
Mobile Element Scheduling
with Dynamic Deadlines

Arun A. Somasundara, Aditya Ramamoorthy, Member, IEEE, and

Mani B. Srivastava, Senior Member, IEEE

Abstract—Wireless networks have historically considered support for mobile elements as an extra overhead. However, recent

research has provided the means by which a network can take advantage of mobile elements. Particularly in the case of wireless

sensor networks, mobile elements can be deliberately built into the system to improve the lifetime of the network and act as mechanical

carriers of data. The mobile element, whose mobility is controlled, visits the nodes to collect their data before their buffers are full. In

general, the spatio-temporal dynamics of the sensed phenomenon may require sensor nodes to collect samples at different rates, in

which case, some nodes need to be visited more frequently than others. This work formulates the problem of scheduling the mobile

element in the network so that there is no data loss due to buffer overflow. The problem is shown to be NP-complete and an Integer-

Linear-Programming formulation is given. Finally, some computationally practical algorithms for a single mobile and for the case of

multiple mobiles are presented and their performances compared.

Index Terms—Controlled mobility, scheduling, wireless sensor networks.

Ç

1 INTRODUCTION

RECENTLY, there has been an increased focus on the use of
sensor networks to sense and measure the environ-

ment. This leads to a wide variety of theoretical and
practical issues on appropriate protocols for data sensing
and transfer. Some practical deployments include the
Networked InfoMechanical System (NIMS) [1], [2], James
Reserve [3], and Great Duck Island [4]. All of these
deployments focus mainly on the problem of habitat and
environment monitoring.

One can also envisage scenarios where a sensor network
is used to sense pollution levels at strategic locations in a
large city. There will be regions in which the variation in
pollution levels will be greater, such as industrial areas as
compared to residential areas. To capture this behavior, the
sensing rates of sensors at different positions will typically
need to be different. Consequently, the sensor nodes in
regions with higher variation in the phenomenon need to
sample more frequently in order to have more reliable
statistics. Another example of a practical scenario where the
sensing rates of sensors are different is a heterogenous
sensor network. For instance, a network deployed for the
purposes of ecological study will have sensors of different
modalities like light, humidity, pressure, etc. The different
types of sensors will typically be sampling at different rates,
depending on the physical phenomenon.

The data sensed by the sensor nodes needs to be
transferred to a base station, where it can be analyzed by
the field experts. Usually, the readings taken by the sensor
nodes are relayed to a base station for processing using the
ad hoc multihop network formed by the sensor nodes. While
this is surely a feasible technique for data transfer, it creates
a bottleneck in the network. In addition to sensing and
transmitting their data, the nodes near the base station have
to relay the data from nodes that are farther away. This leads
to a nonuniform depletion of network resources and the
nodes near the base station will be the first to run out of
batteries. If these nodes die, the network is useless for all
practical purposes as the sensed data cannot be transmitted
to the base station. Periodically replacing the battery of the
nodes is infeasible for large-scale deployments.

Researchers have proposed mobility as a solution to this
problem of data gathering. Mobile elements, acting as base
stations, can traverse the network, collecting data from
sensor nodes when they come near them. Existing mobility
in the environment can be used [5], [6], [7], [8] or mobile
elements can be added to the system [9], [10], [11], which
have the luxury of being recharged periodically. This
naturally avoids multihop and removes the relaying over-
head of nodes near the base station. In addition, the sensor
nodes no longer need to form a connected network (in a
wireless sense). Thus, a network can be deployed, keeping
only the sensing aspects in mind. One need not worry about
adding nodes just to ensure that data transfer remains
feasible.

Various types of mobility (for the mobile element) that
can be used for data collection in a sensor network can be
broadly classified as follows:

1. Random Mobility. The base station can be mounted
on entities moving randomly. These entities are
usually those existing in nature. For instance, in the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007 395

. A.A. Somasundara is with Broadcom Corporation, 3151 Zanker Road, San
Jose, CA 95134. E-mail: aruns@broadcom.com.

. A. Ramamoorthy is with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50011.

. M.B. Srivastava is with the Electrical Engineering Department, University
of California Los Angeles, MC #951594, 6731-H Boelter Hall, Los Angeles,
CA 90095-1594. E-mail: mbs@ee.ucla.edu.

Manuscript received 9 Sept. 2005; revised 16 Apr. 2006; accepted 27 June
2006; published online 15 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0269-0905.

1536-1233/07/$25.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

concept mentioned in [5], humans and animals act as
“data mules” and collect data opportunistically from
sensor nodes when in range.

2. Predictable Mobility. In this case, we do not have any
control on the movement of the mobile element, but
we can predict its motion. This approach is investi-
gated in [8], where a network access point was
mounted on a public transportation bus moving with
a periodic schedule. The sensor nodes learn and
eventually predict the times at which they have
connectivity with the bus and wake up accordingly
to transfer their data. Another example of this is the
scheme presented in [12], where there is a mobile
sink which does not send any query. Instead, the
static sensor nodes which are a single hop from the
path of the mobile sink (called moles) learn its
movement pattern over time and statistically char-
acterize it as a probability distribution function.
Whenever a static sensor node needs to send data,
it sends the data toward the mole, which should be in
the vicinity of the mobile sink.

3. Controlled Mobility. Here, the mobile element is part
of the network infrastructure and its motion can be
controlled for networking needs. Our earlier work [9]
presented an implementaion of a system with a robot
acting as a mobile base station. The robot moves on a
predetermined path, but changes its speed depend-
ing on the quality of the wireless channel and density
of sensor nodes in a particular area. Thus, the job of
the mobile node is exclusively one of a data-gatherer.
In addition to this, recently, there has been an
emergence of sensor network systems which have a
controlled mobile element in them (with mobile
element performing a variety of tasks). Two exam-
ples include NIMS [2] and Ragobot [13].

Controlled mobility was used in Message Ferrying [10],
[11], where the ferry is used to route messages between
nodes in sparse networks. A mobile base station was also
used in [14] to increase network lifetime. Their technique
leads to a more uniform distribution of energy consumption
by repeatedly relocating the base station, which changes the
bottleneck nodes which are closest to the base station and
results in the burden of relaying being shared across the
entire network. The two works above were evaluated in
simulation.

In this paper, we investigate scheduling problems that
naturally come up when sensor networks operate under
this paradigm of controlled mobility. We consider a sensor
network that has sensor nodes in different areas operating
at different sampling rates. This is in line with our
motivational example of pollution sensors. Each sensor
node has a finite buffer for storing the sensed values. The
network is equipped with a mobile element that does the
job of data gathering. When the mobile element visits a
sensor node, it transfers the data to its own memory and the
sensor node’s memory is freed. After visiting a node, the
mobile element will visit some other node, empty its buffer,
and so on. A static sensor node, after being visited by the
mobile element and having its buffer cleared, continues
sampling at its assigned rate and starts to fill its memory

buffers again. A problem that naturally crops up is the
scheduling of the visits of the mobile element so that buffers
on none of the sensor nodes overflow. We call this the
Mobile Element Scheduling (MES) problem.

It is important to clearly outline the differences between
this problem and the conventional Traveling Salesman
Problem (TSP) [15]. In TSP, the goal is to find a minimum
cost tour that visits each node exactly once. However, in our
problem, a node may need to be visited multiple times
before all other nodes are visited depending on the
strictness of its deadline, i.e., frequency of sampling. In
addition, as soon as a node is visited, its deadline (time
before which it should be revisited to avoid buffer over-
flow) is updated. Thus, deadlines are “dynamically”
updated as the mobile element performs the job of data
gathering.

Our earlier work [16] considered the use of a single
mobile element and its scheduling. This paper extends it in
many directions. We analyze the heuristics presented in it.
We extend the algorithms to the case when there are
multiple mobile elements to be scheduled. The presence of
multiple mobile entities leads to a number of design trade-
offs in the solution space. In addition, we consider an
existing piece of work in a related area and enhance it to
solve the Mobile Element Scheduling problem.

There are other scenarios where this scheduling problem
arises. One such system is a mobile battery charger unit that
visits sensor nodes periodically to charge their batteries. An
example of such a system is [17], which presented energy
harvesting in a mobile sensor network. The goal is to
schedule visits so that every sensor node is visited before it
is fully discharged. The batteries may be discharging at
different rates, depending on the tasks that the sensor nodes
are assigned to do or because of different qualities of
batteries. Obviously, a node can be visited before it is fully
discharged, but, once visited, it should come back before its
discharge time.

Calibration of sensor nodes is an important problem [18].
Another potential example is a mobile element used for
calibrating the sensor nodes. The sensor nodes drift at
different rates. The mobile element visits the nodes to
calibrate them and the mobile’s visits need to be scheduled.

In addition to the three examples above (mobile element
used for data collection, battery charging, and calibration),
mobility is being utilized in sensor networks in other ways
which require some form of scheduling of the mobile
element. For instance, in the NIMS system [2] mentioned
in the beginning, the mobile NIMS node is equipped with
sensing capability and moves to build a spatio-temporal
map of the sensed phenomenon. Scheduling is essential
when an event-aware [19] sampling is desired instead of a
raster scan. Another example is the Cyclops-based [20]
sensor network, where the nodes have a smart vision
sensor. Image summary can be transmitted wirelessly,
whereas a mobile element can be used to extract the raw
images from the cyclops nodes in non-real-time for
archival purposes.

We will be using the data collection example in the rest of
the paper. Also, there are no real-time constraints, only that
there should be no buffer overflow. This paper is organized

396 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

as follows: Related work is presented in Section 2, which
compares this problem with existing ones. Section 3
provides a formal statement of our problem. We show that
the problem is NP-complete in Section 4. An Integer-Linear-
Programming formulation is presented in Section 5,
followed by Section 6, which provides some heuristic
solutions that yield good results. The algorithms for multi-
ple mobiles are presented in Section 7.1, which extends the
algorithms for a single mobile. We also consider existing
solutions to a related problem in Section 7.2 and show that a
suitable modification to it can solve our problem. Simulation
methodology and results are discussed in Section 8. Section 9
presents a discussion on the practicality of the scheduling
algorithms. Finally, we conclude in Section 10, outlining
some directions for future work.

2 RELATED WORK

This section presents the work related to the scheduling
problem discussed above. The message ferrying approach
[10], [11] deals with using a message ferry to route data
from one node to another in a sparse network. In particular,
[10] gives schemes to find the route that the ferry has to
take. Based on a given traffic matrix (expected traffic from
any node to any other node), the goal is to find the optimal
route of the ferry so that the average delay from source to
destination is minimized while meeting the bandwidth
requirements of the traffic. Our problem deals with data
gathering and the constraint is on buffer overflow. We
present below some relevant literature in routing and
scheduling theory.

2.1 Vehicle Routing Problem

In the Vehicle Routing Problem (VRP) [21], we are given a
set of nodes and their service requests (in terms of demand
for a certain quantity of goods). There are vehicles available
for servicing these requests which are stationed at a special
node (node0), which is referred to as the depot. Each vehicle
has a certain capacity (in terms of the quantity of goods it
can carry). The goal is to find the number of vehicles and
the sequence of nodes each vehicle has to visit such that the
sum of the distances traveled by the vehicles is minimal,
subject to the following constraints:

. Each vehicle starts and ends at the depot.

. Each node is serviced by exactly one vehicle.

. Capacity constraints are met, i.e., the sum of
demands from the nodes on a vehicle’s list does
not exceed the vehicle’s capacity.

The Traveling Salesman Problem (TSP) mentioned ear-
lier is a special case of VRP, where there is a single vehicle
which visits the nodes and there are no capacity constraints.

There are many variants to the basic VRP mentioned
above. The one relevant to our problem is VRP with Time
Windows (VRPTW). In VRPTW [22], in addition to the VRP
constraints, there is a time window within which each node
has to be visited. A special case of this is Deadline-TSP [23],
in which case there is only one vehicle. But, both are
different from our problem, as, in our case, before visiting
all the nodes once, some node (which is sampling at a
higher rate) may need to be visited more than once. In

addition, the time windows of the visits are not known a
priori. Only the current time window is known and the next
time window is decided based on the current visit time.

There is a dynamic version of VRP, known as the
Dynamic Vehicle Routing Problem (DVRP) [24]. Here, the
information (input) is revealed to the decision maker
concurrently with the determination of routes. For instance,
the VRP mentioned above is solved for the initial requests
(nodes to be visited) and routes assigned to vehicles. Then,
as the vehicles start their scheduled routes, new requests
come which need to be accommodated. The DVRP problem
with time window constraints (DVRPTW) has a time
window for the new requests. A Tabu search-based
heuristic is presented in [25], where the time windows are
not strict, i.e., if a node cannot be visited in its requested
time window, there is a lateness penalty. The goal is to
minimize the weighted sum of travel costs and lateness
penalties.

Another related problem is the Dynamic Traveling
Repairperson Problem (DTRP) [26], where there is a group
of autonomous vehicles and targets are generated stochas-
tically which request service. The goal is to minimize the
expected waiting time of the service requests. Decentralized
algorithms for motion coordination of the autonomous
vehicles are presented. The difference from our problem is
that there are no deadlines in DTRP.

2.2 Processor Scheduling

Our problem can also be looked at from the view of
processor scheduling. Here, tasks arrive periodically, have
an execution time, and need to be finished before their
deadline. We have two analogies of this to our problem. The
internode travel time can be considered as the context
switch time and servicing time at a node can be considered
as the execution time. Another way of looking at it is that
the travel time is the execution time (Worst-Case Execution
Time (WCET) will be the time to reach from its farthest
neighbor). A very important distinction in our problem is
that the next instance of the task is released (generated) as
soon as the previous instance is serviced. This automatically
rules out schemes based on static priority assignment, such
as Rate Monotonic scheduling [27]. Dynamic schemes such
as Earliest Deadline First [27] (called deadline-driven
scheduling in the reference) are feasible approaches and
are discussed in future sections. Finally, there is no notion
of preemption in our problem.

3 PROBLEM FORMULATION

The Mobile Element Scheduling (MES) problem with a
single mobile can be formulated in the following manner.
We are given:

. A fully connected graph of n nodes: node½1 . . .n�.

. A matrix cost½1 . . .n�½1 . . .n� that denotes the time
taken to go from one node to another.

. A vector that contains buffer overflow times,
overflow time½1 . . .n�. The ith element of this vector
determines the time to fill the buffer of the ith node.
This can be computed using the buffer size and
sensing rate.

. A starting node node0.

SOMASUNDARA ET AL.: MOBILE ELEMENT SCHEDULING WITH DYNAMIC DEADLINES 397

We make the following assumptions:

. The matrix, cost½1 . . .n�½1 . . .n�, and the vector,
overflow time½1 . . .n�, consist of integer entries.

. At time t ¼ 0, all the buffers of the sensor nodes start
filling up.

. The actual data transfer time from the sensor node to
the mobile element is negligible.

The

Mobile-Element-Scheduleðcost½1 . . .n�½1 . . .n�;
overflow time½1 . . .n�; node0Þ

problem is the problem of finding a sequence of visits to
nodes from node½1 . . .n� starting at node0 so that none of the
buffers of the nodes overflow. Once a node is visited, the
deadline for its next visit is updated. For example, suppose
that node½k� is visited at time tk and that its overflow time is
overflow time½k�, then the new deadline for node½k� will be
tk þ overflow time½k�.

4 PROOF OF NP-COMPLETENESS

In this section, we shall prove that the problem of deciding
whether a valid schedule exists is NP-complete. The proof
relies on a reduction from the Hamiltonian Cycle problem.
Before embarking on the actual proof, we need a lemma
that proves that, if a schedule exists for a given instance of
the problem, we can derive a periodic schedule from it in
polynomial time.

Lemma 1. Suppose that we are given an instance of

Mobile-Element-Scheduleðcost½1 . . .n�½1 . . .n�;
overflow time½1 . . .n�; node0Þ

that has a solution S, i.e., a schedule such that no node’s buffer
overflows. Then, a periodic schedule can be derived from S in
polynomial time so that, if the periodic schedule is followed,
then none of the buffers will ever overflow.

Proof. Let us first compute the maximum of all the overflow
times, i.e., let

TO ¼ maxðoverflow time½k�Þ; k 2 ½1::n�: ð1Þ

S is some sequence of numbers and letters x1; x2; . . . ,
where each xi 2 f1; 2; . . . ; ng [M denotes the state of the
mobile element at time t ¼ i. Thus, at any given time, the
mobile element is either at one of the sensor nodes or it is
in the mobile state M (it is moving toward another
sensor node).

The crucial observation is that, if we look at any time
window of length TO in the sequence S, all sensor nodes

have to occur at least once. To see this, assume that there
exists a node v and a time window ½t; ðtþ TOÞ� such that v
does not occur in it. This means that, between successive
visits to v, at least time TO elapses, which means that its
buffer would surely overflow (note that TO is the
maximum overflow time), which is a contradiction since
S is assumed to be a valid schedule.

Now, suppose that we start observing and recording
the sequence S in intervals of length TO, starting at
some time t1, i.e., we record the solution in time
intervals ½t1; t1 þ TO�, ½t1 þ TO þ 1; t1 þ 2TO þ 1�; The
maximum number of distinct types of such intervals is
ðnþ 1ÞTOþ1 since there are ðTO þ 1Þ time instants in an
interval and each instant can be labeled with a number
from f1; 2; . . . ; ng or the letter M. It follows that there
exist two intervals, Ia and Ib (without loss of generality,
we can assume that Ib comes after Ia), that will be
exactly the same if we observe the sequence from t1 to
t1 þ ðnþ 1ÞTOþ1.

Now, if S is not periodic, we observe that a valid
periodic schedule can be constructed, as shown in Fig. 1.
Let the original sequence be

Ia; Iaþ1; . . . ; Ib�2; Ib�1; Ib; Ibþ1; Ibþ2 . . . :

Since Ib ¼ Ia, therefore, the set of deadlines of all the
nodes at the end of Ib will be exactly the same as at the
end of Ia. Since we know that S is a valid schedule,
therefore, we can be sure that none of the buffers
overflowed in intervals Iaþ1; Iaþ2; . . . ; Ib�1 and, thus, by
repeating them after Ib, we can be sure that none of the
buffers overflow. Thus, we have found a new schedule
that is periodic. tu
We now show that the Mobile-Element-Schedule pro-

blem is NP-complete.

Theorem 1. The

Mobile-Element-Scheduleðcost½1 . . .n�½1 . . .n�;
overflow time½1 . . .n�; node0Þ

problem is NP-complete.

Proof. The proof is in two parts:

1. To see that the problem is in NP, we observe that, if
we are given a schedule S1 that is to be verified, by

Lemma 1, it is clear that a maximum of ðnþ 1ÞTOþ1

successive entries of S1 need to be examined to

make sure that the schedule S1 is indeed valid.

Thus, verifying the validity of a schedule can be

done in polynomial time.
2. To prove that the problem is NP-hard, we reduce

the problem of finding a Hamiltonian Cycle in an

398 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

Fig. 1. Construction of a periodic schedule from a given schedule S.

arbitrary graph GðV ;EÞ to the Mobile-Element-
Schedule problem. This problem is well-known to
be NP-complete [28].

Let GðV ;EÞ be an instance of the Hamiltonian Cycle
problem. We construct an instance of Mobile-Element-
Schedule as follows:

cost½i�½j� ¼
(

1 if ði; jÞ 2 E
2 otherwise;

ð2Þ

overflow time½i� ¼ n; 8I; ð3Þ

node0 ¼ 1: ð4Þ

If the constructed instance of Mobile-Element-Sche-
dule returns a valid schedule S, then we observe the
following:

a. Let xt denote the state of the mobile element at
time t, where t 6¼ 0. In an interval ½tþ 1; . . . ; tþ n�,
all nodes are visited at least once by an argument
similar to the one in Lemma 1. Since all nodes
have overflow time ¼ n, this means that all nodes
are visited exactly once since there are exactly
n time instants, ðtþ 1Þ; . . . ; ðtþ nÞ, and the mini-
mum cost between any two nodes is 1.

b. If we let xi denote the state of the mobile
element when i 2 fðtþ 1Þ; ðtþ 2Þ; . . . ; ðtþ nÞg,
then cost½xi�½xiþ1� ¼ 1. This is because, if there
exists an i such that cost½xi�½xiþ1� ¼ 2, then we
cannot fit n nodes in n time slots and will cause
at least one node not to satisfy the constraint.
This means that the internode travel times are 1,
i.e., all these edges are also in G (the instance of
the Hamiltonian Cycle problem).

c. xtþn ¼ xt. To see this, suppose xtþn ¼ k 6¼ xt;
then, k must have appeared somewhere in
ðtþ 1Þ; ðtþ 2Þ; . . . ; ðtþ n� 1Þ, otherwise its buffer
would overflow, but this is a contradiction since
we know that each node appears exactly once in
ðtþ 1Þ; . . . ; ðtþ nÞ from item a.

But then, the sequence xt; xtþ1; . . . ; xtþn is a valid

Hamiltonian cycle in G.
Thus, we have shown that GðV ;EÞ contains a

Hamiltonian cycle if and only if the above-constructed
instance of Mobile-Element-Schedule has a valid solu-
tion. Combining the two parts (1 and 2), we have shown
that our problem is NP-complete. tu

5 ILP FORMULATION

We now present an Integer-Linear-Programming (ILP)

formulation to gain additional insight into the Mobile-

Element-Scheduling problem. Linear Programming (LP)

problems are optimization problems in which the objective

function and the constraints are all linear. If the unknown

variables are all required to be integers, then the problem is

called an integer programming (IP) or integer linear

programming (ILP) problem. We proved in the last section

that the schedule is periodic, giving an upper bound to the

period. Let the period be T . An ILP formulation consists of

variables and constraints on the variables.
Variables:

. xij: i 2 f1 . . .Tg, j 2 f1 . . .ng:

- xij ¼ 1 if, at time i, the mobile element is at
node j; 0, otherwise.

. yi: i 2 f1 . . .Tg:

- yi ¼ 1 if, at time i, the mobile element is moving;
0, otherwise.

It is obvious that, if we are able to obtain the values of

xij; 8i; j and yi; 8i, we can reconstruct the schedule for the

problem. We now lay down the constraints that these

variables have to follow so that we can obtain a valid

schedule.
Constraints:

. At time i, the mobile element is either at some sensor
node or it is moving. Therefore,

Xn
j¼1

xij þ yi ¼ 1; 8i: ð5Þ

. The maximum allowed time between visits to a
sensor node j is overflow time½j�. So,

Poverflow time½j�
i¼0 xij � 1

:
:
:PT

i¼T�overflow time½j� xij � 1

9>>>>=
>>>>;
8j: ð6Þ

. Finally, we need a constraint that forces the mobile
element to be in the mobile state between visits to
two sensor nodes for at least the time determined by
the cost matrix. We have

Xk
t¼i

yt � ½xij þ xkl � C� �
cost½j�½l�
2� C ; ð7Þ

8i; k 2 f1 . . .Tg, i < k, and j; l 2 f1 . . .ng; j 6¼ l and C

is a constant such that 1 < C < 2. We can explain

this constraint as follows:

- Suppose xij ¼ 1, xkl ¼ 1. This means that, at

time i, the mobile element was at sensor node j

and, at time k, it was at sensor node l. The RHS

of this constraint is then just cost½j�½l� and the
constraint enforces the fact that it should have

taken at least this time to move. (We assume

that, between visits to successive nodes, there is

at least one time unit when the mobile element is

moving. We can handle the pathological case of

cost between two nodes ¼ 1 by an appropriate

discretization of time.)
- Otherwise, i.e., if either or both of xij, xkl are 0,

then there is no constraint that needs to be
enforced. Note that, in this case, the RHS of the

SOMASUNDARA ET AL.: MOBILE ELEMENT SCHEDULING WITH DYNAMIC DEADLINES 399

constraint is negative and, since yi 2 f0; 1g, it is
trivially satisfied.

Thus, the scheduling problem reduces to finding the
existence of a feasible set of xijs and yis.

In general, we will not know the exact period T
beforehand and some amount of experimentation will be
required. A systematic approach would be to perform a
binary search on T . If the period T is large, the total number
of constraints for the ILP would be large and this method
may not be computationally practical. Nevertheless, the
formulation is presented to provide some insight into the
problem.

6 COMPUTATIONALLY PRACTICAL SOLUTIONS

In this section, we present some heuristics for the solution
of the Mobile-Element-Scheduling problem. For the kind of
dynamic scheduling we need to do, Earliest Deadline First
(EDF) would be a natural fit. Here, the node with the closest
deadline is visited first.

ALGORITHM: Earliest Deadline First (EDF)

. Input: cost½1 . . .n�½1 . . .n�, overflow time½1 . . .n�,
start node

. Initialize:

current time ¼ 0, current node ¼ start node,
deadline½1::n� ¼ overflow time½1::n�

. Main: Repeat the following

1. Choose the node i 6¼ current node whose deadline is

closest
2. If deadline½i� < current timeþ cost½current node�½i�

- Declare failure and stop

3. Else

- current time þ ¼ cost½current node�½i�
- current node ¼ i
- deadline½i� ¼ current timeþ overflow time½i�

END

First, we explain the reason for not choosing the
current node as the next one. Consider Fig. 2a, with the
values on edges indicating the costs (which are symmetric)
and those near the nodes indicating their overflow times.
This is an example of a case where there is a radial sensor

field such that node D needs to sample at a higher rate than
the other nodes. Suppose that the start node is A. The first
part of Table 1 shows the sequence of visits, where the
constraint i 6¼ current node is not enforced. This results in
node A missing its deadline. If we did not stay at D, even
though it had the earliest deadline, we would get a sequence
of visits as shown in the second part of Table 1. Thus, with
the constraint of visiting some node other than the current
one, we could get the schedule A;D;B;D;A;D;C;D; . . . ,
and none of the nodes would miss their deadlines.
Conversely, it is not possible that not staying at a node
caused it to miss its deadline, whereas staying would have
prevented it. This is because the mobile has to leave the
current node sometime later, if not now, to service other
nodes. As a result, the deadline of the current node will be
violated at that later time, when the mobile leaves it.

One obvious shortcoming of this algorithm is that it does
not take into account the cost values and relies only on
deadlines. For instance, consider Fig. 2b, which shows part
of a network. Suppose the mobile element has just visited
node A and the current time is 30. Various parameters are
as shown in the figure. The EDF algorithm will choose to
visit node C next as its deadline is closest. Then, it will visit
node B at time 36. Clearly, the deadline of B is missed. On
the contrary, had it visited node B first and then node C,
both of the deadlines would have been met.

This example suggests that one way to account for the

cost in addition to deadlines is to have a lookahead.

6.1 EDF with k-Lookahead

Instead of going to a node whose deadline is earliest, we
can, for instance in the above example, consider two earliest
deadline nodes and visit that node so that the deadlines of
both the nodes are met. Generalizing this, in k-lookahead,
we can consider the k! permutations of the k earliest
deadline nodes. Suppose we are at node x0 and the next
k earliest deadline nodes are x1; x2; . . . ; xk. We will choose
that permutation which leads to none of the k nodes
missing their deadlines. There may be many such possible
permutations. If so, we will choose the one which leads to
xkþ1 the earliest. The precise algorithm is presented below:

400 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

Fig. 2. Earliest Deadline First (EDF) examples. (a) Choosing the next node different from current node. (b) EDF type of scheduling is not the best.

ALGORITHM: EDF with k-lookahead

. Input: k, cost½1 . . .n�½1 . . .n�, overflow time½1 . . .n�,
start node

. Initialize current time, current node, deadline½1 . . .n� as

before.

. Main: Repeat the following:

1. Sort deadline½1 . . .n� in increasing order.

2. Using the first k entries:

- Find an ordering of these k entries so that
a. none of the k nodes miss their deadlines in the

next k steps,

b. the arrival time of the node at the ðkþ 1Þth entry

is minimal, and

c. the first node in the resulting permutation is not

the current node.

- If none exists, declare failure and stop.

3. Let the first node in the ordering found be i.
- current timeþ ¼ cost½current node�½i�
- current node ¼ i
- deadline½i� ¼ current timeþ overflow time½i�

END

It is important to note that we are not scheduling k visits
at a time, but, instead, for each visit, we are looking at
k nodes and choosing only the next node. The reason for
doing so is that it may happen that a node i has a very low
overflow time½i� value. The schedule will look something
like xa, xi, xb, xi, xc, xi, where the node xi is required to be
revisited soon after visiting any other node. Now, if we
schedule k nodes at a time, we will not be able to achieve
this result and the deadline of xi will be surely missed.

The special case of k ¼ 1 reduces to the EDF algorithm
presented before. The set whose permutations are consid-
ered has only one element and, hence, only one choice for
the next step. Note that the lookahead algorithm takes care
of nodes with same deadline values, whereas EDF would
have chosen randomly depending on in what order they
appeared in the sorted array.

6.2 Minimum Weighted Sum First (MWSF) Heuristic

The lookahead algorithm, in addition to deadline, takes cost
into account when making a decision by seeing into the
future. Instead, an algorithm can be designed which gives
weights to deadlines and cost and goes to the node which

has the minimum weighted sum. The value of deadline to
be considered in the weighted sum is not the absolute value,
but relative to current time, i.e., deadline½i� � current time,
for the node i.

ALGORITHM: Minimum Weighted Sum First

. Input: Weight �mwsf 2 ð0; 1�, cost½1 . . .n�½1 . . .n�,
overflow time½1 . . .n�, start node.

. Initialize current time, current node, deadline½1 . . .n� as

before.

. Main: Repeat the following:
1. 8i, calculate,

weighted sum½i� ¼ �mwsf � ðdeadline½i� � current timeÞ
þ ð1� �mwsfÞ � cost½current node�½i�

2. Choose the node i 6¼ current node whose

weighted sum½i� is minimal.

- If deadline½i�< current timeþ cost½current node�½i�.
* Declare failure and stop.

- Else
* current timeþ ¼ cost½current node�½i�
* current node ¼ i
* deadline½i� ¼ current timeþ overflow time½i�

END

Table 2 shows the effect of different �mwsf values. To
illustrate the contents of the table, suppose we are at node xi
and two nodes xa and xb have costs 25 and 50, respectively,
and relative deadlines 200 and 175, respectively. Clearly, xa
is the closer node and xb has an earlier deadline. When
�mwsf < 0:5, xa will be chosen, and when �mwsf > 0:5, xb
will be chosen. When �mwsf ¼ 0, when at a node, the mobile
will go to the one which is closest to the current node. In the
limit, the mobile will end up in a locally minimum set of
smallest-cost nodes and will be revolving among the nodes
in that set. All other nodes miss their deadline.

Combining the previously mentioned two approaches of
lookahead and using the minimum weighted sum, we can
perform lookahead on the weighted sum metric.

6.3 Discussion

For the EDF with lookahead, at each step, we first sort the
nodes based on deadline. This takes Oðn lognÞ time. Doing a
lookahead in k-lookahead is OðkÞ, where we check if the
deadlines of all k nodes are met. This is done for all the

SOMASUNDARA ET AL.: MOBILE ELEMENT SCHEDULING WITH DYNAMIC DEADLINES 401

TABLE 1
Analysis of the Example in Fig. 2a

k! permutations. Thus, the total complexity of the algorithm
for finding a next node to visit from the current node is

Oðn lognþ k:k!Þ. Each step of MWSF takes OðnÞ for
calculating the weighted sum for all nodes and OðnÞ for

choosing the minimum, resulting in OðnÞ. Optimally, the
time to find a schedule if one exists requires n-lookahead,
which is too high to be computationally practical.

It would be easier if there were some necessary and

sufficient conditions to check the existence of a schedule.

. Necessary Condition. From Lemma 1 in Section 4, a
necessary condition for a schedule to exist is the
existence of a solution for TSPðTOÞ, where TO was
defined to be

maxðoverflow time½i�Þ; i 2 ½1 . . .num nodes�:

TSP(C) is the decision version of TSP and has a
solution if there is a Hamiltonian cycle of length at

most C. This is because, if TSP(C) does not have a
solution, we cannot expect to have a solution to our

problem as there are overflow time values which are
less than this. Since this is an even tighter constraint,
it rules out the possibility of a solution for MES.

. Sufficient Condition. A sufficient condition for a
schedule to exist is the existence of a solution for
TSPðminðoverflow time½i�Þ), i 2 ½1 . . .num nodes�. All
nodes having the same minimum overflow time is
the strictest case. If a solution exists for this, we
surely have a solution for MES as all overflow times
are the same or larger than minðoverflow time½i�Þ.

It may be argued that, for a checking necessary and

sufficient condition for the existence of a solution to our
problem which is NP-complete, we are using another NP-
complete problem. However, we note that there is a large

body of literature that deals with designing efficient
heuristics for TSP [15], which can be leveraged for this

purpose.

7 MOBILE ELEMENT SCHEDULE WITH

MULTIPLE MOBILES

We saw in the previous section with a single mobile that a

feasible schedule (leading to no buffer overflow at any of
the nodes) may not always exist. We now discuss the

algorithms for Mobile-Element-Scheduling when there are
multiple mobiles. First, we describe how the algorithms in

the previous section can be adapted to handle multiple
mobiles in Section 7.1. We then describe a well-known
heuristic for solving the VRPTW (Vehicle Routing Problem
with Time Windows) problem and demonstrate that a
suitable modification of the heuristic can handle the case of
multiple mobiles in Section 7.2. Finally, we compare the
approaches in Section 7.3.

7.1 Adapting the Algorithms for Single Mobile

The EDF with lookahead and Minimum Weighted Sum
First algorithms can be used when more than one mobile is
present in the system. For this, the problem formulation of
Section 3 needs to be slightly modified. All mobiles are
initially stationed at the same location, say, the center of the
area (and not at a particular node as earlier).

7.1.1 Divide the Area into Equal Parts

If the nodes are distributed uniformly at random, we can
divide the area into parts of equal area, with the number of
parts being the same as the number of mobiles. Then, each
mobile is responsible for the area it is assigned to and can
follow the single Mobile-Element-Scheduling algorithms
presented in the previous section. Henceforth, this will be
called Scheme-1.

7.1.2 Combined Scheduling

A second alternative would be to remove the restriction of
having each mobile responsible for only a part of the area.
Suppose there are n nodes and m mobiles ðm << nÞ.
Initially, we find a node to be visited by the first mobile
(using either EDF with lookahead or Minimum Weighted
Sum First). Then, we find a node to be visited by the second
mobile. For this, we consider the n� 1 remaining nodes. We
continue this for all m mobiles, ending with each mobile
headed toward one node. This leaves n�m nodes yet to be
scheduled.

When a mobile visits the node it is scheduled to visit, we
run the algorithm on n�m nodes to find the next node for
this mobile. We do this whenever a mobile visits a node. We
will label this as Scheme-2.

There seem to be trade-offs in the two approaches
mentioned above. For instance, in the first case, on average,
each mobile is responsible for only n

m nodes, whereas each
mobile has a global view in the second case. We will
evaluate both possibilities in detail in Section 8.

7.2 Vehicle Routing Problem with Time Windows

There is a large amount of literature for the Vehicle Routing
Problem. We have given a brief introduction to this earlier
in Section 2.1. In the Vehicle Routing Problem with Time
Windows (VRPTW), there is a time window ½a; b� constraint
for each node. The node cannot be serviced before a and has
to be serviced before b. Since the VRP is NP-hard, by
restriction, VRPTW is NP-hard. Furthermore, [29] has
shown that finding a feasible schedule when the number
of vehicles is fixed is itself an NP-complete problem. As a
result, the development of heuristic algorithms for this
problem class has been of interest. In this section, we will
first briefly explain the Insertion heuristic of Type-1
proposed in [22]. We use this algorithm as it is one of the
most cited algorithms for VRPTW and used as a benchmark

402 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

TABLE 2
Effect of �mwsf Values on the

Minimum Weighted Sum First Heuristic

in the literature for comparison whenever any new

algorithm for VRPTW is proposed. We then present a

modification that can be used to handle our problem. The

terms “vehicle” and “mobile” are used interchangeably, as

are “node” and “customer.”

7.2.1 Insertion Heuristic for VRPTW

This heuristic builds the tours sequentially, vehicle by

vehicle [22]. It starts with a single vehicle and initializes a

node to be on its tour (leading to the schedule list depot-

node-depot for the current vehicle). It then finds the best

node to be inserted into the tour of the current vehicle and

its corresponding location. This continues till no nodes

(which are yet to be scheduled) can be inserted at any

location. At this point, a new vehicle is called to service and

the procedure is repeated. Thus, the number of vehicles is

also the result of the algorithm. If a vehicle reaches a node

before its beginning time window ðaÞ, it will wait.
Two items are to be specified in the above described

algorithm:

1. An algorithm for finding the first node to be inserted
when a new vehicle is called for service. The
following criteria for choosing the first node on a
vehicle’s route is specified in [22]:

. either the farthest unrouted node, or

. the unrouted node with the earliest deadline.

After initializing the current route (route for the

current vehicle) with a node according to one of the

above criteria, in every iteration, the method inserts

a new node u into the current partial route.
2. The definition of cost.

We now define the cost functions used in [22] for making

the choice of node to be inserted and its location. It uses

four parameters, �, �1, �2, and �. Let ði0; i1; . . . ; izÞ be the

current route, with i0 ¼ iz ¼ 0 (the depot). For each

unrouted customer u, first compute its best feasible

insertion place in the emerging route. Let i, j be adjacent

nodes in the current partial route. For u being inserted

between i and j, define two cost functions,

c11ði; u; jÞ ¼ costiu þ costuj � � � costij; � � 0; ð8Þ

c12ði; u; jÞ ¼ timeju � timej; ð9Þ

where costab is the cost of going from node a to b. timeju is

the new time for service to begin at node j, given that u is on

the route. timej is the time at which the service begins at

node j prior to insertion. c11ði; u; jÞ is a measure of the extra

cost incurred if u is inserted between i and j. c12ði; u; jÞ is a

measure of extra time (delay in visiting node j due to visit

of u before it). The best feasible insertion place for node u is

defined to be the one that minimizes the weighted

combination of its distance and time insertion. For this,

define

c1ði; u; jÞ ¼ �1c11ði; u; jÞ þ �2c12ði; u; jÞ;
where �1 þ �2 ¼ 1; �1 � 0; �2 � 0:

ð10Þ

It should be noted that inserting u between i and j could
potentially alter all the times to begin service at customers k
(which follow j in the existing route) and may also make the
route infeasible. In such a case, this insertion spot is
discarded.

At the end of this, we can calculate the best insertion spot
for u as being between that pair of adjacent nodes i, j, which
minimizes (10). For the node u, these adjacent nodes are
denoted by iðuÞ and jðuÞ. Thus, we have

c1ðiðuÞ; u; jðuÞÞ ¼ min½c1ðip�1; u; ipÞ�; p ¼ 1; 2; . . . ; z: ð11Þ

The above procedure gives us the best insertion spot for
each unrouted customer u. Next, we need to find the best
node u to be inserted. For this, define

c2ði; u; jÞ ¼ � � cost0u � c1ði; u; jÞ; � � 0: ð12Þ

We need to choose the u that maximizes c2ði; u; jÞ. For
each u, we already know the best ði; jÞ from c1 (given by
iðuÞ; jðuÞ). So, it suffices to evaluate c2 at only these pairs.

c2ðiðuÞ; u; jðuÞÞ ¼ � � cost0u � c1ðiðuÞ; u; jðuÞÞ; � � 0: ð13Þ

Intuitively, this is a measure of the benefit derived from
servicing a customer on a partial route being constructed
rather than on a direct route (depot-u-depot). This benefit
has to be maximized. Thus, we can obtain the best node to
be inserted, u�, as the node for which c2 is highest.

c2ðiðu�Þ; u�; jðu�ÞÞ ¼ max½c2ðiðuÞ; u; jðuÞÞ�: ð14Þ

One iteration of the algorithm concludes when such a u�

is found and inserted between iðu�Þ and jðu�Þ. When no
node with feasible insertion can be found, the method
starts a new route (with a new vehicle) unless all nodes
have been scheduled.

In the upcoming sections, we fix the four inherent
parameters, �, �1, �2, and � of VRPTW to 1, 1, 0, and 0,
respectively.

7.2.2 Modifying VRPTW to Solve the

Mobile-Element-Scheduling (MES) Problem

The above-mentioned Insertion heuristic (of Type-1) can be
enhanced to solve MES. In MES, we are given a set of nodes
with overflow time values. If a node i is serviced at time t, it
should be visited again before it fills its buffer. This implies
that the node can be visited any time in the window
½t; tþ overflow time½i��. Ideally, it would be better for the
node to be revisited as close to the upper time window
(tþ overflow time½i�) as possible. This is because, if it is
visited earlier, the node would not have generated sufficient
data and would require more frequent visits.

Define a parameter, �vrptw 2 ½0; 1�. The algorithm consists
of the following steps (given an �vrptw value):

1. Solve the VRPTW algorithm of the previous section
with initial time windows

ð1� �vrptwÞ � overflow time½i�Þ ; overflow time½i�
� �

:

ð15Þ

This results in a set of mobiles and a list of nodes to
be visited by each.

SOMASUNDARA ET AL.: MOBILE ELEMENT SCHEDULING WITH DYNAMIC DEADLINES 403

2. Whenever a node is visited by a mobile (mobile
reaches the first node in its list), say at time t,

a. Remove the node from the list.
b. Create a new service request for this node with

time window given by

½tþ ð1� �vrptwÞ � overflow time½i�;
tþ overflow time½i��:

ð16Þ

c. Find a mobile and the insertion spot to insert
this request. For each mobile, first find the best
insertion spot given by (11) (where u is the node
just visited and whose new request is being
inserted). Insert it in that mobile’s list which has
the least cost. It may be possible that there is no
feasible insertion spot in any of the mobiles’
existing schedules. For this, we can do one of
two things:

. Call a new mobile for service.

. Use the mobile (and the corresponding
insertion spot) which gives the least amount
of deadline overflow. Overflow happens for
the node being inserted and/or the nodes
following it in the list.

Let us look at the effect of �vrptw on the schedule
presented in Table 3. In the table, waiting time refers to the
time the mobile has to wait if it reaches a node before its
lower limit of time window. When �vrptw is closer to 0, the
time window is small, or rather, the lower limit of the time
window is high (the upper limit of the time window is the
same, irrespective of the parameter value). As the node is to
be visited closer to the upper limit of the time window, time
is spent waiting at nodes when the mobiles reach their
scheduled nodes early. Over a certain period of time, the
number of visits to a node is less. Also, this implies that the
mobiles travel a shorter distance in a given total time (as
time is spent in waiting).

7.3 Discussion

There is a basic difference in the approaches followed by the
algorithms of the previous sections. In EDF with lookahead
and Minimum Weighted Sum First (using either Scheme-1
or Scheme-2), each mobile is assigned one node. On visiting
a node, the mobile is assigned the next node to be visited.
On the contrary, in VRPTW and its modified version for
MES, each mobile maintains a list of nodes it needs to visit.
On visiting a node, the node is inserted into the existing
schedule of one of the mobiles (or a new mobile is called for
service).

Let us look at the complexity of the various algorithms.

Suppose there are n nodes and m mobiles. The complexity

of EDF with k-lookahead is Oðnm log n
mþ k:k!Þ for finding a

next node for a mobile to visit when it visits a node with

Scheme-1. It is Oððn�mÞ logðn�mÞ þ k:k!Þ with Scheme-2.

Similarly, the complexity of Minimum Weighted Sum First

is OðnmÞ when using Scheme-1 and Oðn�mÞ with Scheme-2.
The complexity of the VRPTW algorithm (Section 7.2.1)

is Oðn4Þ. There are n nodes to be scheduled. In each
iteration, (13) is evaluated for each unrouted node. For this,
(11) is evaluated for each possible insertion spot. Finally, for
any given insertion spot, all nodes following it need to be
tested if the current insetion is feasible. Thus, there are four
nested loops, each being OðnÞ. After this initial schedule,
the modified algorithm (Section 7.2.2) takes Oðm:n2Þ time at
each step whenever a node is visited and it needs to be
inserted into the existing schedule of one of the mobiles.
This is because there are m mobiles, insertion in whose
schedules needs to be evaluated. For each mobile, there can
be OðnÞ insertion spots and, for each insertion spot, all
nodes following this spot need to be checked if they miss
their deadline due to the insertion of this node.

We note that the ability to add mobiles when they are
required in the VRPTW-based algorithm lets us handle the
case of temporal changes in overflow times, i.e.,
overflow time½i� changing as the system evolves. This is
clearly useful when the dynamics of the phenomenon
change. A node that was earlier sampling at a lower rate
may now be required to sample faster. First, the node
informs the scheduling entity of the new value of
overflow time. This is similar to the case in the Dynamic
Vehicle Routing Problem (DVRP) [24] or the Dynamic
Traveling Repairperson Problem (DTRP) [26], where the
entity generating the request calls the central office, for
instance, to schedule a pickup or request a repair. When the
node’s overflow time is updated and the scheduling entity
gets this information, the node might have already sampled
for some amount of time. Using the older sampling rate
and overflow time in addition to the new values, we can
know when in the future its buffer will be filled (say,
future fill time). Now (unless this node is being headed
toward by one of the mobiles), we can delete this node from
the schedule of the mobile it was previously inserted into
and insert a new request for this node with time window
½current time; current timeþ future fill time�. It may have
to be inserted at a different location from where it was
deleted and the visit times of other nodes may change or
there may be a need to add a new mobile too. Once this
node is visited for the first time after overflow time changed,
we can use the main procedure.

8 SIMULATION METHODOLOGY AND RESULTS

This section presents the evaluation of the algorithms
presented in the previous two sections. Though we evaluate
them in simulation, the various parameters used are for real
systems. Consider a packbot [30] used as a mobile base
station, which moves comfortably at 1 m=s (from practical
experience, as it was used in our earlier work [9]). The
commonly used wireless sensor nodes are mica2 motes [31].

404 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

TABLE 3
Effect of �vrptw on Schedule

Consider a sampling phenomenon which requires the motes
to sense and store one sample every second and suppose
that 4 bytes are required to store each sample. These motes
have 4 kB of RAM, of which let us use 2 kB for storing the
samples. Thus, the buffer will overflow in about 500 seconds,
and the node needs to be visited by the mobile before this
time. We assume a realistic deployment area of 500 m
radius. An important point to be noted here is that it is the
ratio of cost and overflow time which impacts the schedule.
In simulations mentioned next, we use the values which
closely relate (ratio wise) to the above-mentioned numbers.

8.1 Simulation Methodology

As the parameter space is huge, we fix some of the values:

. Topology. We consider a circular area of radius
50 units. The speed is taken to be 1, so the distance
between two nodes is the same as cost values.

. Simulation Time. We simulated for 100,000 time units.

. Location and number of nodes n. The nodes are
placed uniformly at random in the area. We use
100 nodes.

. overflow time values. One option was to assign
these values randomly to the nodes. But, to
simulate a real-world situation, we assumed that
the point of interest is located in the center of the
topology and the nodes closer to the center have
smaller overflow time values as they are sampling
more frequently. We placed concentric circles, the
smallest one being of radius 2. Also, the radius
increased by 2 from one circle to the next. This is
shown in Fig. 3. The innermost region had the
smallest overflow time, called basic overflow time,
and the regions radially outward were a constant
factor of it, i.e., f1; 1:2; 1:3; . . .g � basic overflow time.
We use three values for basic overflow time: 50, 75,
and 100.

. Unless mentioned otherwise, all results are averaged
over 25 topologies.

For the purposes of evaluation, instead of stopping the

algorithm when a node missed its deadline, we continue,

noting this fact and updating its deadline. Thus, in a

simulation time of 100,000, each node i would have been

visited num visits½i� times, of which num deadline misses½i�

times the deadline would have missed. We calculate the

ratio 100� num deadline misses½i�
num visits½i� . This ratio is averaged across

all the nodes. We call this percentage failure and use it as a

metric for evaluation.
Another related metric is the amount of overflow, which

is the amount of time by which the deadline was missed.
For this, we calculate the total amount of time by which the
mobile was late whenever a node’s deadline was missed.
This is averaged across all the nodes.

Latency is an important metric in wireless data collec-
tion. We define latency as the time taken between the
generation of a sample and the time of collection by the
mobile element. This is averaged over all the samples,
across all the nodes. However, we would like to mention
that the model of data collection considered in this paper is
non-real-time in nature. As a result, there are no latency
constraints as long as there is no buffer overflow.

8.2 Mobile Element Scheduling with Single Mobile

Our earlier work [16] presented in detail the results for the
algorithms with a single mobile element. The key findings
were:

1. Minimum Weighted Sum First performed better
than EDF with lookahead (evaluated with lookahead
up to 7).

2. The �mwsf parameter for which Minimum Weighted
Sum First performed best varied with topology. As
the algorithm is OðnÞ, the best �mwsf can be found by
experimentation, by running the algorithm for all
possible values of the parameter. For the topologies
and distribution of overflow times considered, �mwsf
around 0.1 gave good results.

3. There were no additional gains on doing lookahead
over a set of least weighted sum nodes.

For the detailed results of scheduling with single mobile,
we refer the reader to [16]. Here, we evaluated the effect of
the �mwsf parameter on the results of the Minimum
Weighted Sum First heuristic. We noticed that it is hard to
conclude about the dependence of �mwsf value on the result
(percentage failure). (Plots omitted due to lack of space.)

8.3 Mobile Element Scheduling with
Multiple Mobiles

Let us look at the results of scheduling when there are
multiple mobiles present. Due to space constraints, we do
not show the percentage failure metric out of the metrics
presented earlier. We noticed that the relative behavior of
percentage failure among the algorithms and parameters
was almost similar to the amount of the overflow metric.

Consider the VRPTW algorithm presented in Section 7.2.
Fig. 4a presents the number of mobiles required in the static
solution (presented in Section 7.2.1) using (15). Note that
VRPTW inherently is not dynamic. We explicitly mention it
as static to differentiate it from our problem. The X-axis is
the �vrptw parameter value. The Y-axis is the number of
mobiles. We see that, as �vrptw nears 1, a smaller number of
mobiles is required. This is because the time window is large
and the mobiles have greater flexibility as to when to visit
the nodes. The three curves correspond to the different
basic overflow time value. This is the overflow time of the
innermost region and it increases as one moves radially
outward.

SOMASUNDARA ET AL.: MOBILE ELEMENT SCHEDULING WITH DYNAMIC DEADLINES 405

Fig. 3. Topology for evaluating MES.

Next, we use the number of mobiles obtained above and
run the system for 100,000 time units (simulation time). The
system is now dynamic, with new requests coming in as
soon as the previous request is serviced (with the time
window dependent on the �vrptw value, given by (16)). We
found that the number of mobiles required in the static
VRPTW solution is not sufficient for MES (which can be
thought of as Dynamic VRPTW). As a result, some nodes
miss their deadline. Fig. 4b presents the result. Again, the
X-axis is the �vrptw parameter and the Y-axis is the metric of
amount of overflow mentioned earlier. We see that, as
�vrptw increases, so does the overflow. This is because a
smaller number of mobiles are used (Fig. 4a).

For fair comparison with the other solutions to MES with
multiple mobiles (Section 7.1), we fixed the number of
mobiles ðnum mobilesÞ. We use these four combinations of
(num mobiles, basic overflow time) in simulations: (5, 100),
(5, 75), (10, 75), and (10, 50).

Fig. 5 presents the results for the Minimum Weighted

Sum First for varying �mwsf values, with the Scheme-1 of

Section 7.1.1 of dividing the area into equal parts and

having one mobile in each independently. Fig. 6 presents

the results for the Scheme-2 of Section 7.1.2.
Fig. 7 presents the results of using the VRPTW modified

for our problem. The difference between this and Fig. 4b is

that the number of mobiles is fixed now, whereas, in Fig. 4b,

each �vrptw had a different number of mobiles (as obtained

by the solution to static problem).
We see that, in all cases, Scheme-2 with Minimum

Weighted Sum First (Fig. 6a) performs better than

Scheme-1 (Fig. 5a). This is because, with Scheme-2, the
mobiles have a global knowledge of the whole system and

are not constrained to their assigned areas. Comparing

Minimum Weighted Sum First with Scheme-2 (Fig. 6a)

and VRPTW modified for MES (Fig. 7a), we see that, for

the case with num mobiles ¼ 5, basic overflow time ¼ 75,

Minimum Weighted Sum First performs better, whereas,

for the other three cases, VRPTW modified for MES

performs better. By better performance, we mean a

smaller amount of overflow.
Looking at the latency plots, we see that, for �mwsf values

closer to 0, the latency is less (Figs. 5b and 6b). This is

406 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

Fig. 4. VRPTW modified for MES. (a) Number of mobiles in solution of static VRPTW. (b) MES as Dynamic VRPTW: Amount of overflow.

Fig. 5. Minimum Weighted Sum First with the algorithm of Section 7.1.1 (Scheme-1). (a) Amount of overflow. (b) Latency.

because a higher weight is given to cost and the mobiles
tend to revolve around a cluster of nodes for some time
(leading to low latency values for these nodes). The mobiles
go to a farther node when it is close to deadline or has
missed its deadline. Finally, averaging over all the nodes
leads to a smaller average latency. Also, the average latency
is monotonically decreasing as the �vrptw parameter in-
creases (Fig. 7b). This is because, as the width of the time
window increases, mobiles spend less time waiting and
data is collected from nodes much before they reach their
full capacity. This observation is in accordance with Table 3.

Note. We have not presented the results of EDF with
lookahead. It performed poorly (in terms of percentage
failure) for up to lookahead of 7. We noticed an interesting
behavior during simulation of EDF with lookahead. For the
scheme of Section 7.1.1, where each mobile is responsible
for its area, the nodes may form clusters depending on
physical proximity. When this happens, the mobile may
stay in only one cluster and never leave it to visit the other
nodes (which are not in this cluster). This behavior is
somewhat similar to the case of Minimum Weighted Sum
First with �mwsf ¼ 0. This was mentioned in Table 2, where

the mobile would be revolving across a locally minimum set

of smallest-cost nodes. However, this behavior of EDF with

lookahead was not noticed with Scheme-2 (Section 7.1.2) of

scheduling together. This happens only with Scheme-1

because the mobile is responsible for few number of nodes,

which may lead to this clustering behavior. For instance, if

there are 10 mobiles and 100 nodes, each mobile is

approximately responsible for 10 nodes., whereas, in the

other scheme, each mobile has to choose from 90 nodes as to

which is to be visited next.

8.4 Uncertainty

In a dynamic mobile system such as the one considered

here, there will be uncertainties in the motion of the

mobile(s). One of the main reasons for this is obstacles on

the path of the mobile(s). As a result, the actual travel time

from a node to another may be more than what is given in

the cost matrix. To model the effect of this on the scheduling

algorithms, we define a parameter uncertainty 2 ½0; 1�. The

real cost (in the face of uncertainty) between nodes i and j is

calculated as:

SOMASUNDARA ET AL.: MOBILE ELEMENT SCHEDULING WITH DYNAMIC DEADLINES 407

Fig. 6. Minimum Weighted Sum First with the algorithm of Section 7.1.2 (Scheme-2). (a) Amount of overflow. (b) Latency.

Fig. 7. VRPTW modified for MES, fixed number of mobiles. (a) Amount of overflow. (b) Latency.

if ðrand½0::1� < uncertaintyÞ
cost½i�½j� ¼ ð1þ rand½0::1�Þ � cost½i�½j�:

Fig. 8 plots the amount of overflow in light of the
above-mentioned uncertainty. For this, mobiles and
basic overflow time are fixed to 10 and 75, respectively.We
use uncertainty ¼ 0; 0:25; 0:5. We see that, as uncertainty
increases, so does the amount of overflow for a given value
of the parameter (�mwsf or �vrptw).

8.5 Minimum Number of Mobiles for No Overflow

Ideally, it is desirable to have no node missing its deadline.
When using the modified VRPTW algorithm, a new mobile
can be added to visit a node if there is no feasible insertion
spot for it. Thereafter, this mobile becomes part of the
system and can be used for servicing other nodes in the
future too. This process will not work with Minimum
Weighted Sum First or EDF with lookahead due to the
inherent difference in the algorithms, as mentioned in
Section 7.3. In these two algorithms, a mobile is assigned a
node only when the mobile visits its currently scheduled
node. However, in MES using VRPTW, a node is scheduled
to be revisited by one of the mobiles as soon as it is visited.
As a result, due to the lack of the luxury of adding mobiles
as and when required, for these two algorithms (Minimum
Weighted Sum First and EDF with lookahead), we need to
fix the number of mobiles a priori. An efficient way to find
the minimum number of mobiles (which leads to no
deadline misses) in these cases is to experiment, doing a
binary search on the number of mobiles.

We measure the minimum number of mobiles required
for the modified VRPTW algorithm to achieve the case of no
overflow. This is shown in Fig. 9a. For a given �vrptw value,
for each topology, we find the number of mobiles required
which leads to no node missing its deadline over the whole
simulation time (by adding a new mobile as and when there
is no feasible insertion spot for the node just visited). We
average this over the 25 random topologies.

To see if these mobiles are sufficient for Minimum
Weighted Sum First, we calculate the minimum number of
mobiles (across all �vrptw values) for each topology. We run
the Minimum Weighted Sum First algorithm with Scheme-2,

using this number of mobiles for the corresponding
topologies. The results are shown in Fig. 9b. We see that
the number of mobiles obtained by the modified VRPTW
algorithm is insufficient to meet all deadlines.

The various simulations overall suggest that modified
VRPTW may be a better strategy for the MES problem with
multiple mobiles. As the problem is not dynamic (not
considering the temporal changes in overflow times men-
tioned in Section 7.3) in the true sense, i.e., all inputs (node
locations and overflow time values) are known in advance,
the following strategy can be followed: The two better
performing heuristics (modified VRPTW and Minimum
Weighted Sum First with Scheme-2), being computationally
nonintensive, can be run for the various parameter values
(�vrptw and �mwsf , respectively) for a sufficiently long time.
The heuristic and the corresponding parameter value which
give the best result (minimal deadline misses) can be used.
The mobile base stations can then follow the sequence of
visits as obtained for this value of the parameter.

9 DISCUSSION

The scheduling problem presented here to address the
mobility issues in sensor networks (for purposes like data
collection, battery charging, calibration) can be applied to
many other practical problems in other domains. One such
example is mobile gas tankers used to replenish the gas
stations. The gas stations run out of gas at a rate dependent
on the population of the area. The problem is to schedule
the gas tankers so that none of the gas stations go empty.

The approach presented in the previous sections requires
the mobile to be in close proximity of (or rather, at) the
sensor nodes. This is essential for calibration and battery
charging. Wireless communication capability can be lever-
aged for the purposes of data collection. Nodes can form
clusters and the mobiles can be made to visit the centroid of
this cluster. The nodes in the cluster can send their data to
an elected cluster-head. This approach is in between the
fully multihop system (all nodes sending data to a static
base station) and the purely one-hop system (mobiles
visiting all the nodes).

408 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

Fig. 8. Effect of uncertainty on schedule. (a) Minimum Weighted Sum First, Scheme-2. (b) MES as dynamic VRPTW.

There is the problem of autonomous navigation when
dealing with any system involving mobility. One solution is
to make the mobile element be driven by humans. This is
the obvious choice for cases such as the gas tanker example
mentioned above. Another choice is to make the mobile
move on a constrained path. This approach is followed in
the NIMS [2] system and in [9], where a mobile element
traverses a fixed path, collecting data from nodes on the
path. All nodes need not necessarily be on the path of the
mobile. Such nodes send their data to nodes on the path
which then relays to the mobile when it is in range.

The paper assumes that the overflow times of the nodes
are fixed. The algorithms can handle the case with the
overflow times changing over time. One reason for this
change is the dynamics in the phenomenon which the
nodes are sensing. The static sensor nodes need to discover
this. The mobiles (or the scheduling entity) need to know of
the updated values. One possibility is to have a long range
radio link between the static sensor nodes and the mobiles
(e.g., [11]). Once a static sensor node starts sampling at a
different rate (leading to a change in overflow time), it can
inform the scheduling entity of this change, which can
incorporate it in the future scheduling. Another possibility
is for the static sensor nodes to inform the mobile when it is
servicing the node. It is intersting to note that, on one end of
the spectrum, we have nodes having the same overflow time
values. On the other end, we have a truly call and response
system [1], which is aperiodic (rather than changing period)
wherein the mobile is called for service only when
requested by the static sensor node.

10 CONCLUSIONS AND FUTURE WORK

Deployments of sensor networks for sensing the environ-
ment are increasingly taking place. Using a controlled
mobile element is a promising approach for data gathering
in these networks. We considered a network where different
nodes may need to sample at different rates. In this context,
we introduced a scheduling problem where the mobile
element needs to visit the nodes so that none of their buffers
overflow. It was shown that the problem is NP-complete and
an ILP formulation was given. Heuristics were presented for

scheduling in the presence of a single mobile element. We
showed ways to use these for the case when multiple mobiles
are available and also looked at the modification of the
Vehicle Routing Problem with Time Windows for solving
our problem. The performances of the heuristics were
compared and we saw that the modified Vehicle Routing
Problem with Time Windows gave better results in most of
the cases.

The current formulation does not include the energy
expenditure for movement. However, energy can be easily
modeled as a function of distance moved. The heuristics
other than the VRPTW-based solution (Minimum Weighted
Sum First and EDF with lookahead) can be modified to
allow waiting (currently, the mobiles are always in motion).
If the deadlines are less strict, this always-moving results in
more frequent visits to nodes than required and leads to
unnecessary resource consumption and it would be better
to spend time waiting. In addition, the speed of the mobile
may be made variable, which may result in added benefit.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of
the US National Science Foundation and the Center for
Embedded Networked Sensing (CENS) in funding this
research.

REFERENCES

[1] M. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. Sukhatme, W.
Kaiser, M. Hansen, G. Pottie, M. Srivastava, and D. Estrin, “Call
and Response: Experiments in Sampling the Environment,” Proc.
Second ACM Conf. Embedded Networked Sensor Systems (SenSys ’04),
Nov. 2004.

[2] R. Pon, A. Batalin, J. Gordon, A. Kansal, D. Liu, M. Rahimi, L.
Shirachi, Y. Yu, M. Hansen, W.J. Kaiser, M. Srivastava, G.
Sukhatme, and D. Estrin, “Networked Infomechanical Systems:
A Mobile Embedded Networked Sensor Platform,” Proc. Fourth
Int’l Conf. Information Processing in Sensor Networks (IPSN-SPOTS
’05), Apr. 2005.

[3] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao,
“Habitat Monitoring: Application Driver for Wireless Commu-
nications Technology,” Proc. ACM SIGCOMM Workshop Data
Comm. in Latin America and the Caribbean, Apr. 2001.

SOMASUNDARA ET AL.: MOBILE ELEMENT SCHEDULING WITH DYNAMIC DEADLINES 409

Fig. 9. Minimum number of mobiles for no overflow (VRPTW-MES), overflow in MWSF. (a) MES as dynamic VRPTW: minimum number of mobiles.
(b) MWSF, Scheme-2: Amount of overflow.

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson, “Wireless Sensor Networks for Habitat Monitoring,”
Proc. ACM Int’l Workshop Wireless Sensor Networks and Applications
(WSNA ’02), Sept. 2002.

[5] R.C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs:
Modeling a Three-Tier Architecture for Sparse Sensor Networks,”
Proc. IEEE Workshop Sensor Network Protocols and Applications
(SNPA ’03), May 2003.

[6] T. Small and Z. Haas, “The Shared Wireless Infostation Model—A
New Ad Hoc Networking Paradigm (or where There Is a Whale,
There Is a Way),” Proc. ACM MobiHoc, June 2003.

[7] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D.
Rubenstein, “Energy-Efficient Computing for Wildlife Tracking:
Design Tradeoffs and Early Experiences with Zebranet,” Proc. 10th
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’02), Oct. 2002.

[8] A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Using Predict-
able Observer Mobility for Power Efficient Design of Sensor
Networks,” Proc. Second Int’l Workshop Information Processing in
Sensor Networks (IPSN ’03), 2003.

[9] A. Somasundara, A. Kansal, D. Jea, M. Srivastava, and D. Estrin,
“Controllably Mobile Infrastructure for Low Energy Embedded
Networks,” IEEE Trans. Mobile Computing, vol. 5, no. 8, Aug. 2006.

[10] W. Zhao and M. Ammar, “Message Ferrying: Proactive Routing in
Highly-Partitioned Wireless Ad Hoc Networks,” Proc. Ninth IEEE
Workshop Future Trends of Distributed Computing Systems (FTDCS
’03), May 2003.

[11] W. Zhao, M. Ammar, and E. Zegura, “A Message Ferrying
Approach for Data Delivery in Sparse Mobile Ad Hoc Networks,”
Proc. ACM MobiHoc, May 2004.

[12] P. Baruah, R. Urgaonkar, and B. Krishnamachari, “Learning-
Enforced Time Domain Routing to Mobile Sinks in Wireless
Sensor Fields,” Proc. First IEEE Workshop Embedded Networked
Sensors (EmNetS-I), Nov. 2004.

[13] J. Friedman, D.C. Lee, I. Tsigkogiannis, S. Wong, D. Chao, D.
Levin, W.J. Kaiser, and M.B. Srivastava, “RAGOBOT: A New
Platform for Wireless Mobile Sensor Networks,” Proc. First IEEE
Int’l Conf. Distributed Computing in Sensor Systems (DCOSS ’05),
2005.

[14] J. Luo and J.-P. Hubaux, “Joint Mobility and Routing for Lifetime
Elongation in Wireless Sensor Networks,” Proc. INFOCOM, Mar.
2005.

[15] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys,
Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. John Wiley & Sons, 1990.

[16] A. Somasundara, A. Ramamoorthy, and M. Srivastava, “Mobile
Element Scheduling for Efficient Data Collection in Wireless
Sensor Networks with Dynamic Deadlines,” Proc. 25th IEEE Int’l
Real-Time Systems Symp. (RTSS ’04), 2004.

[17] M. Rahimi, H. Shah, G.S. Sukhatme, J. Heidemann, and D. Estrin,
“Studying the Feasibility of Energy Harvesting in a Mobile Sensor
Network,” Proc. IEEE Int’l Conf. Robotics and Automation (ICRA
’03), Sept. 2003.

[18] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak, “A
Collaborative Approach to In-Place Sensor Calibration,” Proc.
Second Int’l Workshop Information Processing in Sensor Networks
(IPSN ’03), 2003.

[19] M. Batalin, W. Kaiser, R. Pon, G.S. Sukhatme, G. Pottie, Y. Yu, J.
Gordon, M.H. Rahimi, and D. Estrin, “Task Allocation for Event-
Aware Spatiotemporal Sampling of Environmental Variables,”
Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, Aug. 2005.

[20] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, D. Estrin, and
M. Srivastava, “Cyclops: In Situ Image Sensing and Interpretation
in Wireless Sensor Networks,” Proc. ACM Conf. Embedded
Networked Sensor Systems (SenSys ’05), 2005.

[21] The Vehicle Routing Problem, P. Toth and D. Vigo, eds. SIAM, 2001

[22] M. Solomon, “Algorithms for the Vehicle Routing and Scheduling
Problem with Time Window Constraints,” Operations Research,
vol. 35, no. 2, Mar.-Apr. 1987.

[23] N. Bansal, A. Blum, S. Chawla, and A. Meyerson, “Approximation
Algorithms for Deadline-TSP and Vehicle Routing with Time-
Windows,” Proc. 36th ACM Symp. Theory of Computing (STOC ’04),
June 2004.

[24] H.N. Psaraftis, “Dynamic Vehicle Routing: Status and Prospects,”
Annals of Operations Research, vol. 61, pp. 143-164, 1995.

[25] M. Gendreau, F. Guertin, J.Y. Potvin, and E. Taillard, “Parallel
Tabu Search for Real-Time Vehicle Routing and Dispatching,”
Transportation Science, vol. 33, no. 4, pp. 381-390, Nov. 1999.

[26] E. Frazzoli and F. Bullo, “Decentralized Algorithms for Vehicle
Routing in a Stochastic Time-Varying Environment,” Proc. IEEE
Conf. Decision and Control, Dec. 2004.

[27] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment,” J. ACM, vol. 20, no. 1,
Jan. 1973.

[28] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company,
1979.

[29] M.W.P. Savelsbergh, “Local Search in Routing Problems with
Time Windows,” Annals of Operations Research, vol. 4, pp. 285-305,
1985.

[30] “Packbot, the Next Step in Unmanned Tactical Mobile Robots,”
http://www.packbot.com, 2007.

[31] “Mica2 Wireless Measurement System,” datasheet, http://
www.xbow.com/Products/Product_pdf_files/Wireless_pdf/
MICA2_Datasheet.pdf, 2007.

Arun Somasundara received the BE degree in
computer engineering from the Karnataka Re-
gional Engineering College, Surathkal, India,
followed by the ME degree in computer science
and engineering from the Indian Institute of
Science, Bangalore, India, and the PhD degree
from the University of California, Los Angeles.
His research was focused on wireless sensor
networks, in particular, the effect of mobility on
improving the system performance and the

scheduling problems arising in such a system. He is currently with
Broadcom Corporation in San Jose, California.

Aditya Ramamoorthy received the BTech
degree in electrical engineering from the Indian
Institute of Technology (IIT), Delhi, in 1999. He
was a systems engineer at Biomorphic VLSI Inc.
in Thousand Oaks, California, till September
2001. He received the MS and PhD degrees in
electrical engineering from the University of
California, Los Angeles (UCLA) in 2002 and
2005, respectively. From August 2005 to July
2006, he was a senior design engineer in the

Data Storage Signal Processing Group at Marvell Semiconductor Inc., in
Santa Clara, California. In August 2006, he joined the faculty of Iowa
State University in Ames, Iowa, and is currently an assistant professor in
the Department of Electrical and Computer Engineering. His research
interests are in the areas of network information theory, channel coding,
and their applications to problems in networking and data storage. He is
a member of the IEEE.

Mani Srivastava received the PhD degree in
electrical engineering and computer science
from the University of California, Berkeley in
1992. Currently, he is a professor in the
Electrical Engineering Department at the Uni-
versity of California, Los Angeles (UCLA). He is
also associated with UCLA’s Center for Em-
bedded Networked Sensing (CENS), a US
National Science Foundation Science and Tech-
nology Center. Prior to joining UCLA, he worked

at Bell Labs Research. His current interests are in embedded sensor
and actuator networks, wireless and mobile systems, embedded
systems, power-aware computing and communications, and pervasive
computing. More information about him and his research group is
available at his Networked and Embedded Systems Lab’s Web site,
http://nesl.ee.ucla.edu. He is a senior member of the IEEE and a
member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

410 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 4, APRIL 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

