+X2+X4 =
E1, X2+X3+X4 = E2, X1+X3+X4 = E3. If we apply the
scheme in [11] to the first equation, we need 3n−k1 symbols
to recover x1,x2,x4. Then, from the second equation, we
need n−k2 additional symbols to recover x3. The sum rate is
4n−k1−k2. Even if we start with different equations, the best
sum rate is 4n−max{k1 + k2, k1 + k3, k2 + k3}. In contrast,
as discussed below our proposed scheme can achieve a sum
rate of 4n− k1 − k2 − k3.

IV. DISTRIBUTED SOURCE CODING FOR LINEAR

CORRELATIONS

In this section, we propose a practical coding scheme for the
linear correlation model considered above. In particular, we
design appropriate decoding schedules and a transformation
of the system of linear equations such that we can achieve
low sum rate assuming the existence of good rate adaptive
Slepian Wolf codes. In practice, if we use moderate block
length codes, there will be a gap between the joint entropy
and the sum transmission rate (see Section V). Denote the
index set {1, 2, . . . , L} by [L] for some integer L. Let Sl, l ∈
[L] be subsets of the sources. The correlation is given by a
set of L linear equations

∑
i∈Sl

Xi = El, l ∈ [L] that are
assumed to be linearly independent. The Eis are assumed to
be statistically independent. Let ki/n be the channel code rate
that is needed for correcting error Ei.

Our scheme works as follows. We find a set of L linearly
independent columns in the coefficient matrix of the system of
equations and denote the index set by A. This can always be
done because the equations are linearly independent. Denote
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the index set [N ]\A by B. Note that A is also the index set for
the sources that corresponding to the L columns indexed by A.
Similarly, B is also an index set for the sources. Without loss
of generality, assume that the equations are ordered such that
k1 ≥ k2 ≥ . . . ≥ kL. It is important to start with the equations
in this order as scheduling the decoding procedure based on
such an ordered form gives the best rate performance. As we
have seen before in the example in Section III , transforming
the system of linear equations properly helps improve the rate
performance. In the discussion below we present a decoding
scheme that achieves a sum rate of Nn −∑L

l=1 kl bits per
block.

In the first stage, we recover the errors e1, e2, . . . , eL. The
rate at this step for the ith source is denoted by Pi. We first
discuss the assignments of the rates Pi.

1) Rate allocation: As we will see later, this step also
provides a proper decoding procedure (scheduling) for the first
stage (recovering the errors).

• For sources in set B, assign Pi = n − minl∈[L] kl =
n− kL, ∀i ∈ B.

• The assignment of rates Pi, i ∈ A is described as follows.
Note that the set A ∩ Sl indicates the set of sources in
A that participate in the lth equation. Let J denote an
index set. Let u be the iteration index. At the beginning
of each iteration, J is the set of sources in A that has
been assigned rate Pi.
Initialization. J = ∅; Pi = 0, ∀i ∈ A; u = 1.
(1) Pick a source ju ∈ A ∩ Su, J ← J ∪ {ju}. Assign
Pju = n− ku.
(2) Add the uth equation to the lth equation for every l
such that l > u and ju ∈ A ∩ Sl, i.e., the equations in
which the source Xju appears. Replace the lth equation
by this new equation and update Sl accordingly.
(3) u← u+ 1, if u < L, go to (1), otherwise, STOP.

The idea is similar to Gaussian elimination but the main
difference is that we do not switch the order of the equations.
Gaussian elimination returns a matrix in row echelon form,
while this algorithm does not.
Claim: The algorithm assigns rates for each source and the
rate allocation is such that Pi ≥ n − kl, ∀i ∈ Sl for l =
1, 2, . . . , L, where Sl is induced by the linear equations after
the transformation performed in the algorithm.
Proof: It is easy to see for ∀i ∈ B, Pi ≥ n−kl, ∀l ∈ [L]. For
the allocation of Pi, ∀i ∈ A, at each step u, we eliminate the
source Xju in the equations u+1, . . . , L. Thus, for each 1 ≤
u ≤ L, at the beginning of step u, J ∩A∩Su = ∅. Therefore,
at step u, the sources that are already in J will not be picked
again. In addition at each step we can always find ju ∈ A∩Su.
This is because the columns indexed by A have full rank, i.e.,
an all zero row will not appear in the L-by-L submatrix. At the
end of the above procedure, J = A and the rate assignment
is Pju = n− ku, ∀u ∈ [L]. Note that since we start with the
equations in an order such that k1 ≥ k2 ≥, . . . ,≥ kL, we
have Pj1 ≤ Pj2 ≤ . . . ≤ PjL . In addition, note that for each
equation l, A∩Sl∩{j1, j2, . . . , jl−1} = ∅, i.e., the sources that
have been assigned a rate (lower than n−kl) do not appear in
equation l, and the sources in equation l other than jl will be
assign a rate higher than n − kl in later iterations. Thus, we
conclude that for sources in A∩Sl, Pi ≥ n−kl, ∀i ∈ A∩Sl.

Iteration 1 Iteration 2

Fig. 1. The evolution of the coefficient matrix for the system of equations
X1 + X2 + X4 = E1, X2 + X3 + X4 = E2, X1 + X3 + X4 = E3.
In iteration 1, j1 = 2, J = {2} and P2 = n − k1. In iteration 2, j2 =
3, J = {2, 3} and P3 = n − k2. In iteration 3, j3 = 4, J = {2, 3, 4} and
P4 = n− k3, the form of the equations does not change at the last iteration.

The sum of Pi values is∑
i∈B

Pi +
∑
i∈A

Pi = (N − L)(n− kL) + Ln−∑L
l=1 kl

= Nn− (N − L)kL −
∑L

l=1 kl. (6)

The choice of ju at each step is not unique so the rate
allocation is not unique.

Example. Consider the example in the Remark of Section
III. The evolution of the coefficient matrix during the iterations
is shown in Fig. 1. The equations after transformation is

⎡
⎣ 1 1 0 1

1 0 1 0
0 0 0 1

⎤
⎦
⎡
⎢⎢⎣

X1

X2

X3

X4

⎤
⎥⎥⎦ =

⎡
⎣ E1

E2 + E1

E3 + E1 + E2

⎤
⎦ . (7)

2) Code construction and decoding: Choose a set of
rate adaptive codes that can adapt the rates among
{k1/n, k2/n, . . . , kL/n}. The parity check matrices are
H1, H2, . . . , HL and Hi is a submatrix of Hi+1 for i ∈ [L−1].
For Xi : i ∈ B, transmit HLxi. For each Xi : i ∈ A, transmit
Hjxi if Pi = n − kj . We recover errors according to the
ascending order: e1, e2, . . . , eL from equation 1 to L, which
are updated during the rate allocation algorithm. Note that
Pi ≥ n − kl for all i ∈ Sl. This means that the decoder can
obtain Hlxi, ∀i ∈ Sl from the syndromes it receives. For the
sources such that Pi > n−kl, Hlxi is a portion of the received
syndrome Hl′xi for some l′ > l. Note that the right hand side
of the equation may become el plus some eu terms for u < l.
However, those additional error terms are recovered earlier
and we can compute Hleu for those u values. The effective
error is still el and we can compute Hlel and recover el.

Example (Continued.) In the example above, suppose the
parity check matrices are {H1, H2, H3}. Source X1 transmits
H3x1, X2 transmits H1x2, X3 transmits H2x3 and X4 trans-
mits H3x4 so that their rates are n−k3, n−k1, n−k2, n−k3
respectively.

We look at the equations after the rate allocation, i.e.,
equation (7). Start with the first equation. Note that H1x1

is a subvector of H3x1 and H1x4 is a subvector of H3x4.
So the decoder knows H1(x1 + x2 + x4) = H1e1 and it is
able to recover e1. In the second equation, note that H2x1

is a subvector of H3x1 and X3 transmits H2x3, the decoder
knows H2(x1 +x3) and H2e1 since e1 was recovered. Thus,
it finds H2e2 and recovers e2. In the third equation, note that
X4 transmits H3x4, and the decoder knows H3(e1 + e2) so
it knows H3e3 and can recover e3. Therefore, e1, e2 and e3
can be recovered.
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In the second stage, we transmit more encodings such that
all sources can be recovered. The rate of additional encodings
at the second stage for source i is denoted by Qi. Thus,
the transmission rate for source i is Ri = Pi + Qi. If
xi, ∀i ∈ B are recovered, xi, ∀i ∈ A can be recovered by
matrix inversion. The simplest way is to transmit kL additional
encodings H ′xi for each xi, ∀i ∈ B and such that [H ′THT

L ]
has full rank. This is equivalent to transmitting Xi, i ∈ B
uncoded. In this case, Qi = kL, ∀i ∈ B,Qi = 0, ∀i ∈ A.
Using the expression of

∑
i∈[N ] Pi, from (6), the sum rate of

our scheme in terms of bits per block is

∑
i∈[N ]

Ri = Nn−
L∑

l=1

kl. (8)

We could also partition the rows of H ′ and transmit the
encodings of other sources such that H ′xi, i ∈ B can be
recovered based on the errors that we have already found.
By doing this, the rates Ri, i ∈ B do not have to be n.
This is similar to the scheme in Section II-B. To obtain a
representation of xi, H ′xi, one can obtain H ′xj for other
sources Xj that participate in the same equation with Xi.
Since the right hand side of each equation is recovered in the
first stage, H ′xi can be computed. In Section II-B, only one
equation is used, while here we have L equations. The exact
rate region depends on the form of the system of equations.
Note that the choice of A,B may not be unique and different
choices of A,B give different rate assignments.

The optimal sum rate is the joint entropy H(X[N ]) =
H(XB) +H(XA|XB) = H(XB) +H(E1, E2, . . . , EL|XB).
If there exists a choice of A and B such that the
columns indexed by A are independent, the sources in
the set B are uniformly distributed, and the sources
in the set {XB, E1, . . . , EL} are statistically independent,
then H(XB) = (N − L), H(E1, E2, . . . , EL|XB) =∑L

i=1 H(Ei) ≈
∑L

i=1(1− ki/n). Thus, if the above assump-
tions hold and the channel codes are capacity achieving, the
sum rate of the proposed scheme achieves the optimum. The
practical performance of our scheme is shown in Section V.

If the set of random variables {Ei}Li=1 are dependent, our
scheme will still work. One can use previously decoded ei
vectors to help decode ej , j > i. The input to the LDPC
decoder will need to be suitably modified. However, the
correlations among Eis could be arbitrary and the performance
of the LDPC codes cannot be guaranteed to be very good. Note
that one special case of our scheme is that when L = N , i.e.,
when the correlation is given by a full rank system of linear
equations. In this case if E1, E2, . . . , EL are independent and
the codes are capacity achieving, our scheme achieves optimal
sum rate.

V. SIMULATION RESULTS

We present Monte Carlo simulation results in this section.
Note that we only need to determine the rates for the recovery
of the error terms. This stage uses error control codes and
their performance are evaluated by simulation. The recovery
of the actual sources xi is done by matrix inversion and vector
addition operations and these steps are guaranteed to be correct
as long as the error terms are recovered correctly. The rate-
adaptive codes designed in [7] are used in our simulations.

TABLE I
THE EXAMPLE IN SECTION III, CONFIGURATION 1

i p(Ei = 1) H(Ei) Tx Rate (classical) Tx Rate (feedback)
1 0.11 0.50 0.77 0.59
2 0.12 0.53 0.82 0.62
3 0.13 0.56 0.89 0.65

Sum rate (classical SWC): 4− (k1 + k2 + k3)/n = 3.48
Average sum rate (feedback): 2.86

Joint Entropy: 2.59

The irregular LDPC code has length 6336 and variable node
degrees ranging from 2 to 21. We consider two scenarios,
the classical Slepian-Wolf coding scenario and the feedback
scenario. In [7], the rate-adaptive codes are designed by
starting from a parity check matrix with n rows and removing
several rows each time to achieve each rate, where n is the
code length. We use the same selections of the rows (termed
puncturing pattern of syndromes in [7]) as in [7] for our two
cases.

In the classical Slepian-Wolf coding scenario, we shall find
the lowest transmission rate, i.e., the largest ki values, that
result in near- error-free recovery, measured as a frame error
rate < 10−3. We say that one frame is in error if any of
ei, i = 1, . . . , L is not decoded correctly. In order to obtain
FER < 10−3 for the whole coding scheme, we roughly need
the individual FER for recovering each Ei to be 10−3/L,
where L is the number of equations.

In the feedback scenario, when decoding a error sequence,
if a decoding attempt fails, the decoder will request additional
syndrome bits from all sources that participate in the equation
(after transformation) until the decoding is successful. More
specifically, the rate adaptive codes designed in [7] contain
codes with rates {1/66, 2/66, . . . , 64/66}. Each time when
we need to transmit additional syndrome bits, we decrease the
code rate by 1/66. It is possible that for one particular error
sequence, some of the sources have transmission rates higher
than the required transmission rate for this error sequence.
For example, the designed rate of source X1 is probably
high enough for decoding E1 in our example equation (1).
In this case, we do not need to increase the transmission
rates for those sources. The simulation results presented below
show the average minimum required transmission rate for
each source and the average minimum required sum rate for
recovering all the sources.

We consider the example in equations (1)-(3) in Section
III. Two configurations of probability distribution are used
and the results are presented in Table I and Table II. The
cases of classical SWC and feedback are both presented.
The transmission rate for source i is 1 − ki/n. The gaps
to joint entropy are compared in Fig. 2. Clearly, the rate-
adaptive codes perform better under feedback scenario. In Fig.
2, the theoretical gap means the gap between the transmission
rate and the joint entropy when a capacity-achieving code
is used, i.e., ki/n = 1 − H(Ei). For the scheme in [11],
when a capacity-achieving code is used, the sum rate will be
4− (1 −H(E3)).

Note that the rate-adaptive codes of [7], do not have very
good performance for the classical Slepian-Wolf scenario.
Nevertheless, if we use them along with our rate allocation
and decoding schedule algorithms and compare them to the
scheme of [11] using a capacity-achieving code, our sum
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TABLE II
THE EXAMPLE IN SECTION III, CONFIGURATION 2

i p(Ei = 1) H(Ei) Tx Rate (classical) Tx Rate (feedback)
1 0.05 0.29 0.56 0.34
2 0.06 0.33 0.61 0.39
3 0.15 0.61 0.89 0.71

Sum rate (classical SWC): 4− (k1 + k2 + k3)/n = 3.06
Average sum rate (feedback): 2.44

Joint Entropy: 2.22
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Fig. 2. The comparison of the gaps between sum rate and joint entropy.
The actual sum rate is the sum rate observed in the simulations under two
different scenarios. The theoretical sum rate is obtained under the assumption
that capacity-achieving LDPC codes are used.

rate is still better. This is because our scheme captures more
correlations that exist in the joint distribution.

We also considered a full rank system of five equations
that contains five sources. This is shown in Fig. 3 and the
form after transformation is also given. The corresponding
simulation results are presented in Table III.

VI. CONCLUSION AND FUTURE WORK

In this work we considered the design of practical lossless
distributed source codes. The correlation model of interest is
given by a system of linear equations, a generalization of the
models considered in prior work. We propose a transformation
of the correlation model and a way to find the proper decoding
schedule such that the optimal sum rate can be achieved.
More correlations are captured by our scheme as compared to
prior work and the simulation results demonstrate the better
compression efficiency of our scheme. Our work uses the rate-

adaptive LDPC codes designed for asymmetric Slepian-Wolf
coding of two sources in [7].

Fig. 3. The transformation of the coefficient matrix of a full rank system
of linear equations with five equations and five sources. Note that j1 =
1, j2 = 2, j3 = 3, j4 = 5, j5 = 4 and P1 = n − k1, P2 = n− k2, P3 =
n− k3, P4 = n− k5, P5 = n− k4.

TABLE III
THE CONFIGURATION AND SIMULATION RESULTS FOR FIVE CORRELATED

SOURCES.

i p(Ei = 1) H(Ei) Tx Rate (classical) Tx Rate (feedback)
1 0.05 0.29 0.53 0.35
2 0.06 0.33 0.74 0.38
3 0.07 0.37 0.73 0.42
4 0.08 0.40 0.89 0.47
5 0.09 0.44 0.80 0.52

Sum rate (classical SWC): 3.69
Average sum rate (feedback): 2.15

Joint Entropy: 1.83

Simulation results indicate that the performance of these
codes is quite good in the presence of feedback. However, for
the classical Slepian-Wolf scenario, there is a definite gap with
respect to the sum rate bound. Thus, the design of capacity-
achieving rate-adaptive Slepian-Wolf codes is an interesting
research direction.
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