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Abstract—We consider the min-cost multicast problem (under
network coding) with multiple correlated sources where each ter-
minal wants to losslessly reconstruct all the sources. We study the
inefficiency brought forth by the selfish behavior of the terminals
in this scenario by modeling it as a noncooperative game among the
terminals. The degradation in performance due to the lack of reg-
ulation is measured by the Price of Anarchy (POA), which is defined
as the ratio between the cost of the worst possible Wardrop equilib-
rium and the socially optimum cost. Our main result is that in con-
trast with the case of independent sources, the presence of source
correlations can significantly increase the price of anarchy. Toward
establishing this result, we first characterize the socially optimal
flow and rate allocation in terms of four intuitive conditions. Next,
we show that the Wardrop equilibrium is a socially optimal solu-
tion for a different set of (related) cost functions. Using this, we
construct explicit examples that demonstrate that the ��� �

and determine near-tight upper bounds on the POA as well. The
main techniques in our analysis are Lagrangian duality theory and
the usage of the supermodularity of conditional entropy.

Index Terms—Distributed source coding, game theory, multi-
cast, network coding, selfish behavior.

I. INTRODUCTION

I N large-scale networks such as the Internet, the agents in-
volved in producing and transmitting information often ex-

hibit selfish behavior, e.g., if a packet needs to traverse the net-
work of various ISP’s, each ISP will behave in a greedy manner
and ensure that the packet spends the minimum time on its net-
work. While this minimizes the ISP’s cost, it may not be the
best strategy from an overall network cost perspective. Selfish
routing, that deals with the question of network performance
under a lack of regulation has been studied extensively (see [1]
and [2]) and has developed as an area of intense research ac-
tivity. However, by and large, most of these studies have con-
sidered the network traffic injected into the network at various
sources to be independent.
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From an information theoretic perspective, there is no need to
consider the sources involved in the transmission to be indepen-
dent. In this paper, we initiate the study of network optimization
issues related to the transmission of correlated sources over a
network when the agents involved are selfish. In particular, we
concentrate on the problem of multicasting correlated sources
over a network to different terminals, where each terminal is in-
terested in losslessly reconstructing all the sources. We assume
that the network is capable of network coding. Under this sce-
nario, a generalization of the classical Slepian–Wolf theorem of
distributed source coding [3] holds for arbitrary networks. In
particular, when the network performs random linear network
coding, each terminal can recover the sources under appropriate
conditions on the Slepian–Wolf region and the capacity region
of the terminals with respect to the sources, thereby allowing
distributed source coding over networks (these conditions are
discussed in detail later). The selfish agents in our setup are the
terminals who pay for the resources. Each terminal aims to min-
imize her own cost while ensuring that she can satisfy her de-
mands. It is important to note that this is a generalization of
the problem of minimum cost selfish multicast of independent
sources considered by Bhadra et al. [4].

A. Our Results

In this paper, we model the scenario as a noncooperative
game amongst the selfish terminals who request rates from
sources and flows over network paths such that their individual
cost is minimized (i.e., with no regard for social welfare)
while allowing for reconstruction of all the sources. We in-
vestigate properties of the socially optimal solution and define
appropriate solution concepts (Nash equilibrium and Wardrop
equilibrium) for this game and investigate properties of the
flow-rates at equilibrium. We briefly describe our contributions
in the following.

1) Characterization of social-optimality conditions: The
problem of computing the socially optimal cost is a
convex program. We present a precise characterization of
the optimality conditions of this convex program in terms
of four intuitive conditions, using Lagrangian duality
theory and by judiciously exploiting the supermodularity
of conditional entropy. This result is a key technical con-
tribution of this paper and is of independent interest as
well.

2) Demonstrating the equivalence of flow-rates at equilibrium
with social-optimal solutions for alternative instances: We
consider certain meaningful market models that split re-
source costs amongst the different terminals and show that
the flows and rates under the game-theoretic equilibriums
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are, in fact, socially optimal solutions for a different set
of cost functions. This characterization allows us to quan-
tify the degradation caused by the lack of regulation. The
measure of performance degradation due to such loss in
regulation that we adopt is the Price of Anarchy (POA),
which is defined as the ratio between the cost of the worst
possible equilibrium and the socially optimum cost [2],
[5]–[7].

3) Showing that source correlation induces anarchy: The
main result of this paper is that the presence of source
correlations can significantly increase the POA under
reasonable cost-splitting mechanisms. This is in stark
contrast to the case of multicast with independent sources,
where for a large class of cost functions, cost-splitting
mechanisms can be designed that ensure that the price of
anarchy is one. We construct explicit examples where the
POA is greater than one and also obtain an upper bound
on the POA which is near tight, i.e., we demonstrate an
example of a network topology and a source distribution,
where the POA is quite close to the derived upper bound.

Finally, we expect that the techniques developed in the this
paper may be applicable to a large class of network information
flow problems with correlated sources where the Slepian–Wolf
polytope is replaced by polymatroid-like objects. These include
multiterminal source coding with high resolution [8] and the
CEO problem [9].

B. Background and Related Work

Distributed source coding (or distributed compression)
(see [10, Ch.14] for an overview) considers the problem of
compressing multiple discrete memoryless sources that are
observing correlated random variables [8]. The landmark result
of Slepian and Wolf [11] characterizes the feasible rate region
for the recovery of the sources. However, the problem of
Slepian and Wolf considers a direct link between the sources
and the terminal. More generally, one would expect that the
sources communicate with the terminal over a network. Dif-
ferent aspects of the Slepian–Wolf problem over networks
have been considered in [12]–[17]; for a tutorial overview, see
[18]. Network coding (first introduced in the seminal work of
Ahlswede et al. [19]) for correlated sources was studied by Ho
et al. [14]. They considered a network with a set of sources
and a set of terminals and showed that as long as the minimum
cuts between all nonempty subsets of sources and a particular
terminal were sufficiently large (essentially as long as the
Slepian–Wolf region of the sources has an intersection with the
capacity region of a given terminal), random linear network
coding over the network followed by appropriate decoding at
the terminals achieves the Slepian–Wolf bounds.

The problem of minimum cost multicast under network
coding has been addressed in [20] and [21]. The multicast
problem has also been examined by considering selfish agents
[4], [22], [23]. Our work is closest in spirit to the analysis
of Bhadra et al. [4] that considers selfish terminals. In this
scenario, for a large class of edge cost functions, they develop
a pricing mechanism for allocating the edge costs among the
different terminals and show that it leads to a globally optimal

solution to the original optimization problem, i.e., the price
of anarchy is one. Their POA analysis is similar to that in the
case of selfish routing [2], [7]. Our model is more general and
our results do not generalize from theirs in a straightforward
manner. In particular, we need to judiciously exploit several
nontrivial properties of the Slepian–Wolf polytope in our
analysis.

Furthermore, motivated by the need to deal with selfish users,
particularly in network setting, there has been a large body of re-
cent work at the intersection of networking, game theory, eco-
nomics, and theoretical computer science [1], [24], [25]. This
paper adds another interesting dimension to this interdiscipli-
nary area.

II. MODEL

Consider a directed graph . There is
a set of source nodes that may be correlated and a set of
sinks that are the terminals (i.e., receivers). Each source node
observes a discrete memoryless source . The Slepian–Wolf
region [11] of the sources is assumed to be known and is de-
noted . For notational simplicity, let ,

, and . For the case
of sources, has the following form:

where denotes the conditional entropy of the
sources indexed by set given the remaining sources.

The set of paths from source to terminal is denoted by
. Furthermore, define , i.e., the set of all

possible paths going to terminal , and , the set
of all possible paths. A flow is an assignment of nonnegative
reals to each path . The flow on is denoted . A
rate is a function , i.e., the rate requested
by the terminal from the source is . We will refer to a
flow and rate pair as flow-rate. Also, let us denote the
rate vector for terminal by and the vector of requested
rates at source by , i.e., and

.
Associated with each edge is a cost , which takes as

argument a scalar variable that depends on the flows to var-
ious terminals passing through . Similarly, let be the cost
function corresponding to the source , which takes as argu-
ment a scalar variable that depends on the rates that various
terminals request from . These functions ’s and ’s are as-
sumed to be convex, positive, differentiable, and monotonically
increasing. Furthermore, the functions are also as-
sumed to be convex, positive, differentiable, and monotonically
increasing. In particular, these conditions are satisfied by func-
tions like , and among others.

The network connection we are interested in supporting is one
where each terminal can reconstruct all the sources, i.e., we need
to jointly allocate rates and flows for each terminal so that it can
reconstruct the sources. We now present a formal description of
the optimization problem under consideration.
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A. Min-Cost Multicast With Multiple Sources

Let us call the quadruple an instance.
The problem of minimizing the total cost for the instance

can be formulated as

(1)

where is a function of ,
that we denote with

, and is a
function of that we will denote . Henceforth, we will
refer to this optimization problem as Network Information
Flow—Convex Program (NIF-CP).

The aforementioned formulation is similar to the one pre-
sented in [4]. However, since we consider source correlations
as well, their formulation is a specific case of our formulation.
Since network coding allows the sharing of edges, the penalty
at an edge is only the maximum and not the sum, i.e., is the
maximum flow (among the different terminals) across the edge
. Similarly, the penalty at the sources for higher resolution

quantization is also driven by the maximum level requested
by each terminal, i.e., is also maximum. In this paper, for
differentiability requirements, the maximum function will be
approximated as norm with a large . Nevertheless, most of
our analysis is done where and are nondecreasing functions
partially differentiable with respect to their arguments, such
that and are convex, positive, differentiable, and
monotonically increasing. Note that in the aforementioned for-
mulation, the objective function is convex and all constraints are
linear which implies that this is a convex optimization problem.

The aforementioned constraint (1) models the fact that the
total flow from the source to a terminal needs to be at least

. The next constraint enforces the rate point of each terminal
to be within the Slepian–Wolf polytope. A flow-rate

satisfying all the conditions in the aforementioned optimization
problem (i.e., (NIF-CP)) will be called a feasible flow-rate for
the instance and the cost will be re-
ferred to as the social cost corresponding to this flow-rate. Also,
we will call a solution of the aforementioned problem
as an OPT flow-rate for the instance .

Consider a feasible flow-rate for the aforementioned
optimization problem. It can be seen that the value of the flow
from to a terminal is

. Since , the result of [14] (see also [15],
[26]) shows that random linear network coding followed by ap-
propriate decoding at the terminals can recover the sources with
high probability. Conversely, the result in [12] and [27] shows
the necessity of the existence of such a flow.

B. Terminals’ Incentives and the Distributed Compression
Game (DCG)

The aforementioned formulation for social cost minimiza-
tion for the instance disregards the fact that

the agents who pay for the costs incurred at the edges and the
sources may not be cooperative and may have incentives for
strategic manipulation. In this paper, we consider the scenario
where the terminals pay for the network resources they are
being provided. The terminals are noncooperative and will
behave selfishly trying to minimize their own respective costs
without regard to the social cost, while ensuring that they can
reconstruct all the sources. We have the following assumptions.

1) Let denote a feasible flow-rate for the instance
. The network operates via random linear

network coding (or some practical linear network coding
scheme) over the subgraph of induced by the corre-
sponding for . The terminals are capable of
performing appropriate decoding to recover the sources.

2) Each terminal can request for any specific set of
flows on the paths and rates as long as such
a request allows reconstruction of the sources at . There
is a mechanism in the network by means of which this
request is accommodated, i.e., the subgraph over which
random linear network coding is performed is adjusted
appropriately.

In this paper, we wish to characterize flow-rates that represent
an equilibrium among selfish terminals who act strategically to
minimize their own costs. Furthermore, we shall systematically
study the loss that occurs due to the mismatch between the social
goals and terminal’s selfish goals.

Toward this end, we now formally model the game origi-
nating from the selfish behavior of the terminals. We model this
game as a normal form game or strategic game [28], which we
refer to as the DCG.

A normal form game, denoted ,
consists of the set of players , the tuple of set of strategies
for each player , and the tuple of preference relations
for each player on the set . For ,

means that the player prefers the tuple of strategies
to the tuple of strategies . In the context of DCG, given

an instance , these parameters are defined as
follows.

1) Distributed Compression Game (DCG):
• Players: , i.e., the terminals are the players. This

is because, as aforementioned, the terminals are the users
and they are the ones who pay for the network resources
they are being provided.

• Strategies: The strategy set of a player consists of
tuples where
— is the vector of flows on paths going to , i.e., the

vector of values for all , and recall that
denotes the rate vector for terminal ;

— and
.

Therefore

(2)

Note that a feasible flow-rate for the instance
is an element of the set

defined for the same instance.
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• Preference Relations: To specify the preference relation of
terminal , we need to know how much does she pay
given a feasible flow-rate , i.e., what fractions of the
costs at various edges and sources are being paid by ?
To this end, we need market models, i.e., mechanisms for
splitting the costs among various terminals.
— Edge Costs: At a flow , the cost of an edge

is . It is split among the terminals , each
paying a fraction of this cost. Let us say that the frac-
tion paid by the player is , i.e., the player

pays for the edge where de-
notes the vector . Of course,

to ensure that the total cost is
borne by someone or the other. The total cost borne by

across all the edges is , denoted

.
— Source Costs: At a rate , the cost for the source

is , which is split among the terminals
, such that pays a fraction , i.e.,

the player pays for the source .
Of course, . Therefore, the total

cost borne by for all sources, denoted , is
.

Thus, with the edge-cost-splitting mechanism and the
source-cost-splitting mechanism , the total cost incurred
by the player at flow-rate denoted
is

Now, each terminal would like to minimize its own
cost, i.e., the function , and therefore, the pref-
erence relations are as follows. For two flow-rates

and , if and only
if . Also, iff

.
Note that for specifying a DCG, in addition to the parameters

, and , we also need the cost-splitting mechanisms
and . We will call as an instance of

the DCG.
2) Solution Concepts for the DCG: We now outline the pos-

sible solution concepts in our scenario. These are essentially
dictated by the level of sophistication of the terminals. Sophis-
tication refers to the amount of information and computational
resources available to a terminal. In this paper, we shall work
with two different solution concepts that we now discuss.

a) Nash Equilibrium. The solution concept of Nash equilib-
rium requires the complete information setting and requires
each terminal to compute her best response to any given tuple of
strategies of the other players. For notational simplicity, let
be the vector of flows on paths not going to terminal , i.e., the
vector of values for all ; therefore, .
Similarly, is the vector of rates corresponding to all players
other than ; therefore, . In our setting, the
best response problem of a terminal is to minimize her cost

function over given any
. Therefore, a Nash flow-rate is defined as follows.

Definition 1 (Nash Flow-Rate): A flow-rate feasible
for the instance is at Nash equilibrium, or is a
Nash flow-rate for instance , if

We note that computing the best response will, in general, re-
quire a given terminal to know flow assignments on all possible
paths and rate vectors for all the terminals. Moreover, convexity
of the objective function in NIF-CP (i.e., social cost )
does not imply convexity of in the vari-
ables in general. Therefore, the computational
requirements at the terminals may be large. Consequently, Nash
equilibrium does not seem to be an appropriate solution concept
for the DCG when viewed through the algorithmic lens.

b) Wardrop Equilibrium. From a practical standpoint, a ter-
minal may only have partial knowledge of the system and may
be computationally constrained. A solution concept more ap-
propriate under such situations is that of local Nash equilibrium
or Wardrop equilibrium that is widely adopted in selfish routing
and transportation literature [2], [29], [30]. We note that this so-
lution concept has also been utilized in [4] and is further justified
in [31]. We first present the precise definition of the Wardrop
equilibrium in our case and then provide an intuitive justifica-
tion. Toward this end, we need to define the marginal cost of a
path.

Definition 2 (Marginal Cost of a Path): For a its
marginal cost is

Therefore, for the terminal , the total cost for the edges, ,
can be equivalently written as

Definition 3 (Wardrop Flow-Rate): A flow-rate
feasible for the instance is at local Nash
equilibrium, or is a Wardrop flow-rate for instance

, if it satisfies the following conditions.
1) , we have

2) , we have

3) , with
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4) For , consider that participates in all tight
rate inequalities involving (i.e., if , such that

and 1; then, ) and
let with ; then, we have

Intuitively, conditions (1) and (2) require that each terminal
requests as little rate and flow as possible. Condition (3) en-
sures that an infinitesimally small change in flow allocations
from path (where ) to path where ,
will increase the sum cost along paths in . Now, consider an
infinitesimally small change in flow allocation from
(where ) to . This also requires a corresponding
change in the rates requested from sources and by terminal .
Under certain constraints on the source , condition (4) ensures
that the overall effect of this change will serve to increase ter-
minal ’s cost. The conditions on the source are well motivated
in light of the characterization of Nash flow-rate in Section V in
the case when the best response problem of every terminal is
convex.

We remark that a Nash flow-rate may not always be a Wardrop
flow-rate and vice versa. When sources are independent, condi-
tion (2) implies that for all and it
is not required to check the condition (4). Also, we can recover
condition (3) by setting in condition (4). They are stated
separately for the sake of clarity.

As we discussed earlier, the solution concept based on
Wardrop equilibrium seems more suitable to our scenario, and
consequently, we define the price of anarchy [2], [5], [6] in
terms of Wardrop flow-rate instead of Nash flow-rate.

Definition 4 Price of Anarchy (POA): Let be a class of
edge cost functions, be a class of source cost functions,

be a class of networks/graphs, be an edge cost split-
ting mechanism, be a source cost splitting mechanism,
and be a set of Slepian–Wolf polytopes. We will refer to

as a scenario. The price of anarchy for the
scenario , denoted , is
defined as maximum over all instances with

, of the ratio between
the cost of worst possible Wardrop flow-rate for the instance

and the cost of OPT flow-rate (i.e., the
socially optimal cost) for the instance . That is

where refers to the optimal cost of
NIF-CP for the instance .

Let us denote the set of Slepian–Wolf polytopes corre-
sponding to the case where there are no source correlations

1We use��� �� � and��� �� � interchangeably in the text to de-
note the joint entropy of the sources in set � given the remaining sources.

(i.e., for all ) by (sub-
script denotes— independent) and the set of Slepian–Wolf
polytopes corresponding to the case where sources are corre-
lated (i.e., there exists with )
by . Also, we use to denote the class of all graphs
where every is connected to every , and
(subscript denotes—direct Slepian–Wolf) to denote the
class of complete bipartite graphs between the set of sources
and the set of terminals. Note that corresponds to the
case where every terminals is directly connected to every
source by an edge and no network coding is required. A
question we will be most concerned within this paper is
whether ,
and in particular whether but

for meaningful classes of cost
functions and reasonable splitting mechanisms and ,
i.e., does correlation induce anarchy?

III. SOME PROPERTIES OF SLEPIAN–WOLF POLYTOPE

In this section, we establish two properties of Slepian–Wolf
polytope that will be useful in the later sections.

Lemma 5: Let , i.e.,
for all . If satisfy

and

then we have

and

Proof: We have

where in the second step we have used the supermodularity
property of conditional entropy. Now we are also given that

and
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Therefore, we can conclude that

and

Theorem 6: Consider a vector such that

Then, there exists another vector such that
for all and

Proof: We claim that there exists a
such that all inequalities in which

participates are loose. The proof of this claim follows.
Suppose that the aforementioned claim is not true. Then, for

all where , there exists at least one subset
such that

i.e., each participates in at least one inequality that is tight.
Now by applying Lemma 5 on the sets ,

since , we get

, which is a contradiction.
The aforementioned argument shows that there exists some
such that all inequalities in which participates are loose.

Therefore, we can reduce to a new value until one of
the inequalities in which it participates is tight. If the sum-rate
constraint is met with equality, then we can set oth-
erwise we can recursively apply the aforementioned procedure
to arrive at a new vector that is component-wise smaller that the
original vector .

IV. CHARACTERIZING THE OPTIMAL FLOWS AND RATES

In this section, we investigate the properties of an OPT flow-
rate via Lagrangian duality theory [32]. Since the optimization
problem NIF-CP is convex and the constraints are such that
the strong duality holds, the Karush–Kuhn–Tucker(KKT) con-
ditions exactly characterize optimality [32]. Therefore, we start
out by writing the Lagrangian dual of NIF-CP

where and are the dual variables
(i.e., Lagrange multipliers). For notational simplicity, let us de-
note the partial derivative of with respect to , by

. Note that the partial derivative of w.r.t. to is 1 for
a path such that . Similarly, we denote the partial
derivative of with respect to , by . The KKT
conditions are then given by the following equations that hold

:

(3)

(4)

along with the feasibility of the flow-rate and the com-
plementary slackness conditions, for all ,

for all , and
for all .

Let us now interpret the KKT conditions at the OPT flow-rate
. Suppose that for . Then due to

complementary slackness, we have and conse-
quently from (3) we get , i.e., if
there exists another path such that , then

.
Now, if we interpret the quantity as

the differential cost of the path associated with the flow-rate
then this condition implies that the differential cost of

all the paths going from the same source to the same terminal
with positive flows at OPT is the same. It is quite intuitive for
if it were not true the objective function could be further de-
creased by moving some flow from a higher differential cost
path to a lower differential cost one without violating feasibility
conditions, and, of course, this should not be possible at the op-
timum. Similarly, the differential cost along a path with zero
flow at OPT must have higher differential cost and indeed this
can be obtained as earlier by further noting that the dual vari-
ables ’s are nonnegative. We note this property of the OPT
flow-rate in the following lemma.

Lemma 7: Let be an OPT flow-rate for the instance
. Then, , with

we have

The aforementioned lemma provides a simple and intuitive
characterization of how the flow allocations on various paths of
same type (that is originating at same source and ending at the
same terminal) behave at the optimum solution. Although such
a simple and intuitive characterization of the behavior of joint
flow and rate allocations at optimum is not immediately clear,
we can indeed obtain three other simple and intuitive conditions
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that together with Lemma 7, are equivalent to the KKT condi-
tions. We establish this important characterization in the The-
orem 11. First, we will show in the next three lemmas that these
conditions are necessary for optimality.

Lemma 8: Let be an OPT flow-rate for the instance
. For , suppose that there exist

that satisfy the following property. If , such that
and , then . For such and
let with . Then

Proof: Since is an OPT flow-rate, it satisfies the
KKT conditions for some suitable choice of dual variables

, , . Now, we are given that for
all such that and ,
so if there is an such that but then

and therefore by complementary
slackness we get . Furthermore, from (4), we have

and

Therefore, we get

Furthermore, we are given that which, using (3) and
complementary slackness condition , implies that

and since we have
. Therefore

This concludes the proof.

Lemma 9: Let be an OPT flow-rate for the in-
stance wherein the functions ’s and ’s
are all strictly convex; then , we have

.
Proof: Let ; then, there is a

with . Define a new feasible flow such that
if and for some

. Then

Now, the function is nondecreasing. In addition, is nonde-
creasing in each coordinate. Together, this means that

for all . Therefore

which is a contradiction because , due to strict convexity
of the function , is the unique OPT flow-rate.

Lemma 10: Let be an OPT flow-rate for the instance
wherein the functions ’s and ’s are all

strictly convex; then, , we have
Proof: As is feasible, , , and there-

fore, . Suppose
for some ; then, from Theorem 6, there exist an ,
such that all (Slepian–Wolf) inequalities in which partici-
pates are loose. Therefore, we can decrease this rate by a
positive amount , i.e., to , without violating
feasibility. This means that we can define a feasible rate such
that if and for some .
Now

Now, is nondecreasing; in addition, is nondecreasing in
each coordinate. Together, we conclude that .
Therefore

which is a contradiction because , due to strict convexity
of the function , is the unique OPT flow-rate.
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Theorem 11: A feasible flow-rate for the instance
, which satisfies the following four conditions is

an OPT flow-rate for the instance . Also, there
is always an OPT flow-rate that satisfies these four conditions.
Furthermore, when the edge cost functions for all and
the source cost functions for all are strictly convex,
that is when the optimization problem NIF-CP is strictly
convex, these conditions are also necessary for optimality.

1) , we have

2) , we have

3) , with ,

4) For , suppose that there exist that satisfy
the following property. If , such that and

, then . For such and
let with . Then

Proof: We prove that the aforementioned four conditions
imply optimality of . Our assumptions guarantee that the
optimization problem NIF-CP for the instance
is convex and since all the feasibility constraints are linear,
strong duality holds [32]. This implies that the KKT conditions
are necessary and sufficient for optimality. We show that a fea-
sible flow-rate with the aforementioned four properties
satisfies the KKT conditions for the instance for
a suitable choice of the dual variables given in the following.
Choosing ’s:

Note that, using Condition 3, for , if there exist a
such that then we have

Choosing ’s: For take

Choosing ’s: Let

Let denote a permutation such that
Now take

Now, with the aforementioned choice of dual variables, we
will check all the KKT conditions one by one.
Dual Feasibility:

• as and are nondecreasing functions, i.e.,
and .

• by the definition because
.

• by definition.
KKT Conditions as per (3):

KKT Conditions as per (4):

Complementary Slackness Conditions:
• for all .

Let and ; then, using Condition 3 and
definition of , we get

and therefore

• for all .
This follows from the Condition 1.

• for all
.

Note that except for
. Therefore, the only

condition that needs to be checked is that if
then

.
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Toward this end, let , and
let be the minimum cardinality set such that and

, i.e.

Such a set always exists because from Condition 2, we
have , and therefore, the set

is not empty.
We claim that there exists a

such that is not empty. If this
is not true, then clearly we have

and using the supermodularity property of con-
ditional entropy (ref. Lemma 5), we obtain

which is a contradiction; therefore, we must have such
a such that

is not empty.
Next, we show that there exists a source

such that if
and , then . Toward this
end, suppose that there exist subsets and of such
that and and

; then, using the supermodularity
property of conditional entropy, we can show that rate
inequality involving is also tight (Lemma 5), i.e.,

. This implies that
, being of minimum cardinality, is the intersection of all

sets that have as a member on which the rate inequality is
tight, i.e.

Moreover note that is not a singleton set since
. Therefore, there

exists a such that . By our aforementioned
arguments, this implies that if is such that and

, then .
Clearly, as does not partic-

ipate in this rate inequality. Therefore, which
implies that there exists a with ; there-
fore, using Condition 3 and the definition of , we have

. Also, by the definition of
there is a such that .

Now using Condition 4, we get

which implies that

and therefore we get . Now note that
while .

This implies in turn that . But, we know
that , i.e., but we already
have and hence .

This establishes that the four conditions are sufficient for op-
timality. Furthermore, as per Lemmas 7, 8, 9, 10, under strict
convexity conditions, these conditions are necessary too.

Corollary 12: If the sources are independent (i.e.,
), there is a feasible flow-rate for instance

that is an OPT flow-rate for both the instances
and , where for constant ,
and is any convex, differentiable, positive, and nondecreasing
function. Furthermore, this OPT flow-rate satisfies the four con-
ditions in Theorem 11 for both the instances and

.
Proof: The idea is that when the sources are independent,

Condition (2) in Theorem 11 implies that for
all , and therefore, there is no pair such
that participates in all tight rate inequalities involving , and
consequently, it is not required to check Condition (4). For the
sake of completeness, the proof follows.

Let be an OPT flow-rate for satisfying
the four conditions in Theorem 11. Note that such an OPT flow-
rate always exists as per Theorem 11. Since the sources are in-
dependent, the rate inequalities constraints becomes

Therefore, using Condition (2) in Theorem 11, we obtain

Now, we will show that is also an OPT flow-rate for
the instance by showing that it satisfies the four
conditions in Theorem 11 for instance . Note that
Conditions (1) and (2) are easily satisfied by as they do
not depend on particular cost functions. Furthermore

therefore condition

is equivalent to

therefore condition (3) is also satisfied. For the condition (4),
let us first note that as discussed earlier for all

. This implies that there is no pair
satisfying the promise in condition (4), i.e., there is no pair
such that participates in all tight rate inequalities involving
(simply because does not participate in the tight rate inequality

). Thus, satisfies all the four conditions in
Theorem 11 for the instance and, hence, is an
OPT flow-rate for .
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V. FLOWS AND RATES AT NASH EQUILIBRIUM

In this section, we study the properties of a Nash flow-rate
whenever the individual optimization problem (i.e., the best re-
sponse problem) of each terminal is convex, that is whenever
Nash equilibrium can be considered as an appropriate solution
concept for the DCG when viewed through the algorithmic lens.
Therefore, throughout this section, we assume that the edge
cost splitting mechanism , as well as, the source cost splitting
mechanism are such that the functions , for all , are
convex. By considering the best response problem of each ter-
minal, and an approach essentially the same as in the Section IV
for characterizing OPT flow-rate, we can obtain the following
Theorem 13 for characterizing Nash flow-rate.

Theorem 13: Consider an instance
where is convex for all . A feasible flow-rate
for the instance , which satisfies the following
four conditions is a Nash flow-rate for .
Furthermore, when is strictly convex for all , these
conditions are also necessary.

1) , we have

2) , we have

3) , with

4) For , let participates in all tight rate inequal-
ities involving (i.e., if , such that
and , then ) and let

with then we have

Furthermore, under similar convexity conditions, we can also
show that a Nash flow-rate always exists for the DCG This is
done via first compactifying the strategy sets ’s to obtain
a restricted game where existence of a Nash equilibrium fol-
lows from the standard fixed point theorems [28]. Then, by uti-
lizing the monotonically nondecreasing properties of various
cost functions, it is argued that a Nash equilibrium of the re-
stricted game is also a Nash flow-rate for our DCG thereby
proving the existence of a Nash flow-rate for DCG.

The result stated in the following (Theorem 14) is a standard
result on the existence of Nash equilibrium and can be found,
for instance in the book by Osborne and Rubinstein [28].

Theorem 14: The strategic game has a Nash
equilibrium if for all , the following conditions hold.

1) The set of actions of player is a nonempty compact
convex subset of a Euclidean space.

2) The preference relation is continuous and quasi-con-
cave on . A preference relation on is said to

be quasi-concave on if for every , the set
is convex. A preference rela-

tion on is said to be continuous if whenever
there are sequences and with and

for all such that and converge to
and , respectively.

Now, let us consider an instance of the
DCG, where is convex for all .

The action set of the terminal is

(5)

Clearly, this is a nonempty convex subset of an Euclidean
Space, but it is not compact.

Let us consider a game with a restricted set of strategies de-
noted ’s as follows and let us call this new game as the re-
stricted game for the instance

(6)

Now, the set becomes compact as it is a closed and
bounded subset of an Euclidean space, and therefore, satis-
fies the requirement of the Theorem 14.

Since players’ cost functions are convex and continuous
for all , the condition in the Theorem 14 is also satisfied
and we obtain the following result.

Lemma 15: The restricted game for the instance
, where is convex for all ,

admits a Nash equilibrium.
Now, we claim that every Nash equilibrium of the restricted

game is also a Nash equilibrium for the original game and that
will imply the existence of a Nash flow-rate for the original
game.

Lemma 16: Every Nash equilibrium of the restricted game
for the instance , where is convex
for all , is also a Nash flow-rate for the instance

.
Proof: Let be a Nash equilibrium of the restricted

game for the instance . Then, for all , we
have

for all feasible for the restricted game, i.e., coming from
the restricted strategy set .

Now, let , i.e., is feasible for the
original game but not feasible for the restricted game. For ease
of notation, let us define the following quantities:
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Note that in defining and , we have projected all the flows
and rates violating the feasibility for the restricted game to their
boundary values and, therefore, the strategy

, i.e., it is feasible for the
restricted game.

Now

and since is a Nash equilibrium for the restricted game
and is feasible for
the restricted game, we have

and therefore for all
implying that is a Nash equilibrium of

the original game meaning is a Nash flow-rate for the
instance .

Combining the Lemmas 15 and 16, we obtain the following
theorem.

Theorem 17: An instance , where
is convex for all , admits a Nash flow-rate.

VI. WARDROP FLOW-RATE AND THE PRICE OF ANARCHY

In this section, we investigate the inefficiency brought forth
by the selfish behavior of terminals. First, we will show that the
Wardrop equilibrium is a socially optimal solution for a different
set of (related) cost functions. Using this, we will construct ex-
plicit examples that demonstrate that the POA and deter-
mine near-tight upper bounds on the POA as well. We start out
with the characterization of Wardrop flow-rate.

Theorem 18: Let

and . A Wardrop flow-rate for

is an OPT flow-rate for ,
where . Furthermore, when the
edge cost functions for all and the source cost
functions for all are strictly convex, an OPT
flow-rate for is also a Wardrop flow-rate for

, where .
Proof: We will show that the definition of a Wardrop

flow-rate for instance exactly corre-
sponds to the four conditions for the instance
in Theorem 11.

We have

Fig. 1. Example of a network where POA is linear in � .

Fig. 2. Classical Slepian–Wolf network with appropriate costs also has POA
� �.

Therefore

where the last equality follows from the fact that

Also

Therefore

The result follows from the equivalence of conditions coming
from Definition 3 and Theorem 11.

In contrast with the result of [4] that holds for a single source
with the edge cost splitting mechanism used earlier, from The-
orem 18, we can note that for most reasonable cost splitting
mechanisms, the POA will not equal one for all monomial edge
cost functions. We construct explicit examples for POA in
Figs. 1 and 2. The example in Fig. 1 is near tight as will be evi-
dent from an upper bound on POA derived in Theorem 20.



RAMAMOORTHY et al.: SELFISH DISTRIBUTED COMPRESSION OVER NETWORKS: CORRELATION INDUCES ANARCHY 3193

It is interesting to note that in the case when sources are inde-
pendent, in the Wardrop or OPT solutions, the rates requested
at various sources will equal their respective lower bounds (i.e.,
their entropies). Therefore, the cost term corresponding to the
sources will be fixed, and one only needs to find flows that min-
imize the edge costs. In this situation, it is not hard to see that
the POA will again equal one for all monomial edge cost func-
tions. This means that it is the correlation among the sources
that is responsible for bringing more anarchy. We formalize this
as follows.

Let be the set of
edge cost functions where all edge cost functions are monomial
of the same degree possibly with different coefficients, and

. Similarly,
. Also, let .

Corollary 19 Correlation Induces Anarchy: Let

, ,

, and ; then, we have
1) .
2) .
3) for large values of

and . In fact, .
4) for large values

of and .
Proof: Let , i.e., for

for all ; therefore,
. Also, . Now, since the

sources are independent (i.e., ), from The-
orem 18 and Corollary 12, it follows that a Wardrop
flow-rate for instance is also an OPT
flow-rate for the instance which implies that

Even if the sources are correlated, when we have , we
have and using Theorem 18, a Wardrop
flow-rate for instance is also an OPT flow-
rate for the instance which implies that

We prove and consequently

by explicitly constructing an example as provided in Fig. 1. All
sources are identical with entropy ; therefore, .
Let for all ; therefore, , and the
edge cost functions, except for the edge for
which . Therefore, . Let us consider the
following flow-rate

Clearly, is feasible for the instance .
We claim that is a Wardrop flow-rate for the instance

when . To see this,

first note that satisfies the conditions (1) and (2) in the
definition of Wardrop flow-rate (Definition 3) for the instance

. We will now check the conditions (3)
and (4) in Definition 3. Note that whenever

for all for some and by continuity this
is true even if . Therefore

Clearly, the condition (3) is satisfied as
. Also

Therefore, when , we get

which implies that the condition (4) is also satisfied. Thus,
is indeed a Wardrop flow-rate for the instance

. Furthermore
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Now, let us consider another flow-rate

Clearly, is feasible for the instance .
Furthermore

we get as
.
Thus, when , we have

. As OPT , this implies
that the POA is greater than one.

In particular

Now, take ,
and note that

as well as

Therefore, we get

This is near tight as will be evident from Theorem 20.
To establish (4), we will prove a stronger result,

, by constructing an example
as described in the following. As shown in Fig. 2, there are
two sources and two terminals which are directly connected
to each source. Both sources are identical with entropy 1,

with and
for all edges. We now outline the argument that

shows that the POA

First, observe that the instance is symmetric with respect to
terminals and all cost functions are strictly convex. Therefore,
the OPT flow-rate for the instance, denoted is such that

for . Next, by the characterization as
per Theorem 18, the Wardrop flow-rate, denoted is an
OPT flow-rate for with the source cost functions
remaining the same. This new instance with is
also symmetric with respect to the terminals and the cost func-
tions remain strictly convex. Therefore, we conclude that for
the Wardrop flow-rate as well for .
Let and . Using the
properties of Wardrop flow-rate and OPT flow-rate as per con-
dition (2) in Theorem 11, we have and

. We argue in the following that .
Consequently, by uniqueness of the OPT flow-rate (due to strict
convexity of the objective function), we will have

implying . We have
for

Similarly

By the definition of Wardrop flow-rate, we have

Thus

Furthermore

implies that

Therefore

Now, from Theorem 18, is a Wardrop flow-rate for the
instance where everything remains the same except for the edge
cost functions which are now instead of and performing
the similar calculations as earlier for , we obtain
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Clearly, since , we get . In particular, take
; then, and .

Thus, implying that
, in this example.

Note that while constructing the aforementioned examples,
the source cost splitting function we have used is

. Furthermore, for the same mechanism, Corollary 19 (2)
provides an example of edge cost functions that gives a POA
of one, and possibly this is the only choice giving POA one.
Before considering another reasonable splitting mechanism, we
first establish an upper bound which is nearly attainable by in-
stance given in Fig. 1.

Theorem 20: Let

and . Then

Proof: As in the proof of Theorem 18, we have

and

Let be a Wardrop flow-rate and be
OPT for , respectively. Furthermore, let

.
Now

and

Let us first consider the case where , i.e.,

Now, from Theorem 18, is OPT for and
because is feasible for , we get

Therefore

Similarly, for the case when , i.e.,

Now, from Theorem 18, is OPT for
and because is feasible for we get

Therefore

Now, we consider another splitting mechanism
that looks more like the edge cost splitting mechanism

. Specifically, take and
. Let us first note the generalization

of Corollary 19(1) for any source cost splitting mechanism .
Proof is essentially the same as earlier. The condition (2) in
the definition of Wardrop flow-rate as well as OPT flow-rate
renders all the rates to be equal to their corresponding entropies,
and consequently, the condition (4) need not be checked.

Lemma 21: Let ,

, and be any source cost splitting func-

tion; then, we have

Now, we will argue that with

and , we

have for large values
of and . Let us consider the same example as in Fig. 2 but
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with the new source cost splitting mechanism. First, note that
OPT flow-rate is independent of the choice of cost splitting
functions and the previously calculated OPT flow-rate for this
instance is given by

We will argue that this is not a Wardrop flow-rate and since the
OPT flow-rate is unique (by strict convexity), we will obtain

. After some simple calculations, we get

Therefore

Also, and . Note
that in this example. Now, with , we
have and therefore

Theorem 22: Let ,

, , and

for large values of and ; then, we have

VII. FUTURE DIRECTIONS

In this paper, we have initiated a study of the inefficiency
brought forth by the lack of regulation in the multicast of mul-
tiple correlated sources. We have established the foundations
of the framework by providing the first set of technical results
that characterize the equilibrium among terminals, when they
act selfishly trying to minimize their individual costs without
any regard to social welfare, and its relation to the socially op-
timal solution. Our paper leaves out several open problems that
we discuss as follows.

Network Information Flow Games: From Slepian–Wolf to
Polymatroids: The results presented in this paper are expected

to naturally extend to a large class of network information
flow problems where the entropy is replaced by any rank
function [33] and equivalently conditional entropy is replaced
by any supermodular function. This is because the only special
property of conditional entropy used in our analysis is its su-
permodularity. Polytopes described by such rank functions are
called contra-polymatroids and the SW polytope is an example.
Therefore, by abstracting the network coding scenario to this
more general setting, we can obtain a nice class of multiplayer
games with compact representations.

Dynamics of Wardrop Flow-Rate: Can we design a nonco-
operative decentralized algorithm that steers flows and rates in
way that converges to a Wardrop flow-rate? What about such
an algorithm which runs in polynomial time? A first approach
could be to consider an algorithm where each terminal greedily
allocates rates and flows by calculating marginal costs at each
step.

Better Bounds on POA: Although we have provided explicit
examples where correlation brings more anarchy, as well as, an
upper bound on POA which is nearly achievable, we believe that
more detailed analysis is necessary. An important approach in
this direction would be to characterize exactly how the POA de-
pends on structure of SW region, i.e., to analyze the finer details
on how correlation among the sources changes the POA, even in
the case of two sources. Furthermore, other interesting splitting
mechanisms can also be studied.

Capacity Constraints and Approximate Wardrop Flow-Rates:
Another direction of investigation could be to consider the sce-
nario where there is a capacity constraint on each edge, i.e., the
maximum amount of flow that can be sent through that edge. It
may also be useful to investigate the sensitivity of the implicit
assumption in our analysis that terminals can evaluate various
quantities, and in particular the marginal costs, with arbitrary
precision. This can be approached by formulating a notion of ap-
proximate Wardrop flow-rate, where terminals can distinguish
quantities only when they differ significantly.
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