
Mobile Element Scheduling for Efficient Data Collection in Wireless Sensor
Networks with Dynamic Deadlines

Arun A Somasundara, Aditya Ramamoorthy, Mani B Srivastava
Department of Electrical Engineering, UCLA

Los Angeles, CA 90095-1594
{arun,adityar,mbs}@ee.ucla.edu

Abstract

Wireless networks have historically considered support
for mobile elements as an extra overhead. However, recent
research has provided means by which network can take
advantage of mobile elements. Particularly, in the case of
wireless sensor networks, mobile elements are deliberately
built into the system to improve the lifetime of the network,
and act as mechanical carriers of data. The mobile element,
which is controlled, visits the nodes to collect their data be-
fore their buffers are full. It may happen that the sensor
nodes are sampling at different rates, in which case some
nodes need to be visited more frequently than others. We
present this problem of scheduling the mobile element in the
network, so that there is no data loss due to buffer overflow.
We prove that the problem is NP-Complete and give an ILP
formulation. We give some practical algorithms, and com-
pare their performances.

1. Introduction

In recent years there has been an increased focus on
the use of sensor networks to sense and measure the en-
vironment. This leads to a wide variety of theoretical and
practical issues on appropriate protocols for data sens-
ing and transfer. In most cases the sensors are battery-
constrained which makes the problem of energy-efficiency
of paramount importance. Some practical deployments in-
clude Great Duck Island [9] and James Reserve [1]. Both
these deployments focus mainly on the problem of habi-
tat and environment monitoring. One can also envisage
scenarios where a sensor network is used to sense pol-
lution levels at strategic locations in a large city. Natu-
rally, there will be regions in which variation in pollution
level will be more, such as industrial areas as com-
pared to residential areas. To capture this behavior, the
sensing rates of sensors at different positions will typi-
cally need to be different. The sensor nodes in regions

with higher variation in the phenomenon need to sam-
ple more frequently.

There are multiple ways in which the sensor readings are
transferred from the sensors to a central location. Usually,
the readings taken by the sensor nodes are relayed to a base
station for processing using the ad-hoc multi-hop network
formed by the sensor nodes. While this is surely a feasible
technique for data transfer, it creates a bottleneck in the net-
work. The nodes near the base station relay the data from
nodes that are farther away. This leads to a non-uniform de-
pletion of network resources and the nodes near the base
station are the first to run out of batteries. If these nodes
die, then the network is for all practical purposes discon-
nected. Periodically replacing the battery of the nodes for
the large scale deployments is also infeasible.

A number of researchers have proposed mobility as a so-
lution to this problem of data gathering. Mobile elements
traversing the network can collect data from sensor nodes
when they come near it. Existing mobility in the environ-
ment can be used [10, 11, 5, 3] or mobile elements can be
added to the system [6, 14, 15], which have the luxury to be
recharged. This naturally avoids multi-hop and removes the
relaying overhead of nodes near the base station.

Various types of mobility have been considered for the
mobile element. These can be broadly classified as random,
predictable or controlled. In the work on Data Mules[10],
the mobile element called “data mule” moves randomly.
Humans and animals act as data mules, which collect data
opportunistically from the sensor nodes when they come
near it. The use of a predictable mobile element (mounted
on a bus) was considered in [3]. The sensor nodes learn
when the bus comes near them, and wake up accordingly
to transfer their data. Controlled mobility has been consid-
ered in [6], where the robot acting as the mobile base sta-
tion, moves on a predetermined path, but changes its speed
depending on the goodness of the wireless channel and den-
sity of nodes. Thus the job of the mobile node is exclusively
one of a data-gatherer. Controlled mobility is also used in
Message Ferrying [14, 15], where the ferry is used to route

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

messages between nodes in sparse networks.
In this paper we investigate some scheduling problems

that naturally come up when trying to operate under this
paradigm of controlled mobility. We consider a sensor net-
work that has sensor nodes in different areas operating at
different sampling rates. This is in line with our motiva-
tional example of pollution sensors. Each sensor has a finite
buffer for storing the sensed values. The sensor network is
equipped with a mobile element (acting as a base station)
that does the job of the data gathering. Once the mobile el-
ement visits a sensor node, it transfers the data to its own
memory and the sensor’s memory is freed. A problem that
naturally crops up is the scheduling of the visits of the mo-
bile node so that none of the sensor nodes’ buffer overflows.
We call this the Mobile Element Scheduling (MES) prob-
lem. It is important to clearly outline the differences be-
tween this problem and the conventional Traveling Sales-
man Problem (TSP) [7]. In TSP, the goal is to find a min-
imum cost tour that visits each node exactly once. How-
ever in our problem, a node may need to be visited multi-
ple times before all other nodes are visited depending on the
strictness of its deadline i.e. frequency of sampling. In addi-
tion, as soon as a node is visited, its deadline i.e. time before
which it should be revisited to avoid buffer overflow is up-
dated. Thus deadlines are “dynamically” updated as the mo-
bile element performs the job of data gathering.

Related work is presented in Section 2. Section 3 pro-
vides a formal statement of our problem. We show that the
problem is NP-Complete in Section 4. An integer LP for-
mulation is presented in Section 5 followed by Section 6
that provides some heuristics that yield good results. Re-
sults are discussed in Section 7 and we conclude in Section
8 outlining some directions for future work.

2. Related Work

This section presents the work related to the scheduling
problem discussed above. The message ferrying approach
[14, 15] deals with using a message ferry to route data from
one node to another in a sparse network. In particular, [14]
gives schemes to find the route ferry has to take. Based on
a given traffic matrix (expected traffic from any node to
any other node), goal is to find the optimal route of ferry
so that average delay from source to destination is mini-
mized, meeting the bandwidth requirements of the traffic.
Our problem deals with data gathering, and the constraint is
on buffer overflow. We present below some relevant litera-
ture in routing and scheduling theory.

2.1. Vehicle Routing Problem

The difference from TSP has been outlined earlier. TSP
is a special case of the Vehicle Routing Problem (VRP) [13].

In VRP, as in TSP, a set of nodes need to be visited, but un-
like TSP, there can be more than one vehicle. Vehicles start
and end at a special node (node0), which is referred to as
the depot. The goal is to find the number of vehicles and the
Hamiltonian tour assigned to each, such that sum of the dis-
tances travelled by each vehicle is minimum.

There are many variants to VRP. Those relevant to our
problem are VRP with time Windows (VRPTW), and Peri-
odic VRP (PVRP). In VRPTW [12, 13], in addition to the
VRP constraints, there is a time window within which each
node has to be visited. A special case of this is Deadline-
TSP [2], in which case there is only one vehicle. But both
are different from our problem, as in our case, before visit-
ing all the nodes once, some node (which is sampling at a
higher rate) may need to be visited more than once. In addi-
tion, the time windows of the visits are not known apriori.
Only the current time window is known, and the next time
window is decided based on the current visit time. In PVRP
[13], each node has to be visited a pre-specified number of
times, but there are no time window constraints on the vis-
its. Our problem can be considered as “Periodic VRP with
Dynamic Time Windows”.

2.2. Processor Scheduling

Our problem can also be looked at from the view of pro-
cessor scheduling. Tasks come periodically, have a execu-
tion time, and need to be finished before their deadline. We
can have two analogies of this to our problem. The internode
travel time can be considered as the context switch time, and
servicing time at a node can be considered as the execution
time. Another way of looking is that the travel time is the
execution time (Worst Case Execution Time (WCET) will
be time to reach from its farthest neighbor). A very impor-
tant distinction in our problem is that the next instance of the
task is released as soon as the previous instance is serviced.
This automatically rules out schemes based on static prior-
ity assignment, such as Rate Monotonic scheduling [8]. Dy-
namic schemes such as Earliest Deadline First [8] (called
deadline-driven scheduling in the reference) are feasible ap-
proaches, and are discussed in future sections. Also, there is
no notion of preemption in our problem.

3. Problem Formulation

We are given the following:

• A fully connected graph of n nodes: node[1..n]

• A matrix cost[1..n][1..n] that denotes the time taken to
go from one node to another

• A vector that contains buffer overflow times,
overflow time[1..n]. The ith element of this vec-
tor determines the time at which the buffer in the

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

ith node will overflow. This can be computed us-
ing the buffer size and sensing rate.

• A starting node node0.

We make the following assumptions,

• The matrix, cost[1..n][1..n] and the vector
overflow time[1..n] consist of integer entries.

• At time t = 0 all the buffers of the sensor nodes start fill-
ing up.

• The actual data transfer time from the sensor node to the
mobile element is negligible.

The Mobile-Element-Schedule (cost[1..n][1..n],
overflow time[1..n], node0) problem is the prob-
lem of finding a sequence of visits to nodes from
node[1..n] starting at node0 so that none of the buffers
of the nodes overflow. Once a node is visited, the dead-
line for its next visit is updated. For example, suppose
that node[k] is visited at time tk, and that its over-
flow time is overflow time[k], then the new deadline for
node[k] will be tk + overflow time[k].

Note that the problem outlined in Section 1 can be cast
in this form. For example if one considers the example of
a mobile element gathering pollution level data from sen-
sor nodes, we can set the sensing rates of different nodes
based on expected pollution level dynamics. Since we know
the specifications of the sensor nodes deployed, we can also
compute the overflow times for each sensor node.

4. Proof of NP-Completeness

In this section, we shall prove that the problem of decid-
ing whether a valid schedule exists is NP-Complete. The
proof relies on a reduction from the Hamiltonian Cycle
problem. Before embarking on the actual proof, we need
a lemma that proves that if a schedule exists for a given in-
stance of the problem, we can derive a periodic schedule
from it in polynomial time.

Lemma 1 Suppose we are given an instance of Mobile-
Element-Schedule(cost[1..n][1..n], overflow time[1..n],
node0) that has a solution S, i.e. a schedule such that none
of the buffers at any node overflows. Then a periodic sched-
ule can be derived from S in polynomial time so that if the
periodic schedule is followed then none of the buffers will
ever overflow.

Proof :- Let us first compute the maximum of all the over-
flow times. i.e. Let, TO = maxk∈[1..n] overflow time[k]

S is some sequence of numbers and letters x1, x2, ...
where each xi ∈ {1, 2, ..., n} ∪ M denotes the state of the
mobile element at time t = i. Thus at any given time the
mobile element is either at one of the sensor nodes or it is

b−1Ib−2IaI a+1I a+1I a+1IaI b−1I

b−1Ib−2IaI a+1I a+1I b+1IbI cI

Figure 1. If Ia = Ib, and the schedule is valid
until the interval Ib−1, then we can replace the
portion of the schedule after Ib by Ia+1...Ib−1

and repeat it.

in the mobile state M (it is moving towards another sen-
sor node).

The crucial observation is that if we look at any time win-
dow of length TO in the sequence S, all sensor nodes have
to occur at least once. To see this, assume that there exists
a node v and a time window [t, (t + TO)] such that v does
not occur in it. This means that between successive visits
to v at least time TO elapses which means that its buffer
would surely overflow (note that TO is the maximum over-
flow time), which is a contradiction since S is assumed to
be a valid schedule.

Now suppose that we start observing and recording the
sequence S in intervals of length TO, starting at some time
t1, i.e., we record the solution in time intervals [t1, t1 +
TO], [t1 + TO + 1, t1 + 2TO + 1], The maximum num-
ber of such intervals is (n+1)TO+1 since there are (TO +1)
time instants in an interval, and each instant can be labelled
with a number from {1, 2, ..., n} or the letter M . It fol-
lows that there exist two intervals, Ia and Ib (without loss
of generality we can assume that Ib comes after Ia) that will
be exactly the same if we observe the sequence from t1 to
t1 + (n + 1)TO+1.

Now, if S is not periodic we observe that a valid peri-
odic schedule can be constructed as shown in Fig. 1. i.e. we
can let the new sequence to be Ia, Ia+1, ..., Ib−2, Ib−1, Ib,
Ia+1, Ia+2 Since Ib = Ia, therefore the set of deadlines
of all the nodes at the end of Ib will be exactly the same
as at the end of Ia. Since we know that S is a valid sched-
ule, therefore we can be sure that none of the buffers over-
flowed in intervals Ia+1, Ia+2, ..., Ib−1 and thus by repeat-
ing them after Ib we can be sure that none of the buffers
overflow. Thus the schedule is periodic.

We now show that the Mobile-Element-Schedule prob-
lem is NP-Complete. We state this as a theorem.

Theorem 1 The Mobile-Element-Schedule(cost[1..n][1..n],
overflow time[1..n], node0) problem is NP-Complete.

Proof :- The proof is in two parts,
(a) To see that the problem is in NP, we observe that if we
are given a schedule S1 that is to be verified, by Lemma 1,
it is clear that a maximum of (n+1)TO+1 successive entries

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

of S1 need to be examined to make sure that the schedule
S1 is indeed valid. Thus verifying the validity of a sched-
ule can be done in polynomial time.
(b) To prove that the problem is NP-hard, we reduce the
problem of finding a Hamiltonian Cycle in an arbitrary
graph G(V,E) to the Mobile-Element-Schedule problem.
This problem is well known to be NP-complete [4].

Let G(V,E) be an instance of the Hamiltonian Cy-
cle problem. We construct an instance of Mobile-Element-
Schedule as follows.

cost[i][j] =

{
1 if (i, j) ∈ E

2 otherwise
(1)

overflow time[i] = n (2)
node0 = 1 (3)

This reduction is clearly in P .
If G contains a Hamiltonian Cycle, then we also have

a solution to Mobile-Element-Schedule since all edges that
participate in the Hamiltonian Cycle have weight 1 which
means that the total cycle time = n and consequently none
of the buffers would overflow.

If the constructed instance of Mobile-Element-Schedule
returns a valid schedule S, then we observe the following,

a) Let xt denote the state of the mobile element at time t,
where t �= 0. In an interval [t+1, ..., t+n] all nodes are
visited at least once, by an argument similar to the one
in Lemma 1. Since all nodes have overflow time = n,
this means that all nodes are visited exactly once, since
there are exactly n time instants, (t + 1), ..., (t + n) and
the minimum cost between any two nodes is 1.

b) If we let xi denote the state of the mobile ele-
ment when i ∈ {(t + 1), (t + 2), ..., (t + n)}, then
cost[xi][xi+1] = 1. This is because if there ex-
ists an i such that cost[xi][xi+1] = 2, then we can-
not fit n nodes in n time slots, and will cause at least one
node not to satisfy the constraint. This means that the in-
ternode travel times are 1, i.e all these edges are also
in G (the instance of the Hamiltonian Cycle prob-
lem).

c) xt+n = xt. To see this suppose xt+n = k �= xt, then k
must have appeared somewhere in (t+1), (t+2), ..., (t+
n − 1), otherwise it’s buffer would overflow, but this is a
contradiction since we know that each node appears ex-
actly once in (t + 1), ..., (t + n) from part (b).

But then, the sequence xt, xt+1,, xt+n is a valid Hamil-
tonian cycle in G.

Thus we have shown that G(V,E) contains a Hamilto-
nian cycle if and only if the above-constructed instance of
Mobile-Element-Schedule has a valid solution.

Combining the two parts, we have shown that our prob-
lem is NP-Complete.

5. ILP formulation

We proved in the last section that the schedule is pe-
riodic. Let the period be T . In this section we pose our
scheduling problem as an Integer-Linear-Programming
(ILP) problem.
Variables:
xij : i ∈ {1...T}, j ∈ {1...n}
xij = 1 if at time i, mobile element is at node j, 0 other-
wise.
yi: i ∈ {1..T}
yi = 1 if at time i, mobile element is moving, 0 other-
wise.

It is obvious that if we are able to obtain the values of
xij ,∀i, j and yi,∀i, we can reconstruct the schedule for the
problem. We now lay down the constraints that these vari-
able have to follow, so that we can obtain a valid schedule.
Constraints:

• At time i, the mobile element is either at some sensor
node, or it is moving. Therefore,

n∑
j=1

xij + yi = 1,∀i (4)

• The maximum allowed time between visits to a sensor
node j is overflow time[j]. So,

∑overflow time[j]
i=0 xij ≥ 1

.

.

.∑T
i=T−overflow time[j] xij ≥ 1

∀j (5)

• Finally we need a constraint that forces the mobile ele-
ment to be in the mobile state, between visits to two sen-
sor nodes for at least the time determined by the cost ma-
trix. We have,

k∑
t=i

yt ≥ [xij + xkl − C] × cost[j][l]
2 − C

(6)

∀i, k ∈ {1...T}, i < k and j, l ∈ {1...n}, j �= l and C
is a constant such that 1 < C < 2. We can explain this
constraint as follows.

– Suppose xij = 1, xkl = 1. This means that at time i,
mobile element was at sensor node j, and at time k, it
was at sensor node l. The RHS of this constraint is then
just cost[j][l], and the constraint enforces the fact that
it should have taken at least this time to move. (We as-
sume that between visits to successive nodes, there is
atleast 1 time unit when the mobile element is mov-
ing. We can handle the pathological case of cost be-
tween two nodes = 1 by appropriate discretization of
time.)

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

– Otherwise, i.e. if either or both of xij , ykl are 0, then
there is no constraint that needs to be enforced. Note
that in this case the RHS of the constraint is negative
and since yi ∈ {0, 1}, it is trivially satisfied.

Given the Variables and Constraints, we can see that
the scheduling problem reduces to finding the exis-
tence of a feasible set.

In general we will not know the period T beforehand,
and some amount of experimentation will be required. If
the period T is large, the total number of constraints for the
ILP would be large. In practice it might be hard to solve the
problem in this way. Nevertheless, the formulation is pre-
sented to provide some insight into the problem.

6. Practical Solutions

The problem has been proved to be NP-complete. In this
section, we present some heuristic algorithms. For the kind
of dynamic scheduling we need to do, Earliest Deadline
First (EDF) would seem to be the first choice to consider,
where the node with closest deadline is visited first. This al-
gorithm can be summarized as below:
ALGORITHM: Earliest Deadline First (EDF)

• Input:
cost[1..n][1..n], overflow time[1..n], start node

• Initialize:
current time = 0, current node = start node,
deadline[1..n] = overflow time[1..n]

• Main: Repeat the following

1. Choose the node i �= current node whose deadline is
closest

2. If deadline[i]<current time+cost[current node][i]
– Declare failure and stop

3. Else

– current time+ = cost[current node][i]
– current node = i

– deadline[i] = current time + overflow time[i]

END
First, we explain the reason for not choosing the

current node as the next one. Consider Figure 2 with the
values on edges indicating the cost (which are symmet-
ric) and those near nodes indicating their overflow times.
Suppose start node is A. First part of Table 1 shows the se-
quence of visits, ending with A missing its deadline. If
we did not stay at D, even though it had the earliest dead-
line, we would get the sequence of visits as shown in the
second part of Table 1. Thus, with the constraint of vis-
iting some node other than the current one, we could get
the schedule A,D,B,D,A,D,C,D, ..., and none of the

CB

D

start_node=A

12

13

14

4

A

cost[B][C]=3

cost[B
][D

]=2

cost[C][D]=2

cost[A][B]=3 cost[A][C]=3
cost[A][D]=2

Figure 2. An example to explain choosing
next node different from current node

current time node New deadline {A,B,C,D}
0 A 13,12,14,4
2 D 13,12,14,6
3 D 13,12,14,7
...
8 D 13,12,14,12

let us choose to visit B
10 B 13,22,14,12
12 D 13,22,14,16

A misses its deadline.
current time node New deadline {A,B,C,D}

0 A 13,12,14,4
2 D 13,12,14,6
4 B 13,16,14,6
6 D 13,16,14,10
8 A 21,16,14,10

10 D 21,16,14,14
12 C 21,16,26,14
14 D 21,16,26,18

Table 1. Analysis of the example in Figure 2

nodes miss their deadlines. On the contrary, it is not pos-
sible that not staying at a node caused to miss its dead-
line, whereas staying would have prevented it. This is
because, it has to leave sometime, if not now, to ser-
vice other nodes; in which case deadline will miss then.

One obvious shortcoming in this algorithm is that it does
not take into account the cost values, and relies only on
deadlines. For instance, consider Figure 3, which shows part
of a network. Suppose the mobile element has just visited

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

deadline[C] = 34

current_node = A
current_time = 30

deadline[B] = 35

cost[A][B]=1 cost[B][C]=3

cost[A][C] = 3 C

B

A

Figure 3. An example to illustrate that EDF
type of scheduling is not the best

node A, and current time is 30. Various parameters are as
shown in the Figure. The EDF algorithm will choose to visit
node C next, as its deadline is closest. Then it will visit node
B at time 36. Clearly, deadline of B is missed. On the con-
trary, had it visited node B first, and then node C, both the
deadlines would have been met. This example suggests that
one way to account for the costs in addition to deadlines is
to have a lookahead.

6.1. EDF with k-lookahead

Instead of going to a node whose deadline is earliest, we
can, for instance in the above example, consider two earli-
est deadline nodes, and visit that node, so that deadlines of
both the nodes are met. Generalizing this, in k-lookahead,
we can consider the k! permutations of the k least dead-
line nodes. Suppose we are at node x0, and the next k least
deadline nodes are x1, x2, ..., xk. We will choose that per-
mutation, which leads to none of the k nodes missing their
deadlines. There may be many such possible permutations.
If so, we will choose the one which leads to xk+1 the earli-
est. The precise algorithm is presented below
ALGORITHM: EDF with k-lookahead

• Input:
k, cost[1..n][1..n], overflow time[1..n], start node

• Initialize current time, current node, deadline[1..n]
as before.

• Main: Repeat the following

1. Sort deadline[1..n] in increasing order.

2. Using the first k entries:

– Find an ordering of these k entries so that

(a) None of the k nodes miss their deadlines in the
next k steps,

(b) Arrival time at the node at (k + 1)th entry is min-
imum, and

(c) The first node in the resulting permutation is not
the current node

– If none exists, declare failure and stop.

3. Let the first node in the ordering found be i.

– current time += cost[current node][i]
– current node = i

– deadline[i] = current time + overflow time[i]

END

A point to be noted is that we are not scheduling k vis-
its at a time, but instead, for each visit we are looking at k
nodes, and choosing only the next node. The reason for do-
ing so is that it may happen that a node i has a very low
overflow time[i] value. The schedule will look something
like xa, xi, xb, xi, xc, xi. The node xi is revisited after vis-
iting only one other node. Now, if we schedule k nodes at a
time, we would not be able to achieve this result, and dead-
line of xi will be surely missed.

The special case of k = 1 reduces to the naive EDF al-
gorithm presented before. The set whose permutations are
considered has only one element, and hence only one choice
for the next step. Coincidentally, the lookahead algorithm
takes care of nodes with same deadline values. EDF would
have chosen randomly depending on what order they ap-
peared in the sorted array.

6.2. Weighted sum heuristic

The lookahead algorithm, in addition to deadline, in-
directly takes cost into account when making a decision,
by seeing into the future. Instead, an algorithm can be de-
signed which gives weights to deadlines and cost, and goes
to the node which has the minimum weighted sum. The
values of deadline to be considered in the weighted sum
is not the absolute value, but relative to current time, i.e.
deadline[i] − current time for the node i.
ALGORITHM: Minimum Weighted Sum First

• Input:
Weight α ∈ [0, 1], cost[1..n][1..n], overflow time[1..n],
start node

• Initialize current time, current node, deadline[1..n]
as before.

• Main: Repeat the following

1. ∀i, calculate, weighted sum[i] = α ∗ (deadline[i] −
current time) + (1 − α) ∗ cost[current node][i]

2. Choose the node i �= current node whose
weighted sum[i] is minimum

– if deadline[i] < current time +
cost[current node][i]
∗ declare failure and stop

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

α ∈ [0, 1] Result
1 Weight to deadlines only. Same as EDF.
0 Weight to cost only. Results in back and

forth motion between closest-distance nod
es. All other nodes miss their deadlines.

small Higher priority to closer nodes
big Higher priority to closer deadlines

Table 2. Effect of α values on Minimum
Weighted Sum First heuristic

– Else

∗ current time+ = cost[current node][i]
∗ current node = i

∗ deadline[i] = current time+overflow time[i]

END
Table 2 shows the effect of different α values. To illus-

trate the contents of the table, suppose we are at node xi,
and two nodes xa and xb have costs 25 and 50 respectively,
and relative deadlines 200 and 175 respectively. Clearly xa

is the closer node and xb has an earlier deadline. When
α < 0.5, xa will be chosen, and when α > 0.5, xb will
be chosen.

Combining the previously mentioned two approaches of
lookahead and using the minimum weighted sum, we can
perform lookahead on the weighted sum metric.

6.3. Discussion

At each step, finding the next node takes O(n log n +
k.k!) in the EDF with k-lookahead algorithm. First term
is for sorting, and second for finding the best permuta-
tion. There are k! permutations, and testing each takes k
time. Each step of MWSF takes O(n) for calculating the
weighted sum for all nodes, and choosing the minimum.
Optimally, ability to find a schedule if one exists, requires
n-lookahead. This has a n.n! complexity and is infeasible.

It would be easier if there were some necessary and suffi-
cient conditions to check the existence of a schedule. From
Lemma 1 in Section 4, a necessary condition for a sched-
ule to exist is the existence of a solution for TSP(TO),
where TO was defined to be maxi(overflow time[i])).
TSP(C) is the decision version of TSP, and has a solu-
tion if there is a hamiltonian cycle of length atmost C.
This is because if TSP(C) does not have a solution, we
cannot expect to have a solution to our problem as there
are overflow time values which are less than this, which
means a even tighter constraint. Similarly, a sufficient con-
dition for a schedule to exist is the existence of a solution for
TSP(mini(overflow time[i])). It may be argued that for
checking necessary and sufficient condition for existence of

100

100

2

(a) Topology of type A

100

100

1

(b) Topology of type B

Figure 4. The two types of topologies consid-
ered in simulation

solution to our problem which is NP-complete, we are us-
ing another NP-complete problem. However we note that
there is a large body of literature that deals with design-
ing efficient heuristics for TSP which can be leveraged for
this purpose.

7. Experimental Methodology and Results

The previous section presented few heuristics. We try to
evaluate them in this section through simulation. As the pa-
rameter space is huge, we fixed some of them:

• Grid Size: We fix the grid size to 100x100. The speed is
taken to be 1, so the cost values are same as distance be-
tween nodes. They were rounded to the nearest integer.

• Simulation time: We simulate for 100000 time units.

• Location and number of nodes n: The nodes are ran-
domly placed on the grid. We use 50, 100 nodes.

• overflow time values. One option was to assign these
values randomly to the nodes. But to simulate real
world situation, we assumed that the point of inter-
est is located in the center of grid, and the nodes closer
to the center have smaller overflow time values, as
they are sampling more frequently. We placed concen-
tric circles, smallest one being of radius 2. Also, the ra-
dius increased by 2 from one circle to next. This is
shown in Figure 4(a). The innermost region had small-
est overflow time, called basic overflow time, and
the regions radially outwards were a constant factor of
it, i.e. {1, 1.2, 1.3, ...} ∗ basic overflow time. Simi-
larly we considered the grid with four points of interest
as shown in Figure 4(b). Here the smallest circle had ra-
dius 1, and it was increasing by 1 unit from one circle to
next. The overflow time was assigned based on its dis-
tance from the center of the quadrant in which the point
was present.

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

Label Figure # n basic overflow time
A1 4(a) 50 500
A2 4(a) 50 600
A3 4(a) 50 700
A4 4(a) 100 1000
A5 4(a) 100 1100
A6 4(a) 100 1200
B1 4(b) 50 500
B2 4(b) 50 600
B3 4(b) 50 700
B4 4(b) 100 1000
B5 4(b) 100 1100
B6 4(b) 100 1200

Table 3. Set of Experiments

Putting everything together, we ran the experiments
shown in Table 3. We will refer to the labels shown in
the table. For each of these, results presented are aver-
age of 100 runs. The parameter which changed from run
to run was the location of the nodes, and correspond-
ingly the cost and overflow time values.

For the purposes of evaluation, instead of stopping the
algorithm when a node missed its deadline, we continue,
noting this fact, and updating its deadline. Thus, the met-
ric used is the fraction of nodes which missed their dead-
lines, out of the number of visits made to them in the simu-
lation time of 100000.

7.1. EDF with lookahead

Figure 5(a) and 6(a) show the result of running the k-
lookahead EDF algorithm on the two sets of topologies. k
ranged from 1 to 7. If no permutation of k nodes were avail-
able such that none of the k nodes missed their deadlines,
we would choose the permutation which had the minimum
overflow. The fraction of nodes missing their deadlines de-
creased with increasing lookahead. Also performance on
A3 was better than A2 which was better than A1. This is
obvious because these have basic overflow time of 700,
600, 500 respectively, and higher this quantity, lesser nodes
miss their deadlines. Similar trends are observed in other
sets.

7.2. Minimum Weighted Sum First

Figure 5(b) and 6(b) show the result of running the
MWSF algorithm on the two topologies. α ranged from
0.01 to 1 with steps of 0.01. α = 1 is same as EDF. We did
not use α = 0, because, with no weight to deadlines, the al-
gorithm is not guaranteed to visit all nodes, as it would be
stuck going to and fro between nodes on a locally mini-
mum weighted edge. We see that lower α values perform

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lookahead

F
ra

ct
io

n
of

 n
od

es
 w

hi
ch

 m
is

se
d

th
ei

r
de

ad
lin

es

A1
A2
A3
A4
A5
A6

(a) EDF with lookahead on set A: A1-A6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α value

F
ra

ct
io

n
of

 n
od

es
 w

hi
ch

 m
is

se
d

th
ei

r
de

ad
lin

es A1
A2
A3
A4
A5
A6

(b) MWSF on set A: A1-A6

Figure 5. Results of EDF with lookahead and
Minimum Weighted Sum First algorithms on
first set of topologies A1-A6

better. To get a better insight into working of this algo-
rithm, we examine part of 5(b). Figure 7 shows the result
for 0.01 ≤ α ≤ 0.24 for topology types A1, A2, A3. We
see that as the topology becomes less constrained, the range
of α values giving the optimum solution increases.

7.3. Comparison and Discussion

From the graphs, we can see, especially for the most con-
strained topologies A1, A4, B1, B4, that MWSF performs
better than EDF with 7-lookahead. These were the most
constrained as the basic overflow time was least (500 for

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lookahead

F
ra

ct
io

n
of

 n
od

es
 w

hi
ch

 m
is

se
d

th
ei

r
de

ad
lin

es

B1
B2
B3
B4
B5
B6

(a) EDF with lookahead on set B: B1-B6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α value

F
ra

ct
io

n
of

 n
od

es
 w

hi
ch

 m
is

se
d

th
ei

r
de

ad
lin

es

B1
B2
B3
B4
B5
B6

(b) MWSF on set B: B1-B6

Figure 6. Results of EDF with lookahead and
Minimum Weighted Sum First on the second
set of topologies B1-B6

A1, B1 and 1000 for A4, B4). It may be noted that for a
particular topology type, say A1, the set of 100 topologies
over which results are averaged, were same for the two al-
gorithms.

Obviously, EDF will continue to perform better with in-
creasing lookahead, and at some point will be better than
MWSF. But the goal is to get a better solution with lesser
computation complexity.

One thing to be mentioned in case of MWSF is that
each topology would have a α value, at which it would per-
form best. As the results presented are average of 100 runs,
we investigated the α value which was performing best for

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α value

F
ra

ct
io

n
of

 n
od

es
 w

hi
ch

 m
is

se
d

th
ei

r
de

ad
lin

es

A1
A2
A3

Figure 7. Results of Minimum Weighted Sum
First on smaller range of α values for A1-A3.
This is part of Figure 5(b)

each topology. Figure 8 shows a histogram which shows
the number of topologies (out of 100) which had best per-
formance at each α value. The results are shown for A1.
α around 0.09 seems to be performing well for most cases
(for this topology type), as was also evident previously from
Figure 7. Now, with the best α value for a given topology,
we tried applying lookahead, but did not notice any perfor-
mance gains.

To summarize, given a topology, we can run the EDF
with k-lookahead algorithm, choosing k depending on the
computational budget. Also we can run MWSF with differ-
ent α values, and finally choose the best.

In addition to the algorithms and results pre-
sented here, we also tried the Minimum Slack
First (MSF) algorithm. Slack is defined as the
time remaining if a node is processed now, i.e.
deadline[i] − current time − cost[current node][i]
for a node i. In MSF, the node with minimum slack is vis-
ited first. We implemented MSF, and its lookahead version.
It performed better with increasing values of looka-
head, but performance was poorer than the corresponding
EDF with lookahead.

All the algorithms assumed that the mobile element trav-
els at a constant speed, say s. As the energy varies with
voltage2 for processors, energy for the mobile element
varies as s2. So lower the s, more energy efficient the
system is. One simple optimization that can be done is
global slowdown, where the mobile element travels at speed
x ∗ s, 0 < x < 1, and still the deadlines are met. Decreas-
ing s increases the cost matrix, the internode travel time.

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

30

35

40

α value

N
um

be
r

of
 r

an
do

m
 to

po
lo

gi
es

 o
f t

yp
e

A
1

Figure 8. Histogram of number of topologies
(out of 100) which had best performance at
each α value for A1

Hence we can try with lower values of s, and use the mini-
mum, which still meets the constraints.

8. Conclusions and Future Work

Deployments of sensor networks are taking place to
sense the environment. Using a controlled mobile element
is a promising approach to collect data from these sensor
nodes. The sensor nodes may be sampling at different rates.
In this context, we have introduced a scheduling problem,
where the mobile element needs to visit the nodes so that
none of their buffers overflow. We showed that it is NP-
complete and gave an ILP formulation for it. We gave some
heuristics, and showed that Minimum Weighted Sum First
algorithm performs well and is computationally inexpen-
sive. There are many directions in which this work may be
pursued further. We can try to find an approximation algo-
rithm for this problem. We can formulate the problem to
adapt to node addition or failures. Another direction to be
explored is the case with multiple mobile elements.

References

[1] www.jamesreserve.edu (james san jacinto mountains re-
serve).

[2] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approx-
imation algorithms for deadline-tsp and vehicle routing with
time-windows. In 36th ACM Symposium on Theory of Com-
puting (STOC), 2004.

[3] A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using pre-
dictable observer mobility for power efficient design of sen-

sor networks. In The second International Workshop on In-
formation Processing in Sensor Networks (IPSN), 2003.

[4] M. R. Garey and D. S. Johnson. Computers and In-
tractability, A Guide to the Theory of NP-Completeness.
W.H.Freeman and Company, 1979.

[5] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with ze-
branet. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2002.

[6] A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and
D. Estrin. Intelligent fluid infrastructure for embedded net-
works. In The Second International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2004.

[7] E. L. Lawler, J. K. Lenstra, R.-K. A. H. G., and D. B.
Shmoys. Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization. John Wiley & Sons, 1990.

[8] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the
Association for Computing Machinery, 20(1), Jan 1973.

[9] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habitat monitor-
ing. In ACM International Workshop on Wireless Sensor Net-
works and Applications (WSNA), 2002.

[10] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules:
Modeling a three-tier architecture for sparse sensor net-
works. In IEEE Workshop on Sensor Network Protocols and
Applications (SNPA), 2003.

[11] T. Small and Z. Haas. The shared wireless infostation model-
a new ad hoc networking paradigm (or where there is a
whale, there is a way). In The Fourth ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2003.

[12] M. Solomon. Algorithms for the vehicle routing and schedul-
ing problem with time window constarints. Operations Re-
search, 35(2), Mar-Apr 1985.

[13] P. Toth and D. Vigo, editors. The Vehicle Routing Prob-
lem. Society for Industrial & Applied Mathematics (SIAM),
2001.

[14] W. Zhao and M. Ammar. Message ferrying: Proactive rout-
ing in highly-partitioned wireless ad hoc networks. In The
Ninth IEEE Workshop on Future Trends of Distributed Com-
puting Systems (FTDCS), 2003.

[15] W. Zhao, M. Ammar, and E. Zegura. A message ferrying ap-
proach for data delivery in sparse mobile ad hoc networks. In
The fifth ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2004.

Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS 2004)

1052-8725/04 $20.00 © 2004 IEEE

