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Abstract—We consider a single-hop interference network with
� transmitters and � receivers, all having � antennas. Each
transmitter emits an independent message and each receiver
requests an arbitrary subset of the messages. This generalizes
the well-known �-user � -antenna interference channel, where
each message is requested by a unique receiver. For our setup,
we derive the degrees of freedom (DoF) region. The achievability
scheme generalizes the interference alignment schemes proposed
by Cadambe and Jafar. In particular, we achieve general points
in the DoF region by using multiple base vectors and aligning all
interferers at a given receiver to the interferer with the largest
DoF. As a byproduct, we obtain the DoF region for the original
interference channel. We also discuss extensions of our approach
where the same region can be achieved by considering a re-
duced set of interference alignment constraints, thus reducing
the time-expansion duration needed. The DoF region for the
considered system depends only on a subset of receivers whose
demands meet certain characteristics. The geometric shape of the
DoF region is also discussed.

Index Terms—Degrees of freedom (DoF) region, interference
alignment, interference network, multicast, multiple-input mul-
tiple-output.

I. INTRODUCTION

I N wireless networks, receivers need to combat interference
from undesired transmitters in addition to the ambient

noise. Interference alignment has emerged as an important
technique in the study of fundamental limits of such networks
[1], [2]. Traditional efforts in dealing with interference have
focused on reducing the interference power, whereas in inter-
ference alignment the focus is on reducing the dimensionality
of the interference subspace. The subspaces of interference
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from several undesired transmitters are aligned so as to min-
imize the dimensionality of the total interference space. For
the -user -antenna interference channel, it is shown that
alignment of interference is simultaneously possible at all the
receivers, allowing each user to transmit at approximately half
the single-user rate in the high signal-to-noise ratio scenario
[3]. The idea of interference alignment has been successfully
applied to other interference networks as well [4]–[8].

The interference alignment scheme depends on the channel
model. Interference alignment was first investigated in the
vector space domain by using beamforming and zero-forcing.
When the system is proper [9], e.g., the three-user mul-
tiple-input multiple-output interference channel, alignment in
vector space can be used to achieve the total degrees of freedom
(DoF) over constant channels. However, when the number of
alignment constraints increases, vector interference alignment
is not applicable over constant channels as the system is no
longer proper. Nevertheless, for time-varying channels, it
can still be used by considering the time-expanded channel.
For nonproper systems, other interference alignment schemes
have been proposed as well. For example, real interference
alignment [7], [10]–[13] and asymmetric complex signaling
[14] can be used for constant channels. The major difference
between vector interference alignment and real interference
alignment is that the former relies on the linear vector-space
independence, while the latter relies on linear rational indepen-
dence. The asymmetric complex signaling decouples complex
numbers into two real numbers to form a 2-D vector space and
it still relies on the linear vector-space independence. For the
nonproper system with time-varying channel, it is also possible
to utilize the ergodicity of the channel states in the so-called
ergodic interference alignment scheme [15].

A majority of systems considered so far for interference
alignment involve only multiple unicast traffic, where each
transmitted message is only demanded by a single receiver.
However, there are wireless multicast applications where a
common message may be demanded by multiple receivers,
e.g., in a wireless video broadcasting. Such general message
request sets have been considered in [16] where each message
is assumed to be requested by an equal number of receivers.
Ergodic interference alignment was employed to derive an
achievable sum rate. A different but related effort is the study of
the compound multiple-input single-output broadcast channel
[7], [8], where the channel between the base station and the
mobile user is drawn from a known discrete set. As pointed
out in [7], the compound broadcast channel can be viewed as a
broadcast channel with common messages, where each message
is requested by a group of receivers. Therefore, its total DoF is
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also the total DoF of a broadcast channel with different multi-
cast groups. It is shown that using real interference alignment
scheme, the outer bound of the compound broadcast channel
[6] can be achieved regardless of the number of channel states
one user can have. The compound setting was also explored for
the channel and the interference channel in [7], where the
total number of DoF is shown to be unchanged for these two
channels. However, the DoF region was not identified in [7].

In this paper, we consider a natural generalization of the mul-
tiple unicasts scenario considered in the work of Cadambe and
Jafar [3]. We consider a setup where there are transmitters
and (that may be different from ) receivers, each having

antennas. Each transmitter emits a unique message and each
receiver is interested in an arbitrary subset of the messages.
That is, we consider interference networks with general mes-
sage demands. Our main result in this paper is the DoF region
for such networks. One main observation is that by appropri-
ately modifying the achievability schemes in [3] and [4], we can
achieve any point in the DoF region. To the best of our knowl-
edge, the DoF region in this scenario has not been obtained be-
fore. Our main contributions can be summarized as follows.

1) We completely characterize the DoF region for interfer-
ence networks with general message demands. We achieve
any point in the DoF region by using multiple base vectors
and aligning the interference at each receiver to its largest
interferer. The geometric shape of the region is also dis-
cussed.

2) As a corollary, we obtain the DoF region for the case of
multiple unicasts considered in [3]. We also provide an
additional proof based on time sharing for this case.

3) We discuss extensions of our approach where the DoF re-
gion can be achieved by considering fewer interference
alignment constraints, allowing for interference alignment
over a shorter time duration. We show that the region de-
pends only on a subset of receivers whose demands meet
certain characteristics.

This paper is organized as follows. The system model is given
in Section II. We present the DoF region of this system, and
establish its achievability and converse in Section III. We dis-
cuss the approaches for reducing the number of alignment con-
straints, the DoF region for the -user -antenna interference
channel in [3], the total DoF in Section IV. Finally, Section V
concludes our paper.

We use the following notation: boldface uppercase (lower-
case) letters denote matrices (vectors). Real, integer, and com-
plex numbers sets are denoted by , , and , respectively. We
define

, and define similarly. We use to denote the cir-
cularly symmetric complex Gaussian (CSCG) distribution with
zero mean and unit variance. For a vector , is the th entry.
For two matrices and , implies that the column
space of is a subspace of the column space of .

II. SYSTEM MODEL

Consider a single-hop interference network with transmit-
ters and receivers. Each transmitter has one and only one in-
dependent message. For this reason, we do not distinguish be-
tween the indices for messages and that for transmitters. Each

receiver can request an arbitrary set of messages from multiple
transmitters. Let be the set of indices of those messages re-
quested by receiver . We assume that all the transmitters and
receivers have antennas. The channel between transmitter
and receiver at time instant is denoted as ,

, . We assume that the elements of
all the channel matrices at different time instants are indepen-
dently drawn from some continuous distribution. In addition, the
channel gains are bounded between a positive minimum value
and a finite maximum value to avoid degenerate channel condi-
tions. The received signal at the th receiver can be expressed as

where is an independent CSCG noise with each entry
distributed, and is the transmitted signal

of the th transmitter satisfying the following power constraint:

Henceforth, we shall refer to the aforementioned setup as an in-
terference network with general message demands. Our objec-
tive is to study the DoF region of an interference network with
general message demands when there is perfect channel state
information (CSI) at receivers and global CSI at transmitters.
Denote the capacity region of such a system as . The cor-
responding DoF region is defined as

If and , , the general model we con-
sidered here will reduce to the well-known -user -antenna
interference channel as in [3].

III. DOF REGION OF INTERFERENCE NETWORK WITH

GENERAL MESSAGE DEMANDS

In this section, we derive the DoF region of the interference
network with general message demands. Our main result can be
summarized as the following theorem.

Theorem 1: The DoF region of an interference network with
general message demands with transmitters, receivers, and

antennas is given by

(1)

where is the set of indices of messages requested by receiver
, .

A. Discussion on the DoF Region

1) Converse Argument: To show the region given by (1) is an
outer bound, we use a genie argument which has been used in
several previous papers, e.g., [3] and [17]. In short, we assume
that there is a genie who provides all the interference messages
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Fig. 1. Cylinder set defined by � � � �� and � � �, � � �, 2, in a 3-D
space.

except for the interference message with the largest DoF to re-
ceiver . Thus, receiver can decode its intended messages, fol-
lowing which it can subtract the intended message component
from the received signal so that the remaining interfering mes-
sage can also be decoded. Hence, (1) follows due to the multiple
access channel outer bound.

2) Geometric Shape of the DoF Region: The DoF region is
a convex polytope, as is evident from the representation in (1).
The inequalities in (1) characterize the polytope as the intersec-
tion of half spaces, each defined by one inequality. Note that all
the coefficients of the DoF terms in each inequality are either
zero or one. That is, all the inequalities are of the form

(2)

where is a subset of . This can be seen by ex-
panding each inequality in (1) containing a “max” term into
several inequalities that do not contain the maximum operator.
For example, we can expand into

and . In a -dimensional space,
the set of points defined by and , is
a simplex of dimensions. For example,
describe a 1-D simplex. This simplex, together with the lines
(planes) and defines a subset of the 2-D space,
which is a right triangle of equal sides. When considering such
an inequality in the -dimensional space, each such inequality
describes a cylinder set whose projection into the -dimen-
sions is the aforementioned subset enclosed by the simplex and
the planes , . See Fig. 1 for an illustration in the case
of and . The whole DoF region, therefore, is
the intersection of such cylinder sets.

It is also possible to specify convex polytopes via its ver-
tices. Theoretically, it is possible to find all the vertices of the
DoF region by solving a set of linearly independent equations,
by replacing a subset of inequalities to equalities, and veri-
fying that the solution satisfies all other constraints. However,
the number of such equations can be as large as ,
where is the total number of (expanded) inequal-
ities. Nevertheless, in some special cases as we will see later, it
is possible to find the vertices exactly.

In the following part, we will use a simple example to demon-
strate the DoF region and reveal the basic idea of our achiev-
ability scheme.

Fig. 2. (Left) Example system with arrows denoting the demands.
(Right) Alignment scheme for achieving DoF point �� � � � � � � � �
�� � �� � � � � � � �.

B. Example of the General Message Demand and the DoF
Region

We first show the geometric picture of the DoF region for
a specific example, which is useful for developing the general
achievability scheme.

Consider an interference network with four transmitters and
three receivers (see Fig. 3). All the transmitters and receivers
have single antenna, that is, . Assume ,

, and . The DoF region of the system
according to Theorem 1 is as follows:

(3)

The region is 4-D and, hence, difficult to illustrate. However,
if the DoF of one message, say , is fixed, the DoF region of
the other messages can be illustrated in lower dimensions as a
function of (see Fig. 3).

We first investigate the region when , for which
the coordinates of the vertices are given in Fig. 3, case (a). The
achievability of the vertices on the axes is simple as there is
no need of interference alignment. Time sharing between the
single-user rate vectors is sufficient. For
the remaining three vertices, we only need to show the achiev-
ability of one point as the achievability of the others is essen-
tially the same by swapping the message indices.

We will use the scheme based on [3] to do interference align-
ment and show is achiev-
able for any . Let denote the duration of the time
expansion in number of symbols. Here and after, we use the
superscript tilde to denote the time-expanded signals, e.g.,

, which is a size
diagonal matrix (recall that ). Denote the beam-

forming matrix of transmitter as . First, we want messages
3 and 4 to be aligned at receiver 1. Notice that messages 3 and
4 have the same number of DoF. We choose to design beam-
forming matrices such that the interference from transmitter 4
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Fig. 3. DoF region in lower dimensions as a function of � .

is aligned to interference from transmitter 3 at receiver 1. There-
fore, we have the following constraint:

(4)

Note that the interference due to transmitter 1 has a larger DoF
at receiver 2; thus, we must align interference from transmitter
4 to interference from transmitter 1 at receiver 2, which leads to

(5)

Similarly, at receiver 3, we have

(6)

The alignment relationship is also shown in Fig. 2. Notice
that is larger than , , and . Therefore, it is possible
to design into two parts as , where is used
for transmitting part of the message 1 with the same DoF as
other messages. The second part is used for transmitting
the remaining DoF of message 1. In addition, all the columns in

are linearly independent.
The design of can be addressed by the classic asymp-

totic interference alignment scheme in [3]. The beamforming
matrices in [3] are chosen from a set of beamforming columns,
whose elements are generated from the product of the powers
of certain matrices and a vector. We term such a vector as a
base vector in this paper. The base vector was chosen to be the
all-one vector in [3]. The scheme proposed in [3] was further
explored for wireless network [4] with multiple independent
messages at single transmitter, where multiple independent and
randomly generated base vectors are used for constructing the
beamforming matrices. In our particular example, as no interfer-
ence is aligned to the second part of message 1, we may choose
an independent and randomly generated matrix for . How-
ever, in general, we need to construct the beamforming matrices
in a structured manner using multiple base vectors as we will see

in Section III-C. The DoF point can be achieved asymptotically
when the duration of time expansion goes to infinity. We omit
further details of beamforming construction for this particular
example.

The DoF region of case (b) in Fig. 3 can be achieved
similarly by showing that the vertex

is achievable. This can also be shown
using the multiple base vector technique.

We remark that the DoF region in this example can be
formulated as the convex hull of the following vertices

. The vertices can be verified by enumer-
ating the basic feasible solutions for the polytope description
in (3). Therefore, the achievability of the whole DoF can be
alternatively established by showing that is
achievable. In this particular case, this can be done by finite
time expansion—an asymptotic argument is not needed. Our
previous discussion was primarily aimed at motivating the
general case where infinite time-expansion is necessary.

C. Achievability of the DoF Region With Single Antenna
Transmitters and Receivers

We first consider the achievability scheme when all the trans-
mitters and receivers have a single antenna, i.e., . It is
evident that we only need to show any point in satisfying

(7)

is achievable, for otherwise the messages can be simply renum-
bered so that (7) is true.

1) Set of Alignment Constraints: The achievability scheme is
based on interference alignment over a time-expanded channel.
Based on (7), we impose the following relationship on the sizes
of the beamforming matrices of the transmitters:

(8)

where denotes the number of columns of matrix . At re-
ceiver , we always align the interference messages with larger



KE et al.: DEGREES OF FREEDOM REGION FOR AN INTERFERENCE NETWORK WITH GENERAL MESSAGE DEMANDS 3791

Fig. 4. Illustration of the base vectors used by different messages. The base vectors used by transmitter � will also be used by transmitters �� � � � � � � �.

indices to the interference message with index , which is the
interference message with the largest DoF, given as

Denote in the following as:

which is the matrix corresponding to the alignment constraint

that enforces the interference from message to be aligned to
the interference of message at receiver . Based on (8), for
any matrix, we always have .

For convenience, we define the following set:

(9)

In other words, is a set of vectors denoting all the alignment
constraints. There exists a one-to-one mapping from a vector

in to the corresponding matrix .
2) Time Expansion and Base Vectors: It is not difficult to see

that the vertices of the DoF region given in (1) must be rational
as all the coefficients and right-hand side bounds are integers
(either zero or one). Therefore, we only need to consider the
achievability of such rational vertices, although the proof in the
following applies to any interior rational points in the DoF re-
gion as well.

For any rational DoF point within (vertex or not) satis-
fying (7), we can choose a positive integer , such that

(10)

We then use multiple base vectors to construct the beam-
forming matrices. The total number of base vectors is . De-
note the base vectors as . Transmitter will
use base vectors , to construct its beamforming
matrix, and the same base vectors will be used by transmitters

as well (see Fig. 4). The elements of are inde-
pendent and identically drawn from some continuous distribu-
tion. In addition, we assume that the absolute value of the ele-
ments of are bounded between a positive minimum value and
a finite maximum value, in the same way that entries of
are bounded (see Section II).

Denote , which is the total number of matrices
as well. We propose to use a fold time expansion,
where is a positive integer.

3) Beamforming Matrices Design: The beamforming ma-
trices are generated in the following manner.

i) Denote as the cardinality of the following set:

which is the number of matrices whose exponents are
within , while the other matrices
can be raised to the power of . It is evident that ,
and .

ii) Transmitter uses base vectors. For base vector ,
, it generates the following columns:

where . Hence, the total number
of columns of is .

iii) Similarly, transmitter uses base vectors. For base
vector , , it generates
columns

(11)

where

and

In summary, the beamforming design is as follows, for every
message, we construct a beamforming column set as in (12),
shown at the bottom of the page. The beamforming matrix
is chosen to be the matrix that contains all the columns of .

if
otherwise

(12)
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4) Alignment at the Receivers: Assume , so that
message needs to be aligned with message at receiver
. We now show that this is guaranteed by our design. Let ,

be a base vector used by transmitter , and hence
also used by transmitter . From (11), the beamforming vectors
generated by at transmitter can be expressed as (13), shown
at the bottom of the page, whereas those at the transmitter
can be expressed as (14) shown at the bottom of the page.

Comparing the ranges of in (13) and (14), i.e., the
middle terms, it can be verified that the columns in (14) mul-
tiplied with will be a column in (13), . That
is, message can be aligned to message for any such that

.
The alignment scheme works due to the following reasons.

1) Let denote the exponent of the term
for . The construction of the beamforming column set
guarantees that

(15)
by setting

With (15), we are guaranteed that all vectors in , when
left multiplied with (which has the effect of in-
creasing the exponent of by one), generates a vector
that is within the columns of . Hence, the alignment is
ensured.
For other terms, where is not or , can
be either or .

2) The base vectors used by transmitter are also used by
transmitter . This guarantees that if the interference
from transmitter needs to be aligned with interference
from transmitter , where , the alignment is en-
sured with the condition (15).

5) Achievable Rates: It is evident that is a tall matrix of
dimension . We also need to verify
it has full column rank. Notice that all the entries in the upper
square submatrix are monomials and the random variables of
the monomial are different in different rows. In addition, for a
given row , , any two entries have
different exponents. Therefore, based on [4, Lemma 1], has
full column rank and

6) Separation of the Signal and Interference Spaces:
Finally, we need to ensure that the interference space
and signal space are linearly independent for all the re-
ceivers. Let the set of messages requested by receiver be

, where . For re-
ceiver to be able to decode its desired messages, the following
matrix:

(16)

needs to have full rank for all .
Notice that for any point within

(17)

always holds (recall ). Therefore, is a matrix that is
either tall or square. For any row of its upper square submatrix,
its elements can be expressed in the following general form:

The elements from different blocks (that is, different ,
) are different due to the fact that ’s are

different; hence, the monomials involve different sets of random

(13)

(14)
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variables. Within one , two monomials are different ei-
ther because they have different , , or, if they
have the same , the associated exponents are dif-
ferent. Thus, matrix has the following properties.

1) Each term is a monomial of a set of random variables.
2) The random variables associated with different rows are

independent.
3) No two elements in the same row have the same exponents.

It follows from [4, Lemma 1] that has full column rank with
probability one.

Combining the interference alignment and the full-rank argu-
ments, we conclude that any point satisfying (1) is achievable.

D. Achievability of the DoF Region With Multiple Antenna
Transmitters and Receivers

We next present the achievability scheme for the multiple an-
tenna case. We assume that all transmitters and receivers are
equipped with the same number of antennas. An achiev-
ability scheme optimal for the total DoF has been proposed in
[3] based on an antenna splitting argument. However, the same
antenna splitting argument cannot be used to establish the DoF
region in general because it relies on the fact that the DoF’s of
the messages are equal, which is the case when the total DoF
is maximized. Indeed, if one attempts to perform antenna split-
ting with unequal DoF’s and then applies the previous scheme
(see Section III-C) by converting it into a single an-
tenna instance with independent messages at each antenna, then
the genie-based outer bound may rule out decoding at certain
receivers.

We now show the achievability of the DoF region of multiple
antenna case based on the method that was proposed in [18]. The
messages are split at the transmit side and transmitted via virtual
single antenna transmitters, while the receivers are still using all

antennas to recover the intended messages. Therefore, the
one-to-many interference alignment scheme given in [18] can
be used here along with the multiple base vectors technique to
achieve the DoF region.

We assume that (7) is still true. After splitting the transmitters,
we now have an interference network with virtual single
antenna transmitters and multiple antenna receivers. For any
transmitter , the th antenna will transmit a message of DoF

. In addition, the beamforming matrices for all the virtual
single antenna transmitters of original system transmitter are
the same, denoted as , and therefore, (8) still holds. However,
its size will be different from the single antenna case as we will
see in the discussion as follows.

1) Set of Alignment Constraints: The channels in the
modified case are all in single input and multiple output
representation. We denote the channel between the th an-
tenna of transmitter and receiver as . Apparently,

. The channel after time
expansion is denoted as , which is a tall matrix of size

. At receiver , we still align the interference messages
with larger indices to the interference message with index .
However, because any channel vectors from virtual single
antenna transmitters to any receiver with antennas are
linearly independent, it is impossible to align the interference
between only two virtual single antenna transmitters. To achieve

alignment at the receivers, we employ a design in [18], where
the signal from one antenna is aligned with the signals coming
from all the antennas of another transmitter. For our problem,
we will align at receiver the message from the th antenna
of transmitter with the messages from all the antennas of
transmitter , for all and for all . Specifically, letting

for notational simplicity, we require

...
. . .

...

(18)

The matrix is full rank and, hence, invertible. It is
shown in [18] that is an matrix having
block form

...

where all block matrices , are diagonal
(see [18, Appendix A]) and, therefore, commutable. Hence, the
constraint (18) can be converted to equivalent constraints

Similar to the single antenna case, we define a set as follows:

And there exists a one-to-one mapping from a vector
in to the corresponding matrix . In

addition, it is easy to see that , where denotes
the constraint set as defined in (9) for the single antenna case.

2) Time Expansion and Base Vectors: Similar to the single
antenna case, we still need to use multiple base vectors to con-
struct the beamforming matrices. Recall is a positive integer
such that (10) is still valid. The total number of base vectors is
still . For transmitter , it uses base vector ,
and all its antennas use all the base vectors. Denote .
We propose to use fold time expansion.

3) Beamforming Matrices Design: The beamforming ma-
trices can be generated in the following way:

i) For any given where , denote as the
cardinality of the following set:

Furthermore, denote as the cardinality of the fol-
lowing set:



3794 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 6, JUNE 2012

which is the number of matrices whose exponents are
within ,
while the other matrices can be raised to the
power of up to . It is evident that

ii) Transmitter uses base vectors. For base vector ,
, it generates the following columns:

where
. Hence, the total number of columns

of is .
iii) Similarly, transmitter uses base vectors. For base

vector , , it generates
columns

where is given in (19) shown at the bottom of
the page.

In summary, the beamforming design is as follows. For mes-
sage , we construct a beamforming column set as

where satisfies (19). The beamforming matrix is
chosen to be the matrix that contains all the columns of ,
which has columns.

4) Alignment at the Receivers: Notice that the beamforming
columns can be divided into parts based on different values
of , which determines the range of the exponents that associates
with the matrices. For any fixed value of , the proof
of alignment at the receivers is the same as the single antenna
case.

5) Achievable Rates: It is evident that is a tall matrix of
dimension . We
can verify that it has full column rank based on [4, Lemma 1].

Therefore, for each antenna of transmitter , the message has
the following DoF:

Notice that the channels , are lin-
early independent; therefore, the messages from virtual single
antenna transmitters are orthogonal to each other. Hence, trans-
mitter can send message with DoF as it has transmit
antennas.

6) Separation of the Signal and Interference Spaces: Finally,
we need to ensure that the interference space and signal space
are linearly independent for all the receivers. This is similar to
the proof in single antenna case as well. For given value of ,
the proof is the same. On the other hand, the blocks associated
with different are apparently linearly independent due to the
nonoverlapping range of exponents.

Hence, combining the interference alignment and the full-
rank arguments, we conclude that any point satisfying (1) is
achievable for multiple antenna case.

IV. DISCUSSION

In this section, we outline some alternative schemes that re-
quire a lower level of time expansion for achieving the same
DoF region, and highlight some interesting consequences of the
general results developed in Section III.

A. Group-Based Alignment Scheme

The achievability scheme presented in Section III requires
all interference messages at one receiver to be aligned with the
largest one. This may introduce more alignment constraints than
needed. We give an example here to illustrate this point.

Example 1:
Consider a simple scenario where there are four messages and

five receivers. Without loss of generality, assuming (8) is true
and , , , ,
and . The alignment constraints associated with
the first two receivers will be the following:

However, in this particular case, upon inspection, one can realize
that even if receiver 2 also receives message 1, the DoF region

(19)
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Fig. 5. Example of alignment. (a) Original scheme. (b) Modified scheme.

will not change. This is because the constraint at receiver 1 dic-
tates that

However, this also implies the required constraint at receiver 2,
which is

Therefore, receiver 2 can use the same alignment relationship
as receiver 1, i.e., it can also decode message 1 without shrinking
the DoF region. The difference between the original alignment
scheme and the modified scheme of receiver 2 is illustrated in
Fig. 5.

The alignment scheme in Section III can be modified appro-
priately using the idea of partially ordered set (poset) [19].

A poset is a set and a binary relation such that for all ,
, , we have the following.
1) (reflexivity).
2) and implies (transitivity).
3) and implies (antisymmetry).

An element in is the greatest element if for every element
, we have . An element is a maximal element

if there is no element such that . If a poset has
a greatest element, it must be the unique maximal element, but
otherwise there can be more than one maximal element.

For two message request sets and , we say
if . With this partial ordering, the collection

of message request sets , with duplicate
elements (message sets) removed, forms a poset. Let denote
the number of maximal elements of this poset, and denote
the th maximal element, . We divide the receivers
into group according to the following rule. For receiver , if
there exists a group index such that , then receiver
is assigned to group . Otherwise, is not a maximal element;
we can assign receiver to any group such that .
In the case where there are multiple maximal elements of the
poset that are “larger” than , we can choose the index of any
of them as the group index of receiver .

With our grouping scheme, there will be at least one receiver
in each group whose message request set is a superset of the
message request set of any other receiver in the same group.

There may be multiple such receivers in each group though. In
either case, we term one such (or the one in case there is only
one) receiver as the prime receiver. We choose all the receivers
within one group use the same alignment relationship as the
prime receiver of that group and the total number of alignment
constraints is reduced. In such a way, the receivers in one group
can actually decode the same messages requested by the prime
receiver of that group, and they can simply discard the messages
that they are not interested in.

For instance in Example 1 given in this section, we can divide
five receivers into three groups. Receivers 1 and 2 as group 1,
receivers 3 and 4 as group 2, receiver 5 as group 3, and prime
receivers are 1, 3, and 5. We remark that there are multiple ways
of group division as long as one receiver can only belong to one
group, e.g., receiver 1 as group 1, receivers 2, 3, and 4 as group
2, receiver 5 as group 3, and prime receivers are 1, 4, and 5.

In line with the aforementioned discussion, we have the fol-
lowing result.

Corollary 1: The DoF region of the interference network with
general message requests as in Section II is determined by the
prime receivers. Adding nonprime receivers to the system will
not affect the DoF region.

Proof: This can be shown as the inequalities (1) associated
with the nonprime receivers are inactive; therefore, the region is
dominated by the inequalities of prime receivers.

B. DoF Region of -User -Antenna Interference Channel

As we pointed out earlier, the -user -antenna interference
channel is a special case of the model we considered in this
paper; hence, its DoF region can be directly derived based on
Theorem 1.

Corollary 2: The DoF region of -user -antenna interfer-
ence channel is

(20)

As a special case of our interference network with general
message request, the corollary requires no new proof. But we
here give an alternative scheme based on simple time-sharing
argument.

Proof: Without loss of generality, suppose
, , and , ,
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. We would like to show that
is achievable.

It is obvious that

can be achieved by single user transmission. It is also known
from [3] that the point

is achievable. Trivially, the point

is achievable.
By time sharing, with weights , , and

among the three points, in that order, it
follows that the point:

is achievable. This is already at least as large as the DoF we
would like to have.

Remark: After the submission of this paper, the following re-
sults have appeared that are related to our work. The DoF region
for a single-antenna interference channel without time expan-
sion has been shown to be the convex hull of
for almost all (in Lebesgue sense) channels [20]. Interestingly,
this agrees with DoF region of the -user single-antenna inter-
ference channel. It can be seen from the proof of Corollary 1 that
the DoF region given in (20) can be alternatively formulated as
the convex hull of the vectors . Set-
ting will yield the desired equivalence of the two DoF re-
gions. This equivalence is nontrivial, however, because it shows
that allowing for time expansion, and time diversity (channel
variation), the DoF region of the interference channel is not in-
creased—the DoF is an inherent spatial (as opposed to temporal)
characteristic of the interference channel.

C. Length of Time Expansion

For the -user -antenna interference channel, the total
length of time expansion needed in [3] is smaller than our
scheme in order to achieve total DoF. This is due to
the fact that when and , , it is possible
to choose carefully such that the cardinality of is the
same as and there is one-to-one mapping between these
two. For other asymmetric DoF points, it is in general not
possible to choose two messages having the same cardinality
of beamforming column sets. The total time expansion needed
could be reduced if we use the group-based alignment scheme
in Section IV-A and/or design the achievable scheme for a
specific network with certain DoF. The method for reducing
the length of time expansion in [21] and [22] is also applicable.

D. Total DoF of an Interference Network With General
Message Demands

As a byproduct of our previous analysis, we can also find
the total DoF for an interference network with general message
demands.

Corollary 3: The total DoF of an interference network with
general message demands can be obtained by a linear program
shown as follows:

(21)

Corollary 4: If all prime receivers demand , ,
messages, and each of the messages is requested by the same
number of prime receivers, then the total DoF is

(22)

and is achieved by

(23)

Proof: Based on Corollary 1, we only need to consider
inequalities (where is the number of groups) that are associ-
ated with the prime receivers. We show that (23) achieves the
maximum total DoF when all messages are requested by the
same number of prime receivers. Notice that in this case we can
expand the inequality of (21) into inequalities by re-
moving the operation. Hence, we will have
inequalities in total. Since each message is requested by
prime receivers, for each it appears times among
the inequalities for prime receivers which request , and it ap-
pears times otherwise. Summing all the )
inequalities, we have

Hence

and the corollary is proven.

Remark 1:
If messages are not requested by the same number of prime

receivers, it is possible to achieve a higher sum DoF than (22).
We only need to show an example here. Assuming that there
are four transmitters and three prime receivers, the message
requests are , , . If all the transmitters send

DoF, we could achieve (22). However, choosing
will lead to sum DoF which is higher.

V. CONCLUSIONS AND FUTURE WORK

We derived the DoF region of an interference network with
general message demands. The region is a convex polytope,
which is the intersection of a number of cylindrical sets whose
projections into lower dimensions are simple geometric shapes
each enclosed by a simplex and the coordinate planes. In cer-
tain special cases, it is possible to find the vertices of the DoF



KE et al.: DEGREES OF FREEDOM REGION FOR AN INTERFERENCE NETWORK WITH GENERAL MESSAGE DEMANDS 3797

region polytope explicitly. One such case is the -user -an-
tenna interference channel with multiple unicasts, whose DoF
region is a convex hull of simple points of the all zero vector, the
scaled natural basis vectors, and a scaled all-one vector, which
interestingly coincides with the DoF region recently obtained
for Lebesgue-a.e. constant coefficient channels with no time di-
versity.

Our achievability scheme for deriving the DoF region oper-
ates by generating beamforming columns with multiple base
vectors over time-expanded channel, and aligning the interfer-
ence at each receiver to its largest interferer. We also showed
that the DoF region is determined by a subset of receivers (called
prime receivers) that can be identified by examining the message
demands of the receivers. We provided an alternate interference
alignment scheme in this scenario, where the certain receivers
share the same alignment relationship, which helps to reduce the
required duration for time expansion.

It would be interesting to consider general message demands
in other interference networks. For instance, if each transmitter
has multiple messages, the receiver demands may result in
alignment constraints that cannot be satisfied in the same
manner as described in this paper. On the other hand, the usage
of multiple base vectors may be useful in proving achievability
for other problems where interference alignment is applicable.
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