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Abstract—This correspondence considers the problem of distributed
source coding of multiple sources over a network with multiple receivers.
Each receiver seeks to reconstruct all of the original sources. The work by
Ho et al. 2004 demonstrates that random network coding can solve this
problem at the potentially high cost of jointly decoding the source and
the network code. Motivated by complexity considerations we consider
the performance of separate source and network codes. Previous work by
Effros et al. 2003 demonstrates the failure of separation between source
and network codes for nonmulticast networks.We demonstrate that failure
for multicast networks. We study networks with capacity constraints on
edges. It is shown that the problem with two sources and two receivers is
always separable. Counterexamples are presented for other cases.

Index Terms—Distributed source coding, multicast, network coding, sep-
aration.

I. INTRODUCTION

The Slepian–Wolf (S–W) theorem [1] states that the lossless com-
pression of two correlated sources that do not communicate with each
other can be as efficient as the compression of the two sources that do
communicate with each other. Csiszár shows in [2] that linear codes
are sufficient to achieve the S–W bounds and computes error-expo-
nents for various decoders. In that paper, he also shows the existence
of a universal decoder that successfully decodes without requiring the
knowledge of the joint statistics of the sources. In recent years there has
been a flurry of activity (see [3]–[5] and their references) on code de-
sign for this distributed compression problem (hereafter referred to as
the S–W problem), spurred mainly by applications in sensor networks
and video coding problems.

The field of network coding investigates network flow problems
when intermediate nodes in the network have the ability to forward
functions of received packets rather than forwarding the packets
unchanged. The seminal work of Ahlswede et al. [6] shows that net-
work coding achieves the capacity of single-source, multiple-terminal
multicast. Subsequent work [7], [8] shows that linear network coding
is sufficient to achieve this capacity. Moreover, random linear network
coding, which is an efficient distributed strategy, achieves this capacity
with high probability [9], [10]. The multicast capacity of large random
networks is considered in [11]. Variants of this problem involving
multiple sources and multiple receivers are significantly harder and far
less is known about them.

It is important to note that the classical S-W problem does not
consider the sources to be communicating over a network, i.e., there is
a direct edge from each source to the receiver. In addition the edges

Manuscript received March 14, 2005; revised February 7, 2006. The material
in this paper was presented in part at the 42nd Allerton Conference on Commu-
nication, Control and Computing, Monticello, IL, October 2004.

A. Ramamoorthy was with the Department of Electrical Engineering, Univer-
sity of California, Los Angeles, CA 90095 USA. He is now with Marvell Semi-
conductor Inc., Santa Clara, CA 95054 USA (e-mail: adityar@marvell.com).

K. Jain and P. A. Chou are with Microsoft Research, Redmond, WA 98052
USA (e-mail: kamalj@microsoft.com; pachou@microsoft.com).

M. Effros is with the Department of Electrical Engineering, California Insti-
tute of Technology, Pasadena, CA 91125 USA (e-mail: effros@caltech.edu).

Communicated by R. W. Yeung, Guest Editor.
Digital Object Identifier 10.1109/TIT.2006.874534

do not have capacities on them. The S-W problem over a network
is considered by Cristescu et al. [12] in the context of one receiver
but they impose costs on edges rather than considering capacities on
edges. In practical applications such as sensor networks, however,
one would expect that the sources communicate over a network with
capacities on the edges. This makes the problem of deciding the
feasibility of a given distributed source coding problem with multiple
sources and multiple receivers an interesting and important one. This
problem is considered by Ho et al. [13]. They show by using the ap-
proach pioneered by Csiszár that as long as the minimum cuts between
all nonempty subsets of sources and a particular receiver are larger
than the corresponding conditional entropies (more details follow),
random linear network coding followed by appropriate decoding at
the receivers achieves (arbitrarily closely) the S-W bounds.
From a practical perspective one would like to leverage existing so-

lutions to the classical S-W problem and, thus, separate the problem of
sending the appropriate number of coded bits over a network from the
source coding part. The solution proposed by [13] comes at the poten-
tially high cost of jointly decoding the source and the network code.
In general, the network code may destroy the structure in the source
coder that allows tractable decoding. Indeed, if random network coding
is used then this may happen with high probability.
This correspondence formally defines the problem of separation be-

tween distributed source coding and network coding and investigates
the conditions under which separation holds.
Section II starts with a brief overview of distributed source coding

and network coding and then provides a formal definition of separa-
tion between distributed source coding and network coding. Section III
presents results on separation for networks with capacity constraints on
edges and Section IV outlines the conclusions.

II. OVERVIEW AND PROBLEM FORMULATION

Slepian and Wolf [1] in their landmark paper show that independent
source coding of correlated sources (Fig. 1) can be as efficient as joint
coding. For the case of two sources (X1 and X2), they show that if
rates R1 (for X1) and R2 (for X2) satisfy

R1 >H(X1=X2) (1)

R2 >H(X2=X1) (2)

and

R1 +R2 >H(X1; X2) (3)

then there exist independent source encoders at rates R1 (for X1) and
R2 (for X2) and a decoding strategy that can recover X1 and X2

with high probability. Csiszár [2] shows that the S-W bounds can be
achieved arbitrarily closely using random linear codes, by interpreting
the source alphabets to be embedded in a Galois field q of size q.
Effros et al. [14] present a probabilistic statement of this fact if X1

and X2 are binary (i.e., q = 2). Specifically, let xn1 and xn2 represent
vectors of elements in 2 from sources X1 and X2 over n time units,
and let A1;n and A2;n be dnR1e � n and dnR2e � n matrices, re-
spectively, with elements in 2. Define source encoders �1;n(xn1 ) =
A1;nx

n
1 and �2;n(xn2 ) = A2;nx

n
2 , and let �n :

dnR e
2

�
dnR e
2

!
n
2 �

n
2 denote the decoding function, which takes as input the en-

coded sources (�1;n(xn1 ); �2;n(x
n
2 )) and outputs an estimate of the

original sources (xn1 ; x
n
2 ). The decoding function �n is a typical-set

based decoder. (Details can be found in [14].) Let Pe(A1;n; A2;n) =
Pr(�n(�1;n(x

n
1 ); �2;n(x

n
2 )) 6= (xn1 ; x

n
2 )) denote the error probability

for the source code pair (A1;n; A2;n).
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Fig. 1. Sources X and X being encoded independently at source encoders
S and S and being sent to a terminal T .

Theorem 1: [14] Let (X1;1; X2;1); (X1;2;X2;2) . . . be drawn i.i.d.
according to a joint distribution p(x1; x2) on 2 � 2. Choose the
sequence f(A1;n; A2;n)g

1

n=1 of rate-(R1; R2) source encoders by
choosing each entry of each matrix to be 0 or 1 with probability 1/2.
Then for an appropriately defined decoder and rates R1 and R2 that
satisfy the S–W inequalities (1)–(3), E[Pe(A1;n; A2;n)] ! 0 as
n ! 1.

Intuitively, the result says that as long as the decoder receives a suf-
ficient number of linearly combined bits from each source encoder it
can correctly decode with high probability.

For nonbinary sources, Csiszár [2] embeds each source symbol Xi

in a Galois field q for some q � 2, and chooses the elements of
the encoding matrices uniformly at random from q . An alternative
approach by Ho et al. [13], which aligns more closely with the network
model used in this correspondence, is to embed each source symbol
Xi in a vector space r

2
for some ri � 1. That is, Xi produces a

vector of ri bits per unit time. Over n time units, this produces nri
bits per block, which is then encoded using a random binary matrix
of dimension dnRie � nri. As n gets large, all that is required for
error-free decoding with high probability is that the decoder receive
the right number of bits generated by rows of these random matrices.
Complex decoders such as maximum entropy or maximum a posteriori
decoders are assumed in all three of these works.

To the best of our knowledge, Wyner was the first to propose a con-
structive approach for the S-W problem in [15]. It was used by Pradhan
and Ramchandran [16] for practical S–W code designwhen the correla-
tion betweenX and Y can be modeled by a binary symmetric channel,
i.e., when Y can be considered to be a noisy version of X and the
noise can be modeled as a BSC. The approach proceeds by encoding
each source as a syndrome of an appropriately chosen binary code. The
decoder then decodes the sources based on the values of the received
syndromes.

Now suppose that the two sources are communicating with the de-
coder over a network with noiseless links. Fig. 2 depicts this situation.
Sources X1 and X2 are observed at nodes S1 and S2 of the network.
For now, suppose that only terminal node T1 is interested in recon-
structing X1 and X2. Without loss of generality one can assume that
there exist virtual source encodersS01 andS

0

2 that encoden source sym-
bols, which are then fed to S1 and S2. Suppose also that these virtual
source encoders implement randomly chosen linear transformations as
described earlier. Let the number of input bits into S1, respectively, S2
be dnH(X1)e, respectively, dnH(X2)e. A natural strategy for the so-
lution of this distributed source coding problem (now over a network)
is the following.

1) Compute the minimum cuts between nodes S1 and T1, S2 and
T1 and fS1; S2g and T1. If R1 and R2 represent the rates that
can be transmitted from S1 to T1 and S2 to T1, the minimum
cuts define a capacity region CT

R1 �min -cut(S1; T1)

R2 �min -cut(S2; T1)

Fig. 2. Network with sourcesX andX being observed at source nodes S
and S and two terminals T and T . S s (i = 1; 2) can be thought of as virtual
source encoders feeding coded bits to each source node. The network requires
a transmission strategy that ensures that enough number of coded bits reach the
terminals of interest.

and

R1 +R2 �min -cut(fS1; S2g; T1): (4)

If CT has a nonempty intersection with the S-W region de-
fined in (1) – (3), then the problem has a solution (for proofs
of the necessity of this condition see [17] and [18]). We pick a
rational rate vector (RT

S ; R
T
S ) that belongs to this intersection

and choose n sufficiently large such that nRT
S and nRT

S are
integers.

2) Overn time units, route the coded bits fromS01 andS
0

2 so that T1
receives nRT

S of the bits from S01 and nR
T

S of the bits from S02.
The decoder only needs to know the particular subsets of the bits

from S01 and S
0

2 that have been routed. It then just decodes as it would
even if the sources were not operating over a network. By the proof
of [14], [2] we can conclude that error-free decoding is possible with
high probability at T1. From a practical perspective this means that
solutions such as those proposed by [16] that are based on linear codes
would continue to work as long as a feasible rate vector (RT

S ; R
T
S )

exists and a suitable routing strategy is used.
Now consider what happens when we introduce another terminal T2.

That is, now the sources need to be decoded at two different terminals.
We assume that the capacity region of T2 has a nonempty intersection
with the S–W region of the sources; otherwise error-free decoding atT2
is not possible [17], [18]. Let us suppose that the terminals T1 and T2
can support feasible rate vectors (RT

S ; R
T
S ) and (RT

S ; R
T
S ). There

can be multiple strategies for the solution of this problem:

1) Transmit the coded bits via routing to both T1 and T2.
A routing strategy is required so that, as earlier, T1 receives

a subset of size nRT
S bits from S01 and a subset of size nRT

S

bits from S02. A similar statement applies to T2 with the rate
vector (RT

S ; R
T
S ). The advantage of this solution would be that

the decoders at T1 and T2 can be similar and will be directly
decoding bits from S01 and S02. In general, however, a routing
strategy may not exist in some networks because of link sharing.
For example, for the butterfly example of network coding in [6]
no routing strategy can achieve a transmission rate of 2 bits per
unit time.

2) Transmit the coded bits via random linear network coding to
both T1 and T2.

Ho et al. [13] show that if each node in the network per-
forms random linear network coding then there exist decoding
strategies at each terminal so that the sources can be decoded
error-free with high probability. The problem with this approach
is that the equivalent source code that needs to be decoded at
a terminal is not under our control. Random network coding
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allows combining of bits from the different source nodes and,
thus, the original source-coded bits (from S0

1 and S0
2) may not

be uniquely recoverable at the terminals. The equivalent source
code would therefore lose any structure that allows tractable de-
coding. For example, if the original source codes were based on
sparse parity-check matrix representations, e.g., LDPC codes,
then the resultant parity-check matrices may end up becoming
dense, ruling out the use of iterative decoding techniques. While
this approach is promising in an information-theoretic sense, it
fails to provide a practical solution to the problem. However, re-
cent progress has been made in this direction [19].

3) Transmit the coded bits via appropriate network coding such that
T1 and T2 can recover the original source-coded bits.
The approach here is to design a network code so that the re-

covery of a sufficient number of the original source-coded bits is
possible at each terminal. The network code needs to support a
connection such that terminal T1 recovers a subset of size nR

T

S

of the bits fromS0
1 and a subset of size nR

T
S of the bits from S0

2.
A similar statement should hold for T2. If this can be achieved,
as in the routing case, the decoders at the both the terminals will
need only to decode subcodes of the original source codes. In
a practical situation, the source code can be designed to allow
tractable decoding, as well as good performance by utilizing ad-
vanced coding techniques such as LDPC codes. Thus, it is in-
teresting to know whether network codes exist that are able to
faithfully deliver the source coded bits as discussed earlier for
the general case of multiple sources and receivers. This is the
focus of this correspondence.

A. Formal Definition

The following discussion outlines the notation to be used in the rest
of the correspondence and defines an instance of the distributed source
coding problem over a network. We are given the following.

a) NS discrete memoryless sources denoted by Xi; i =
1; . . . ; NS , whose output values are drawn i.i.d. from a joint
distribution p(x1; . . . ; xN ). Each source alphabet is identified
with a vector space over the binary field. This is without loss of
generality since any discrete source alphabet can be considered
to be a subset of a larger one by assigning zero probability to
some symbols [2].

b) A capacitated directed graphG = (V;E;C), where V is a set of
nodes,E is a set of directed edges, andC is a function that gives
the capacity of each edge; all edge capacities are assumed to be
rational. We are also given a set of source nodes S � V; jSj =
NS , and a set of receiver nodes T � V; jT j = NR.

Given these items, we set up the problem as follows.

a) We define the S–W region of the sources as

RSW = f(R1; R2; . . . ; RN ) : 8B � f1; 2; . . . ; NSg

i2B

Ri > H(XB=XB )g

where XB represents the vector of random variables
(Xi ; Xi ; . . . ; Xi ), for ik 2 B; k = 1; . . . ; jBj. We
denote an instance of a distributed source coding problem over
a network with capacity constraints by

P =< RSW; G; S; T > :

b) For each Ti 2 T we define a capacity region with respect to
S. This is the region that defines the maximum flow from each
subset of S to the terminal Ti

CT = f(R1; R2; . . . ; RN ) : 8B � S

i2B

Ri � min -cut(B;Ti)g:

c) We communicate n symbols in a block. This means that each
source block Xn

i is encoded into dnH(Xi)e bits by its source
encoder. Furthermore, edges with capacity C bits/symbol can
transmit bnCc bits per block. Conceptually each edge can
be regarded as multiple unit capacity edges, with each unit
capacity edge capable of transmitting one bit per block. When
communicating a block of length n, we consider the graph
Gn = (V;E; bnCc), or equivalently the graph (V;En; 1),
where En splits each edge from E into unit capacity edges.

d) We introduce a set S0 consisting of NS virtual nodes denoted
S0
1; . . . ; S

0
N , which can be regarded as source encoders, respec-

tively, connected to S1; . . . ; SN . Each encoder S0
i performs a

binary linear encoding over a block of length n defined by a
function �i;n that maps n consecutive samples of Xi (denoted
by (Xi;1;Xi;2; . . . ; Xi;n)) to the dnH(Xi)e bits (denoted by
(Ui;1Ui;2 . . .Ui;dnH(X )e)) used in their description. We define
an augmented graph denoted by G0n = (V S0; En E0

n; 1),
where E0

n represents unit capacity edges from S0 to S carrying
the bits (Ui;1Ui;2 . . .Ui;dnH(X )e); i = 1; . . . ; NS .

e) At any node in G0n, the set of bits on edges entering the node
is treated as a binary vector of dimension ni, where ni is the
number of incoming edges at the node. Similarly the set of bits
on edges leaving the node is treated as a binary vector of di-
mension no, where no is the number of outgoing edges at the
node. The node implements a linear transformation specified by
a binary matrix of dimension no � ni. Each row of this matrix
corresponds to an outgoing edge e, and is said to be the local
encoding vector for edge e. The set of all such linear transfor-
mations at the nodes of G0n, or equivalently the set of all local
encoding vectors on the edges ofG0n, represent a linear network
code �n (having blocklength n) forG0n. A linear network code
whose elements are chosen uniformly at random is a random
linear network code.

Definition 1: Feasibility. Consider an instance of a distributed
source coding problem over a network, P =< RSW; G; S; T >. Let
CT be the capacity region of each receiver Ti 2 T with respect to
S. If

RSW \ CT 6= ;; 8i = 1; . . . ; NR (5)

then the feasibility condition is said to be satisfied and P is said to be
feasible.
Theorem 2: Sufficiency of the feasibility condition [13]. Consider

an instance of a distributed source coding problem over a network,
P =< RSW; G; S; T >. If the feasibility condition (Definition 1)
is satisfied, then a random linear network code for G0n coupled with a
minimum-entropy [2] or maximum-likelihood decoder at each receiver
can recover the sources at each terminal in T with the probability of de-
coding error going to 0 as n ! 1.
For the necessity of the feasibility condition we refer the reader to

references [17] and [18].

B. Separation of Distributed Source Coding and Network Coding

In the sequel, we will work in the framework presented in Sec-
tion II-B. As mentioned before, the result of Theorem 2 assumes the
existence of a minimum-entropy/maximum-likelihood decoder that
can be arbitrarily complex when random linear network codes are
used. In this correspondence we study the feasibility of performing
these operations separately. For this, we need a formal definition of
separation between distributed source coding and network coding,
which is presented.
Definition 2: Separability. Consider a distributed source coding

problem over a network P =< RSW; G; S; T >. Assume that



2788 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Fig. 3. Network with N sources (X ’s), source encoders (S ’s) and source
nodes (S s). The source coded bits are represented by the U s. There are N
receivers (T ’s).

P is feasible. Hence there exist rate vectors (RT

S ; . . . ; R
T

S ) 2

RSW \ CT for each Ti 2 T . For a given blocklength n, let ET

S

denote a subset of the dnH(Xj)e edges in E0n from S0j to Sj with
jET

S j � nR
T

S , for each Sj 2 S and Ti 2 T . Assume that all nodes
are capable of linear network coding only. P is said to be separable if
for any N0 there exist for some blocklength n � N0 a linear network
code �n, rate vectors (RT

S ; . . . ; R
T

S ) as earlier, and edge subsets

E
T

S as earlier, such that the transfer function from the bits on E0n
to the bits on the input edges of Ti uniquely determines the bits on
E
T

S [ ET

S [ � � � [ ET

S , for each Ti 2 T . We call such a linear
network code �n separable.

Separability implies that we can achieve the optimal performance
using separate source and network codes. The source encoder describes
each source with a collection of bits. The network code losslessly de-
livers a sufficient subset of those bits to each receiver. The source de-
coder than recovers the source with high probability.

Note that even ifP is separable, the terminalsmay be required to per-
form nonlinear operations in general for recovering the sources. How-
ever, if P is separable and practical distributed source codes for the
classical S–W problem (based on linear codes) are used as the source
encoders in the source nodes S01; . . . ; S

0
N , then the corresponding

practical source decoders (outlined in [3] and [5]) can be used to re-
cover the sources after a linear inversion of the network code.

III. RESULTS FOR NETWORKS WITH CAPACITY CONSTRAINTS

In this section we present various results that characterize the sepa-
rability of different distributed source coding problems over networks
that have capacities on edges.

Lemma 1: Consider a problem P =< RSW ; G; S; T >, such that
jT j = 1 . If P is feasible, then P is separable.

Proof: Since P is feasible, RSW \ CT 6= ;. Thus, for all suf-
ficiently large n, in G n there exist a sufficient number of edge-dis-
joint paths from each source node to the terminal so that routing itself
would suffice to ensure the delivery of information to the terminal at
a rate vector that lies in the S–W region of the sources. Since in this
case network coding is not needed, the received bits at the terminal T1
trivially determine the bits in ET

S [ET

S . . .ET

S uniquely. Thus, P
is separable.

Fig. 4. The two regions defined by dotted lines are the capacity regions of T
and T , respectively, and the region defined by solid lines is the S–W region of
the sources. (a) The shaded region represents the region common to C , C
andR . (b) There is no point that is common to all three regions here.Z and
Z are the closest operating points for each terminal on the S–W boundary.

The case corresponding toNS = 1 is not a distributed source coding
problem since there is only one source. Nevertheless, we can see that
this problem is separable in the sense of Definition 2 by the multicast
result of Ahlswede et al. [6].

A. The Two-Sources, Two-Receivers Case

The following theorem shows that any feasible distributed source
coding problem with two sources and two terminals is always sepa-
rable.
Theorem 3: Consider a problem P =< RSW ; G; S; T >, with

jSj = 2; jT j = 2 . If P is feasible, then P is separable.
Proof: Since the connection is feasible we haveRSW\CT 6= ;

and RSW \ CT 6= ;. There can be two cases as shown in Fig. 4(a)
and (b).

a) Case 1) RSW \ CT \ CT 6= ;.
This is the case shown in Fig. 4(a). SinceRSW is an open set,

there exists an open region in the intersection in which, for every
sufficiently large n, there exists a single rate vector (RS ; RS )

that can be supported at both terminals T1 and T2 inG n. Thus,
the same set of bits can be sent to both T1 and T2 and the multi-
cast result of [6] guarantees the existence of a Pn

sol such that P
is separable.

b) Case 2) RSW \ CT \ CT = ;.
The problem is more challenging when we consider the sit-

uation in Fig. 4(b). Unlike the earlier case, a single rate vector
cannot be supported at both the terminals. Consequently the re-
sult of [6] no longer applies in a straightforward fashion. The
proof that even this case is separable follows.
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By the given conditions we can assume the existence of � > 0
such thatH(X1; X2)+ � is rational and the lineRX +RX =
H(X1;X2)+� has a nonempty intersection withCT andCT .
We force the terminals T1 and T2 to operate on the rational
points marked Z1 = (RT

S
; RT

S
) and Z2 = (RT

S
; RT

S
), re-

spectively, in Fig. 4(b). Then, the following properties hold true.
1)

RT
S

>RT
S

RT
S

>RT
S

RT
S

+RT
S

=H(X1;X2) + �; for i = 1; 2:

2) For Z 01 2 CT \ RSW \ f(x1; x2) : x1 + x2 =
H(X1;X2)+ �g and Z 02 2 CT \ RSW \ f(x1; x2) :
x1 + x2 = H(X1;X2) + �g

dist(Z1; Z2) � dist(Z 01; Z
0
2)

where dist(a; b) represents the distance between points a
and b.

We choose n sufficiently large such that nRT
S

is integral for
i; j = 1; 2. The proof is inspired by the technique used in [20].
For now let us only consider the paths from S1 to T1, from

S1 to T2, and from S2 to T2. For ease of explanation we let
g = nRT

S
, r1 = nRT

S
, and r2 = nRT

S
. Menger’s theorem

guarantees the existence of edge-disjoint paths in G0n corre-
sponding to these numbers. In particular, we denote by the
set of g edge-disjoint paths from S1 to T1, we denote by 1 the
set of r1 edge-disjoint paths from S1 to T2, and we denote by 2

the set of r2 edge-disjoint paths from S2 to T2. Note that paths
in 1 [ 2 are also edge-disjoint, and that g > r1.
Each edge e in each path belonging to [ 1 [ 2 is labeled

(as explained later) by either one or two colors, namely green
and/or red. Specifically, all edges in paths belonging to are
labeled green and all edges in paths belonging to 1 or 2 are
labeled red. Thus, edges in both and ( 1 [ 2) are labeled
both green and red.
We claim that we can always find (g � r1) exclusively green

paths from S1 to T1. To prove this, we define an algorithm A
that takes as input a path P1 2 .

Algorithm ( 1)
1) Traverse P1 starting at node S1 and find the first edge e1

that is colored both green and red.
2) If no such e1 is found then STOP.
3) ELSE There are two possibilities.

a) e1 belongs to a path in 2.
We claim that this is impossible. To see this, suppose
that e1 belonged to a path P 0 2 2 such that P 0 =
P 01 ! e1 ! P 02, where P

0
1 represents the portion of P

0

from S2 to e1 and P 02 represents the portion of P
0 from

e1 to T2.
We can color all edges on P1 from S1 to e1 red (in
addition to their existing color green), and remove red
from the color of edges inP 01. That is, we canmodify the
solution to send one more bit of source S1 to receiver
T2 through edge e1 and one fewer bit from source S2 to
receiver T2. This increases the rate fromS1 to T2 by one
bit per block and reduces the rate from S2 to T2 by one
bit per block. The new rate vector (RT

S
+ 1=n; RT

S
�

1=n) still lies on the lineRX +RX = H(X1;X2)+�.
But, this implies that Z2 and Z1 can be brought closer,
which is a contradiction.

b) e1 belongs to a path in 1.
If e1 is the first edge of P1, then STOP

ELSE Again suppose that e1 belonged to a path P 0 2
1, such that P 0 = P 01 ! e1 ! P 02, where P

0
1 repre-

sents the portion of P 0 from S1 to e1 and P 02 represents
the portion of P 0 from e1 to T2. Color all edges on P1
from S1 to e1 red (in addition to their existing color
green), and remove red from the color of the edges in
P 01.

Now we define a condition that each path P1 2 has to satisfy.

Cond(P1) = fAll edges in P1 are greeng

or fthe first edge of P1 is (green; red)g: (6)

We continue applying algorithm A to each path of until all paths in
satisfy Cond. We claim that this process will eventually halt. To see

this we define a function f(P1) that given P1 2 counts the number
of (green, red) edges below the first set of contiguous (green, red) edges
in P1. Consider fpot = P2

f(P ). Note that an application of A to
a path from that violates Cond causes fpot to strictly decrease. As a
consequence, eventually all paths in will satisfy Cond.
At the end of this process, we claim that there exist (g � r1) paths

belonging to that are colored exclusively with green. This can easily
be seen to be true, because if Algorithm A reroutes a path P 0 2 1,
then it removes the color red from one outgoing edge of S1 and places
it on another outgoing edge. Thus, the number of outgoing edges that
have the color red remains constant at r1. Therefore, there have to be
(g�r1) outgoing edges that are purely green, which in turn means that
there exist (g � r1) paths from S1 to T1 that are exclusively green.

a) Route n(RT
S
� RT

S
) bits from S1 to T1;

b) Similar argument shows that we can route n(RT
S
� RT

S
) bits

from S2 to T2;
c) Each terminal needs exactly n(RT

S
+RT

S
) bits more to satisfy

its requirement. Invoking the multicast result of [6], we can send
the same n(RT

S
� RT

S
) bits to both receivers using network

coding.

Thus, the two-sources, two-receivers problem can always be decom-
posed as depicted in Fig. 5 which in turn implies separability. The fact
that a connection involving two sources and two receivers can be de-
composed in two routed flows and one network coded flow was also
noted in [21]. However, the proof presented is in the context of com-
pressible sources and proceeds via a completely different approach that
may be of independent interest.
This result is somewhat surprising in light of the fact that we have

source distributions and networks that serve as counterexamples for
cases involving two sources and three receivers and three sources and
two receivers. Those counterexamples follow.

B. The Two-Sources, Three-Receivers Case

Consider the network shown in Fig. 6(b) denoted by G. Here S =
f1; 2g and T = f9; 10; 11g. Each edge has capacity (1 + �) bits.
Fig. 6(a) shows the S–W region of the two sources (X1 and X2) de-
noted byRSW=f(RX ; RX ) : RX � 1; RX � 1; RX +RX �
3g and the capacity regions of the three terminals (T1, T2, andT3) given
by

CT = f(RX ; RX ) : RX � 2 + 2�; RX � 1 + �g

CT = f(RX ; RX ) : RX � 1 + �; RX � 2 + 2�g

CT = f(RX ; RX ) : RX � 2 + 2�; RX � 2 + 2�

RX +RX � 3 + 3�g: (7)

Note that the S-W region includes its boundary in this problem.
We make this choice for simplicity in what follows; it does not
change the nature of the problem. We claim that the problem
P =< RSW ; G; S; T > is not separable.
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Fig. 5. Every two-source two-terminal distributed source coding problem over a network can be decomposed into one network coded flow (solid arrow) and two
routed flows (unfilled arrows).

To prove this, we will assume that P is separable and derive a con-
tradiction.

Assume thatP is separable. By definition, there exists a block length
n and a linear network code �n such that for each terminal Ti; i =
1; 2; 3, there exist a rate vector (RT

S ; R
T

S ) 2 RSW \ CT , a subset
E
T

S of the ndH(X1)e = 2n edges from S01 to S1, and a subset ET

S

of the ndH(X2)e = 2n edges from S02 to S2 such that jE
T

S j � nR
T

S

for j = 1; 2 and the bits carried on the edges in these two subsets
are uniquely determined by the bits on the edges entering Ti. In the
following, we will let the linear network code �n, the rates fRT

S g,

and the edge sets fET

S g be any quantities satisfying these separability
conditions.

Define the input vector into the network as U = [ UT
1 UT

2 ]T such
that U1 = [ UT

11 U
T
12 ]

T and U2 = [ UT
21 U

T
22 ]

T and dim(Uij) = n�1
for i; j = 1; 2. For the linear network code �n, denote the net transfor-
mation from U to the input edges of each terminal Ti as ZT . Further,
denote the data vector flowing on each edge a ! b as Xa!b. For
simplicity, we can assume the equalities X6!9 = X6!11 = X1!6,
X3!9 = X1!3, X7!9 = X7!11 = X7!10 = X4!7, X5!10 =
X2!5, and X8!10 = X8!11 = X2!8. To see that this is without
loss of generality, let �n1 be an arbitrary linear network code satisfying
the separability definition with rates fRT

S g and edge sets fET

S g, such
that

X6!9

X3!9

X7!9

=

H6!9 0 0

0 H3!9 0

0 0 H7!9

H

X1!6

X1!3

X4!7

(8)

whereHa!b denotes the n(1+ �)� n(1 + �) transformation on edge
a ! b. Consider the linear network code �n obtained from �n1 by
replacing the matrix H by the identity matrix. This code then satisfies
the separability definition with the same rates fRT

S g and edges fET

S g,
since for terminal T1 it is possible to uniquely determine the bits on the
edgesET

S andET

S from the bits on the edges entering T1 by applying
the matrixH and then applying the decoder for the separable code �n1 .
The other equality assumptions can be justified in a similar manner.
Hence, if we show, by contradiction, that there cannot exist any sepa-
rable linear network code satisfying the equality assumptions, then we
have shown that there cannot exist any separable linear network code.

Now observe that the data vector X1!6 depends only on vector U1

and not onU2. ThereforeX1!6 = [A11 A12 0 0 ]U . Arguing in
a similar fashion it is easy to see that

X1!3 = [A21 A22 0 0 ]U (9)

X2!8 = [ 0 0 B11 B12 ]U (10)

and

X2!5 = [ 0 0 B21 B22 ]U (11)

where the Aij ’s and Bij ’s are the matrices the specify the transforma-
tion such that

dim(Aij) = dim(Bij) = n(1 + �)� n; 8i; j = 1; 2:

Continuing further note that

X3!4 = [H3!4A21 H3!4A22 0 0 ]U

and

X5!4 = [ 0 0 H5!4B21 H5!4B22 ]U:

It follows that

X4!7 = [Ha
4!7H3!4A21 Ha

4!7H3!4A22

Hb
4!7H5!4B21 Hb

4!7H5!4B22 ]U

= [M11 M12 M21 M22 ]U (12)

where the dim(Mij) = n(1 + �)� n for all i; j = 1; 2.
Suppose that the matrices specify a solution Pn

sol that is separable.
We will now consider each terminal and argue for the conditions that
the matrices need to satisfy in order for separability to hold at them.

1) Separability at terminal T1
From the separability conditionwe know that there needs to exist
a rate vector (RT

S ; R
T

S ) 2 RSW \ CT , a subset ET

S of the
ndH(X1)e = 2n edges from S01 to S1, and a subset E

T

S of the
ndH(X2)e = 2n edges from S02 to S2 such that jE

T

S j � nR
T

S

for j = 1; 2 and the bits carried on the edges in these two subsets
are uniquely determined by the bits on the edges entering T1.
From the capacity regionCT and the S-W region we know that
1 � R

T

S � 1 + � and 1 � R
T

S � 2 + 2�. The S-W conditions
also require that RT

S + R
T

S � 3. Therefore we can conclude
that for all rate vectors in RSW \ CT we have RT

S � 1 and
R
T

S � 2 � �. We will now demonstrate that these conditions
translate into conditions on the ranks of certain submatrices.

The received vector at T1 is

[XT
6!9 X

T
3!9 X

T
7!9]

T = [XT
1!6 X

T
1!3 X

T
4!7]

T

(based on previous arguments). Therefore, the matrix ZT can
be written as

ZT =

A11 A12 0 0

A21 A22 0 0

M11 M12 M21 M22

: (13)
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Fig. 6. (a) Capacity regions of the terminals (depicted by dotted
lines) and the S–W region of the sources (depicted by solid lines). (b)
Counterexample to separability for the case of two sources and three receivers.
H(X ) = H(X ) = 2. H(X ;X ) = 3. The capacity of each edge equals
1 + �.

At T1 we have access to the vector ZT U . We note that by row
operations the matrix can be transformed into a new matrix such
that

ZT �

A11 A12 0 0

A21 A22 0 0

0 0 M21 M22

(14)

where the symbol � denotes equivalence up to elementary row
operations and premultiplication by a square nonsingular ma-
trix since [M11 M12 ] = Ha

4!7H3!4 [A21 A22 ]. There-
fore the submatrix of ZT that specifies the transformation from
U1 to T1 is given by

A11 A12

A21 A22

: (15)

Since RT

S
� 2 � � this implies

rank
A11 A12

A21 A22

� (2� �)n: (16)

In the discussion that follows we will find an upper bound
on the rank of M22. The submatrix of ZT that specifies the
transformation from U2 to T1 is [M21 M22 ] (from (14)). The
submatrix M22 can be broken into two submatrices asM22 =
[Ma

22 M b

22 ].
Since RT

S
� 1, jET

S
j � n. We assume that the bits

U2 have been suitably permuted so that the columns in
[M21 Ma

22 ] correspond to the bits in the set ET

S
such that

rank [M21 Ma

22 ] = jET

S
j. We note that this also means that

rank(M21) = n since all columns in [M21 Ma

22 ] are linearly
independent.

By the definition of separability the received bits at T1 need
to uniquely determine the set of bits in ET

S
. Therefore, using

Lemma 3 we have

rank [M21 Ma

22 ] + rank(Mb

22)

= rank [M21 M22 ] : (17)

We know that rank [M21 Ma

22 ] = jET

S
j � n and

rank [M21 M22 ] � n(1 + �) (the rank of a matrix is
at most the number of rows). Therefore we conclude that
rank(Mb

22) � n�.
Next we note that rank(Ma

22) � jET

S
j�n (the rank of a ma-

trix is at most the number of columns). Now jET

S
j = nR

T

S
�

n(1 + �) (by the constraints of the capacity region CT ), which
implies rank(Ma

22) � n�. Finally we note that

rank(M22) = rank [Ma

22 M b

22 ]

� rank(Ma

22) + rank(Mb

22)

� 2n�: (18)

We will conclude this part of the proof by finding the rank of
B21 and a lower bound on the rank of Hb

4!7H5!4.
Note thatM21 = Hb

4!7H5!4B21. Therefore

rank(M21)

� min(rank(Hb

4!7H5!4); rank(B21)): (19)

Noting that rank(M21) = n and that the column dimension of
B21 is n we obtain

rank(B21) =n and (20)

rank(Hb

4!7H5!4) �n: (21)

2) Separability at terminal T2
Since the connectivity of terminals T1 and T2 is symmetric, by
arguments analogous to the ones made previously we can obtain
the following conclusions.

rank
B11 B12

B21 B22

� (2� �)n (22)

rank(M11) � 2n� (23)

rank(A22) =n (24)

rank(Ha

4!7H3!4) �n: (25)

For the sake of brevity we do not repeat the arguments.
3) Separability at terminal T3

From the separability conditionwe know that there needs to exist
a rate vector (RT

S
; R

T

S
) 2 RSW\CT and a subsetET

S
of the

ndH(X1)e = 2n edges from S01 to S1, and a subset E
T

S
of the

ndH(X2)e = 2n edges from S02 to S2 such that jE
T

S
j � nR

T

S
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for j = 1; 2 and the bits carried on the edges in these two subsets
are uniquely determined by the bits on the edges entering T3.
The region CT \ RSW is defined by

CT \RSW = f(RX ; RX ) : 1 � RX � 2 + 2�;

1 � RX � 2 + 2�; 3 � RX +RX � 3 + 3�g:
(26)

In this part of the proof we will use the previously derived con-
ditions on the ranks of different submatrices and the conditions
to arrive at a contradiction that will conclude the proof.
We will need two simple facts (proved in Lemma 2 in the Ap-
pendix ) regarding the ranks of sums of matrices. IfA andB are
two matrices of the same dimension then

rank(A+B) � rank(A) + rank(B) and (27)

rank(A+B) � rank(A)� rank(B): (28)

We will first present an upper bound on the rank of the matrix
B22. Toward this end, we note that rank(Hb

4!7H5!4) � n

(from (21)). In the discussion that follows, we will assume that
rank(Hb

4!7H5!4) = n. It will be clear that this yields the
weakest upper bound. We know that

M22 = H
b

4!7H5!4B22: (29)

By elementary row operations we can put the right-hand side
(RHS) of the equation in the form

Q11 Q12

0 0

B1

22

B2

22

(30)

where the dimensions of Q11 are n � n and the dimensions of
Q12 aren�n�. Further, rank [Q11 Q12 ] = n.Without loss of
generality, we assume that all of the columns ofQ11 are linearly
independent. If this is not the case, then we can first redefineQ11

to be the set of (linearly independent) columns and then redefine
the block matrices B1

22 and B2

22 appropriately. Now

rank(M22) = rank(Q11B
1

22 +Q12B
2

22)

� rank(Q11B
1

22)� rank(Q12B
2

22)

� rank(Q11B
1

22)� n�

(since the number of rows in B2

22 is n�)

= rank(B1

22)� n�

(sinceQ11 is an invertible matrix): (31)

Noting that rank(M22) � 2n� [from (18)], we obtain
rank(B1

22) � 3n�. Since rank(B2

22) � n�, we finally obtain
rank(B22) � 4n�.
Our next step will be to compute a lower bound on the rank

of B12. We observe that

rank
B11 B12

B21 B22

� rank
B11

B21

+ rank
B12

B22

�n+ rank(B12) + 4n�

(since rank(B21) = n; rank(B22) � 4n�): (32)

Noting that

rank
B11 B12

B21 B22

� (2� �)n

we conclude that

rank(B12) � n(1� 5�): (33)

We will now determine an upper bound on jET
S
j + jET

S
j that

will give us the required contradiction.
It is easy to see that

ZT =

A11 A12 0 0

M11 M12 M21 M22

0 0 B11 B12

: (34)

Notice that the rows corresponding toX7!11 have been moved
to the middle of the matrix for notational convenience. Suppose
that the first 2n columns of ZT are permuted so that the first
jET
S
j columns correspond to the bits in the set ET

S
. We write

the new matrix Z 0T as

Z
0

T = [H1 H2 H3 ] (35)

where dim(H1) = 3n(1+�)�jET
S
j, dim(H2) = 3n(1+�)�

(2n� jET
S
j), and dim(H3) = 3n(1 + �) � 2n. We make the

following observations. Since the columns ofH1 correspond to
the bits in ET

S
, we need rank(H1) = jET

S
j. By the definition

of separability the received bits at T3 need to uniquely determine
the bits inET

S
. Therefore, using Lemma 3, we can conclude that

rank(H1) + rank [H2 H3 ] = rank(Z 0T ) (36)

where

H3 =

0 0

M21 M22

B11 B12

: (37)

In the discussion later, we will present a lower bound on the rank
ofH3. By elementary row operations that can be represented by
premultiplication by a matrix of the form

I 0 0

0 I 0

0 R I

(38)

we can convert H3 into a matrix of the form

H
0

3 =

0 0

M21 M22

0 B0

12

(39)

where R is chosen so that RM21 + B11 = 0 (such an R exists
sinceM21 has rank n) and RM22 +B12 = B0

12. Now

rank(B0

12) � rank(B12)� rank(RM22)

�n(1� 5�)� 2n� from ((33) and (18))

=n(1� 7�): (40)

Consider the set of linearly independent columns in B0

12.
We note that the corresponding columns in the matrix
[MT

22 B0T

12 ]
T are linearly independent of the columns in

[MT

21 0 ]T . This is because a linear combination of columns
in [MT

21 0 ]T necessarily has zeros in the last n(1 + �) coor-
dinates.
Thus, we conclude that the total number of linearly in-
dependent columns in H3 or the rank of H3 is at least
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Fig. 7. Counterexample to separability for the case of three sources and two receivers. The capacity of edge 3! 6 is �. All other edges have capacity 1+ �. The
correlation model is explained in the text.

rank(M21) + rank(B012) � n(2� 7�).
Substituting in (36) we see that

rank(H1)=jE
T

S
j =rank(Z 0T )� rank [H2 H3 ]

� 3n(1 + �)� n(2� 7�)

=n(1 + 10�): (41)

A similar argument shows that jET

S
j � n(1 + 10�) giving us

jET

S
j + jET

S
j � n(2 + 20�). Therefore, if � < 1=20 then the

total number of bits that can be received at T3 is strictly less than
3n. This provides the required contradiction and concludes our
proof.

C. The Three-Sources, Two-Receivers Case

We can also find counterexamples to separability for the case of three
sources and two terminals. Fig. 7 shows a network, denoted byG, along
with three sourcesX1,X2, andX3. The source entropies areH(X1) =
1,H(X2) = 1 + �1, andH(X3) = 1 + �1, and the S–W region is

RSW = f(RX ; RX ; RX ) : (42)

RX �H(X1=X2;X3) = 1 (43)

RX �H(X2=X3;X1) = �1 (44)

RX �H(X3=X1;X2) = �1 (45)

RX +RX �H(X1;X2=X3) = 1 + �1 (46)

RX +RX �H(X2;X3=X1) = 1 + 2�1 (47)

RX +RX �H(X3;X1=X2) = 1 + �1 (48)

RX +RX +RX �H(X1;X2; X3) = 2 + 2�1g: (49)

Here, we assume, as previously, that the boundary of the S-W region
can be achieved. All edges inG have capacity 1+�, except edge 3! 6,
which has capacity �, where 2�1 > � > �1 > 0. Here S = f1; 2; 3g,
T = f6; 7g. We claim that P =< RSW ; G; S; T > is not separable.

Again, to prove this, we will assume that P is separable, with a sepa-
rable linear network code �n, and we will derive a contradiction.
Let the input vector into the network be denoted U =

[ UT

1 UT

2 UT

3 ]T , where dim(U1) = n � 1 and dim(U2) =
dim(U3) = n(1 + �1) � 1. Without loss of generality, we can
assume that in �n, X5!6 = X5!7 = X4!5. To see this, sup-
pose that there exists a separable linear network code �n1 in which
X5!6 = H5!6X4!5, whereH5!6 is an arbitrary n(1+�)�n(1+�)
matrix. Then there is an equivalent separable linear network code in
whichX5!6 = X4!5, for which the decoder at T1 must first multiply
the vector received over edge 5 ! 6 by H5!6. A similar argument
shows that X5!7 = X4!5.
Then

X1!6 = [An(1+�)�n 0 0 ]U

X3!6 = [ 0 0 Cn��n(1+� ) ]U;

X4!5 = [ (B1)n(1+�)�n (B2)n(1+�)�n(1+� ) 0 ]U

andX3!7 = [ 0 0 Dn(1+�)�n(1+� ) ]U

where the submatrices A, B1, B2, C , and D specify the transforma-
tions, and their dimensions are specified by the appropriate subscripts.
Wewill letZT specify the net transformation fromU to the input edges
of Ti.
Suppose that the matrices specify a solution Pn

sol that is separable.
We will arrive at a contradiction for an appropriate range of �. The
matrix ZT can be written as

ZT =

A 0 0

B1 B2 0

0 0 C

: (50)

By the constraints of RSW , we need

RT

S
+RT

S
�1 + 2�1 (by inequality (47) and our assumption)

=) RT

S
� 1 + 2�1 � � � 1 (since RT

S
� �): (51)
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By the definition of separability there needs to exist a subset ET
S of

the edges connecting S02 and S2 such that jET

S j � nR
T

S � n and
such that the received bits at T1 uniquely determine the bits in ET

S .
This means that

rank(B2) � n: (52)

The matrix ZT can be written as

ZT =
B1 B2 0

0 0 D
: (53)

By the constraints ofRSW we also require that RT

S � 1. For separa-
bility to hold, we need the existence of a subset ET

S of the bits from
S
0
1 to S1 so that jE

T

S j � nR
T

S � n and such that the received bits at
T2 uniquely determine the bits inET

S . This means that rank(B1) = n

and that T2 needs to receive all of the bits corresponding to the columns
of B1. By Lemma 3 in the Appendix , we know that if

rank
B1

0
+ rank

B2 0

0 D
> rank

B1 B2 0

0 0 D
(54)

then there exist input vectors ux = [uT1x u
T
2x u

T
3x ]

T and uy =
[uT1y u

T
2y u

T
3y ]

T such that u1x 6= u1y but ZT ux = ZT uy . Since
the solution is assumed to be separable, this cannot be the case. It is
easy to see that we need

rank [B1 B2 0 ] = rank(B1) + rank [B2 0 ]

= rank(B1) + rank(B2)

� 2n: (55)

However, we also know that rank [B1 B2 0 ] � n(1+�) (the rank
of a matrix cannot be more than the number of rows). Thus, if � < 1,
then separability cannot hold at terminal T2.

It is important to note that counterexamples for higher numbers of
sources and receivers can be constructed by simply choosing the coun-
terexamples demonstrated as appropriate subgraphs in the network.

The results mean that one can always find nonseparable distributed
source coding problems when either the number of sources or the
number of terminals (or both) is larger than two.

While not presented here, similar conclusions (with similar proofs)
hold in the cost version of the problem where the edges have cost as-
sociated with usage per bit rather than capacity constraints [22].

IV. CONCLUSION

The problem of distributed source coding of multiple sources over
a network with multiple receivers was considered. In particular, we
focused on investigating whether source coding can be separated from
the problem of transmitting an appropriate number of coded bits to each
receiver. Networks with capacities on edges were considered. While in
general the answer is negative, we showed the surprising result that in
the specific case of two sources and two receivers, a separable solution
always exists.

APPENDIX

Lemma 2: Consider two matrices A and B over GF (2) of same
dimensions. Then

rank(A+B) � rank(A) + rank(B) (56)

rank(A+B) � rank(A)� rank(B): (57)

Proof: The rank of (A+B) is the number of linearly independent
columns in (A + B). Therefore rank(A+ B) � rank[(A+ B)jB].
Now

rank[(A+B)jB]= rank [(A+B)jB]�
I 0

I I

(multiplication by an invertible matrix)

= rank[AjB]: (58)

Since rank[AjB] � rank(A)+rank(B)we have the proof. To obtain
the second part of the lemma we simply apply the first part to matrices
B and (A+B).
Lemma 3: Consider a matrix A = [ A1jA2 ] such that dim(A1) =

m� n1, dim(A2) = m� n2, and rank(A1) = n1. If

rank(A1) + rank(A2) > rank(A)

then there exist two vectors ux =
u1x

u2x
and uy =

u1y

u2y
with

dim(u1x) = dim(u1y) = n1 � 1 and dim(u2x) = dim(u2y) =
n2�1 such thatAux = Auy andu1x 6= u1y . In other words, ifAux =
Auy implies ux = uy , then rank(A1) + rank(A2) = rank(A).

Proof: We denote the rank(A2) by r2. Then we can find a
set of r2 linearly independent columns of A2 that we denote by
[c1jc2j . . . jcr ]. Consider a matrix B

B = [A1 c1 c2 . . . cr ] (59)

such that rank(B) � rank(A) and the number of columns in B =
n1 + r2. Since n1 + r2 > rank(B) some column in B is linearly
dependent on the others. This means that there exists a nonzero vector

u
� =

u
�
1

u
�
2

such that

B
u
�
1

u
�
2

= 0: (60)

Since the columns [c1jc2j . . . jcr ] are linearly independent we know
that u�1 6= 0, and since the columns of A1 are linearly independent we
know that u�2 6= 0. Using u� we can construct a new nonzero vector

v =
v1x

v1y
where dim(v1x) = n1 � 1 and dim(v2x) = n2 � 1 such

thatAv = 0. To see this note that we can set v1x = u
�
1 and the values of

elements in v1y corresponding to the columns of [c1jc2j . . . jcr ] equal
to the corresponding values of the elements of u�2 and zero elsewhere.
Now any two vectors ux and uy such that ux � uy = v will satisfy

Aux = Auy with u1x 6= u1y . We know that rank(A1) + rank(A2)
is always greater than or equal to rank(A). Therefore

rank(A1) + rank(A2) = rank(A) (61)

is a necessary condition for the nonexistence of vectors ux and uy such
that ux 6= uy and Aux = Auy .
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Cycle-Logical Treatment for “Cyclopathic” Networks

Ángela I. Barbero and Øyvind Ytrehus, Senior Member, IEEE

Abstract—This correspondence addresses the problem of finding the net-
work encoding equations for error-free networks withmultiple sources and
sinks. Previous algorithms could not cope with cyclic networks. Networks
that are cyclic in three different senses are considered in this correspon-
dence, and two extensions of the polynomial time Linear Information Flow
(LIF) algorithm are presented. The first algorithm will produce the net-
work encoding equations for a network which can be cyclic, unless the ac-
tual flow paths form cycles. The second algorithm will work also when the
flow paths form simple cycles. Finally an example of a third kind of cyclic
network, where the previous algorithms will fail, is given. However, a bi-
nary encoding is provided also in this case.

Index Terms—Cyclic networks, multicasting, network codes, pipelining.

I. INTRODUCTION

Consider an error-free multicasting network for transmission of in-
formation that is generated and sent by multiple sources, forwarded by
routers, and received by multiple information sinks. Ahlswede et al. [1]
demonstrated that a multiple-sink network where routers can perform
network coding can offer a higher overall throughput than one where
the routers simply forward the information messages.
Several approaches have been followed in order to design an algo-

rithm that produces the encoding equations used by the routers. For
example, random, distributed and time variant encoding with symbols
from a large field (see [2], [3]) can be very robust and requires no a
priori knowledge of the network structure or the flow paths used, but
this induces an overhead since the encoding equations must be trans-
mitted with each individual information message.
We consider the problem of designing a centralized algorithm for

calculating the network encoding equations, and in particular in the
case of networks that contain cyclic paths (which we call cyclopathic
networks.)
Sanders et al. [4] and Jaggi et al. [5] presented the efficient Linear

Information Flow (LIF) algorithm for producing the network encoding
equations. As shown by Ahlswede et al. [1], network coding can be
applied also to cyclic networks. The LIF algorithm will not, however,
work in the case where the network contains cycles. Fragouli and Sol-
janin [6] provide an interesting notation for describing the encoding
equations, also for networks that contain cycles, but do not relate the
code design process for cyclic networks to the efficient approach of the
LIF algorithm.
In Section II, we give an overview of the necessary notation and pre-

vious results. Further, we will define two different notions of cyclicity
in networks: We will consider link cyclic networks as well as the more
difficult case of flow cyclic networks. Next, we restate the LIF algo-
rithm as an edge following algorithm. The new version, the LIFE algo-
rithm, is presented in Section III, and it is shown that the LIFE algo-
rithmworks on networks that are link cyclic, but flow acyclic. However,
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