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Improved Compression of Network Coding Vectors
Using Erasure Decoding and List Decoding

Shizheng Li, Student Member, IEEE, and Aditya Ramamoorthy, Member, IEEE

Abstract—Practical random network coding based schemes
for multicast include a header in each packet that records
the transformation between the sources and the terminal. The
header introduces an overhead that can be significant in certain
scenarios. In previous work, parity check matrices of error
control codes along with error decoding were used to reduce
this overhead. In this work we propose novel packet formats that
allow us to use erasure decoding and list decoding. Both schemes
have a smaller overhead compared to the error decoding based
scheme, when the number of sources combined in a packet is
not too small.

Index Terms—Network coding, network coding overhead,
erasure decoding, list decoding.

I. INTRODUCTION

IN a multicast scenario, network coding can achieve
maximum-flow-min-cut capacity. It is shown in [1], [2] that

if each intermediate node transmits random linear combina-
tions of the incoming packets over a large field, the terminal
can recover the source packets with high probability. Under
such a distributed randomized scheme, the terminals need
to know the transfer matrix. In [3] it was shown that this
can be carried in the headers of the packets. The header
records the network coding vector, which consists of the linear
combination coefficients for the packet. The header length
equals to the number of source packets, which is negligible
when the packet length is large and the number of sources is
relatively small.

There are situations in which the packet overhead can be
significant. As noted in [4], in sensor networks, the number of
sources is large and current sensor technology does not allow
transmission and reception of very large packets. However, in
many of these applications, the network topology is such that
the received packets at a terminal only consist of combinations
of a small or moderate number of sources. In addition, the
random network coding protocol can possibly be appropriately
modified to enforce the constraint that a received packet
contains combinations of only a few sources. This implies
that it may be possible to “compress” the header size and
reduce the overhead. The idea of compressing coding vectors
was first proposed in [4], where a strategy using parity-check
matrices of error control codes was used. Under that scheme,
the overhead of each packet has length 2𝑚 if the maximum
number of packets being combined in the packet is 𝑚.

Suppose the total number of sources is 𝑛. As mentioned
in [4], the restriction on the number of combined packets
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introduces 𝑛 − 𝑚 zeros in each row of the transfer matrix,
which may affect the invertibility of the matrix. The network
topology in general will make the distribution of zeros non-
uniform and this makes the chance of losing rank becomes
larger. Therefore, the value of 𝑚 can not be too small.
Main Contributions - In this work, we propose improved
schemes for the compression of network coding vectors.
1) In the first scheme, we add an ID segment to the header
that records the IDs of the sources being combined in the
packet. This requires modifying the intermediate node oper-
ation slightly but gives two main advantages: a) It allows us
to convert the problem at the terminal into one of decoding
erasures (as against decoding errors). The required header
length becomes 𝑚+𝑛/ log 𝑞 (the base of the logarithm is two
throughout the paper), where 𝑞 is the field size. It is less than
the overhead of the error decoding based scheme (2𝑚) when
𝑚 is not too small. b) The protocol suggested in [4] to limit
the number of sources combined in a packet adds a counter to
each packet for tracking the number of sources that have been
combined. However, when combining two incoming packets, it
is hard for the intermediate node to know the number of source
packets that will be combined in the new packet because the
sets of source packets in the incoming packets may overlap.
It can only obtain an inaccurate upper bound by adding two
counters together. Using our proposed ID segment, the number
of source packets being combined in every coded packet can
be accurately traced. 2) In the second scheme, we propose
a list-decoding based compression scheme (based on error
decoding like [4]) , whose overhead can be made arbitrarily
close to 𝑚+𝑂(log 𝑛)/ log 𝑞. In this scheme the intermediate
nodes remain oblivious to the fact the network coding vectors
are compressed. The lower overhead for this scheme comes
at the expense of higher decoding complexity (for the header)
at the terminal.

II. BACKGROUND AND RELATED WORK

Let 𝐹𝑞 denote a finite field with size 𝑞, where 𝑞 is a power of
two. Consider a network with 𝑛 sources, not necessarily col-
located. The 𝑖𝑡ℎ source transmits a length-𝑁 packet p𝑖 ∈ 𝐹𝑁

𝑞 .
The packet contains two parts: p𝑖 = [p𝐻

𝑖 ∣p𝑀
𝑖 ], where p𝐻

𝑖 ∈
𝐹ℎ
𝑞 is the header and p𝑀

𝑖 ∈ 𝐹𝑁−ℎ
𝑞 is the actual message.

The 𝑖𝑡ℎ packet received by a terminal is r𝑖 = [r𝐻𝑖 ∣r𝑀𝑖 ], where
r𝐻𝑖 denotes the header and r𝑀𝑖 denotes the coded message.
In [3], the header, p𝐻

𝑖 is designed to be the 𝑖𝑡ℎ row i𝑖 of an
𝑛-by-𝑛 identity matrix. Thus, under random network coding,
r𝐻𝑖 contains the overall transformation from the sources to the
terminal for the coded message r𝑀𝑖 . The length of the header
ℎ = 𝑛. Denote the vector of transformation coefficients by q𝑖.

In general, the entries of q𝑖 could be all non-zero since
all sources could be combined. Under the assumption that at

1089-7798/10$25.00 c⃝ 2010 IEEE



750 IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 8, AUGUST 2010

most 𝑚 sources are combined, q𝑖 contains at most 𝑚 non-
zero entries, which leads us to an error control coding based
compression [4]. Let 𝐻 be a parity check matrix of a (𝑛, 𝑘, 𝑑)
linear block code, where 𝑑 is the minimum distance [5]. In a
channel coding setting, a codeword x such that x𝐻𝑇 = 0 is
transmitted, and y = x + e is received, where e denotes the
error. The decoder computes the syndrome (of length 𝑛− 𝑘)
y𝐻𝑇 = e𝐻𝑇 = s and finds the error pattern e. As long as
the actual Hamming weight of e, 𝑤𝑡(e) ≤ ⌊(𝑑− 1)/2⌋, e can
be recovered exactly. This can be done efficiently for codes
such as RS and BCH using the Berlekamp-Massey algorithm
(BMA) [5]. Equivalently, we can reconstruct e (of length-𝑛)
from s (of length 𝑛−𝑘) and this can be viewed as a method to
compress a vector e. For an error pattern such that 𝑤𝑡(e) ≤ 𝑚,
to get a high compression rate, we want 𝑘 to be as large as
possible while the minimum distance is 𝑑 and the code length
is 𝑛. From the Singleton bound [5], 𝑘 ≤ 𝑛− 𝑑+1 = 𝑛− 2𝑚
and the well known RS codes achieve this with equality..

In the error-correction based compression scheme [4], the
header of the packet p𝑖 injected in the network is chosen to
be p𝐻

𝑖 = i𝑖𝐻
𝑇 . After random linear coding, the 𝑖𝑡ℎ received

packet contains the header r𝐻𝑖 = q𝑖𝐻
𝑇 . Note that the network

coding vector q𝑖 is a length-𝑛 vector with 𝑤𝑡(q𝑖) ≤ 𝑚 and r𝐻𝑖
is available at the terminal. Thus, the problem of recovering
q𝑖 is equivalent to error correction. Then the 𝑛 headers can be
stacked row by row, forming the 𝑛-by-𝑛 transfer matrix. The
overhead is ℎ = 𝑛− 𝑘 and the maximum number of sources
allowed to be combined in one packet is 𝑚 ≤ ⌊ℎ/2⌋.

III. ERASURE DECODING BASED COMPRESSION SCHEME

In channel coding, an erasure is defined to be an error whose
location is known by the decoder. For a linear block code with
minimum distance 𝑑, it can correct up to 𝑑− 1 erasures. For
BCH codes and RS codes, syndrome-based decoding and the
BMA still work after some minor modifications [5]. In the
network coding vector compression scenario, if we know the
locations of non-zero elements in q𝑖, we can allow 𝑚 to be
as large as 𝑑 − 1 ≤ 𝑛 − 𝑘. Note that as long as we know
which source packets are combined in the packet of interest,
we know the locations of the non-zero elements.
Proposed Solution. - We add a bit array of length-𝑛 to the
header p𝐻

𝑖 and call it ID segment. At the 𝑗𝑡ℎ source, only the
𝑗𝑡ℎ position is set to 1 and others are 0. At every intermediate
node, when several incoming packets are combined to form a
packet for an outgoing edge, the ID segment of the outgoing
packet is the bit-wise OR of the ID segments of the incoming
packets. p𝐻

𝑖 also includes i𝑖𝐻
𝑇 (of length 𝑛 − 𝑘) as before.

This protocol is very easy to implement and every packet in the
network knows exactly which source packets are combined in
it. The 𝑗𝑡ℎ element of q𝑖 is non-zero if and only if the 𝑗𝑡ℎ bit in
the ID segment of r𝐻𝑖 is 1. As pointed out in the introduction,
if we want to limit the number of source packets being com-
bined by network protocol, this information is important for
the intermediate nodes. The terminal receives the “syndrome”
q𝑖𝐻

𝑇 and knows the locations of the “errors”. By erasure
decoding, it can recover q𝑖 as long as 𝑤𝑡(q𝑖) ≤ 𝑚 = 𝑛− 𝑘.

The length of the ID segment in terms of symbols is
𝑛/ log 𝑞. The total overhead is 𝑛− 𝑘+𝑛/ log 𝑞. If 𝑚 is fixed,

the overhead for the scheme in [4] is 2𝑚 and the overhead
for our erasure decoding scheme is 𝑚+ 𝑛/ log 𝑞. Thus, if 𝑚
is not too small, our proposed scheme has less overhead.

Example 1. Suppose 𝑛 = 50, 𝑞 = 28,𝑚 = 15. Under
error decoding scheme, a (50, 20) RS code is required and
the overhead is 30 bytes. Under erasure decoding scheme, a
(50, 35) RS code is required and the overhead is 22 bytes, a
saving of 26%. According to the current ZigBee standard [6],
the packet size is 128 bytes.

Example 2. Suppose 𝑛 = 255, 𝑞 = 28,𝑚 = 150. No code
has minimum distance 301 with code length 255. Under error
decoding the network coding vector cannot be compressed and
the overhead ℎ = 𝑛 = 255. Under erasure decoding scheme,
a (255, 105) RS code can be used and ℎ = 182.

A reviewer has pointed out that if one uses a bit-array to
record the IDs of the sources, then there is an alternative
scheme that does not require decoding at the terminals.
Basically, every node keeps track of the coefficients and the
ID’s and combines them so that the net transformation is
available at the terminals without decoding. However, such a
scheme requires the intermediate nodes to scan the headers of
the incoming packets to locate the corresponding coefficients
that need to be combined (in addition to performing a bitwise
OR in the ID array). This solution increases the processing
complexity at the intermediate nodes. Our proposed approach
can be viewed as an alternate solution to this problem. The
correct choice would depend upon the capabilities of the
sensor nodes and the application requirements.

IV. LIST DECODING-BASED COMPRESSION SCHEME

In this section, we show that the overhead of the strategy
based on error decoding (such as [4]) can be reduced by using
list decoding at the terminal. It does not require the decoder to
know the error locations so we need not add the ID segment
in the header. Furthermore, the intermediate nodes simply
perform linear combination on the header, i.e., it is oblivious
to the fact the network coding vectors are compressed. In the
channel coding scenario, given the received word y = x+ e,
the decoder tries to find a codeword x within Hamming
distance 𝑡0 ≜ ⌊(𝑑 − 1)/2⌋ of y. As long as 𝑤𝑡(e) ≤ 𝑡0, the
decoder will find a unique x and the decoding is successful.
When 𝑤𝑡(e) > 𝑡0, there is no guarantee that the decoder
will succeed. This is the scenario in which the notion of list
decoding is useful. The list decoding problem can be stated
as follows.

Problem 1. Given a received word y = x+ e, find the list
of all codewords x’s within Hamming distance 𝑡 > 𝑡0 of y.

As long as 𝑤𝑡(e) ≤ 𝑡, the actual codeword x will appear in
the list. The list decoding problem has been solved to some
extent (see [7] for a survey). Efficient list decoding algorithms
with polynomial sized lists for RS codes up to a radius of
(𝑡 = 𝑛−√

𝑛𝑘) are known. The class of folded RS codes [7]
can be decoded arbitrarily close to the Singleton bound, i.e.,
𝑡 can be close to 𝑛 − 𝑘, though this is possible only with
very large alphabets. In order to apply list decoding to our
problem, we propose a packet header for the 𝑖𝑡ℎ source packet
that consists of i𝑖𝐻𝑇 and some side information. Note that at
the terminal, we obtain the syndrome s = e𝐻𝑇 = q𝑖𝐻

𝑇 of
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TABLE I
COMPARISON OF THREE SCHEMES FOR THE SAME 𝑚.

Header format Header length
Error Syndrome 2𝑚

Erasure
Syndrome 𝑚 + 𝑛/ log 𝑞

+ ID segment

List Syndrome 𝑚+ 𝑂(log𝑛)/ log 𝑞
+ side information or 2𝑚−𝑚2/𝑛+𝑂(log𝑛)/ log 𝑞

network coding vector .Therefore, the problem can be stated
as follows.

Problem 2. Find the list of all possible error pattern e’s
such that e𝐻 = s and 𝑤𝑡(e) ≤ 𝑡, where 𝑡 > 𝑡0.

We present a problem transformation such that all list
decoding algorithms for problem 1 can be used to solve
problem 2. Given s = e𝐻𝑇 , we can find an arbitrary y such
that s = y𝐻𝑇 , then use this y as input to problem 1 and get
the list of x’s as an output, then e = x + y form the list of
e’s. Such y can be chosen easily. Recall that the parity check
matrix 𝐻 of a (𝑛, 𝑘) code has rank (𝑛 − 𝑘) and there exist
(𝑛 − 𝑘) columns in 𝐻 that are linearly independent. Let the
elements of y that correspond to these columns be unknowns
and other 𝑘 elements be zero. Note if a RS code is used,
we can choose any 𝑘 elements in y to be zero. The system of
equations s = y𝐻𝑇 has (𝑛−𝑘) unknowns and (𝑛−𝑘) linearly
independent equations, from which y can be determined. Next,
we prove that the above transformation solves problem 2
correctly. Suppose the resultant list of problem 2 is a set
𝐿1 and the list obtained by using our transformation is a
set 𝐿2. We need to show 𝐿1 = 𝐿2. First, if e ∈ 𝐿2, since
e = x+ y and x and y differ at most 𝑡 positions, 𝑤𝑡(e) ≤ 𝑡
and e𝐻𝑇 = x𝐻𝑇 + y𝐻𝑇 = 0 + y𝐻𝑇 = s, then e ∈ 𝐿1.
Second, if e ∈ 𝐿1, there exists an x = y + e such that
x𝐻𝑇 = y𝐻𝑇 + e𝐻𝑇 = 0 and since 𝑤𝑡(e) ≤ 𝑡, Δ(x,y) ≤ 𝑡
(Δ(⋅) denotes Hamming distance), this means x is a codeword
within Hamming distance 𝑡 of y, then x is on the list of the
output of problem 1. Thus e ∈ 𝐿2.

Note that so far we have only found a list of possible error
patterns. In practice we need to find the unique error pattern
as the decoded network coding vector. The small amount of
side information included in the header is useful here. The side
information generation problem was solved in [8, Theorem 2].
It is a hash function based algorithm to select a message in
a candidate set and works no matter we are facing problem
1 or problem 2. Note that in our compression problem, the
message space is all possible network coding vectors and the
size is 𝑞𝑛. The side information at the terminal should contain
[8, Lemma 1] (i) q𝑖 ⋅ g𝑟, where q𝑖 is the actual “message”
(network coding vector), g𝑟 is a randomly chosen column of
the generator matrix of a low rate RS code (which is different
from the one used to generate the syndrome) and ⋅ denotes
inner product, and (ii) the random number 𝑟. Denote the list
of candidates to be {q1

𝑖 , . . . ,q
𝐿
𝑖 }. The terminal knows the RS

code a priori and computes q𝑗
𝑖 ⋅g𝑟 for every 𝑗 and finds 𝑗∗ such

that q𝑗∗
𝑖 ⋅ g𝑟 = q𝑖 ⋅ g𝑟 . Since the actual q𝑖 is in the list, such

a 𝑗∗ exists. It was shown in [8, Theorem 2] that as long as
𝑂(log 𝑛)+𝑂(log𝐿)+𝑂(log(1/𝑃𝑓 )) bits of side information
are provided, the probability that 𝑗∗ is not unique is less than
𝑃𝑓 . The basic idea behind this is that for two codewords of

a RS code with very large minimum distance, the probability

that the symbols at a random chosen position 𝑟 are equal is
very small. The list size 𝐿 is polynomial with 𝑛. Thus, the
amount of side information needed is 𝑂(log 𝑛) and 𝑃𝑓 is the
probability of failure to find a unique output. In order to obtain
the side information at the terminal, we include i𝑖 ⋅ g𝑟 in the
header of the 𝑖𝑡ℎ source packets and the intermediate nodes
perform linear combination on it, so that the terminal receives
q𝑖 ⋅ g𝑟. We can let the session ID to be the random number 𝑟
and available to the sources and terminals so that 𝑟 does not
need to be transmitted over the network.

The list decoding based scheme incurs an overhead of
length 𝑚 + 𝑂(log 𝑛)/ log 𝑞 and allow the number of source
packets being combined to be 𝑚. It has smaller overhead size
than erasure decoding based scheme. However, as mentioned
before, in order to approach the list decoding capacity, the field
size needs to be large and the decoding algorithm becomes
more complicated. If we use ordinary RS codes and the
efficient decoding algorithms that corrects up to 𝑛 − √

𝑛𝑘
errors to compress network coding vector, the overhead length
will be 2𝑚−𝑚2/𝑛+𝑂(log𝑛)/ log 𝑞. Usually this will be less
than the overhead of error decoding based scheme but greater
than erasure decoding based scheme.

Example 3. Suppose 𝑛 = 255, 𝑞 = 28,𝑚 = 86. We use a
(255, 112) RS code. The syndrome length is 143 and the side
information length is ⌈30/8⌉ for 𝑃𝑓 = 0.0001, so ℎ = 147. ℎ
equals 172 or 118 for error or erasure decoding respectively.

V. CONCLUSION

We proposed erasure decoding based and list decoding
based approaches to improve the compression of network
coding vectors. Table I compares the overheads of the various
schemes. For moderate or large value of 𝑚, that may be
necessary to support the multicast rate, both schemes have less
overhead than the error decoding based scheme. Our investi-
gation reveals that the list decoding based scheme has a lower
overhead with respect to the erasure coding based scheme,
when capacity achieving codes are used. However, from a
practical perspective, the erasure coding scheme offers the best
tradeoff between overhead and implementation complexity.
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