
 

 
Abstract—We present a new class of irregular low-density 

parity-check (LDPC) codes for finite block length (up to a few 
thousand symbols). The proposed codes are efficiently encodable 
and have a simple rate-compatible puncturing structure. For 
block lengths on the order of n=1000 bits, the codes show good 
puncturing performance over a wide range of rates. The codes 
outperform optimized irregular LDPC codes and (extended) 
irregular repeat-accumulate codes for all rates 0.5~0.9, and are 
particularly good at high puncturing rates where good puncturing 
performance has been previously difficult to achieve. 

I. INTRODUCTION 
Low-density parity-check (LDPC) codes are considered good 

candidates for next-generation forward error control in high 
throughput wireless and recording applications. Their excellent 
performance and parallelizable decoder make them appropriate 
for technologies such as DVB-S2, IEEE 802.16e [1], and IEEE 
802.11n [2], [3]. While semiconductor technology has 
progressed to an extent where the implementation of LDPC 
codes has become possible, many issues still remain. First and 
foremost, there is a continual need to reduce complexity (and 
cost) without sacrificing performance. Second, for applications 
such as wireless LAN, the system throughput depends upon the 
channel conditions and hence the code needs to have the ability 
to operate at different rates. Third, while the LDPC decoder can 
operate in linear time, it may be hard to perform low-complexity 
encoding of these codes, e.g. at short block lengths it may be 
hard to design efficient encoders for the random 
regular/irregular codes introduced in [4]. This problem can be 
alleviated somewhat at long block lengths (see [5]). The other 
option is to resort to quasi-cyclic (QC) LDPC or algebraic 
constructions that can be encoded by shift registers [6].  

Irregular Repeat-Accumulate (IRA) codes were introduced 
by Jin et al. [7]. These codes have a linear-time encoder and 
their performance is almost as good as irregular LDPC codes. 
This class of codes was extended by Yang et al. [8], called 
extended IRA (eIRA), where they demonstrated high-rate codes 
with very low error-floors. A popular technique for achieving 
rate-adaptation in a system is through the use of rate-compatible 
puncturing. For rate-compatible punctured codes (RCPC), the 
parity bits of the higher-rate code form a subset of the parity bits 
of the lower-rate codes. Due to this property, a RCPC can be 
used effectively in incremental redundancy (IR) automatic 
repeat request (ARQ) systems. In a system using RCPC the 

number of parity bits that the transmitter sends depends upon 
the rate requirement. At the decoder end, parity bits that are not 
transmitted are treated as erasures. Thus puncturing provides a 
low-complexity solution to the rate-adaptation problem since 
the same encoder and decoder can be used at different rates [9]. 

In this work, we first show that the performance of eIRA 
codes can degrade significantly at high-puncturing rates. To 
alleviate this problem we introduce a new class of LDPC codes 
that have a linear-time encoder and have good performance 
under puncturing for a wide variety of rates. We call this class of 
codes Efficiently-Encodable Rate-Compatible (E2RC) codes.  
In section II, we present the E2RC construction algorithm. The 
encoder structure for E2RC codes is explained in section III. 
Section IV compares the puncturing performance of E2RC 
codes with that of other irregular LDPC codes. Section V 
outlines the conclusions. 

II. THE CODE CONSTRUCTION ALGORITHM 
The eIRA codes of Yang et al. achieve good performance by 
assigning degree-2 nodes to nonsystematic bits and ensuring 
that the degree-2 nodes do not form a cycle amongst 
themselves. Furthermore, they avoid cycles of length-4 and 
make the systematic bits correspond to variable nodes of degree 
higher than two. They ensure efficient encoding by forming the 
parity in the bi-diagonal structure illustrated on the Fig. 1. 

 
1
1 1

1 1

1 1
1 1

T

 
 
 
 

=  
 
 
 
 

O
 

 
Figure 1. Bi-diagonal structure in IRA codes. 

 
It is interesting to see whether there exist other ways of placing 
the degree-2 nodes so that the above conditions are satisfied. 
We present below an example of such a placement in Fig. 2. 
Observe that the column degree of each node is 2 except the last 
column and that there does not exist any cycle in this matrix. We 
shall see later that this construction can be generalized and the 
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resulting matrices can be used to construct LDPC codes that can 
be efficiently encoded and have good puncturing performance 
across a wide range of rates. 

 
1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 1
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Figure 2. Another cycle-free structure with weight-2 nodes. 

 

A. Rate-Compatible Puncturing Algorithm 
Rate compatible puncturing of LDPC codes based on the 

degree distributions was introduced by Ha et al. [10]. However, 
this method assumes infinitely long block lengths and extending 
this to short block lengths is a significant challenge.  For the 
finite length (several thousand symbols) LDPC codes, Ha et al. 
also proposed efficient puncturing algorithm to have a 
rate-compatible code [11], [12]. Since our code construction 
technique is inspired by it, we present a brief description of the 
algorithm below. 
 

1-SR nodes

2-SR nodes1-SR nodes

3-SR nodes

 : unpunctured variable nodes

 : punctured variable nodes

 : check nodes   
Figure 3. k-SR node in a graph. 

 
The puncturing algorithm in [11], [12] is based on the 

following two definitions. A punctured variable node p is called 
1-step recoverable (1-SR) node if it has at least one neighboring 
check node (called survived check node) whose neighboring 
variable nodes are all unpunctured except for p. Generalizing 
this, a punctured variable node p is called k-step recoverable 
(k-SR) node (see Fig. 3) if it has at least one survived check 
node that is connected to at least one (k-1)-SR node. 
Furthermore the other nodes that it is connected to need to be 
m-SR nodes, where 0 1m k≤ ≤ − .  Under these conditions, note 

that the k-SR node will be recovered after exactly k iterations of 
iterative decoding assuming that the channel does not cause any 
errors. So a higher number of low-SR nodes will reduce the 
overall number of iterations, which results in good puncturing 
performance. The general idea is to puncture the lower-SR 
nodes first. By doing so, punctured nodes can be recovered with 
the help of other unpunctured nodes in lesser number of 
iterations. The puncturing algorithm is focused on the selection 
of the nodes to be punctured by maximizing the number of 
lower-SR nodes for a given parity-check matrix. The puncturing 
algorithm presented above works for any given mother code. 
An important open problem here is the design of good codes for 
puncturing, i.e., how to design a code to maximize the lower-SR 
nodes. This is the focus of this paper. 

B. Algorithm for E2RC Code Construction 
In this work, we are interesting in designing codes that have a 

large number of lower-SR nodes. Before describing our design 
algorithm, we define a k-SR matrix. 

Definition: The submatrix P  of a matrix H  is called a k-SR 
matrix if the columns of P  consist of all the k-SR nodes in the 
matrix H .  
In our construction the non-systematic part of the mother code 
parity-check matrix consists of k-SR matrices that can be 
punctured efficiently. 

 
Proposed Algorithm 

 
STEP 1 [Parameter Setting] For a given design parameter, 
M (number of parity bits), the required depth 2logd M= . Set 
the size of k-SR matrix as M × (M / 2k), where 1 k d≤ ≤ .  Also, 
set the size of (d+1)-SR matrix as 1M × . 

 
STEP 2 [Generating k-SR matrix] Generating k-SR matrix of 
M × (M / 2k).  The j-th column of k-SR matrix has the following 
sequence: 

( )1 12 2 1 2
, 1 ,

k k kj
k jh D D D

− −⋅ − = +  
 

where 1 , 0 1
2k

Mk d j≤ ≤ ≤ ≤ −  

1 , where 1M
kh D k d−= = +  

In the sequence, iD  represents the position of nonzero element 
in a column, i.e., i-th element of the column is nonzero, where 
0 1i M≤ ≤ − . 

 
STEP 3 [Constructing matrix H2] Construct H2 matrix as 
follows: 

 
[ ]2 -SR matrix | | -SR matrix | ( )-SR matrix .H 1 d d 1= +L  

 
STEP 4 [Constructing matrix H1] Find an optimal degree 
distribution for the whole code (while fixing the number of 
degree-2 nodes to 1m −  and the number of degree-1 nodes to 1). 
Construct matrix 1H  to satisfy the degree distribution. 

 
STEP 5 [Constructing matrix H] Assign 1H  as systematic 
parts and 2H  as nonsystematic parts: 
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[ ]1 2|H H H= . 

 
For a desired code rate, we first need to find the optimal degree 
distribution using density evolution [4]. Note that the degree 
distribution of the non-systematic part is already fixed by the 
construction algorithm (see Observation 1 and Corollary 1). For 
the design convenience, we only consider 2dM =  case in the 
algorithm. However, we can apply this algorithm to any M. 

In the proposed algorithm, we assign all the degree-2 variable 
nodes to nonsystematic bits. In Lemma 3, we show that there are 
no cycles among the degree-2 nodes. 

Observation 1: Every column in k-SR matrix has weight two 
except the (d+1)-SR matrix which has weight one. 

Lemma 1: In the matrix 2H , any column in k-SR matrix is 
connected to at least one row of weight-k.  Furthermore, this 
row has exactly one connection to a column from each l-SR 
matrix, where 1 1l k≤ ≤ − . 

Proof: Suppose we pick kj th column in k-SR matrix, then the 
sequence is 

( )( 1) ( 1)

( 1) ( 1) ( 1)

( 1)

2 2 1 2
,

2 2 1 2 2 1 2

2 2 1 2 2 1

1

, where 0 1.
2

k k k
k

k

k k k k k
k k

k k k k
k k

j
k j

j j

j j
k k

h D D D

D D
MD D j

− −

− − −

−

⋅ −

⋅ + − ⋅ + − +

+ − + −

 = +  

= +

= + ≤ ≤ −

 

Any column (say lj th column) in l-SR matrix has the following 
sequence: 

( 1)2 2 1 2 2 1
, , where 0 1

2
l l l l

l l
l

j j
l j l l

Mh D D j
−+ − + −= + ≤ ≤ − . 

For the kj th column in k-SR matrix to be connected to a 
column in l-SR matrix, we can consider the following 4 cases. 
(Case 1: the first term of , ll jh = the first term of , kk jh ) 

1 12 2 1 2 2 1, where 0 1
2

l l k k
l k l l

Mj j j− −+ − = + − ≤ ≤ − . 

Then, by some manipulations lj  should be 

( ) {
1

fractioninteger

2 2 1 1/ 2k l
l kj j− −= + −

1442443
, 

Since 1k l− ≥ , this means that the first term on the RHS of the 
expression above is an integer and thus the RHS is a fraction. 
But this is impossible since lj  is an integer. 
(Case 2: the first term of , ll jh = the second term of , kk jh ) 

12 2 1 2 2 1, 0 1
2

l l k k
l k l l

Mj j where j−+ − = + − ≤ ≤ − . 

Then, by some manipulations lj should be 

{
fractioninteger

2 ( 1) 1/ 2k l
l kj j−= + −

14243
, 

which is impossible since 1k l− ≥ and lj is an integer. 
(Case 3: the second term of , ll jh = the first term of , kk jh ) 

12 2 1 2 2 1, 0 1
2

l l k k
l k l l

Mj j where j−+ − = + − ≤ ≤ − . 

Then, by some manipulations lj should be 
12 (2 1) 1k l

l kj j− −= + − . 

Since 0 1
2k k

Mj≤ ≤ − , 1k l− ≥ , and lj  is linear in kj , we can 

always find a unique lj  for kj  such that 

1 1 10 2 1 2 (2 1) 1 2 1.
2

k l k l k l
l k l

Mj j− − − − − −≤ − ≤ = + − ≤ − −  

(Case 4: the second term of , ll jh = the second term of , kk jh ) 

2 2 1 2 2 1, 0 1
2

l l k k
l k l l

Mj j where j+ − = + − ≤ ≤ − . 

Then, by some manipulations lj should be 

2 ( 1) 1k l
l kj j−= + − . 

Since 0 1
2k k

Mj≤ ≤ − , 1k l− ≥ , and lj  is linear to kj , we can 

always find a unique lj  for kj  such that 

1 2 1 2 ( 1) 1 1
2

k l k l
l k l

Mj j− −≤ − ≤ = + − ≤ − . 

Thus, we can always find only one connection in each l-SR 
matrix for each element in k-SR matrix. Now, we now need to 
show that one row is of weight-k. Suppose 1k m d+ ≤ ≤  and 
there exists a column ( mj th column) in m-SR matrix: 

( 1)2 2 1 2 1
, , 0 1

2
m m m

m m
m

j j
m j m m

Mh D D where j
−− − −= + ≤ ≤ − . 

We will show that we cannot find mj  for a given kj  considering 
the following 2 cases. 
(Case 1: the first term of , kk jh = the first term of , mm jh ) 

( ) {
1

fractioninteger

2 2 1 1/ 2m k
k mj j− −= + −

1442443
, 

which is impossible since 1m k− ≥  and kj  is an integer. 
(Case 2: the first term of , kk jh = the second term of , mm jh ) 

{
fractioninteger

2 ( 1) 1/ 2m k
k mj j−= + −

14243
, 

which is impossible since 1m k− ≥  and kj  is an integer. 
Thus, the first term of , kk jh  does not have any common 

positions with any columns in the m–SR matrix, which means 
that the first term does not have any connections on the right and 
is connected to k columns on the left.  Thus, it participates in a 
weight-k row. 

■ 
Corollary 1: The right degree distribution (edge perspective) 

of matrix 2H  is as follows: 
1

1

1
( )

d
i

i
i

x xρ ρ
+

−

=
= ∑ , 
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2

where 1 ,
12

2 2

i d
i

j d
j

i for i d
j d

ρ

=

= ≤ ≤
 +⋅ +   
∑

 

1

2

1and
12

2 2

d d
d

j d
j

d
j d

ρ +

=

+=
 +⋅ +   
∑

. 

 
Proof: First, consider k-SR matrix when 1 k d≤ ≤ . From the 

Lemma 1, if we pick a column in the k-SR matrix, the first 
element of the column is included in the row of weight k , and 
the second element of the column has the row weight greater 
than or equal to k .  To be precise, the second element of the 
column has row weight k only if k d= .  The number of 
columns in the k-SR matrix is / 2kM and each column is 
connected to one weight-k row.  Thus, the number of rows 
having weight k is / 2kM .  For a (d+1)-SR matrix, there is only 
one weight (d+1) row, which is connected to the second 
element of the column in the d-SR matrix. Summing the number 
of rows having weight-k results in 

1 2

11 1 1
2 2 2 2d d

M M M M M + + + + = − + =  
L . 

■ 
From the Observation 1 and Corollary 1, we can determine 

the exact degree distributions for the nonsystematic parts, 
namely the 2H  matrix. For a desired code rate, we can find 
optimal degree distributions for the whole code while fixing 
these degree distributions for 2H . Then we can get the degree 
distributions for the 1H  matrix.  For the systematic part, namely 
the 1H  matrix, we choose variable nodes of higher degree 
greater than two. 

Since all of the nodes except one node are degree 2 in 2H , the 
fraction of degree-2 nodes in degree distributions is very high. 
For a finite length code, the higher portion of degree-2 nodes 
cause better threshold performance, but a big fraction of 
degree-2 nodes can result in a small minimum distance, causing 
a greater probability of decoding errors and higher error floors. 
To reduce these effects, we use methods such as those presented 
in [13-16] when we construct the 1H  matrix. 

In Lemma 2 and 3, we will show that the proposed matrix 
does not have any cycles that consist of only degree-2 nodes. 

Lemma 2: Suppose there exists a length-2s cycle in a matrix 
which consists of only weight two columns. Consider the 
submatrix formed by the subset of columns that participates in 
the cycle. Then, all the participating rows in the cycle must have 
degree two in that submatrix. 

Proof: To have a length-2s cycle, the number of columns 
participating in the cycle needs to be s and the number of rows 
participating in the cycle needs to be s.  Let us denote the 
submatrix formed by the columns participating in the cycle by 
U. Then, the number of edges in U is 2s since each of the 

columns has degree two.  Each row participating in the cycle 
must have a degree greater than or equal to two in U since each 
row has to link at least two different columns in U .  Suppose 
there is a row having degree strictly greater than two in U . 
Then, there should be a row having a degree less than two in U  
i.e. equal to one, since the average row weight in U  is two (the 
number of edges / the number of rows = 2s / s = 2), which is a 
contradiction.  This is because a row that has degree-one in U  
cannot participate in a cycle with the columns in U .  Thus, 
every participating row must have degree two in U . 

■ 
Armed with Lemma 2, we will prove that the proposed matrix 

2H  is cycle free. 
Lemma 3: The matrix 2H  is cycle free. 
Proof: Suppose that there exist s  columns 1 2, ,..., sv v v that 

form a cycle of length 2s . We form the M s× submatrix formed 
by the columns. Let us denote this submatrix sH . Suppose that 
column iv  belongs to the ik -SR matrix in 2H . Find the 
minimum value of ik . Let us call it mink . Applying Lemma 1, 
we have that 

minkv has exactly one connection to each l-SR 

matrix, where min1 l k≤ < , and no connection to m-SR matrices 
where minm k> , i.e., there is a check node connected to 

minkv  

that is singly-connected in the submatrix sH . Applying Lemma 
2, we realize that a cycle cannot exist amongst the s  columns.  

■ 
For the proposed codes, rate-compatibility can be easily 
obtained by puncturing nodes from left to right in 2H  matrix. 
Equivalently, we puncture the nodes in the lower-SR matrix 
first for a desired code rate. The proposed codes not only have 
simple rate-compatible puncturing but also an efficient 
encoding structure. We describe the encoding structure in the 
following section. 

III. ENCODER STRUCTURE 
For the parity-check matrix H of an LDPC code obtained 

from the proposed algorithm, the systematic generator matrix 
G  is given by 

[ ]|kG I P= ,  [ ]1 2|H H H= . 
Since  

[ ] 1
1 2

2

| 0
T

T T T
k T

H
G H I P H P H

H
 

⋅ = ⋅ = + ⋅ = 
 

, 

we can get 1 2
T TP H H −= ⋅ . Then the systematic codeword is 

represented by [ ] 1 2| | T T
kc m G m I P m m H H − = ⋅ = ⋅ = ⋅ ⋅  . Let 

,k jh  be the j-th column in k-SR matrix in 2H  

( )1 12 2 1 2
, 1 , 0,1, , 1

2
k k kj

k j k

Mh D D D where j
− −⋅ − = + = −  

L . 

The following Lemma 4 gives us the sequence of the column in 

2
TH − , which enables simple encoding structure. 
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Lemma 4: Let 

( )1 12 2 1 2
, 1

k k kj
k jh D D D

− −⋅ − = +  
, where 0, 1, , 1

2k

Mj = −L , 

12 1
2

,
0

m
m n i

m n
i

g D
− −

+

=
= ∑ , where 0, 1, , 1

2m

M
n = −L . 

Then, 

, ,

1, ,
0, .k j m n

if k m and j n
h g

otherwise
= =⋅ = 


 

 
Proof:  Due to lack of space, we omit the details of the proof. 

We can easily check the intersections of the sequences ,k jh and 

,m ng for each case of k, m and j, n. 
■ 

In fact, ,m ng is the sequence of 2
TH − corresponding to ,k jh of 

2H  in Lemma 4. Since we have column sequences for both 1
TH  

and 2
TH − , we can implement a simple encoder as shown in Fig. 

4 (a similar observation was made in [8]). This encoder can be 
implemented simply with shift-registers, switches, and 
exclusive-OR operators. Due to lack of space, we omit the 
details. Another way to implement the encoder of the proposed 
E2RC codes is by using a simple erasure decoder. Recall that all 
the nodes in k-SR matrix can be recovered in k iterations with 
erasure decoder since they are all k-SR nodes. For the proposed 
codes, even if all the parity bits are erased, we can recover the 
exact parity bits within (d+1) iterations using a simple erasure 
decoder or general LDPC decoder of message-passing 
algorithm. RA, IRA and eIRA codes can also be encoded by 
using the erasure decoder. However for these codes the number 
of iterations of erasure decoding required is higher. In the 
transceiver system, this can be a great advantage in terms of 
complexity. We only need to provide an LDPC decoder for both 
encoding and decoding, and do not need any extra encoder. 
 

H1
Tm H2

-T

m

p

C = [ m | p ]

 
 

Figure 4. An example of encoding structure of the proposed E2RC codes. 
 

IV. SIMULATION RESULTS 
We consider rate-1/2 codes with code length of 1024 for the 

E2RC codes. When we generate the E2RC codes, we try to keep 
the same optimal degree distributions for the codes as those in 
[8] for rate-1/2 codes, which are used to generate general 
irregular LDPC codes and eIRA codes in the following 
simulations: 

( ) 2 6

5 6

0.30780 0.27287 0.41933

( ) 0.4 0.6 .

x x x x

x x x

λ

ρ

= + +

= +
 

 
However, the actual degree distributions are slightly different to 
compensate the right degree of 2H . 

( ) 2 6

5 6 7

8 9 10 11

0.00030 0.30210 0.27136 0.42625

( ) 0.41147 0.54626 0.01892

0.01064 0.00592 0.00325 0.00354 .

x x x x

x x x x

x x x x

= + + +

= + + +

+ + +

λ

ρ  

 
First, we compare the performance between the proposed 

E2RC codes and the eIRA codes. We design eIRA codes of 
length 1026. We apply the algorithm proposed in [15], [16] to 
design the systematic part of both E2RC codes and eIRA codes 
for having the better girth characteristics. As shown in Fig. 5, 
the mother code performance of two codes shows almost the 
same. However, E2RC codes outperform eIRA codes at every 
puncturing rate. In this simulation, we adopt the random 
puncturing strategy for puncturing eIRA codes. 

Eb/No [dB]

1 2 3 4 5 6 7

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K=512)
eIRA codes (K=513)

  
Figure 5. Puncturing performance comparison between the proposed E2RC 
codes (filled circle) of length=1024 and the eIRA codes (unfilled circle) of 
length=1026 with random puncturing. Curves are for rate=0.5, 0.6, 0.7, 0.8 and 
0.9 from left to right. 
 

Next, we adopt the intentional puncturing algorithm in [11], 
[12] to the eIRA codes, but in this case we face puncturing 
limitations. In fact, the puncturing algorithm in [11], [12] 
assigns 256 nodes as 1-SR nodes, and cannot find further k-SR 
nodes (k ≥ 2) if we try to maximize the number of 1-SR nodes. 
To get a high rate (R = 0.7, 0.8, 0.9) in eIRA codes, we puncture 
randomly after the puncturing limitation (256 1-SR nodes), 
which destroys the structure of 1-SR nodes resulting in poor 
performance. As shown in Fig. 6, the puncturing performance 
of the E2RC codes is better than that of eIRA codes as the code 
rates are increased even though we apply the best-effort 
intentional puncturing algorithm. For a code rate of 0.9, the 
E2RC codes show a 1.1dB coding gain over eIRA codes at a 
BER of 10-5. 

To compare the puncturing performance with general 
irregular LDPC codes, we generate an irregular LDPC codes 
having the same degree distributions as in [8]. The code length 
of this code is 1026, and we also apply the algorithm in [15], 
[16] algorithm to generate the code. From the rate-1/2 mother 
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codes, we generate punctured codes of rate 0.6, 0.7, 0.8, and 0.9 
using the puncturing algorithm in [11], [12]. In Fig. 7, the 
proposed E2RC codes show better performance in all ranges of 
rates. For the rate 0.7 case, the puncturing of the proposed codes 
is 0.2dB better than the general irregular LDPC codes at a BER 
of 10-5 and for the rate of 0.9 the gain increases to 1.2 dB. 
 

Eb/No [dB]

2 4 6 8

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K = 512)
eIRA codes  (K = 513)

  
Figure 6. Puncturing performance comparison between the proposed E2RC 
codes (filled circle) of length=1024 and the eIRA codes (unfilled circle) of 
length=1026 with intentional puncturing. Curves are for rate=0.5, 0.6, 0.7, 0.8 
and 0.9 from left to right. 
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Figure 7. Puncturing performance comparison between the proposed E2RC 
codes (filled circle) of length=1024 and the irregular LDPC codes (unfilled 
circle) of length=1026 with intentional puncturing. Curves are for rate=0.5, 0.6, 
0.7, 0.8, and 0.9 from left to right. 
 

V. CONCLUSION 
We have proposed a class of codes, E2RC codes that have 

several strong points. First, they are efficiently encodable. We 
have derived the sequences for the encoder, which enables 
low-complexity encoder implementation. We also showed that 
a simple erasure decoder can be used for the linear-time 
encoding of these codes. Thus, we can share a message-passing 
decoder for both encoding and decoding if it is applied to the 
transceiver systems which require an encoder/decoder pair. 
Second, we have shown that the nonsystematic parts of the 
parity-check matrix are cycle-free, which ensures good code 

characteristics. From simulations the performance of the E2RC 
codes (mother codes) is as good as that of eIRA codes and other 
irregular LDPC codes. Finally, the E2RC codes show better 
puncturing performance than other irregular LDPC codes and 
eIRA codes in all ranges of code rates. From simulations, the 
punctured E2RC codes of rate 0.9 outperform the best effort 
puncturing of the irregular LDPC codes at a BER of 10-5 by 1.2 
dB. Compared to eIRA codes of rate 0.9, E2RC codes show 
1.1dB gain at a BER of 10-5. 
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