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Minimum Cost Distributed Source
Coding Over a Network

Aditya Ramamoorthy, Member, IEEE

Abstract—This paper considers the problem of transmitting
multiple compressible sources over a network at minimum cost.
The aim is to find the optimal rates at which the sources should
be compressed and the network flows using which they should
be transmitted so that the cost of the transmission is minimal.
We consider networks with capacity constraints and linear cost
functions. The problem is complicated by the fact that the de-
scription of the feasible rate region of distributed source coding
problems typically has a number of constraints that is exponential
in the number of sources. This renders general purpose solvers
inefficient. We present a framework in which these problems can
be solved efficiently by exploiting the structure of the feasible
rate regions coupled with dual decomposition and optimization
techniques such as the subgradient method and the proximal
bundle method.

Index Terms—Convex optimization, distributed source coding,
dual decomposition, minimum cost network flow, network coding.

1. INTRODUCTION

N recent years the emergence of sensor networks [1] as a
I new paradigm has introduced a number of issues that did
not exist earlier. Sensor networks have been considered among
other things by the military for battlefields, by ecologists for
habitat monitoring and even for extreme event warning sys-
tems. These networks consist of tiny, low-power nodes that are
typically energy constrained. In general, they also have low-
computing power. Thus, designing efficient sensor networks re-
quires us to address engineering challenges that are significantly
different from the ones encountered in networks such as the In-
ternet. One unique characteristic of sensor networks is that the
data that is sensed by different sensor nodes and relayed to a
terminal is typically highly correlated. As an example consider
a sensor network deployed to monitor the temperature or hu-
midity levels in a forest. The temperature is not expected to vary
significantly over a small area. Therefore we do expect that the
readings corresponding to nearby sensors are quite correlated.
It is well-known that the energy consumed in transmission by
a sensor is quite substantial and therefore efficient low power
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methods to transfer the data across the network are of interest.
This leads us to investigate efficient techniques for exploiting
the correlation of the data while transmitting it across the net-
work. There are multiple ways in which the correlation can be
exploited.

a) The sensor nodes can communicate amongst themselves
to inform each other of the similarity of their data and then
transmit only as much data as is required. This comes at
the cost of the overhead of inter-sensor communication.
The sensors can choose to act independently and still at-
tempt to transmit the compressed data. This strategy is
likely to be more complicated from the receiver’s point
of view.

Usually the terminal to which the data is transmitted has
significantly more resources (energy, computing power, etc.).
Thus, the latter solution is more attractive from a network
resource efficiency point of view. The question of whether
the distributed compression of correlated sources can be as
efficient as their compression when the sources communicate
with each other was first considered and answered in the
affirmative by Slepian and Wolf in their famous paper [2]. A
number of authors [3], [4] have investigated the construction
of coding techniques that achieve the Slepian-Wolf bounds and
also proposed their usage in sensor networks [5].

New paradigms have also emerged recently in the area of
network information transfer. Traditionally information transfer
over networks has been considered via routing. Data packets
from a source node are allowed to be replicated and forwarded
by the intermediate nodes so that terminal nodes can satisfy their
demands. However, network coding offers an interesting alter-
native where intermediate nodes in a network have the ability
to forward functions of incoming packets rather than copies of
the packets. The seminal work of Ahlswede et al. [6] showed
that network coding achieves the capacity of single-source mul-
tiple-terminal multicast where all the terminals are interested in
receiving the same set of messages from the source. This was
followed by a number of works that presented constructions and
bounds for multicast network codes [7], [8]. More recently, there
has been work [9], [10] on characterizing rate regions for arbi-
trary network connections where the demands of the terminals
can be arbitrary.

Given these developments in two different fields, a natural
question to ask is how can one transmit compressible sources
over a network using network coding and whether this can be
done efficiently. This problem was considered by Song and
Yeung [11] and Ho et al. [12]. They showed that as long as
the minimum cuts between all nonempty subsets of sources
and a particular terminal were sufficiently large, random linear
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network coding over the network followed by appropriate
decoding at the terminals achieves the Slepian-Wolf bounds.
The work of Ramamoorthy ef al. [13] investigated the perfor-
mance of separate source and network codes and showed that
separation does not hold in general. Both these papers only
considered capacity constraints on the edges of the network
and did not impose any cost associated with edge usage.

In the networking context the problem of minimum cost net-
work flow has been widely investigated. Here, every edge in the
network has a cost per unit flow associated with it. The cost of
a given routing solution is the sum of the costs incurred over all
the links. The problem is one of finding network flows such that
the demand of the terminals is satisfied at minimum cost. This
problem has been very well investigated in the routing context
[14]. The problem of minimum cost multicast using network
coding was considered by Lun et al. [15] and they presented
centralized and distributed solutions to it.

In this paper we consider the problem of minimum cost
joint rate and flow allocation over a network that is utilized for
communicating compressible sources. We consider the sce-
nario when the compression is to be performed in a distributed
manner. The sources are not allowed to communicate with each
other. The main issue with joint rate and flow allocation is that
typically the feasible rate region for the recovery of the sources
(e.g., the Slepian-Wolf region) is described by a number of
inequalities that is exponential in the number of sources. Thus,
using a regular LP solver for solving the corresponding linear
programming problem will be inefficient. In our work, we only
consider networks where the links are independent and where
transmission up to the link’s capacity is assumed to be error
free. In general, the capacity region characterization of more
complex networks such as wireless networks will need to take
into account issues such as interference. Moreover, it would
introduce related issues such as scheduling. We do not consider
these problems in this work.

A. Main Contributions

The main contributions of this paper are as follows. We
present a framework in which minimum cost problems that
involve transmitting compressible sources over a network in
a distributed manner can be solved efficiently. We consider
general linear cost functions, allow capacity constraints on the
edges of the network and consider the usage of network coding.
The following problems are considered.

a) Slepian-Wolf over a network. The sources are assumed to
be discrete and memoryless and they need to be recovered
losslessly [2] at the terminals of the network. We address
the problem of jointly finding the operating rate vectors
for the sources and the corresponding network flows that
allow lossless recovery at the terminals at minimum cost.

b) Quadratic Gaussian CEO over a network. A Gaussian
source is observed by many noisy sensors and needs to be
recovered at the terminal subject to a quadratic distortion
constraint [16]. We present a solution to the problem of
joint rate and network flow allocation that allows recovery
at the terminal at minimum cost.

c) Lifetime maximization of sensor networks with distortion
constraints. A Gaussian source observed by many noisy

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 1, JANUARY 2011

sensors needs to be recovered at the terminal with a certain
fidelity. We are interested in finding routing flows that
would maximize the lifetime of the network.

We demonstrate that these problems can be solved effi-
ciently by exploiting the structure of the feasible rate regions
coupled with dual decomposition techniques and subgradient
methods [17].

B. Related Work

Problems of a similar flavor have been examined in several
papers (see [18] and its references). Cristescu et al. considered
the Networked Slepian-Wolf problem [19] and the case of lossy
correlated data gathering over a network [20], but did not im-
pose capacity constraints on the edges. Their solutions only
considered very specific types of cost functions. The work of
Li and Ramamoorthy [21] and Roumy and Gesbert [22] con-
sidered a rate allocation under pairwise constraints on the dis-
tributed source code used for compression. The work of Liu
et al. [23] and [24] considers a related problem, where they
seek to minimize the total communication cost of a wireless
sensor network with a single sink. They show that when the
link communication costs are convex, then the usage of Slepian-
Wolf coding and commodity flow routing is optimal. More-
over, they introduce the notion of distance entropy, and show
that under certain situations the distance entropy is the min-
imum cost achieved by Slepian-Wolf coding and shortest path
routing. They also propose hierarchical transmission schemes
that exploit correlation among neighboring sensor nodes, and do
not require global knowledge of the correlation structure. These
schemes are shown to be order-optimal in specific situations.
The main difference between our work and theirs, is the fact that
we consider network coding and networks with multiple termi-
nals. Moreover, in the case of general convex link cost func-
tions, their focus is on showing that Slepian-Wolf coding and
commodity flow routing is optimal. They do not consider the
problem of actually finding the optimal flows and rates.

A problem formulation similar to ours was introduced by
Barros et al. [25] but they did not present an efficient solution
to it. The problem of exponentially many constraints has been
noted by other authors as well [26], [27]. In more recent work
[28], [29], the problem of minimum cost multicast of correlated
sources has also been considered when the terminals exhibit
selfish behavior.

The approach in our work is inspired by the work of Yu et al.
[30]. However since our cost functions only penalize the usage
of links in the network, we are effectively able to exploit the
structure of the feasible rate region to make our overall solution
efficient. In addition we explicitly derive the dual function and
the corresponding update equations for maximizing it based on
the specific structure of the rate region. Furthermore, we con-
sider applications in network coding and lifetime maximization
in sensor networks that have not been considered previously.
In concurrent and independent work [31] presented some ap-
proaches similar to ours (see also [32], where the case of two
sources is discussed). However our approach has been applied
to the minimum cost quadratic Gaussian CEO problem over a
network and lifetime maximization with distortion constraints
that were not considered in [31].



RAMAMOORTHY: MINIMUM COST DISTRIBUTED SOURCE CODING

A reviewer has pointed out that the problem of generalizing
the Slepian-Wolf theorem to the network case was first consid-
ered by Han [33] in 1980. However, in [33] only networks with a
single terminal were considered. In the single terminal case the
corresponding flows can be supported by pure routing. Interest-
ingly, in the same paper, Han references the work of Fujishige
[34] that studies the optimal independent flow problem (this was
also pointed by the same reviewer). Fujishige’s work considers
a network flow problem that has polymatroidal [35] constraints
for the source values and the terminal values. In particular, if
there is only one terminal, then this algorithm provides an effi-
cient solution to the minimum cost Slepian-Wolf problem over
a network. Howeyver, it is unclear whether it can be extended to
the case of multiple terminals and network coding. We discuss
Fujishige’s work in more detail in Section III, after the precise
problem has been formulated.

This paper is organized as follows. Section II overviews
the notation and the broad setup under consideration in this
paper. Section III formulates and solves the minimum cost
Slepian-Wolf problem over a network, Section IV discusses the
quadratic Gaussian CEO problem over a network and Section V
presents and solves the problem of lifetime maximization of
sensor networks when the source needs to be recovered under
distortion constraints. Each of these sections also present simu-
lation results that demonstrate the effectiveness of our method.
Section VI discusses the conclusions and future work.

II. PRELIMINARIES

In this section we introduce the basic problem setup that shall
be used in the rest of this paper. In subsequent sections we
shall be presenting efficient algorithms for solving three dif-
ferent problems that fall under the umbrella of distributed source
coding problems over a network. We shall present the exact for-
mulation of the specific problem within those sections. We are
given the following.

a) A directed acyclic graph G = (V, E, C) that represents
the network. Here V' represents the set of vertices, F the
set of edges and C;j, (7,j) € E is the capacity of the
edge (7,7) in bits/transmission. The edges are assumed
to be error-free and the capacity of the edges is assumed
to be rational. We are also given a set of source nodes
S C V where |S| = Ng and a set of terminal nodes
T C V where |T| = Ng. Without loss of generality we
assume that the vertices are numbered so that the vertices
1,2,..., Ng correspond to the source nodes.

b) A setofsources X, Xs,...Xng,such that the +th source
is observed at source node ¢ € S. The values of the
sources are drawn from some joint distribution and can
be either continuous or discrete.

Based on these we can define the capacity region of the ter-

minal T; € T with respect to S as

Cr,={(Ry,...,Rx,):VBC S,  Ri< min—cut(B,T})}.
i€EB

Thus, Cr, consists of inequalities that define the maximum flow
(or minimum cut) from each subset of S to the terminal 7}.
A rate vector (Ry,...,Rng) € Cr; can be transmitted from
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the source nodes 1,..., Ng to terminal 7T} via routing [14]. In
the subsequent sections we shall consider different minimum
cost problems involving the transmission of the sources over the
network to the terminals.

III. MINIMUM COST SLEPIAN-WOLF OVER A NETWORK

Under this model, the sources are discrete and memory-
less and their values are drawn i.i.d. from a joint distribution
p(z1,...,2N,). The ith source node only observes X; for
1 € S. The different source nodes operate independently and
are not allowed to communicate. The source nodes want to
transmit enough information using the network to the terminals
so that they can recover the original sources, losslessly.

This problem was first investigated in the seminal paper of
Slepian and Wolf [2] where they considered the sources to be
connected to the terminal by a direct link and the links did not
have capacity constraints. The celebrated result of [2] states that
the independent source coding of the sources X;,72 = 1,..., Ng
can be as efficient as joint coding when the sources need to be
recovered error-free at the terminal.

Suppose that for the classical Slepian-Wolf problem, the rate
of the ith source is R;. Let X5 denote the vector of sources
(Xiyy Xiyy ooy Xiy ), forig € Bk = 1,...,|B|. The feasible
rate region for this problem is given by

Rew={(R1,...,Rn;): VB C S8, Y R; > H(Xp|Xp-)}.
i€B

The work of Csiszar [36] showed that linear codes are suffi-
cient to approach the Slepian-Wolf (henceforth S-W) bounds
arbitrarily closely.

Note that the original S-W problem does not consider the
sources to be communicating with the terminal (or more gener-
ally multiple terminals) over a network. Furthermore, there are
no capacity constraints on the edges connecting the sources and
the terminal. In situations such as sensor networks, where the
sensor nodes are typically energy-constrained, we would expect
the source nodes to be in communication with the terminal node
over a network that is both capacity and cost-limited. Capacity
constraints may be relatively strict since a significant amount
of power is consumed in transmissions. The costs of using dif-
ferent links could be used to ensure that a certain part of the net-
work is not overused resulting in non-uniform depletion of re-
sources. Thus the problem of transmitting correlated data over
a network with capacity constraints at minimum cost is of in-
terest. We define an instance of the S-W problem over a network
by P = <RSW7 G7 S? T>

The transmission schemes based on linear codes (such as
those in [36]) are based on block-wise coding, i.e., each source
encodes N source symbols at a time. An edge with capacity
C;; bits/transmission can transmit | N C;;] bits per block. Con-
ceptually, each edge can be regarded as multiple unit capacity
edges, with each unit capacity edge capable of transmitting one
bit per block. When communicating a block of length IV, we
consider the graph GY = (V, E,|NC]), or equivalently the
graph (V, En, 1) (where 1 denotes a vector of ones) where En
splits each edge from F into unit capacity edges.
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To facilitate the problem formulation we construct an aug-
mented graph G* where we append a virtual super source node
s* to G, so that

V=V u{s},
E*={(s",v)|ve S}UE, and

* Ct (Z ) € E7
= {H(Xj) :

ifi=s* and j € S.
We let G* = (V*, E*,C*).

Definition 1: Feasibility. Consider an instance of the S-W
problem over a network, P = (Rsw, G, S, T). Let Cr, be the
capacity region of each receiver T; € 1" with respect to S. If

ngﬂCTi?éw7 Vi=1,...,Ng,

then the feasibility condition is said to be satisfied and P is said
to be feasible.

The next theorem (from [12]) implies that as long as the feasi-
bility condition is satisfied, random linear network coding over
G followed by appropriate decoding at T suffices to recon-
struct the sources X1, Xo, ..., Xy, error-free at T;.

Theorem 1: Sufficiency of the feasibility condition [12]. Con-
sider an instance of the S-W problem over a network, P =
(Rsw, G, S, T).If the feasibility condition (Definition 1) is sat-
isfied, then random linear network coding over G" followed by
minimum-entropy [36] or maximum-likelihood decoding can
recover the sources at each terminal in 7" with the probability
of decoding error going to 0 as N — oo.

The proof of the necessity of the feasibility condition can be
found in [33].

It follows that if C'p, N Rsy # ¢ for all T; € T, it is suffi-
cient to perform random linear network coding over a subgraph
of G where the feasibility condition continues to be satisfied.
The question then becomes, how do we choose appropriate sub-
graphs? For this purpose, we now present the formulation of the
minimum cost S-W problem over a network.

Let w,g*') represent the flow variable for edge (i, j) over G*
corresponding to the terminal 7}, for T}, € T and z;; represent
the max-of-flows variable, maxr, e1 wg*) for edge (4, 7). Note
that under network coding the physical flow on edge (7, j) will
be z;;. The variable :vz(.jT“), represents the virtual flow variable
over edge (4, j) for terminal T}, [15].

We introduce variables RET’”’),Z' = 1,...,Ng that repre-
sent the operating S-W rate variables for each terminal. Thus
RT) = (RgT"), RéT"), ... ,RE\Z’“)) represents the rate vector
for terminal Tj,. Let f;; > 0,(4,j) € E, f;; = 0,(i,j) € E*\E
represent the cost for transmitting at a unit flow over edge (¢, 7).
We are interested in the following optimization problem that
we call MIN-COST-SW-NETWORK.

minimize E fijzij
(i,5)€E

(T

s6.0< el <2y <O, (L)) € B TeeT (1)

> 2T 3 2T = o (™)
i1Gh)er") lGer)
fori € V*, T €T .
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#7) > R forieS, T,eT 3)
RT) € Rgyy, forT, €T )
where
. H(X1,Xs,..., Xn,) ifi=s*
o™ =8 _H(X),Xp,.... Xn.) ifi=Tp, 5
0 otherwise.

The constraints in (1), (2), and (5) are precisely the for-
mulation of the minimum cost single-source multiple ter-
minal multicast with network coding for a total rate of
H(Xy,Xs5,...,Xns). The constraint (3) enforces the flow
:vgi) (corresponding to terminal T} from s* through source 7)
to be at least RZ(T"'). Constraint (4) ensures that the rate vectors
R(™*) belong to the Slepian-Wolf region Rsyy. A proof that
the total rate can be fixed to be exactly H(X1, Xa,..., Xn,)
for each terminal can be found in Appendix 1.

Suppose there exists a feasible solution z, (z(T%), R(T)) for
Ty € T to MIN-COST-SW-NETWORK. Let

V*Z — ‘/’7
E* = {(L,J) e E* |Z7J > 0}, and
Ccr = {Zij if (i,7) € E*

” 0  otherwise.

We define the subgraph of G* induced by z to be the graph
Gt = (V**, E** C*#) and the corresponding graph over block
length N as G:N = (V**, E3#,1). The subgraphs induced by
2(T¥) can be defined analogously. We now show that if MIN-
COST-SW-NETWORK is feasible then the subgraph induced by
the feasible z continues to satisfy the condition in definition
1 and therefore it suffices to perform random linear network
coding over this subgraph followed by appropriate decoding at
the terminals to recover the sources.

Lemma 1: Suppose that there exists a feasible solution
z, (™) R(TW)) for T}, € T to MIN-COST-SW-NETWORK.
Then, random linear network coding over the subgraph G*V
induced by z followed by maximum likelihood decoding at the
terminals can recover the sources X;,¢ € S at each terminal in
Tas N — oc.

Proof: To simplify the presentation we assume that all
Cij,(i,j) € E* and H(Xp/Xp:),B C S are rational
and the block length N is large enough so that NCj; and
NH(Xp/Xp.) are integral. For each terminal T} we shall
show that min—cut(B,Ty) > NH(Xpg|Xp-) over G*V and
then use Theorem 1.

Consider a terminal 77 € T. We are given the existence
of a feasible solution (z,z, R) from which we can find the
corresponding flow for 77 denoted by z(7*). Now consider the
subgraph of G*V induced by 2(™). Since z("*) is feasible,
it supports a rate of NH(X1, Xs,...,Xn,) from s* to T}
which implies (using Menger’s theorem [37]) that there exist
NH(X1,X2,...,Xng) edge-disjoint paths from s* to T7.
Furthermore at least N RET‘) of those edge-disjoint paths con-
nect source node i (where 7 € S) to T;. It follows thatif B C S
then the number of edge disjoint paths from B to T} is greater
than or equal to N ), 5 RST‘)
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Now, note that R("") € Ry which implies that for all B C
S, it holds that

NY R > NH(Xp|Xp).
1€B

This means that there exist at least NH(Xp | Xp:) edge-dis-
joint paths from B to 717 in the subgraph induced by 77 which
in turn implies that min—cut(B,71) > NH(Xp| Xpg:) over
the subgraph induced by 2(T*). This holds for all T;, € T, as we
have a feasible 2(7*) for all the terminals. Finally z induces a
subgraph where this property continues to hold true for each ter-
minal since xE]T‘ < z;j, forall (i,5) € E*, T}, € T. Therefore
for each terminal T}, we have shown that min—cut(B,T}) >
NH(Xp|Xp:) over G for all sufficiently large N. Usmg
Theorem 1 we have the required proof.

The formulation of MIN-COST-SW-NETWORK as presented
above is a linear program and can potentially be solved by a reg-
ular LP solver. However the number of constraints due to the
requirement that R € Rgyy is |T|(2Vs — 1) that grows expo-
nentially with the number of sources. For regular LP solvers the
time complexity scales with the number of constraints and vari-
ables. Thus, using a regular LP solver is certainly not time-ef-
ficient. Moreover even storing the constraints consumes expo-
nential space and thus using a regular LP solver would also be
space-inefficient. In the sequel we present efficient techniques
for solving this problem.

A. Solving MIN-COST-SW-NETWORK via Dual
Decomposition

Suppose that we are given an instance of the S-W problem
over a network specified by P = (Rsw, G, S, T). We assume
that P is feasible. The MIN-COST-SW-NETWORK optimization
problem is a linear program and therefore feasibility implies that
strong duality holds [38].

We shall refer to the variables z, z(T*), R(T%) for T), € T
as the primal variables. To simplify notation we let xE,T‘
[xiT’i)xg;) . gTﬁ\QS ] denote the vector of flow variables cor-
responding to terminal 7}, on the edges from the virtual super
node s* to the source nodes in S. We form the Lagrangian of the
optimization problem with respect to the constraints RET’”’) <

( ‘) , fori € S, T}, € T. This is given by

L(/\.z.x(Tl).... 2Txr) | R(TY).

= T2+ Z A (R~

where A = [AT A7 ... A%, ]7 is the dual variable such that A >
0 (where > denotes component-wise inequality).

For a given A, let g(\) denote the dual function obtained
by minimizing L(\, z, =™, . o(Tve) RT)  R(Txg))
over z,zTV, . .. zTxp) RT) RT~r)  Since strong
duality holds in our problem we are guaranteed that the optimal
value of MIN-COST-SW-NETWORK can be equivalently found
by maximizing g(\) subject to A > 0 [38]. Thus, if g(A) can
be determined in an efficient manner for a given A then we can
hope to solve MIN-COST-SW-NETWORK efficiently.
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Consider the optimization problem for a given A > 0.

Ng
minimize f7z + Z/\Z (R(T,\.) _ xgk))

k=1
St0<:17( )<Z”<C” (i,j) € E*, Ty € T

> - S

{71 G.9)eE"} {ilG.eE*}
R(Tx) € Rsw, T €T.

o™ eV T eT

We realize on inspection that this minimization decomposes
into a set of independent subproblems shown here

Nr
L T
minimize f7z — g )\;‘:J;g*‘)

k=1
S.t.OSLE(Tk) < zij <C',L']'7 (L,J) eE*T,eT
>ooa - Y o =eMieviner
{lGi,5)eE"} {i1GieE*}
(6)
and foreach 1}, € T
minimize A% R(7+)
subject to R ¢ Rsw- @)

The optimization problem in (6) is a linear program with vari-
ables z and z(") for k = 1,..., Ny and a total of (2|T| +
D|E*| + |T||V*| constraints that can be solved efficiently by
using a regular LP solver. It can also be solved by treating it
as a minimum cost network flow problem with fixed rates for
which many efficient techniques have been developed [14].
However each of the subproblems in (7) still has 2Vs — 1
constraints and therefore the complexity of using an LP solver
is still exponential in Ng. However using the supermodularity
property of the conditional entropy function H(Xp | X§), itcan
be shown that R syy is a contra-polymatroid with rank function
H(X g | Xge) [39]. In addition, the form of the objective func-
tion is also linear. It follows that the solution to this problem can
be found by a greedy allocation of the rates as shown in [35]. We
proceed as follows.
1) Find a permutation 7 such that Ay (1) > Ag r2) = -+ >
Ak,x(Ns)-
2) Set
R = H (X iz [ X(zyyc)  and

(Tw) _
R = H (X (r(),...m(i)) |X{r<1>, @)
..... 1)}
for2§L§N5. ®)
The previous algorithm presents us a technique for finding the
value of g(\) efficiently. It remains to solve the maximization

Ry o)

For this purpose we use the fact that the dual function is concave
(possibly non-differentiable) and can therefore be maximized by
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using the projected subgradient algorithm [17]. The subgradient
for \j, can be found as R(T+) — ng") [17].

Let \! represent the value of the dual variable A at the ith
iteration and 6; be the step size at the sth iteration. A step by step
algorithm to solve MIN-COST-SW-NETWORK is presented.

1) Initialize A\° > 0.

For given \? solve
Nr

minimize f7z — Z ()\i)T zg")
k=1
s.t.0< :LE]TI‘) < Zij < Cij7 (Z_]) S E*7Tk erT

IR A

{71G.DeE}

>
{ilG.5)eE"}
fori e VT, €T

using an LP solver and for each T}, € T,
minimize (A, )7 R(T+)
subject to RT) ¢ Rsw ®

using the greedy algorithm presented in (8).
2) Set Ait! = AL + ;(RT) — 2"+ for all T, € T.
Goto step 2 and repeat until convergence.

While subgradient optimization provides a good approxima-
tion on the optimal value of the primal problem, a primal optimal
solution or even a feasible, near-optimal solution is usually not
available. In our problem, we seek to jointly find the flows and
the rate allocations that support the recovery of the sources at the
terminals at minimum cost. Thus, finding the appropriate flows
and rates specified by the primal-optimal or near primal-optimal
2, 2T x(Tve) RO R(TNR) is important. Towards

this end we use the method of Sherali and Choi [40].
We now briefly outline the primal recovery procedure of [40].

Let uf forj = 1,...,k be a set of convex combination weights
for each k& > 1. This means that
k
Z;Lf =1, and uf > 0.
j=1

Let 6y, denote the step size at time k. We define
Vik =15 [0k, forl<j <k andk>1
and let
Aprax = max{Vjx — Y-k :J = 2,...,k}.
Let the primal solution returned by subgradient optimization

at iteration k be denoted by the vector (2, z, R)j, and let the kth
primal iterate be defined as

k
(2,8, R)e = Y _ ph(z,2,R); fork>1. (10)
j=1

Suppose that the sequence of weights ué? for £ > 1 and the
sequence of step sizes 6y, k > 1 are chosen such that

1) vjk = -1k forall j = 2,... k for each k.

2) Ay — 0, as k — oo, and

3) vir — 0ask — oo and 7y, < 6 for all k, for some § > 0.

Then an optimal solution to the primal problem can be ob-
tained from any accumulation point of the sequence of primal
iterates {(Z, 4, R)}.
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Some useful choices for the step sizes 6}, and the convex com-
bination weights uf that satisfy these conditions are given below
(see [40]).

1) 0k =a/(b+ck),fork > 1 wherea > 0,b > 0,andc > 0
and p¥ = 1/k forall j = 1,... k.

2) 0, = k=, fork >1where0 < a < 1 anduf = 1/k for
allj =1,... k.

The strategy for obtaining a near-optimal primal solution for
the MIN-COST-SW-NETWORK problem is now clear. We run
the subgradient algorithm in the manner outlined above and
keep computing the sequence of primal iterates { (7, X, R)}x>1
and stop when the primal iterates have converged.

B. Results

In this section we present results on the performance of
our proposed algorithm. We generated graphs at random by
choosing the position of the nodes uniformly at randomly from
the unit square. Two nodes were connected with an edge of
capacity 40.0 if they were within a distance of % of each other
and were connected with an edge of capacity 20.0 if they were
within a distance of 0.3 of each other. The orientation of the
edges is from left to right. A certain number of nodes were
declared to be sources, a certain number to be terminals and the
remaining nodes were used for relaying.

Let the random vector at the sources be denoted by Z =
(Z1,Z2,...,ZN,). As in [41], a jointly Gaussian model was
assumed for the data sensed at the sources. Thus the pdf of the
observations is assumed to be

1
\/ﬂNS \/det(czz)
< oxp (5@ - 07C7Ha - )

f(ZhZZ? e 7zATS) =

where Cz 7 is the covariance of the observations. We assumed
a correlation model where Czz(i,i) = o? and Czz(i,j) =
o2 exp(—cdf;») when ¢ # j (where ¢ and [ are positive con-
stants and d;; is the distance between nodes ¢ and j). It is fur-
ther assumed that the samples are quantized independently at
all source nodes with the same quantization step A that is suf-
ficiently small. Under these conditions, the quantized random
vector X = (X1, Xo,..., Xn,) is such that

H(X) = h(Z) — Nglog A

as shown in [42] where H (X)) represents the entropy of X and
h(Z) = }log(2me)Ns det(Czz) represents the differential en-
tropy of Z. We can also express the conditional entropy
1 _\pe det(sz)
H(Xp|Xp:)~ =1 ome)Ns—IB 2227
(Xp|Xpe) % 5 1o ((2me) o121 0022
— (Ns - |B]) log A.

We used these conditional entropies for the Slepian-Wolf region
of the sources.

Fig. 1(a) shows a network consisting of 50 nodes, with 10
source nodes, 37 relay nodes, and 3 terminals. We chose o2 =
1,¢ = 1and 8 = 1 for this example. The quantization step size
was chosen to be A = 0.01. The cost of all the edges in the
graph was set to 1.0.
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Fig. 1. (a) Network with ten source nodes (in red) and three terminal nodes (in
green). The light edges have capacity 20 and the dark edges have capacity 40.
All edges are directed from left to right and have unit cost. (b) Convergence of
the subgradient algorithm to the optimal cost.

0 500 2000

For the subgradient algorithm, we chose /L;? =1/kforall j, k
and the step size 0, = 8/k%-®. The averaging process ignored
the first 50 primal solution due to their poor quality. We observe
a gradual convergence of the cost of our solution to the optimal
in Fig. 1(b).

1) Remark 1: If one uses a regular LP solver to solve
the MIN-COST-SW-NETWORK problem, as noted above, the
complexity would scale with the number of variables and con-
straints, that grow exponentially with the number of sources.
However, one is guaranteed that the LP solver will terminate
in a finite number of steps eventually. Our proposed algorithm
uses the subgradient method with step sizes such that the
recovered solution will converge to the optimal as the number
of iterations go to infinity [17]. In general, it does not seem
possible to claim convergence in a finite number of steps for
this method. A discussion around convergence issues of the
subgradient method can be found in Chap. 6 of [17]. We point
out that in practice, we found the algorithms to converge well.
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Note also that even the description of the LP requires space
that increases very quickly, therefore using the LP formulation
becomes impractical even with a moderate number of sources.

C. Discussion About Fujishige’s Algorithm

‘We now discuss the work of Fujishige [34]. Towards this end
we need to define the following quantities. A polymatroid P is
defined as a pair (A, p) where A is a finite set and p is a function
from 24 to the positive reals, R, that satisfies the axioms of
a rank function. A vector o € Rl_f‘, with entries indexed by
the elements of A is called an independent vector of P(A, p) if
Yecpa(e) < p(B),forall B C A.

Suppose that we have a directed graph G = (V, E, C), with
linear costs f;;,V(4,j) € E, (as defined above) with two vertex
subsets V; (source nodes) and V5 (terminal nodes). Suppose that
for each V;,7 = 1,2, a polymatroid P;(V;, p;) is defined. An
independent flow is a triple (a, 8, 3), such that: (i) « is an in-
dependent vector of P; and is the vector of flows entering the
network at the source nodes, (ii) 3 is an independent vector of
P> and is the vector of flows absorbed at the terminal nodes, and
(iii) 6 is a flow vector such that flow balance is satisfied at each
node in G. The algorithm in [34], returns an independent flow
of maximum value, whose cost f7'§ is minimum.

In the case of a single terminal, this algorithm can be used
to solve the MIN-COST-SW-NETWORK problem (as noted in
[33]) as follows. The set of source nodes and the conditional
entropy function, specify a contra-polymatroid. An equivalent
polymatroidal representation can be found without much diffi-
culty (see [33]). Thus, these specify V; and P;. If there is only
one terminal, then one can simply define a (trivial) polymatroid
on it. This specifies V5 and Ps.

The situation is different when one considers network coding
and multiple terminals. The algorithm in [34], is only guaran-
teed to return one set of flows that satisfies flow balance at all
source nodes, internal nodes and the terminals. It is possible to
show the existence of instances where one set of flows will not
simultaneously satisfy all the terminals, when one considers
the MIN-COST-SW-NETWORK problem. An example can
be found in [13, Fig. 6]. Moreover, the objective function in
MIN-COST-SW-NETWORK, penalizes the maximum of the
flows across the terminals at each node, which is different from
the one in [34]. Thus, it is unclear whether this algorithm can
be adapted to our problem in a straightforward manner.

IV. QUADRATIC GAUSSIAN CEO OVER A NETWORK

In general, the problem of transmitting compressible sources
over a network need not have the requirement of lossless
reconstruction of the sources. This maybe due to multiple
reasons. The terminal may be satisfied with a low resolution
reconstruction of the sources to save on network resources
or lossless reconstruction may be impossible because of the
nature of sources. If a source is continuous then perfect re-
construction would theoretically require an infinite number of
bits. Thus the problem of lossy reconstruction has also been
an active area of research. In this section we shall consider the
quadratic Gaussian CEO problem [16] over a network. We start
by outlining the original problem considered by [16]. We then
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present the minimum cost formulation in the network context
and present efficient solutions to it.

Consider a data sequence { X (¢)} 72 that cannot be observed
directly. Instead, independent corrupted versions of the data se-
quence are available at a set of L agents who are in communi-
cation with the Chief Estimation Officer (CEO) over different
communication channels. The agents are not allowed to coop-
erate in any fashion. Suppose that the CEO requires the recon-
struction of { X (¢)}$2, at an average distortion level of at most
D. Here, the distortion level is a metric of the fidelity of the re-
construction. Suppose agent ¢ communicates with the CEO at
rate ;. The CEO problem [43] is one of studying the region
of feasible rate vectors (R1, Ra, ... Ry,) that allow the recon-
struction of the data sequence under the prescribed distortion
constraint. As in the Slepian-Wolf case there is a direct link be-
tween the agents and the terminal (or the CEO). The quadratic
Gaussian CEO problem is the particular instance of the CEO
problem when the data source {X (¢)}72, is Gaussian and the
distortion metric is mean squared error. A formal description of
the problem follows.

Let {X(¢)}2, represent a sequence of ii.d. Gaussian
random variables and {Y;(¢)}$2, = {X(¥) + N;(¢)}2,,4 =
1,..., Ns where { N;(¢)}$2, are i.i.d. Gaussian independent of
{X(t)}52, with E(N;(t)) = 0, Var(N;(t)) = o?. Furthermore
{N;(t)}22, and {N;(t)}$2; are independent when i # j.

Let ¢ > 0 be a small real number. The ¢th agent encodes a
block of length n from his observations {y;(t)}52, (here, y;(t)
denotes a particular realization of the random variable Y;(t))
using an encoding function f? : R® — {1,2,..., [2"(Fte) |}
of rate R; + ¢. The codewords from the Ng sources are sent
to the CEO who seeks to recover an estimate of the source
message over n time instants (x(1),2(2),...,z(n)) using
a decoding function g, : {1,2,...,|2"(Fi+9)|} x ... x
{1,2,...,|2"ENs 9|} — R™.

Definition 2: A rate vector (Ry,...,Rn,) is said to be
achievable for a distortion level D if for ¢ > 0, there exists
ng such that for all n > ng, there exist encoding functions
fi R — {1,2,...,[2"®+9) |} and a decoding function
gn {12, [20BEO) Lo (1,2, L, |20 (BNs O )
R™ such that 2E" (X (t) — X(t))? < D + e where
X = gu(JEY). o S (V).

A complete characterization of the feasible rate region for a
given distortion level D, denoted by R (D) has been obtained in
[44], [45] and is given

R(D) = U RD(Tlv"w"‘NS) (11)
(rl,...,1’NS)€.7~—('D)
where
'RD(Tl,....TNS)é (R1 ..... RNS) AC{l ..,NS},

Nsler’

A;éqﬁ,ZRkZZrk—l—%log =

k€A o2

l—e—2mi
kEA o ZiGAC 32
{(7"1, .. ’I“Ns)

F(D) =

vV

UX

’L

1 1—e—2“ 1
i >0, — § - > _3.
"= +L1 D}
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It is important to note that R(D) is convex [45]. Thus,
in principle the minimization of a convex function of
(R1, R, ..., Ry,) can be performed efficiently.

We are interested in the quadratic Gaussian CEO problem
over a network. In line with our general setup presented in
Section II, the ith source node in S observes the process
{Yi(t)}21 = {X(t)+ N;i(t)}2, and encodes the observations
at a rate I?;. Once again we are interested in the minimum
cost network flow problem with rates such that they permit
the recovery of the source X at the terminals with the desired
level of fidelity, which in this case shall be measured by mean
squared error.

We start by highlighting the differences between this
problem and the minimum cost Slepian-Wolf over a network.
In the previous subsection we observed that the work of Ho et
al. shows that random linear network coding over a subgraph
such that Cp, N Rsyw # ¢,VI; € T allows the lossless
recovery of the sources at the terminals in 7' and essentially
the Slepian-Wolf theorem holds even in the network case with
multiple terminals i.e., any rate vector that can be obtained by
joint coding can be obtained by distributed coding even when
there are multiple terminals. However, an analogous result in
the case of the quadratic Gaussian CEO problem does not
exist. Furthermore, the rate region for the quadratic Gaussian
CEO problem over a general network is unknown. As a simple
example, we may have a network where two source nodes are
connected to a common intermediate node. The intermediate
node can then combine the quantized observations from these
source nodes to generate a new quantized observation such
that a lower rate is possible. Thus the rate region given by
the classical Gaussian CEO problem may not hold as the two
codewords may be fused to produce a new codeword that
enables lower rate transmission.

The first issue can be handled by assuming that there is only
one terminal, i.e., Ng = 1 and Cr, NR(D) # ¢ so that routing
will suffice to transmit a rate vector belonging to Cr, N R(D)
to the terminal 7. Thus, in this problem, we shall not con-
sider network coding. For the second issue, we assume that
the network operates in a separate compression and informa-
tion transfer mode. The set of source nodes quantize their ob-
servations as they would in the original quadratic Gaussian CEO
problem. After this source coding step, the network ignores any
data correlations and routes the data as though it were incom-
pressible. In general, this separation of the compression and the
information transfer is suboptimal, however it is likely to be a
simple way of operating the network.

It is more convenient to cast this optimization in terms of
the original graph rather than the augmented graph. The MIN-
COST-QUAD-CEO-NETWORK problem becomes

minimize E fijmij

subjectto 0 < z;; < Cyj,  (4,§) € E
Yo=Y wp=0ie(SU{Ti})® (12)
{j1(.))EE} {i1G)eE}
> wi— > wp>Rii€S (13)
{j1(.))EE} {i1G)eE}
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>ooomi— Y mi<-Y Ri,i=Ti (14)
{31G.)eE} {71 GH)EE} €S
R € R(D).

Here, (12) enforces the flow balance at all nodes in V' except
those in .S U {T1}, (13) enforces the constraint that at least R;
units of flow is injected at each source node 7 € S and (14) en-
sures that at least Zi cs R, isreceived at the terminal 77 . For the
MIN-COST-SW-NETWORK problem the total rate to be trans-
mitted to 73 could be fixed to H(X;,..., Xx) as shown in the
Appendix. However for the problem presented above fixing the
total rate is not possible because of the nature of the inequal-
ities specifying R(D). A feasible solution to the optimization
presented above would yield a routing solution such that the
delivery of a rate vector belonging to R(D) is possible at ter-
minal 77. The proof is similar to the one presented in the proof
of Lemma 1. However, even though the optimization under con-
sideration above is convex, the number of constraints specifying
R(D) is exponential in Ng that would make a regular convex
program solver inefficient.

A. Solving MIN-COST-QUAD-CEO-NETWORK via Dual
Decomposition

We assume that the MIN-COST-QUAD-CEO-NETWORK
problem is strictly feasible so that strong duality holds [38]. The
Lagrangian with respect to the set of flow balance constraints
that contain terms dependent on R;,+ € S for a given A is given
by

LOLx, R)=fTx+ )"\
€S

R, —

Y i
{il(G,5)eE}
>

{i(1T,5)eE}

LD

{71i)eE}

-

{31(,T)eE}

T | + A ZRi+
i€S

LTy g

Ly,

It is easy to see that finding the dual function g(A\) =
min, g L(A, z, R) subject to the remaining constraints de-
composes as

minimize fTLE — Z /\i Z Tij — Z Tj;
€S {71 G,5)€EE} {71 (i)eE}
+An erg— Y, an
{7 (Th,5)eE} {1 T)eE}
subjectto 0 < z;; < C;j, V(i,j) € E,

Z Tij — Z Tj; = 0, 7€ V\S U {Tl}
{jl(é,5)€E} {7l (G:))eE}
(15)
and minimize Z NiRi + Aqy Z R;
€S €S
subject to R € R(D). (16)

The optimization in (15) is a linear program that can be solved
efficiently. To solve (16) we note that for a given (71, ...,7nN,)
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it can be shown that the region Rp(r1,...,7n,) (defined in
(11)) is a contra-polymatroid [39]. Therefore an optimization
problem such as

minimize wTR

subjectto R € Rp(ri,...,7Ng) a7

can be solved in closed form by using the greedy allocation
algorithm presented earlier. Using this fact, we show (see
Appendix II) that the optimization in (16) reduces to a convex
optimization problem with Ng + 1 constraints that can be
solved efficiently via Lagrange multiplier methods. It is impor-
tant to note that the optimal value of the above optimization
problem is —oo if w; < 0 for any 7. This is because the inequal-
ities defining R(D) do not impose any upper bounds on the
individual rates R; for ¢ € S. Consequently, the optimization
in (16) has a finite optimal value only if A; + A, > 0,Vi € S.
It is clear based on the previous arguments that we can eval-
uate g(\) efficiently. We now need to solve the optimization

max g(\)
subjectto A\; > 0, 1 € S, Ap, > 0.

For solving this maximization, we use the projected subgra-
dient method [17]. As noted in Section III the subgradient al-
gorithm may not return a primal optimal or primal near-optimal
solution. For primal recovery for the MIN-COST-QUAD-CEO-
NETWORK problem we use the technique proposed by Larsson
et al. [46] that generalizes the method of [40] to the case of gen-
eral convex programs. We point out some differences between
the two methods here.

The method of Larsson ez al. considers an optimization of the
following form.

min f(z)

subject to h;(z) < 0,i €T

e X
where the functions f and h;,7 € Z are convex and the set X is
convex and compact. It assumes the Slater constraint qualifica-
tion condition, i.e., the existence of a strictly feasible point z

such that {z1 € X | h;(z1) < 0,i € Z} and considers the dual
function with respect to the constraints h;, 7 € Z,

6()—m1nf -I-Zu,z
1€L

and then solves the maximization of the dual function

max 6(u)

subject tou > 0
by using the projected subgradient algorithm. Let 2(*) denote
the primal solution obtained at the kth iteration. Section 3.2 of

[46] shows that for step sizes ay € [3h7. b+k] k>00<pu<
M < oo,k > 0 the sequence of averages defined by

1 n
"= = (k)
xr " E xr
k=0

converges to the primal optimal solution as n — co. The choice
of step sizes is more limited in this method as compared to [40].

(18)
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Fig. 2. (a) Network with ten source nodes (in red) and one terminal node (in
green). The light edges have capacity 11 and the dark edges have capacity 22.
All edges are directed from left to right and have unit cost. (b) Convergence of
the subgradient algorithm to the optimal cost.
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In our problem the h; functions are the linear inequality con-
straints in (13) and (14) and the existence of a strictly feasible
solution is assumed. However, the set R(D) is convex but not
compact. The condition of compactness is however rather tech-
nical and can be enforced by imposing a loose upper bound
on the rates. In practice, while running the subgradient algo-
rithm the dual variables \;,7 € S and Ay, were constrained to
be larger than or equal to 10710 at any iteration to ensure that
the optimized rates were bounded. Averaging the solutions as in
(18) we observed a steady convergence of the algorithm to the
optimal cost in our simulations.

B. Results

As in the previous section, we generated the graphs randomly.
However, there is only one terminal in the MIN-COST-QUAD-
CEO-NETWORK problem since we want a solution based on
routing. Fig. 2(a) shows an example of a network with 10 source
nodes, 39 relay nodes, and 1 terminal node. In this particular
example we chose the variance of the source to be o3 = 0.01,
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Source

Terminal

S2

Fig. 3. The figure shows sensor nodes S1 and 52 at different distances from
the phenomenon of interest. The red path corresponds to the data from S1 and
the blue path corresponds to the data from 52.

the sensing noise variance of the source nodes to be o = 0.005
for all ¢ € S and the required distortion level D = 0.003.
The capacity of the light edges is 11 and the capacity of the
dark edges is 22. The cost of each edge was set to 1.0. For the
subgradient algorithm the step size was chosen to be o, = %.
The averaging process ignored the first 100 primal solutions. As
demonstrated in Fig. 2(b) there is a steady convergence of the
subgradient algorithm to the optimal solution.

V. LIFETIME MAXIMIZATION FOR SENSOR NETWORKS WITH
DATA DISTORTION CONSTRAINTS

We now consider the problem of maximizing the lifetime of
a sensor network when the terminal node needs to be able to
reconstruct the data at a particular distortion level (related prob-
lems were studied in [26]). This problem is important in the con-
text of sensor networks where nodes are typically battery-lim-
ited and are sensing correlated phenomena that need to be recon-
structed at the terminal node. It has been studied in [47] when
the rates of the sensors are fixed. As explained in the previous
section, the sensor nodes observe independent corrupted ver-
sions of an i.i.d. Gaussian data sequence { X (¢)}$2; and com-
municate at a particular rate to the terminal node. The operating
rate vector, whose components consists of the operating rates of
each sensor should be such that the terminal should be able to
reconstruct { X (¢)}72, subject to a mean squared error distor-
tion constraint. We are interested in finding routes over which
the data should be routed so that the reconstruction (with an ac-
ceptable level of fidelity) can be ensured at the terminal for the
longest period of time before a node runs out of energy.

There is an inherent trade-off between the choice of the op-
erating rate for a given sensor and the energy consumption that
occurs when the data from the sensor is transmitted to the ter-
minal since the amount of energy consumption roughly depends
on the amount of distance or hops that the data has to travel. This
is best illustrated in Fig. 3. The sensor node S2 that is closer to
the phenomenon of interest has a better sensing SNR, but is far
from the terminal. Therefore S2 requires less bits for quantiza-
tion, however the data needs to travel a longer distance. On the
other hand, sensor node S1 that is further away from the source
but closer to the terminal has a lower sensing SNR and requires
more bits for quantization, but its data needs to travel a smaller
distance. Thus there is a clear tradeoff in how we would want to
perform the rate and the flow allocation if we wanted to maxi-
mize the network lifetime.

In this section we formulate the problem of maximizing the
lifetime of a network in the quadratic Gaussian CEO setting. As
in the previous section we assume that the network operates by
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separate compression and network information transfer. We are
given the following.

a) An ii.d. Gaussian data source sequence {X (¢)}22, and
set of source nodes S that observe independent corrupted
versions of {X (¢)} given by {Y;(¢t)}2, = {X(t) +
N;(t)} for i = 1,...,Ng where {N;(¢)}2, are i.i.d.
Gaussian independent of {X (¢)}$2, with E(N;(t)) =
0, Var(N;(t)) = o?. There is a single terminal node 7T}
that seeks to reconstruct the source such that the distor-
tion under the mean squared error metric is at most D.
The feasible rate region for this problem denoted R (D) is
given by (11).

b) The initial battery level, F; of each node i € V and the
following power consumption figures of interest.

i) Pix(i,7)—the power consumed when ¢ transmits
data to j at unit rate for all 4,57 € V,
ii) P.x(i,7)—the power consumed when j receives
data from 7 at unit rate for all 7, 7 € V and,
iii) Psense(7)—the power consumed when 7 uses an ad-
ditional bit for quantizing its observations.
We define the network lifetime to be the time until the first node
runs out of energy. The resultant optimization problem that we
call MAX-LIFETIME-DISTORTION-CONSTRAINT can be ex-
pressed as

minimize I’
$.t.0<uz;; <y, V(i,j)€EE
Tij — Z Jiji:07'l;€V\SUT1

{i1G.5)€eE} {31G.1)eE}

Z Tij — Z JijiZRi,iES
{i1G.5)€eE} {31G.)eE}

Z Tij — Z LL’]',L'S—ZR]', i:Tl
{i1G.5)€eE} {31G.)eE} Jes

> Pulizi+ D Pulhii)ai
{i1G.5)€eE} {31G,)eE}

+ Psense i < E;I', 1€ S

(i1 G.)er)
2
{1 (G)eE)
R e R(D)

Pix(i, )i

Pex(g i)zji < BT, i€ V\S

where T' denotes the reciprocal of the network lifetime. Note
that [47] considers the lifetime maximization problem when
the operating rate for each node : € V is fixed. Therefore
the problem becomes a linear program that can be solved
efficiently. However, we are interested in jointly optimizing
the operating rates and the lifetime of the network. In the
formulation above we note that the specification of the region
R(D) is non-linear (although convex) with exponentially (in
the number of sources) many inequalities. In [26], the authors
considered a problem similar to MAX-LIFETIME-DISTOR-
TION-CONSTRAINT and proposed suboptimal solutions for by
approximating the constraints of R(D) by linear inequalities.
The authors presented approximate linear programs that were
obtained by strengthening and weakening these constraints
and concluded that the true network lifetime was between the
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results obtained by solving these linear programs. However the
number of constraints was still exponential in the number of
sources that precluded solving large instances of the problem.
In this section we present a solution to this problem based on
dual decomposition.

We point out that we are considering a strategy where the rate
allocation is static. In practice, it may be beneficial to adapt the
rate allocation over time to extend the lifetime of the network.

A. Solving MAX-LIFETIME-DISTORTION-CONSTRAINT
by Dual Decomposition

We note that as in Section IV we can dualize the appropriate
flow balance and energy consumption constraints and compute
the dual function for this problem efficiently by exploiting the
contra-polymatroidal structure of R(D). However, in practice
we observed that the simple projected subgradient algorithm for
maximizing the dual function for this problem is far too slow
to be practical. Therefore we pursue an alternate line of attack
here. We actually minimize I'? instead of I" and use the proximal
bundle method [48] and perform primal recovery as explained
in [48]. The Lagrangian for a given \; and A becomes

L(A1, A2, 7, R)

:P2+Z)\1i R; - Z Tij + Z Tji
i€S {ilG.nNer} {ilG,1)eE}
+ A1y ZRk+ Z Ty j— Z Ty
kes {3 | (T1,5)€E} {i1G,m)eE}
+Z A2 Z P (i, §)xsj
€S {3 1(.5)€eE}
+ Z Prx(j; L):E]z +PsenseRi - Ezr

{ilGHeE}

and finding g(A1, A2) = minr , g L(A1, A2, 2, R) subject to the
remaining constraints decomposes as

minimize 2 = T Z Ao Ej

1€S
+ Z A | = Z Tij + Z Tji
€S {71G,5)€EE} {il1Gi)eE}
+ My Yo wni— Y, mm
{3 1(T1,5)€E} {31(,T)eE}
+ Z)\Zz Z PtX(L,J)xzj + Z Prx(j7 L)sz
€S {3 1(i,5)eE} {71 G)eE}
subject to0 < Tij < Cij7 V(LJ) ek
Z Tij — Z Tj; = 0, i€ V\S uT
{31 @.5)€eE} {i1G,DHEE}
Z Ptx(Lm})xu
{31 @.5)€eE}
+ Y Pu(ii)zi <ET, i€V\S (19)

{ilGHeE}
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and
minimize Y (Ari + A1z, + PrenseA2i) Ri
i€S

subject to R € R(D). (20)

The optimization problem in (19) can be solved by using a
quadratic programming solver and the optimization problem in
(20) can be solved as shown in Section IV. We used the quadratic
programming package offered by MOSEK! for this part of the
work.

From the above decomposition we have an efficient method
to evaluate g(A1, A2). It remains to evaluate

maximize g(A1, A2)
subject to A1, Ao = 0

for which we used the method of [48]. We now briefly overview
the proximal bundle technique.
Consider the convex optimization problem

min 1y (z)
subject to ;(z) <0,
z€Z

7=1...n

where Z is a compact and convex set, 1; is a convex function
for j = 0...n.Let f be the dual function of this optimization
problem with respect to the constraints ¢;(z) < 0,5 =1...n
Note that the dual function is always concave and that we may
not know f in its functional form. However we assume f and
a subgradient of f at any given point is available via an oracle.
We are interested in solving the original convex optimization
by finding max,.¢c 4 f(x) where A is a nonempty, closed convex
set and performing primal recovery. Toward this end we use the
following algorithm.
Proximal Bundle Algorithm
. Step 1: Let & > 0,m € (0, 1). Choose an initial point £°,
set 40 = £° and let k = 0. Compute f(£°) and a subgra-
dient sg at 20, Define the Oth polyhedral approximation to
fas fo(y) = f(3°) + 5§ (y — 2°).

¢ Step 2: At the kth iteration, compute

k+1 HE ||

; k2
y* € argmax [fk(( )= | ]
where (i, is a proximity weight. Store the Lagrange multi-
pliers corresponding to this optimization denoted by 1/]’-c >
01<J<ksuchthat21/ = 1.

« Step 3: Define 6, = fk( ) — f(&

+ Step 4: Compute f(y**1) and a subgradient 551 aty
Also store the value of the primal variables corresponding
to y**1, denoted by z*+1.

* Step 5: If f(y**1) — f(2*) > méy, perform a SERIOUS
STEP (SS) &*+1 = ¢*+1 else perform a NULL STEP (NS)
.%k-l—l _ :ﬁk

¢ Step 6: Update the model

Fer1(y) = min{fi (), F (") + sEy1 (y
e Step 7: Setk = k + 1 and go to Step 2

k). 1f 6, < & STOP.
k+1.

yk+1)}.

I[Online]. Available: http://www.mosek.com
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Fig. 4. Convergence of the proximal bundle algorithm to the optimal value
of I'.

The work of [48] shows that the aggregate primal solution
obtained by computing Z =1V k23 produces an asymptotically
optimal primal solution as k& — oo. For more details (such as
the choice of the p, sequence) and for techniques for reducing
the storage requirements associated with this method, we refer
the reader to [48].

We applied this method to our problem since we can effi-
ciently evaluate the dual function and can compute a subgradient
at each point as well. Note that in this method as well, there is
the technical compactness condition on Z. In our problem since
there are no upper bounds on the rates, our region is not com-
pact. However as in the previous section we impose loose upper
bounds on the rates by enforcing the dual variables to be larger
than or equal to 10710

B. Results

We ran the previous algorithm on the same topology shown in
Fig. 2(a). We chose the variance of the source to be 012\,' =0.01,
the sensing noise variance of the source nodes to be o = 0.005
for all 7 € S and the required distortion level D = 0.003.
The battery levels for all the nodes were chosen to be 200 and
we set Pix(2,7) = 1.0, Px(7,7) = 0.5 and Psense = 0.001.
As demonstrated in Fig. 4 there is a steady convergence of the
proximal bundle algorithm to the optimal solution.

We note that the lifetime maximization problem can also be
solved in a similar manner if one consider the case of lossless
reconstruction with multiple terminals.

VI. CONCLUSIONS AND FUTURE WORK

We considered the problem of jointly allocating rates and
flows at minimum cost for distributed source coding problems
over a network. In particular, we considered: (a) the Slepian-
Wolf problem, (b) the minimum cost quadratic Gaussian CEO
problem, and (c) the problem of maximizing network lifetime
when a source needs to be reconstructed within a quadratic dis-
tortion constraint. These problems are of interest in domains
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such as sensor networks where the data that is sensed by dif-
ferent sensors is typically highly correlated. The feasible rate re-
gion of distributed source coding problems is typically specified
by a number of inequalities that is exponential in the number of
sources that makes these problems hard to solve. We presented
an approach based on dual decomposition that uses the special
structure of the rate regions to efficiently compute the dual func-
tion. Finally, we demonstrated approaches for maximizing the
dual function using the subgradient algorithm and the proximal
bundle algorithm.

It would be interesting to investigate algorithms along the
lines of those considered by Fujishige [34] (that do not use dual
decomposition), for the problems considered in this paper and
study whether they have lower complexity. In all the problems
we considered, we were able to decouple the rate allocations
from the flow allocations. This essentially happens because the
two sets of variables have a limited interaction via simple linear
inequalities. As pointed out by a reviewer there may be other
problems that may lend themselves to this kind of decompo-
sition, where the interaction between these variables is more
complex.

APPENDIX 1

Theorem 2: Consider a vector (R1, Ra, ..., R,,) such that

> R; > H(Xs|Xs:), forallScC{1,2,. .. n}and

i€S

> Ri> H(Xy, Xa,..., Xy).
=1

Then there exists another vector (Rj,Ry,...,R,) such that

R,; < R;foralli =1,2,...n and

YR, > H(Xs|Xs:), forall§cC{1,2...,n} and
i€S

ZR; :H(X17X27"'7Xn)'

=1
Proof: We claim that there exists a R;- €
{R1,Rs,...,R,} such that all inequalities in which

R ;- participates are loose. The proof of this claim follows.

Suppose that the above claim is not true. Then for all R;
where 7 € {1,2,...,n}, there exists at least one subset S; C
{1,2,...,n} such that

> Ry =H (X5, |S7)
keS;
i.e., each R; participates in at least one inequality that is tight.
Consider the subsets S; and Ss, i.e., the subsets for which

the inequalities are tight for Ry and R, respectively. We have
by assumption,

ZRk-i-ZRk: Z Ry, + Z Ry,

keS: k€S> keS1NS> kES1USs
=H (Xs, |Xs;) + H (X5, | Xs;)
< H (Xs,us, | X(s108.)°) + H (Xs,ns, | X(s1n85)<) 2D
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where in the second step we have used the supermodularity
property of conditional entropy. Now we are also given that

Z Ri. > H (X(s,n8,) | X(51n8:)<) - (22)
k€ES1NS2
Therefore we can conclude that
Z R, < H (X(SIUSZ) |X(51U52)°) . (23)

keS1US>

Now let S;o = S1 U S3. We have two cases
a) 512 = {1727...771}.
In this case we have a contradiction since the conclusion
above implies Y i | R; < H(X1, Xo, ..., X,).
b) S12 C {1,2,...,n}.
In this case consider applying a similar argument as before
with S1, and Ss. i.e.

ZRk+ZRk: Z Ry + Z Ry,

kES12 kES3 S12US3 S12NS3
<H (X(SIUSQ) |X(51U52)”) +H (X53 |XS§)
< H (X(5,08,083) | X(5,08,085)¢)

+ H (Xs,0s,05, | X(51082n85)<) - (24)

Now since

Z Ri > H (Xs,0s.ns, | X(5,08:085)°)
k€S12NSs

we obtain

Z Ry, < H (X(s5,08,085) | X(81U8:085)< ) -
S1US2US3

If Sy US;US3 ={1,2,...,n} we have the required con-
tradiction otherwise we can we can argue recursively to arrive
at the contradiction. Note that the process terminates since S; U
Sy---US, ={1,2,...,n}.

The above argument shows that there exists some j* such
that all inequalities in which R;- participates are loose. There-
fore we can reduce R;- to a new value R;Sfd until one of the
inequalities in which it participates is tight. If the sum-rate con-
straint is met with equality then we can set R; = R;‘id oth-
erwise we can recursively apply the theorem to arrive at a new
vector that is component-wise smaller that the original vector
(R17R27"'7Rn)' n

We refer the S-W constraint ), R; > H(Xi,..., Xny)
as the sum rate constraint. From Theorem 2 we realize that if
there exists a rate vector (R, Ra,...,R,) € Rsy that does
not meet the sum rate constraint with equality then we can al-
ways find another vector (R, R,, ..., R,) that is component-
wise smaller and meets the sum-rate constraint with equality.
Now consider the constraint (2) in the MIN-COST-SW-NET-
WORK problem. Instead of setting the flow-balance at s* to
H(X4,...,Xng) and at Ty, to —H(X1,...,Xng) we could
have introduced the constraints

)SILEDY

{ilG.eE"} {i1GHeE"}

SRR AR S AP

{il(i.)e B} G1GDeE) 7

(Tk) Tk. P *
T3 ZZRJ .t =s" and,
J
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and attempted to the solve the resulting linear program (without
forcing the sum rate constraint to be satisfied with equality).
Suppose that this optimization has a feasible point (z,xz, R)
where the rate allocation for some terminal does not satisfy the
sum rate constraint. Then based on the previous observation we
can conclude that we can replace R by a new set of rate alloca-
tions R such that R > R and (z,z, R') continues to be fea-
sible with the same cost. In fact one can possibly find a new set
of flows that may have a lower cost. To conclude this shows that
it is sufficient to consider rate allocations that satisfy the sum
rate constraint.

APPENDIX II

Consider the quadratic Gaussian CEO problem with n
sources. For a given (ry,...,ry,), it can be seen that the rank
function of the contra-polymatroid specified by R(D) is given
by

1
0.2
X
1
B)
X

1
A):Zrk+§log

keA

where A C {1,2,...,n}, A # ¢. Therefore the minimizer of
(17) can be written as

f{=(1)})
F{x(1),.

Rery =

Ry = (@)} = f{r(1), .. (i = 1)}

for2<i<n
where 7 is a permutation such that wr(;) > wgr@z) > -+ 2
Wr(n)- The optimization problem in (17) becomes
minimize Z W (i) R i)
i=1
—27’1 1
subject to + Z 5, r; >0, Vi,
(25)

Let AT denote the set {n(1),...,
simplifies to

Z w‘/r(z)rw(z)"i' Z Wr (i) log

We note that the first constraint in (25) has to be tight. To see this
suppose (1) > 0 and that the constraint is not tight. Then we
can reduce (1) so that the objective function (26) is reduced. If

m(7) }¢. The objective function
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Tx(1) = 0, then the argument can be applied to (2 by realizing
that the term corresponding to ¢ = 1 in the second summation
above is zero and so on. Using this observation the optimization
in (25) can be rewritten as

minimize Z W (i) T (i) + Wr(1) 10g(1/D) — Wr(n) log (1 /Jg()

1=1
n—1 —27'L
+ Z(wﬂ'(ZJrl) — Wxr(y) IOg + Z
i=0 kEAT
(27)
1 1 N
subject to D g — Z %.2 =0, —r; < 0,Vi.

=1

Next, we form the Lagrangian of the optimization problem in
(27) with respect to the equality constraint while treating the
positivity constraint on the r;’s to be implicit and obtain the
KKT conditions [38].

L(r,v)

= wa(i)rw(i) + We(1) log(1/D) = ey log (1 /0% )

i=1

= 1 1— 6*2”
+ D (e —wr@)log | =+ Y ———
i=1 X keAT

s )

Differentiating with respect to r(;) fore = 1,.. .,
to zero, we obtain

1

D

n and setting

oL 2 . ® =0
= Wg(1) —V e ) =
Irx(1) ‘772r(1)
oL = Wn(k) — 2 e~ 2
O (k) O (k)
n e~ 2rn(k) ity War(i+1) = W (i) -0
2 _—2r;
Ir(k) =1 % - Z{wu) ..... w(i)} - o2

Solving these equations, we obtain the equation shown at the
bottom of the page, where z7 = max(z, 0). Note that the form
of the equations is such that they can be solved recursively for a
given value of v. Furthermore, v is uniquely determined by the
equality constraint. Therefore, a simple grid search on v suf-
fices to solve these equations quickly. We note that a derivation
similar to the one above has been performed in a completely dif-
ferent context in [49].

r +
1 o 2v
ro1) = |=log
@ |2 ¢ wﬂ(l)oiu)
i k—1 1 o2t +
B 1 ) 2 271:1 (U)‘fr(i+1) - ww(i)) [_ Z]e{w(l), (i)} 12 } for ki > 2
A Pl (k)Ufzr(k w”(k)a‘rr(k) =
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