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Abstract—Content distribution over networks is often achieved
by using mirror sites that hold copies of files or portions thereof to
avoid congestion and delay issues arising from excessive demands
to a single location. Accordingly, there are distributed storage so-
lutions that divide the file into pieces and place copies of the pieces
(replication) or coded versions of the pieces (coding) at multiple
source nodes.

We consider a network which uses network coding for multicas-
ting the file. There is a set of source nodes that contains either sub-
sets or coded versions of the pieces of the file. The cost of a given
storage solution is defined as the sum of the storage cost and the
cost of the flows required to support the multicast. Our interest is
in finding the storage capacities and flows at minimum combined
cost. We formulate the corresponding optimization problems by
using the theory of information measures. In particular, we show
that when there are two source nodes, there is no loss in considering
subset sources. For three source nodes, we derive a tight upper
bound on the cost gap between the coded and uncoded cases. We
also present algorithms for determining the content of the source
nodes.

Index Terms—Content distribution, information measures, min-
imum cost, network coding.

I. INTRODUCTION

L ARGE scale content distribution over the Internet is a
topic of great interest and has been the subject of nu-

merous studies [1]–[4]. The dominant mode of content distri-
bution is the client-server model, where a given client requests
a central server for the file, which then proceeds to service the
request. A single server location, however is likely to be over-
whelmed when a large number of users request for a file at the
same time, because of bottleneck constraints at a storage loca-
tion or other network limitations in reaching that server loca-
tion. Thus, content, such as websites or videos for download, are
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often replicated by the use of mirrors [1]. Such issues are of par-
ticular interest to Content Delivery Networks (CDNs) [5]–[7],
which have their own, often multitiered, mirroring topology.
In other cases, content is hosted by third parties, who manage
complex mirroring networks and direct requests to different lo-
cations according to the current estimate of the Internet’s con-
gestion, sometimes termed the weathermap, e.g., [8] describes
techniques for load balancing in a network to avoid hot spots.
One may consider the usage of coding for replicating the con-
tent, e.g., through erasure codes such as Reed-Solomon codes
or fountain codes.

Peer-to-peer networks have also been proposed for content
distribution in a distributed manner [2]–[4], [9]. However, the
underlying content distribution mechanism in a peer-to-peer
network is different when compared to CDNs, since they do
not use mirror sites. Instead, a given node downloads data from
available peers in a highly opportunistic fashion. The technique
of network coding has also been used for content distribution
in networks [10]. Under network coding based multicast, the
problem of allocating resources such as rates and flows in the
network can be solved in polynomial time [11]. Coding not
only allows guaranteed optimal performance which is at least
as good as tree-based approaches [12], but also does not suffer
from the complexity issues associated with Steiner tree pack-
ings. Moreover, one can arrive at distributed solutions to these
problems [11], [13]. Recently, these optimization approaches
have been generalized to minimize download time [14], [15].
In these approaches, the peers, acting as source nodes, are
given. The goal of the optimization is to reduce the download
time by controlling the amount of information transmitted at
different peers. As for multicast transmission optimization, the
use of coding renders the problem highly tractable, obviating
the difficult combinatorial issues associated with optimization
in uncoded peer to peer networks [16].

In this paper, we consider the following problem. Suppose
that there is a large file, that may be subdivided into small pieces,
that needs to be transmitted to a given set of clients over a net-
work using network coding. The network has a designated set of
nodes (called source nodes) that have storage space. Each unit
of storage space and each unit of flow over a certain edge has a
known linear cost. We want to determine the optimal storage ca-
pacities and flow patterns over the network such that this can be
done with minimum cost. Underlying this optimization is the
fact that source coding and network coding are not separable
[17]. Hence, there is a benefit in jointly considering network
coding for distribution and the correlation among the sources
(see [18] for a survey). Lee et al. [19] and Ramamoorthy et al.
[20], showed how to optimize multicast cost when the sources
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Fig. 1. Cost comparison of three different storage schemes when a document �� � � �� needs to be transmitted to two terminals. Note that in this example, the case
of partial replication has the lowest cost.

are correlated. While that problem is closely related to ours,
since it considers correlated sources and optimization of de-
livery using such correlated sources, it assumes a given corre-
lation, and no cost is associated with the storage. In this paper,
we are interested in the problem of design of sources.

We distinguish the following two different cases.
(i) Subset sources case: Each source node only contains an

uncoded subset of the pieces of the file.
(ii) Coded sources case: Each source node can contain arbi-

trary functions of the pieces of the file.
We begin by showing by means of an example that storing in-
dependent data at each source node is not optimal in general as
illustrated in Fig. 1, which is the celebrated butterfly network.
We consider a file represented as , where each of the
four components has unit-entropy, and a network where each
edge has capacity of three bits/unit time. The cost of transmit-
ting at rate over edge is , the cost of storage at the
sources is 1 per unit storage. As shown in the figure, the case of
partial replication when the source nodes contain dependent in-
formation has lower cost compared to the cases when the source
nodes contain independent information or identical information
(full replication). The case of subset sources is interesting for
multiple reasons. For example, it may be the case that a given
terminal is only interested in a part of the original file. In this
case, if one places coded pieces of the original file at the source
nodes, then the terminal may need to obtain a large number of
coded pieces before it can recover the part that it is interested in.
In the extreme case, if coding is performed across all the pieces
of the file, then the terminal will need to recover all the sources
before it can recover the part it is interested in. Note, however,
that in this work we do not explicitly consider scenarios where a
given terminal requires parts of the file. From a theoretical per-
spective as well, it is interesting to examine how much loss one
incurs by not allowing coding at the sources.

A. Main Contributions

1) Formulation of the Optimization Problems by Exploiting
the Properties of Information Measures [21]: We provide a pre-
cise formulation of the different optimization problems by lever-
aging the properties of the information measure (I-measure) in-
troduced in [21]. This allows to provide a succinct formulation
of the cost gap between the two cases and allows us to recover
tight results in certain cases.

2) Cost Comparison Between Subset Sources Case and
Coded Sources Case: The usage of the properties of informa-
tion measure allows us to conclude that when there are two
source nodes, there is no loss in considering subset sources.
Furthermore, in the case of three source nodes, we derive an
upper bound on the cost between the two cases that is shown to
be tight. Finally, we propose a greedy algorithm to determine
the cost gap for a given instance.

This paper is organized as follows. In Section II, we present
background and related work. Section III outlines basic results
that allow us to apply the theory of I-measures to our problem.
We formulate the precise problems under consideration in
Section IV. The cost gap between the subset case and the coded
case is discussed in Section V, and the simulation results are
presented in Section VI. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Minimum Cost Multicast With Multiple Sources Problem

Several schemes have been proposed for content distribution
over networks as discussed previously [1], [3], [4], [9], [10]. In
this section we briefly overview past work that is most closely
related to the problem that we are considering.

Network coding has been used in the area of large scale con-
tent distribution for different purposes. Several design principles
for peer to peer streaming system with network coding in real-
istic settings are introduced in [22]. Reference [10] proposed a
content distribution scheme using network coding in a dynamic
environment where nodes cooperate. A random linear coding
based storage system (which is motivated by random network
coding) was considered in [23] and shown to be more efficient
than uncoded random storage system. However, their notion of
efficiency is different than the total flow and storage cost consid-
ered in our work. The work of [11], proposed linear program-
ming formulations for minimum cost flow allocation network
coding based multicast. Lee et al. [19] constructed minimum
cost subgraphs for the multicast of two correlated sources. They
also proposed the problem of optimizing the correlation struc-
ture of sources and their placement. However, a solution was not
presented there. Efficient algorithms for jointly allocating flows
and rates were proposed for the multicast of a large number of
correlated sources by Ramamoorthy [20] (see [24] for a formu-
lation where the terminals exhibit selfish behavior). The work
of Jiang [25], considered a formulation that is similar to ours.
It shows that under network coding, the problem of minimizing
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the joint transmission and storage cost can be formulated as a
linear program. Furthermore, it considers a special class of net-
works called generalized tree networks and shows that there is
no difference in the cost whether one considers subset sources
or coded sources. This conclusion is consistent with the fact
that network coding is not useful in tree settings. In contrast, in
this work we consider general networks, i.e., we do not assume
any special structure of the network. We note that in more re-
cent work [26], network coding based distributed storage mech-
anisms and associated research issues have been outlined.

The work of Bhattad et al. [27] proposed an optimization
problem formulation for cost minimization when some nodes
are only allowed routing and forwarding instead of network
coding. Our work on subset sources can perhaps be considered
as an instance of this problem, by introducing a virtual super
node and only allowing routing/forwarding on it. However,
since we consider a specific instance of this general problem,
as we allow coding at all nodes except the virtual super node,
our problem formulation is much simpler than [27] and allows
us to compare the cost of subset sources versus coded sources.
In [27], the complexity grows as the product of the number
of edges and a factor that is exponential in the number of
terminals. In our method, the number of constraints only grows
linearly with the number of receivers. However, there is a set of
constraints that is exponential in the number of source nodes.
For most networks, we expect our formulation to be more
efficient. In addition, we recover stronger results in the case
when there are only two or three source nodes. Our solution
approach uses the concept of information measures [21], that
has also been used in [28] recently in other contexts.

B. Set Theory and Information Theory

In this section, we introduce a few basic concepts and useful
theorems that relate to set theory and information theory. More
details can be found in [21].

Definition 1: The field generated by sets
is the collection of sets which can be obtained by any sequence
of usual set operations on .

Definition 2: The atoms of are sets of the form ,
where is either or .

Definition 3: A real function defined on is called a
signed measure if it is set-additive, i.e., for disjoint sets A and
B in , .

We use to denote the field generated by .
Define the universal set to be the union of the sets

, i.e., . The set

whose measure is , is called the
empty atom of . Let be the set of nonempty atoms of

. It can be shown that any set in can be
uniquely defined as the union of some atoms. A signed measure

on is completely specified by the values of the on the
nonempty atoms of .

Consider a field generated by sets .
Let and denote for
any nonempty subset of . Define

According to the proof

of [21, Th. 3.6], there is a unique linear relationship between
for and for . Since can be com-

pletely specified by , can also be completely specified
by .

For random variables , let be a set
corresponding to . Let , where is some
nonempty subset of . We define the signed measure by

, for all nonempty subset of . Then
is the unique signed measure on which is consistent with

all of Shannon’s information measures ([21, Th. 3.9]).

III. PRELIMINARIES

In this section we develop some key results, that will be used
throughout the paper. In particular, we shall deal extensively
with the I-measure introduced in [21]. We refer the reader to
[21] for the required background in this area. First we note that
it is well known that atom measures can be negative for general
probability distributions [21], e.g., three random variables ,

, and , where and are independent,
, , 2. , then

. Next we argue that in order to make
each source node only contain a subset of the pieces of the file,
the measure of the atoms in the fields generated by the sources
should be nonnegative. This is stated as a theorem here.

Let . Consider random variables
and their corresponding sets .

Let and , . We
denote the set of nonempty atoms of by , where is
the field generated by the sets . Construct the
signed measure , for all nonempty subset

of .
Theorem 1: (1) Suppose that there exists a set of

nonnegative values, one corresponding to each atom of , i.e,
, . Then, we can define a set of independent

random variables, , and construct random variables
, such that the measures of

the nonempty atoms of the field generated by
correspond to the values of , i.e., , .
(2) Conversely, let , be a collection of inde-
pendent random variables. Suppose that a set of random vari-
ables , is such that , where

. Then the set of atoms of the field generated by
, have nonnegative measures.

Proof. See Appendix.

IV. PROBLEM FORMULATION

We now present the precise problem formulations for the
subset sources case and the coded sources case. Suppose that
we are given a directed graph that represents
the network, denotes the set of vertices, denotes the set of
edges, and denotes the capacity of edge . There
is a set of source nodes (numbered ) and ter-
minal nodes , such that . We assume that the
original source, that has a certain entropy, can be represented as
the collection of equal entropy independent sources ,
where is a sufficiently large integer. Note that this implies
that can be fractional. Let represent the source at
the th source node. For instance in the case of subset sources,
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Fig. 2. Modified graph for the first formulation when there are three sources.

this represents a subset of that are available at the th
node. Suppose that each edge incurs a linear cost
for a flow of value over it, and each source incurs a linear
cost for the information stored.

A. Subset Sources Case

1) Basic Formulation: In this case, each source ,
is constrained to be a subset of the pieces of the orig-

inal source. We leverage Theorem 1 from the previous section
that tells us that in this case that for all . In
the discussion below, we will pose this problem as one of re-
covering the measures of the atoms. Note that this will
in general result in fractional values. However, the solution can
be interpreted appropriately because of the assumptions on the
original source. This point is also discussed in Section IV-B.

We construct an augmented graph as
follows (see Fig. 2). Append a virtual super node and
virtual nodes corresponding to the atom sources ,
and connect to each source node. The node for is
connected to a source node if . The capacities
of the new (virtual) edges are set to infinity. The cost of the
edge is set to . The costs of the edges

, are set to zero.
If each terminal can recover all the atom sources, ,
, then it can in turn recover the original source. The infor-

mation that needs to be stored at the source node , is
equal to the sum of flows from to , . Let ,

represent the flow variable over corresponding to the
terminal along edge and let represent ,

. The corresponding optimization problem is de-
fined as ATOM-SUBSET-MIN-COST.

minimize

subject to

(1)

(2)

(3)

where

if
if

.
(4)

This is basically the formulation of the minimum cost
multicast problem [11] with a virtual super-source of en-
tropy , with the added constraint that the
flow on the edge from to node for each terminal,

is at least . We also have a constraint that
, that in turns yields the

constraint that . Also, note that the measure of
each atom, is nonnegative. This enforces the subset con-
straints. Because from the nonnegative measures of the atoms,
we are able to construct random variables, which indicates
the atom measures satisfy both Shannon type inequalities and
non-Shannon type inequalities. Hence, the nonnegative atom
measures ensure that the corresponding entropic vectors are in
entropy region.

In general, the proposed LP formulation has a number of con-
straints that is exponential in the number of source nodes, since
there are atoms. However, when the number of source
nodes is small, this formulation can be solved using regular
LP solvers. We emphasize, though, that the formulation of this
problem in terms of the atoms of the distribution of the sources
provides us with a mechanism for reasoning about the case of
subset constraints, under network coding. We are unaware of
previous work that proposes a formulation of this problem.

In order to provide bounds on the gap between the optimal
costs of the subset sources case and the coded sources case, we
now present an alternate formulation of this optimization, that is
more amenable to gap analysis. Note however, that this alternate
formulation has more constraints than the one presented above.

2) Another Formulation: In the first formulation, the termi-
nals first recover the atom sources, and then the original source.
In this alternate formulation, we pose the problem as one of first
recovering all the sources, , at each terminal and then
the original source. Note that since these sources are correlated,
this formulation is equivalent to the Slepian-Wolf problem over
a network [20]. We shall first give the problem formulation and
then prove that the two formulations have the same optimums.

We construct another augmented graph
(see Fig. 3) using the basic network graph . We
append a virtual super node to , and connect and each
source node with virtual edges, such that its capacity is infinity
and its cost is .

As before, let , represent the flow variable over
corresponding to the terminal along edge and let
represent , . We introduce variable

, that represents the rate from source to terminal

, . Thus represents
the rate vector for terminal . In order for to recover the sources
[29], the rate vector needs to lie within the Slepian-Wolf
region of the sources

Moreover, the rates also need to be in the capacity region such
that the network has enough capacity to support them for each
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Fig. 3. Modified graph for the second formulation.

terminal. As before we enforce the subset constraint ,
. The optimization problem is defined as SUBSET-

MIN-COST.

minimize

subject to (5)

(6)

(7)

(8)

(9)

(10)

(11)

where is defined in (4).
Now we prove the two formulations will get the same optimal

values. The basic idea is as follows. Note that the objective func-
tions for both the formulations are exactly the same. We shall
first consider the optimal solution for the first formulation and
construct a solution for the second formulation so that we can
conclude that . In a similar manner we will obtain
the reverse inequality, which will establish equality of the two
optimal values.

Suppose that we are given the optimal set of flows , ,
, , and the optimal atom values for the

first formulation, with an objective of value .

Claim 1: In , for the flows , , and the atoms
, assign

Then , , , and the atoms are a feasible so-
lution for the second formulation.
Proof: Flow balance for source node in the first formu-
lation implies that ,

. Therefore flow balance for source node in the second formu-
lation can be seen as follows:

, . Flow balance
at the internal nodes is trivially satisfied. We only need to check
constraints (6) and (7)

In the equations here, we use (i.e., is an atom)
as a summation index at various terms. However, for notational
simplicity, we do not explicitly include the qualifier,
below. Also in the equations, we have the convention that if
there is no edge between nodes and in , the flow
is zero. For any , we have

(12)

where is the conditional entropy of the second
formulation. is due to the convention we defined earlier.
is from the flow balance at the atom node and the convention
we defined earlier. comes from (1) in the first formulation.
Therefore, constraints (6) and (7) are satisfied and this assign-
ment is feasible for the second formulation with a cost equal to

.

We conclude that the optimal solution for the second formu-
lation will have .

Next we show the inequality in the reverse direction. Suppose
that we are given the optimal set of flows , , ,

and the atom values in the second formula-
tion. Further assume that the optimal objective function is .

Claim 2: In , assign

Furthermore, there exist flow variables and over
the edge , , such that together with the
assignment, they form a feasible solution for the first formula-
tion.
Proof: It is clear that the assignments for and for

satisfy the required flow balance constraints. We
need to demonstrate the existence of flow variables and

over the edge , , such that they
satisfy the flow balance constraints.
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Fig. 4. An example of the graph constructed for the proof of claim 2, where
there are three sources.

Towards this end it is convenient to construct an auxiliary
graph as follows. There is a source node connected to the
atoms ’s, , a terminal connected to the sources
nodes, . There is an edge connecting and if .
An example is shown in Fig. 4. The capacity for edge
is , the capacity for edge is , and the ca-

pacity for edge is infinity. Note that

. Therefore, if we can show
that the maximum flow in this auxiliary graph between and

is , this would imply the existence of
flow variables on the edges between the atom nodes and the
source nodes that satisfy the required flow balance conditions.

To show this we use the max-flow min-cut theorem [30] and
instead show that the minimum value over all cuts separating

and is .
First, notice that there is a cut with value

. This cut can be simply the node
, since the sum of the capacities of its outgoing edges is

. Next, if an atom node belongs to the
cut that contains , then we must have all source nodes
such that also belonging to the cut. To see this, note
that otherwise there is at least one edge crossing the cut whose
capacity is infinity, i.e., the cut cannot be the minimum cut.

Let . Based on this argument it suffices to consider
cuts that contain, , the set of nodes and the set of all
atoms such that . The value of this cut is at least

By (6) and (7) and the given assignment, we
have

. This implies that the value of any cut of this
form at least . Therefore we can conclude
that the minimum cut over all cuts separating and is
exactly , i.e., our assignment is a valid
solution.

Using Claims 1 and 2, we conclude that .
As mentioned earlier, the second formulation will be useful

when we compute the cost gap between the coded and subset
cases, we will use the graph in the rest of the paper.

B. Solution Explanation and Construction

Assume that we solve the above problem and obtain
the values of all the atoms , . These will in
general be fractional. We now outline the algorithm that
decides the content of each source node. We use the as-
sumption that the original source can be represented as a
collection of independent equal-entropy random variables

, for large enough at this point. Suppose that
. In turn, we can conclude that there exist

integers , , such that ,
and that . Consider an ordering

of the atoms, denoted as . The atom
sources can then be assigned as follows: For each , assign

.

It is clear that the resultant atom sources are indepen-
dent and that , . Now set

, to obtain the sources at each
node.

The assumption on the original source is essentially equiva-
lent to saying that a large file can be subdivided into arbitrarily
small pieces. To see this assume that each edge in the network
has a capacity of 1000 bits/s. At this time-scale, suppose that we
treat each edge as unit-capacity. If the smallest unit of a file is a
single bit, then we can consider it to be consisting of sources of
individual entropy equal to .

C. Coded Source Network

Given the same network, if we allow coded information to
be stored at the sources, using the augmented graph by the
second problem formulation, the storage at the sources can be
viewed as the transmission along the edges connecting the vir-
tual source and real sources. Then the problem becomes the
standard minimum cost multicast with network coding problem
(CODED-MIN-COST) [11] where the variables are only the
flows and .

minimize

subject to

where is defined in (4). Assume we have the solution for
CODED-MIN-COST, we can use the random coding scheme
introduced by [29] or other deterministic coding schemes [31]
to reconstruct the sources and the information flow of each edge.

V. COST COMPARISON BETWEEN THE CODED CASE AND

SUBSET CASE

For given instances of the problem, we can certainly com-
pute the cost gap by solving the corresponding optimization
problems SUBSET-MIN-COST and CODED-MIN-COST. In
this section we formulate an alternate version of CODED-MIN-
COST where we also seek to obtain the values of the atom mea-
sures of the sources (as we did for SUBSET-MIN-COST). In
principle, this requires us to ensure that the atom measures to
satisfy the information inequalities [21] that consist of Shannon
type inequalities and non-Shannon type inequalities when
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. In [32], it was shown that there are infinitely many non-
Shannon type inequalities when . Hence, it is impossible
to list all the information inequalities when the source number
exceeds 4. Moreover, since the entropic region is not polyhedral,
the problem is no longer an LP. In our optimization we only en-
force the Shannon inequalities and remove the non-negativity
constraint on the atom measures. In general, these atom mea-
sures may not correspond to the distribution of an actual coded
solution. However, as explained later, starting with an output of
our LP, we find a feasible instance for the SUBSET-MIN-COST
problem and then arrive at an upper bound on the gap.

In the general case, of sources, even this optimization has
constraints that are exponential in . However, this formula-
tion still has advantages. In particular, we are able to provide
a greedy algorithm to find near-optimal solutions for it. More-
over, we are able to prove that this greedy algorithm allows us
to determine an upper bound in the case of three sources, which
can be shown to be tight, i.e., there exists a network topology
such that the cost gap is met with equality.

A. Analysis of the Gap Between the Coded Case and the
Subset Case

We now present the problem formulation for ATOM-
CODED-MIN-COST. We use the augmented graph in
Fig. 3.

minimize

subject to

(13)

(14)

(15)

(16)

(17)

(18)

where is defined in (4). The formulation is the same as
SUBSET-MIN-COST (5) except that we remove (8), and add
(16) and (17), that are elemental inequalities, which guarantee
that all Shannon type inequalities are satisfied [21]. The con-
straints in (16) and (17) can be represented in the form of atoms:

where .
Now we prove that ATOM-CODED-MIN-COST

and CODED-MIN-COST have the same optimums.
Let the optimum of ATOM-CODED-MIN-COST
(CODED-MIN-COST) be . Denote
the set of constraint of - - - and

- - .
First we note that the two LPs have the same objective
functions, and . Therefore, we should have

. Next we note that , are variables
in [see (14)–(18)]. Let the optimal set of flows
for CODED-MIN-COST be denoted as , , ,

. Now suppose that . Note that this
assignment is infeasible for ATOM-CODED-MIN-COST,
since . Next, since , the
constraints that cause infeasibility have to be in (14)–(18). This
implies that a feasible , cannot be found.

We claim that this is a contradiction. This is because if coding
is allowed at the source, then there exists a deterministic algo-
rithm [31] for the multicast network code assignment with a vir-
tual source connected to all the source nodes that operates with
the subgraph induced by , . This algorithm guar-
antees the existence of random variables that corre-
spond to the sources. This in turn implies the existence of atom
measures that satisfy all information inequalities corresponding
to the flow assignment , . In the above LP, we
have only enforce the elemental inequalities, therefore, the ex-
istence for , is guaranteed.

Now, suppose that we know the optimal value of the above
optimization problem, i.e., the flows , , ,

, the measure of the atoms , , and the corre-
sponding conditional entropies , . If we
can construct a feasible solution for SUBSET-MIN-COST such
that the flows over are the same as , ,

, then we can arrive at an upper bound for the gap.
This is done here.

Let denote the variables for the atom measures for the
subset case. The gap LP is

minimize

subject to

(19)

where , .

In the SUBSET-MIN-COST, we assign ,

, , and ,
. To see that this is feasible, note that
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This implies that constraint (5) is satisfied.

where , .
Then, (6) and (7) are satisfied.

Both and come from constraint (19). The difference in
the costs is only due to the different storage costs, since the flow
costs are exactly the same. It is possible that the atom measures
from ATOM-CODED-MIN-COST are not valid since they may
not satisfy the non-Shannon inequalities. However, we claim
that the solution of the Gap LP is still an upper bound of the
difference between the coded and the subset case. This is be-
cause (a) we have constructed a feasible solution for SUBSET-
MIN-COST starting with , , and (b), as ar-
gued above, the optimal values of CODED-MIN-COST and
ATOM-CODED-MIN-COST are the same. The difference be-
tween the costs in the coded case and the subset case are only
due to the different storage costs, since the flows in both cases
are the same. Therefore, the objective function of the gap LP is
a valid upper bound on the gap.

B. Greedy Algorithm

We present a greedy algorithm for the gap LP that returns
a feasible, near-optimal solution, and hence serves as an upper
bound to the gap. The main idea is to start by saturating atom
values with the low costs, while still remaining feasible. For in-
stance, suppose that source 1 has the smallest cost. Then, the
atom has the least cost, and therefore we as-
sign it the maximum value possible, i.e., . Fur-
ther assignments are made similarly in a greedy fashion. More
precisely, we follow the steps given here.

1) Initialize , . Label all atoms as
“unassigned.”

2) If all atoms have been assigned, STOP. Otherwise, let
denote the atom with the minimum cost that is still

unassigned.
• Set as large as possible so that the sum

of the values of all assigned atoms does not violate any
constraint in (19).

• Check to see whether
. If YES, then re-

duce the value of , so that
and STOP. If

NO, then label as “assigned.”
3) Go to step 2.

It is clear that this algorithm returns a feasible set of atom values,
since we maintain feasibility at all times and enforce the sum of
the atom values to be .

The greedy algorithm, though suboptimal, does give the exact
gap in many cases that we tested. Moreover, as discussed next,
the greedy approach allows us to arrive at a closed form ex-
pression for the an upper bound on the gap in the case of three
sources. However, it is not clear if there is a constant factor ap-
proximation for the greedy algorithm.

C. Three Sources Case

The case of three sources is special because: (i) Shannon
type inequalities suffice to describe the entropic region, i.e.,
non-Shannon type inequalities do not exist for three random
variables. This implies that we can find three random vari-
ables using the atom measures found by the solution of
ATOM-CODED-MIN-COST. (ii) Moreover, there is at most
one atom measure, that can be negative.
This makes the analysis easier since the greedy algorithm
proposed above can be applied to obtain the required bound.
Let , ,

, ,

, , and

.

Claim 3: Consider random variables , and with
, , . Then, .

Proof: The elemental inequalities are given by ,
(nonnegativity of conditional entropy and conditional

mutual information) and , , 5, 6 (nonnegativity
of mutual information). We also have .
Assume that . Then

Next

This implies that , which is a contradiction,
since , .

Using this we can obtain the following lemma.

Lemma 1: Suppose that we have three source nodes. Let the
joint entropy of the original source be and let repre-
sent the optimal value of SUBSET-MIN-COST and , the
optimal value of CODED-MIN-COST. Let and be the
optimal value of and in the coded case, respectively. If

, the costs for the coded case and the subset case will
be the same. If ,

.
Proof: When , the subset case atom values equal to
the coded case atom values, then the two cases have the same
costs. When , without loss of generality, assume that

. As in the greedy algorithm above, we con-
struct a feasible solution for SUBSET-MIN-COST by keeping
the flow values the same, but changing the atom values suitably.
Let , , denote the atom values for the subset
case. Consider the following assignment:

This is shown pictorially in Fig. 5.
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Fig. 5. The figure illustrates a transformation from the coded case to the subset case, when the first source has the minimal storage cost and � � �.

We can check constraint (19) to see that the solution is fea-
sible for the gap LP for three sources. It can also be verified that
we can arrive at the above assignment by applying our greedy
algorithm. Furthermore, on checking the KKT conditions of
the gap LP, we conclude that the obtained solution is the op-
timal solution for the gap LP. , are feasible
for the subset problem. The flows do not change over trans-
forming the coded case to the subset case. The only cost in-
creased by transforming from the coded case to the subset case
is .

In the results section, we shall show an instance of a network
where this upper bound is tight.

Finally we note that, when there are only two source nodes,
there is no cost difference between the subset case and the coded
case, since for two random variables, all atoms have to be non-
negative. We state this as a lemma here.

Lemma 2: Suppose that we have two source nodes. Let
represent the optimal value of SUBSET-MIN-COST and ,
the optimal value of CODED-MIN-COST. Then, .

VI. SIMULATION RESULTS

In this section we present an example of a network with three
sources where our upper bound derived in Section V-C is tight.
We also present results of several experiments with randomly
generated graphs. The primary motivation was to study whether
the difference in cost between the subset sources case and the
coded case occurs very frequently.

Consider the network in Fig. 6 with three sources nodes, 1,
2 and 3 and four terminal nodes, 6, 7, 8, and 9. The entropy of
the original and all edges are
unit-capacity. The costs are such that , , and

, .
The optimal cost in the subset sources case is 17. The corre-

sponding atom values are listed in the Table I. In this case we
have , and .

In the coded sources case, the optimal value is 16, with
. Note that in this case the

gap between the optimal values is , i.e.,
the upper bound derived in the previous section is met with
equality.

Fig. 6. Network with source nodes at 1, 2, and 3; terminals at 6, 7, 8, and 9.
Append a virtual source � connecting real sources.

TABLE I
ATOM VALUES WHEN SUBSET CONSTRAINTS ARE ENFORCED

We generated several directed graphs at random with
, . The linear cost of each edge was fixed to

an integer in . We ran 5000 experiments
with fixed parameters , where —number of
source nodes, —number of terminal nodes, and —entropy
of the original source. The locations of the source and terminal
nodes were chosen randomly. The capacity of each edge was
chosen at random from the set . In many cases it
turned out that the network did not have enough capacity to
support recovery of the data at the terminals. These instances
were discarded.

The results are shown in Table II. The “Equal” row corre-
sponds to the number of instances when both the coded and
subset cases have the same cost, and “Non-equal” corresponds
to the number of instances where the coded case has a lower
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TABLE II
COMPARISONS OF TWO SCHEMES IN 5000 RANDOM DIRECTED GRAPHS

cost. We have found that in most cases, the two cases have
the exact same cost. We also computed the gap LP and the
greedy algorithm to evaluate the cost gap. Note that the gap
LP is only an upper bound since it is derived assuming that
the flow patterns do not change between the two cases. When

, among 5000 experiments, 3269 in-
stances could support both cases. Out of these, there were 481
instances where the upper bound determined by the gap LP was
not tight. In addition, there were 33 instances where the greedy
algorithm failed to solve the gap LP exactly.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we considered network coding based content
distribution, under the assumption that the content can be con-
sidered as a collection of independent equal entropy sources,
e.g., a large file that can be subdivided into small pieces. Given
a network with a specified set of source nodes, we examined
two cases. In the subset sources case, the source nodes are con-
strained to only contain subsets of the pieces of the content,
whereas in the coded sources case, the source nodes can con-
tain arbitrary functions of the pieces. The cost of a solution is
defined as the sum of the storage cost and the cost of the flows
required to support the multicast. We provided succinct formu-
lations of the corresponding optimization problems by using the
properties of information measures. In particular, we showed
that when there are two source nodes, there is no loss in consid-
ering subset sources. For three source nodes, we derived a tight
upper bound on the cost gap between the two cases. A greedy
algorithm for estimating the cost gap for a given instance was
provided. Finally, we also provided algorithms for determining
the content of the source nodes. Our results indicate that when
the number of source nodes is small, in many cases constraining
the source nodes to only contain subsets of the content does not
incur a loss.

In our paper, we have used linear objective functions. How-
ever, this is not necessary. We could also have used convex func-
tions. That would simply not have allowed a LP formulation
and the gap bound would be different. In our work, we have as-
sumed that the locations of the source node are known. It would
be interesting to consider, whether one can extend this work to
identify the optimal locations of the source nodes, e.g., if an ISP
wants to establish mirror sites, what their geographical locations
should be. The gap between subset and coded sources shown
here is for three sources. It would be interesting to see how it
grows with the number of sources. We conjecture that the gap
can be quite large when the number of source nodes is high. We
have investigated the difference of the coded and subset case

under a network with arbitrary topology. Examining this issue
when the network has structural constraints (such as bounded
treewidth [33]) could be another avenue for future work.

Beyond gaps, there may be advantages to coding when we
have multitiered distributed storage, such as in the case in cur-
rent large CDNs. In that case, the subset approach would require
extra constraints in the middle tiers that may be difficult to keep
track of. The coded storage approach gracefully extends to a
multi-tiered architecture.

APPENDIX

Proof of Theorem 1:

(1) Independent random variables , , such that
can be constructed [21]. Then we can set

. It only remains to check the
consistency of the measures. For this, we have, for all

(20)

using the independence of the ’s. On the other hand we know
that

(21)

Equating these two we have, for all

(22)

Now, one possible solution to this is that ,
. By the uniqueness of [21], we know that this is the

only solution.
(2) We shall prove all the measures are nonnegative by induc-

tion. Without loss of generality, we can order ’s in an arbi-
trary way, we analyze the measure
where , .

When , the measure corresponds to conditional entropy

When , we have

Assume for , , the following
statement holds:

(23)
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When , , we shall have

The equation is due to the assumption (23). The equation
is due to the independence of ’s, . Therefore,
we have shown that ,

In a similar manner it is easy to see that all atom measures are
nonnegative.
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