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Fractional Repetition Codes With Flexible Repair
From Combinatorial Designs

Oktay Olmez and Aditya Ramamoorthy, Member, IEEE

Abstract— Fractional repetition (FR) codes are a class of
regenerating codes for distributed storage systems with an exact
(table-based) repair process that is also uncoded, i.e., upon
failure, a node is regenerated by simply downloading packets
from the surviving nodes. In this paper, we present the con-
structions of FR codes based on Steiner systems and resolvable
combinatorial designs, such as affine geometries, Hadamard
designs, and mutually orthogonal Latin squares. The failure
resilience of our codes can be varied in a simple manner.
We construct codes with normalized repair bandwidth (β) strictly
larger than one; these cannot be obtained trivially from codes
with β = 1. Furthermore, we present the Kronecker product
technique for generating new codes from existing ones and
elaborate on their properties. FR codes with locality are those
where the repair degree is smaller than the number of nodes
contacted for reconstructing the stored file. For these codes,
we establish a tradeoff between the local repair property and
the failure resilience and construct codes that meet this tradeoff.
Much of prior work only provided lower bounds on the FR code
rate. In this paper, for most of our constructions, we determine
the code rate for certain parameter ranges.

Index Terms— Fractional repetition code, combinatorial
design, Steiner systems, affine geometry, high girth, resolvable
design, regenerating codes, local repair.

I. INTRODUCTION

LARGE scale data storage systems that are employed
in social networks, video streaming websites and cloud

storage are becoming increasingly popular. In these systems,
the integrity of the stored data and the speed of the data access
needs to be maintained even in the presence of unreliable
storage nodes. This issue is typically handled by introduc-
ing redundancy in the storage system, through the usage of
replication and/or erasure coding. However, the large scale,
distributed nature of the systems under consideration intro-
duces another issue. Namely, if a given storage node fails,
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it need to be regenerated so that the new system continues to
have the properties of the original system. It is of course desir-
able to perform this regeneration in a distributed manner and
optimize performance metrics associated with the regeneration
process. Firstly, one would like to ensure that the regeneration
process be fast. For this purpose we would like to minimize
the data that needs to be downloaded from the surviving nodes.
Moreover, we would like the surviving nodes and the new node
to perform very little (ideally no) computation, as this also
induces a substantial delay in the regeneration process that is
comparable to the download time (since nowadays, memory
access bandwidth is comparable to network bandwidth [1]).
In addition, it is desirable to perform the regeneration by
connecting to a small number of nodes, as it induces a
workload on the surviving storage nodes. Connecting to a
small set of nodes also reduces the overall energy consumption
of the system.

In recent years, codes which are designed to satisfy the
needs of data storage systems have been the subject of much
investigation and there is extensive literature on this topic.
Depending upon the specific metrics that are optimized there
are different requirements that the distributed storage system
needs to satisfy. However, broadly speaking, all systems have
the following general characteristics. A distributed storage
system (henceforth abbreviated to DSS) consists of n storage
nodes, each of which stores α packets (we use symbols and
packets interchangeably). A given user, also referred to as
the data collector needs to have the ability to reconstruct the
stored file by contacting any k nodes; this is referred to as the
maximum distance separability (MDS) property of the system.
To ensure reliability in the system, the DSS also needs to
repair a failed node. This is accomplished by contacting a set
of d surviving nodes and downloading β packets from each of
them for a total repair bandwidth of γ = dβ packets. Thus, the
system has a repair degree of d , normalized repair bandwidth β
and total repair bandwidth γ. The new DSS should continue
to have the MDS property.

A simple technique for obtaining a DSS is to treat the
file that needs to be stored as a set of symbols over a large
enough finite field, generate encoded symbols by using an
MDS code (such as a Reed-Solomon (RS) code) and then
store each encoded symbol on a different storage node. It is
well recognized that the drawback of this method is that
upon failure of a given storage node, a large amount of data
needs to be downloaded from the remaining storage nodes
(equivalent to recreating the file). To address this issue, the
technique of regenerating codes was developed in the work of
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Dimakis et al. [2]. In the framework of [2], the repair degree
d ≥ k and the system needs to have the property that a failed
node can be repaired from any set of d surviving nodes. The
principal idea of regenerating codes is to use subpacketization.
In particular, one treats a given physical block as consisting
of multiple symbols (unlike the MDS code that stores exactly
one symbol in each node). Coding is now performed across
the packets such that the file can be recovered by contacting
a certain minimum number of nodes. In addition, one can
regenerate a failed node by downloading appropriately coded
data from the surviving nodes. The work of [2] identified a
fundamental tradeoff between the amount of storage at each
node and the amount of data downloaded for repairing a
failed node under the mechanism of functional repair, where
the new node is functionally equivalent to the failed node,
though it may not be an exact copy of it. Two points on the
curve deserve special mention and are arguably of the most
interest from a practical perspective. The minimum bandwidth
regenerating (MBR) point refers to the point where the repair
bandwidth, γ is minimum. Likewise, the minimum storage
regenerating (MSR) point refers to the point where the storage
per node, α is minimum.

In a different line of work, it has been argued that repair
bandwidth is not the only metric for evaluating the repair
process. It has been observed that the number of nodes that
are contacted for purposes of repair is also an important metric
that needs to be considered. The model of [2], which enforces
repair from any set of d surviving nodes requires d to be at
least k. The notion of local repair was introduced in [3]–[5],
and considers the design of DSS where d < k. However, one
only requires that there is some set of d surviving nodes from
which the repair can take place.

The majority of work in the design of codes for DSS
considers coded repair where the surviving nodes and the new
node need to compute linear combinations of the stored sym-
bols for regeneration. It is well recognized that the read/write
bandwidth of machines is comparable to the network band-
width [1]. Thus, this process induces additional undesirable
delays [6] in the repair process. The process can also be
potentially memory intensive since the packets comprising the
file are often very large (of the order of GB). Motivated by
these issues, reference [7] considered the following variant of
the DSS problem. The DSS needs to satisfy the property of
exact and uncoded repair, i.e., the regenerating node needs
to produce an exact copy of the failed node by simply
downloading packets from the surviving nodes. This allows
the entire system to work without requiring any computation
at the surviving nodes. In addition, they considered systems
that are resilient to multiple (> 1) failures. However, the DSS
only has the property that the repair can be conducted by
contacting some set of d nodes, i.e., unlike the original setup,
repair is not guaranteed by contacting any set of d nodes. This
is reasonable as most practical systems operate via a table-
based repair, where the new node is provided information
on the set of surviving nodes that it needs to contact. The
work of [7] proposed a construction whereby an outer MDS
code is concatenated with an inner “fractional repetition” code
that specifies the placement of the coded symbols on the

storage nodes. The main challenge here is to design the inner
fractional repetition (FR) code in a systematic manner.

In this work, we present several families of FR codes and
analyze their properties. This paper is organized as follows.
In Section II, we outline our precise problem formulation,
elaborate on the related work in the literature and summarize
the contributions of our work. We discuss our FR code
constructions for the case when d ≥ k in Section III, and
explain the Kronecker product technique in Section IV. The
locally recoverable FR codes where d < k are considered
in Section V and Section VI outlines the conclusions and
opportunities for future work.

II. BACKGROUND, RELATED WORK AND

SUMMARY OF CONTRIBUTIONS

A DSS is specified by parameters (n, k, d, α) where
n - number of storage nodes, k - the minimum number of
nodes to be contacted for recovering the file, d - the number
of nodes to be contacted in order to regenerate a failed node
and α - the storage capacity. In case of repair, the new node
downloads β packets from each surviving node, for a total of
γ = dβ packets. Let M denote the size of file being stored on
the DSS. We consider the design of fractional repetition codes
that are best explained by means of the following example [8]
with (n, k, d, α) = (5, 3, 4, 4).

Example 1: Consider a file of M = 9 packets
(a1, . . . , a9) ∈ F

9
q that needs to be stored on the DSS.

We use a (10, 9) MDS code that outputs 10 packets
ci = ai , i = 1, . . . , 9 and c10 = ∑9

i=1 ai . The coded
packets c1, . . . , c10 are placed on n = 5 storage nodes as
shown in Fig. 1a. This placement specifies the inner fractional
repetition code. It can be observed that each ci is repeated
ρ = 2 times and the total number of symbols θ = 10. Any user
who contacts any k = 3 nodes can recover the file (using the
MDS property). Moreover, a failed node can be regenerated by
downloading one packet each from the four surviving nodes,
i.e., β = 1 and d = 4, so that γ = 4.

Thus, the approach uses an MDS code to encode a file
consisting of a certain number of symbols. Let θ denote the
number of encoded symbols. Copies of these symbols are
placed on the n nodes such that each symbol is repeated ρ
times and each node contains α symbols. Moreover, if a given
node fails, it can be exactly recovered by downloading β
packets from some set of d surviving nodes, for a total repair
bandwidth of γ = dβ. It is to be noted that in this case α = γ ,
i.e., these schemes operate at the MBR point. In the example
above, β = 1, so that α = d . One can also consider systems
with β > 1 in general. A simple way to do this is replicating
the symbols in the storage system. The resultant DSS has the
parameters (n, k, d, βα) with β > 1. However, in this work we
show that there are infinite families of FR codes with β > 1
which cannot be obtained this way. In Fig. 1b we illustrate the
DSS obtained by replicating the (5, 3, 4, 4)-DSS when β = 2.

Before introducing the formal definition of a fractional
repetition (FR) code we need the notion of β-recoverability.
Let [n] denote the set {1, 2, . . . , n}.

Definition 1 (β-Recoverability): Let � = [θ ] and
Vi , i = 1, . . . , d be subsets of �. Let V = {V1, . . . , Vd}
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Fig. 1. (a) A DSS with (n, k, d, α) = (5, 3, 4, 4). Each node contains a subset of size 4 of the packets from {c1, . . . , c10}. First node for instance contains
symbols ci , i = 1, . . . , 4 that is {c1, c2, c3, c4}. When there is no confusion we simply use the notation c1c2c3c4 instead of the set notation {c1, c2, c3, c4}.
(b) The DSS is constructed by applying a (20, 18)-MDS code followed by the inner fractional repetition code shown in the figure. It is specified with
parameters (5, 3, 4, 8). When a node fails we contact the remaining four nodes and download two packets from each to repair the failed node. This DSS can
be obtained from the (5, 3, 4, 4) DSS on the left by trivial β-expansion, where β = 2.

and consider A ⊂ � with |A| = dβ. We say that A is
β-recoverable from V if there exist Bi ⊆ Vi for each
i = 1, . . . , d such that Bi ⊂ A, |Bi | = β and ∪d

i=1 Bi = A.
Definition 2 (FR Codes): A fractional repetition (FR) code

C = (�, V ) for a (n, k, d, α)-DSS with repetition degree ρ and
normalized repair bandwidth β = α/d (α and β are positive
integers) is a set of n subsets V = {V1, . . . , Vn} of a symbol
set � = [θ ] with the following properties.
(a) The cardinality of each Vi is α.
(b) Each element of � is contained in exactly ρ sets in V .
(c) Let V surv denote any (n − τ ) sized subset of V and

V f ail = V \ V surv . Each Vj ∈ V f ail is β-recoverable
from some d-sized subset of V surv . Let ρres be the
maximum value of τ such that this property holds.

We provide the following example to illustrate that require-
ment (c) of Definition 2 plays an important role in our study.

Example 2: Consider the sets � = {1, 2, 3, 4, 5, 6}, and
two different families of subsets of � as shown below.

V = {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}, {1, 5, 6}}, and

W = {{1, 2, 3}, {3, 4, 5}, {2, 5, 6}, {1, 4, 6}}.
Both V and W satisfy the requirements (a) and (b) of
Definition 2. However, note that {1, 2, 3} ∩ {4, 5, 6} = ∅. This
implies that {1, 2, 3} is not 1-recoverable from the set

{{2, 3, 4}, {4, 5, 6}, {1, 5, 6}}.
So C = (�, V ) cannot be a fractional repetition code.
In contrast, any failed set in W is 1-recoverable and thus
C = (�, W ) is a fractional repetition code with δ = 1.

The value of ρres is a measure of the resilience of the system
to node failures, under the constraint of exact and uncoded
repair. The file size is given by

M = min
I⊂[n],|I |=k

| ∪i∈I Vi |

and the code rate is defined as RC = M
nα

. We emphasize that

RC depends on k.
Note that the parameters of a FR code are such that

θρ = nα. Thus, the code rate RC = M
nα ≤ θ

nα = 1
ρ .

Moreover as ρ ≥ 2, the maximum rate of any FR code is
at most 1

2 . It is to be noted that the parameter M also sets
the code rate of the outer MDS code; it is exactly M/θ . For
a FR code C = (�, V ) and an index set I ⊆ [n], we say that
nodes Vi ∈ V for i ∈ I cover ζ symbols if ζ = | ∪i∈I Vi |.

The work of [7], only considered FR codes with β = 1
and k ≤ d , i.e., for recovery the new node would contact d
surviving nodes and download a single packet from each of
them. For their codes, the requirement (c) in Definition 2 is
satisfied and the system is resilient to ρ − 1 failures, i.e.,
ρres = ρ − 1. It is to be noted that the requirement of d ≥ k
is essential in the problem formulation considered in [2] since
the systems require node recovery from any set of d surviving
nodes. In that setup if d < k, it is easy to see that one can
always specify a failed node and a set of d nodes from which
recovery is impossible. However, in the framework of [7],
the recovery requirement is relaxed. Specifically, to recover
from a failure, the new node contacts a specific set of nodes
from which it regenerates the failed node. Thus, the recovery
process is table-based and for each node we only need to guar-
antee the existence of one set of d nodes from which recovery
is possible. Thus, it becomes possible to have systems with
d < k. In fact, in Section V, of this paper, we present several
constructions of FR codes where d < k. In the literature, these
are referred to as codes that allow for local repair.

For FR codes, the failure resilience ρres and the code
rate RC are two evaluation metrics and it is evident that there
is a tradeoff between them. Indeed, if the outer MDS code
does not add any redundancy, i.e., M = θ then k would need
to be chosen such that any k nodes cover all the θ symbols and
the code rate of the system would be exactly θ

nα . However, in
this case the DSS will be resilient to at most ρ − 1 failures
under any possible recovery procedure, i.e., even without any
constraint on the repair. In contrast, if the outer code introduces
nontrivial redundancy, the file size M would be lower but it
may be possible to reconstruct the DSS in the presence of
more than ρ − 1 failures. To see this, consider Example 1
where the outer MDS code has rate 9/10. Note that under exact
and uncoded repair, this DSS is resilient to only one failure.
However, the DSS can be reconstructed even in the presence of
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the failure of any two nodes, since any three surviving nodes
cover at least nine symbols. Our proposed codes will also be
evaluated in terms of their minimum distance which quantifies
this tradeoff.

Definition 3 (Minimum Distance of a DSS): The minimum
distance of a DSS denoted dmin is defined to be the size of
the smallest subset of storage nodes whose failure guarantees
that the file is not recoverable from the surviving nodes.

The Singleton bound on the minimum distance in this
context can be found, e.g., in eq. (15) in reference [9].

Lemma 1 (Singleton Bound): Consider a DSS with para-
meters (n, k, d, α) with file size M and minimum dis-
tance dmin. Then,

dmin ≤ n −
⌈M

α

⌉

+ 1.

It turns out that codes that have the local repair property,
i.e., codes with d < k suffer a penalty on the maximum
possible minimum distance. This tradeoff was captured in the
case of scalar (i.e., α = 1) codes by [3] and by [4] in the case
of vector (i.e., α > 1) codes.

Lemma 2: Consider a DSS with parameters (n, k, d, α)
with file size M and minimum distance dmin. Then,

dmin ≤ n −
⌈M

α

⌉

−
⌈M

dα

⌉

+ 2.

We note that if d ≥ k, we have 
Mdα � = 1 so that the bound
above reduces to the Singleton bound.

Observation 1: A given DSS meets the Singleton bound if
k = 
Mα �. Similarly, a code meets the bound in Lemma 2 if

k =
⌈
M
α

⌉
+

⌈
M
dα

⌉
− 1.

It is to be noted that the bound in Lemma 2 holds for all
possible local repair codes. In this work, we consider the added
constraint that the repair takes place purely by download. Thus,
for our constructions, the bound in Lemma 2 is in general
loose. In Section V we derive a tighter upper bound on the
minimum distance of codes where the repair process is local
and operates purely by download.

At various points we will need to use the well-known
inclusion-exclusion principle for computing the maximum file
sizes that can be supported by our DSS. For the sake of
completeness, we state the result here.

Theorem 1 (Inclusion-Exclusion Principle): Consider n sets
A1, A2, . . . , An . If I ⊆ [n], let AI = ∩ j∈I A j . Then

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

∅�=I⊆[n]
(−1)|I|+1|AI |. (1)

It can also be shown that

|A1 ∪ A2 ∪ · · · ∪ An| ≥
n∑

i=1

|Ai | −
∑

i< j

|Ai ∩ A j |. (2)

Many of our constructions will result from combinatorial
designs that we briefly introduce (a detailed description can
be found in [12]).

Definition 4 (Combinatorial Design): A combinatorial
design (or, simply a design) is a pair (�, V ) where � is

a finite set of elements called “points” and V is a collection
of non-empty subsets of � called “blocks”.

A prototypical example with several applications is the
balanced incomplete block design (BIBD).

Definition 5 (Balanced Incomplete Block Design): A (θ , ρ,
α, λ) balanced incomplete block design (BIBD) is a
pair (�, V ) that forms a combinatorial design such that
|�| = θ, |V | = n; every element of � is contained in exactly
ρ blocks and every 2-subset of � is contained in exactly λ
blocks.

Let n denote the number of blocks. By using combinatorial
double counting arguments it can be seen that for a BIBD, the
following relations hold.

nα = θρ, and (3)

ρ(α − 1) = λ(θ − 1). (4)

A (θ, ρ, α, λ)−BIBD can be used as the FR code in a DSS
as long as β-recoverability is guaranteed for an appropri-
ate β (there are several instances when β = 1). These
(θ, ρ, α, λ)−BIBDs include finite projective planes and affine
planes. Table II contains a list of well-known families of
Steiner systems. A (a2 + a + 1, a + 1, a + 1, 1)−BIBD is
equivalent to a projective plane of order a. Projective planes
have interesting geometric properties that can be used in
determining the corresponding file size. For instance, any two
blocks of a (a2+a+1, a+1, a+1, 1)−BIBD share exactly one
point and any two points are contained in exactly one block
in a projective plane. The smallest example of a projective
plane corresponding to a = 2 is known as the Fano plane and
is depicted in Fig. 2. For more information on the projective
planes and affine planes we refer [12, Ch. 2].

One can use the Fano plane to design the inner FR code, by
interpreting the points as symbols and the blocks as storage
nodes. Suppose we first apply a (7, 6)-MDS to the file. Then
we can place the coded symbols on the storage nodes as
depicted in Fig. 2. Note that these storage nodes are obtained
from the blocks. The obtained DSS has the property that any
two nodes share exactly one symbol. Thus, using Theorem 1
contacting any three nodes recovers at least 9−(3

2

) = 6 distinct
symbols and hence the file. Furthermore, we can identify a set
of three nodes whose intersection is empty, e.g., nodes 1, 2
and 4. Thus, the maximum file size this DSS can support is 6.
An affine plane can be obtained by deleting one block and its
all points from a projective plane. Hence, an affine plane of
order a is equivalent to a (a2, a + 1, a, 1)−BIBD. Here any
two points are contained in exactly one block. However, there
are in general pairs of blocks that do not have any points in
common. More generally, a FR code can be obtained from
Steiner systems.

Definition 6 (Steiner Systems): A S(t, α, θ) Steiner system
is a set � of θ elements and a collection of subsets of � of
size α called blocks such that any t-subset of the symbol set �
appears exactly one of the blocks.

Steiner systems are examples of t-designs. A FR code
is a t-design if every t-subset of symbols is contained in
exactly λ nodes. The concept of t-designs can be viewed as a
generalization of the concept of BIBDs. Naturally, a S(2, α, θ)
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Fig. 2. (7, 3, 3, 1)−BIBD also known as the Fano plane. Nodes of the DSS, which can be obtained from the Fano plane, are listed on the right.

Steiner system is a (θ, ρ, α, 1)-BIBD where

ρ = θ − 1

α − 1
, n = (θ − 1)θ

(α − 1)α
, d = α and β = 1.

Thus, projective planes and affine planes are instances of
Steiner systems. A given FR code can be put in one-to-one
correspondence with an incidence matrix as explained below.

Definition 7 (Incidence Matrix of a FR Code): An inci-
dence matrix of a FR code C = (�, V ) where � = [θ ] and
V = {V1, V2, . . . , Vn} is the θ ×n binary matrix N defined by

Ni, j =
{

1, if i ∈ Vj ;
0, otherwise.

We shall sometimes refer to the FR code C by simply
referring to its incidence matrix N . We will occasionally refer
to the bipartite graph corresponding to the FR code as well.
This is defined next.

Definition 8 (Bipartite Graph of a FR Code): For a FR
code C = (�, V ) where � = [θ ] and V = {V1, V2, . . . , Vn}
with incidence matrix N , we define its bipartite graph
Gb = (Vl ∪ Vr , E) as follows. We associate the storage
nodes in V with the vertices Vl and the points in � with the
vertices Vr so that Vl and Vr are disjoint. There exists an edge
between v ∈ Vl and and u ∈ Vr if and only if N(u, v) = 1.

Definition 9 (Transposed FR Code): For a FR code C with
incidence matrix N , the code specified by NT is called
transposed FR code of C and denoted by CT if the design
obtained from NT is β-recoverable for some β.

Note that, in the transposed code, the roles of the storage
nodes and the symbols are reversed. An infinite family of
transposed codes can be obtained from Steiner systems with
t = 2. In such Steiner systems any pair of symbols is contained
in exactly one node which implies that any pair of nodes in
the transposed design share exactly one symbol. This in turn
means that the transposed design is 1-recoverable.

Incidence matrices with appropriate parameters can be
combined via operations such as the Kronecker product to
obtain new matrices (equivalently FR codes) with a new set
of parameters. We use this technique extensively in the sequel
to generate families of FR codes.

Definition 10 (Kronecker Product): If A is an m-by-r
matrix and B is a p-by-q matrix, then the Kronecker product
A ⊗ B is the mp-by-rq matrix

⎛

⎜
⎜
⎜
⎝

a11B a12 B · · · a1r B
a21B a22 B · · · a2r B

...
...

...
...

am1 B am2 B · · · amr B

⎞

⎟
⎟
⎟
⎠

.

Let N1 and N2 be two incidence matrices of FR codes
C1 = (�1, V1) and C2 = (�2, V2) with parame-
ters (n1, θ1, α1, ρ1) and (n2, θ2, α2, ρ2) respectively. Let
c1, · · · , cn1 be the n1 columns of N1 and d1, · · · , dn2 be the
n2 columns N2. A new FR code can be obtained from the old
one by the following incidence matrix

N̄ = [
N1 ⊗ d1 N1 ⊗ d2 · · · N1 ⊗ dn2

]
.

We can find an appropriate permutation matrix P such
that the matrix N̄ P is equal to the Kronecker product of
N1 and N2. Note that matrix P reorders the columns of N̄ .

We can obtain a DSS by replicating the symbols of another
DSS via the Kronecker product. In the subsequent discussion
we will refer to this technique for obtaining codes with β > 1
as trivial β-expansion.

Definition 11 (Trivial β-Expansion): Let N be incidence
matrix of a FR code C with parameters (n, θ, α, ρ) with
β = 1. Let 1 be the m × 1 all-ones column vector. The
FR code Ĉ obtained from N̂ = N ⊗ 1 which has parameters
(n, θm, αm, ρ) is called a trivial β-expansion of the code C
with β = m.

In the remainder of this section, we discuss some illustrative
examples of FR codes. Our first example is a code with β > 1
that cannot be obtained by trivial β-expansion.

Example 3 (A Non-Trivial Code With β > 1): Consider
the DSS shown in Fig. 3. The ten symbols are obtained by
using an outer (10, 6) MDS code followed by the FR code
illustrated in Fig. 3. Note that the DSS can recover from a
single node failure by downloading two packets each from
two nodes in the same column; hence d = 2. Moreover, any
two nodes share 0, 1, or 2 symbols in common which implies
that any two nodes recover at least 6 symbols, thus k = 2.
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Fig. 3. The figure shows a DSS where n = 15, k = 4, d = 2, θ = 10, α = 4, ρ = 6. A node can be repaired by contacting the other two nodes in the same
column. The system is resilient up to 5 node failures.

Fig. 4. A failed node can be recovered by contacting two nodes and downloading one packet from each. The code is resilient up to five failures and the file
size is 5. The minimum distance is of the code is 6, since any four nodes can recover the file.

According to the Singleton bound dmin ≤ 15 − 
 6
4� + 1 = 14.

The system requires only two surviving nodes to recover the
file thus the code is resilient up to 13 failures (since k = 2)
and thus meets the Singleton bound. However, this code (with
β = 2) cannot be arrived at simply by replication. To see this
we note that if this were true, the original DSS with β = 1
must correspond to a storage capacity of 2 and have a number
of symbols which is 5. However, this means that there can be
at most

(5
2

) = 10 distinct storage nodes of capacity two. Thus
our design with n = 15 cannot be obtained this way.

The idea underlying Example 3 can be formalized as
follows.

Observation 2 (Non-Trivial FR Codes With β > 1): A FR
code with parameters (n, θm, αm, ρ), β = m and distinct
storage nodes cannot be obtained from a trivial β-expansion
if n >

(θ
α

)
.

Next, we demonstrate an example of a locally recoverable
DSS, i.e., a system where d < k that is constructed using the
Kronecker product method.

Example 4 (Locally Recoverable Code Using Kronecker
Product Technique): Let C = (�, V ) be a FR code with
� = {1, 2, 3} and V = {V1 = {1, 2}, V2 = {2, 3}, V3 = {1, 3}}
with incidence matrix N . The code obtained from N̄ = I ⊗ N
is presented in Fig. 4 where I denotes the 3×3 identity matrix.
Suppose that the outer MDS code has parameters (9, 5), so that
θ = 9,M = 5. Consider contacting any of the four nodes

depicted in Fig. 4. These nodes will fall into one of the three
columns in the figure. So, there are three cases we need to
examine.

• Case (a): Two nodes can be chosen from one of the
columns and one from each of the rest. The union of
these nodes has a cardinality of 7.

• Case (b): We first select two columns and two nodes
within each column. In this case the size of the union
is 6.

• Case (c): Finally, we can select two columns and choose
three nodes in one column and one node in the other
column. In this case the cardinality of the union is 5.

Thus, it is evident that contacting any k = 4 nodes will recover
at least 5 symbols. Note that a failed node can be recovered
by contacting the remaining two nodes in its column by
downloading one packet from each of them. Thus, d = 2 < k.
This implies that the code is locally recoverable. By applying
a similar case analysis for the failure patterns we can conclude
that the code is resilient to 5 failures and it meets the minimum
distance bound in Lemma 2.

A. Summary of Contributions

In this work we present several constructions of FR codes.
The contributions of our work can be summarized as
follows. We construct a large class of FR codes for d ≥ k
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TABLE I

CONSTRUCTIONS WHERE d ≥ k AND β = 1. NOTE THAT WE CAN PERFORM TRIVIAL β-EXPANSION TO OBTAIN HIGHER β

TABLE II

WELL-KNOWN INFINITE FAMILIES OF STEINER SYSTEMS WHEN t = 2. THESE CAN BE FOUND IN [10]

from combinatorial structures such as grids, mutually
orthogonal Latin squares (MOLS), resolvable designs and
Hadamard designs. These were first presented in the literature
in the conference version of the current manuscript [14].
While [7] presented constructions based on Steiner systems,
our work presents a rigorous analysis of the file size of the
corresponding DSS. The Kronecker product technique for
generating new DSS from existing ones is also new [15].
Furthermore, our conference paper [16] was the first to
present locally recoverable FR codes where d < k.

Tables I – V contain a description of the various con-
structions and the corresponding DSS parameter values that
can be achieved by these constructions. We defer an in-
depth discussion of these parameters to the respective sections.
However, we highlight the key contributions of our work
by referring to appropriate rows of Tables I – V below.

Specific details about the construction techniques can be found
in the corresponding sections of the paper.

• We construct a large class of FR codes based on resolv-
able designs [12] where the repetition degree (ρ) of the
symbols can be varied in an easy manner (see Table I
(rows 3 – 5) and Table III). The constructions of [7]
lack this flexibility as they are mostly based on Steiner
systems where the repetition degree is usually fixed by
the construction.

• We construct FR codes where β > 1, i.e., the new node
downloads more than one packet from the d surviving
nodes. We emphasize that starting with a FR code with
β = 1, it is trivially possible to arrive at a code
with β > 1 by trivial β-expansion (cf. Definition 11).
However, such a strategy only results in a limited range
of system parameters that can be achieved. We present
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TABLE III

CONSTRUCTIONS WHERE d ≥ k AND β > 1. IN MANY CASES THESE CONSTRUCTION PARAMETERS CANNOT BE OBTAINED BY TRIVIAL β-EXPANSION

TABLE IV

CONSTRUCTIONS OBTAINED VIA KRONECKER PRODUCT, WHERE d ≥ k

TABLE V

CONSTRUCTIONS OF LOCAL FR CODES WHERE d < k

several codes (see Tables III and IV) that achieve certain
parameter ranges that cannot be achieved in a trivial
manner.

• Determining the file size that can be supported by a given
FR code turns out be challenging. Much of the literature
in combinatorial designs only discusses the pairwise
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overlaps between the content of the different storage
nodes. However, the file size depends on the union of
all subsets of storage nodes of size k. In this work we
determine the file sizes for most of our constructions.
In particular, we demonstrate a family of FR codes whose
file size is strictly larger than a simple lower bound that
is obtained by applying the inclusion-exclusion principle
(see row 1, Table III). We also determine the file size for
a large class of codes obtained from Steiner systems that
were originally considered in [7] (see row 2, Table I).
Several of our constructions are shown to meet the Sin-
gleton bound for specific file sizes, which demonstrates
their optimality.

• We present the Kronecker product as a technique
for constructing new FR codes from existing ones
(Table IV) and analyze the properties of codes thus
obtained.

• In this work, we propose a large family of locally
recoverable FR codes where d < k, i.e., the repair
degree is strictly smaller than the number of nodes
contacted for recovering the stored file. We derive
an appropriate minimum distance bound for our class
of codes that enjoy local, exact and uncoded repair,
and demonstrate constructions that meet these bounds
(Table V).

B. Discussion of Related Work

The work of Dimakis et al. [2] initiated the work on
regenerating codes, by demonstrating the tradeoff between the
storage capacity of nodes and the repair bandwidth. Their
work considered functional repair, where the new node is
functionally equivalent to the failed node and demonstrated
that random network coding suffices for achieving this trade-
off. Following this, several papers [7], [8], [14], [17]–[22]
considered the construction of exact repair regenerating codes,
where the new node is an exact copy of the failed node.
In most cases, these constructions either operate at the mini-
mum storage regenerating (MSR) point [17], [18], [21]–[23]
or the minimum bandwidth regenerating (MBR) point [7],
[8], [14], [17], [24]. More recently, codes with local
repair have been investigated where the metric for repair
is the number of surviving nodes that are contacted for
repair [3]–[5], [9], [16], [25].

Constructions of repair-by-transfer codes, where node repair
is performed simply by downloading symbols from surviving
nodes was first presented in the work of [24] where they
constructed a repair-by-transfer MBR code with d = n − 1.
Repair by transfer codes have also appeared in [26] and [27].
The work of [7] also considered such codes (termed “exact
and uncoded repair”) but with a repair degree that can be
strictly smaller than n − 1. The repair operates by contacting
a specific set of d surviving nodes and is hence table based.
Reference [7] introduced the system architecture whereby an
MDS code is applied to a file consisting of M symbols to
obtain θ symbols. These symbols are then placed onto the
storage nodes and this placement is referred to as the fractional
repetition (FR) code. The codes in [7], were derived from

Steiner systems. They provided lower and upper bounds on
the corresponding file sizes. Following this, the work of [28]
constructed FR codes from bipartite cages. These codes enjoy
the property that the node storage capacity is much larger than
the replication degree. For the given parameters they design
codes with the smallest number of storage nodes. In [28],
they used MOLS to construct bipartite cages and the codes
thus obtained are different from ours. In our construction we
obtain the storage nodes directly from the set of MOLS and
also obtain net FR codes. Reference [29] presents necessary
and sufficient conditions on the existence of a FR code with
certain parameters; however, it does not consider the issue of
determining the file size for a given k.

The work of [30] presents several FR code constructions
based on combinatorial structures including regular and bireg-
ular graphs, graphs with a given girth, transversal designs,
projective planes and generalized polygons. They consider
codes where α = d ≥ k and β = 1 and show that the file
size of their constructions meets the upper bound presented
in [7] for k ≤ d . This work is closely related to the content
of Section III of our work. Their construction of FR codes
from transversal designs treats the blocks of the transversal
design as symbols. Thus, it can be considered as working
with the transpose of the incidence matrix corresponding to
the original transversal design. Our FR codes in Section III are
obtained from nets which can also be viewed as transposes of
transversal designs. However, as discussed in Section III-C, the
analysis of file size for our constructions cannot be obtained
from the results in [30]. Our work differs in the sense that
we present constructions with non-trivial β values, Kronecker
product constructions and local FR codes.

The problem of local repair for scalar codes (α = 1) was
first considered in [3]. This was extended to vector codes
(α > 1) in [4] and [9]. References [4], [9] study the tradeoff
between locality and minimum distance and corresponding
code constructions. In [9], the authors presented constructions
that use the repair-by-transfer MBR codes of [24] as indi-
vidual components. Local codes were also studied in [31]
where the design consists of an outer Gabidulin encoder
followed by inner local MBR encoders. This work (see [31,
Construction III.1]) also provides examples of local FR codes
by using t-designs. However, the achievable parameters are
limited as k needs to be chosen to be at most t and explicit
constructions of t-designs for large t are largely unknown
(when t ≥ 3 there are only finitely many known explicit
constructions [10]). In Section V we focus on regenerating
codes that allow a repair process in a local manner by simply
downloading packets from the surviving nodes. We provide
an upper bound for the minimum distance and constructions
of codes which meet this bound. Our constructions use local
FR codes instead of repair by transfer MBR codes. We also
note that our codes are quite different from those that appear
in [9] and [31] and allow for a larger range of code parame-
ters. Regenerating codes using t-designs were also presented
in [19]. The architecture of the codes consists of a layered
erasure correction structure that ensures a simple decoding
process. These codes are showed to be achieve performance
better than time-sharing between MBR and MSR points.
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III. CONSTRUCTION OF FR CODES WHEN k ≤ d

In this section we present the construction of FR codes
where d ≥ k. As discussed in Example 2 it is possible that cer-
tain set systems do not satisfy the property of β-recoverability
and hence cannot be used to construct FR codes. However,
there are a large class of combinatorial designs that can be
used to construct FR codes. In particular, we present various
constructions of FR codes that are derived from balanced
incomplete block designs (BIBDs) and resolvable designs.
Our constructions address several issues that exist with prior
constructions in the literature. For instance, resolvable designs
allow the repetition degree of the symbols in the FR code to be
varied in a simple manner, a flexibility that prior constructions
typically lack. We present a large class of codes that cannot
be obtained via trivial β-expansion.

Our first set of constructions are FR codes based on Steiner
systems with t = 2 (that are BIBDs) which have been
previously considered in the literature [7]. However, to our
best knowledge, prior work does not provide results on the file
size of the constructions. In the discussion below, we present
a certain class of Steiner systems for which we can determine
the file size of the FR codes obtained from their transpose.
To demonstrate the difficulty of determining the file size for
a general Steiner system, we first discuss two non-isomorphic
Steiner systems with the same parameter values that result
in FR codes with different file sizes. This demonstrates that
file size calculations for Steiner systems cannot be performed
just based on the system parameters. Accordingly, we consider
Steiner systems that have maximal arcs [32], [33]. It turns
out that we can determine the file size of the corresponding
transposed codes.

A. FR Codes From Steiner Systems

We consider Steiner systems S(2, α, θ). Note that the repe-
tition degree of any symbol is ρ = θ−1

α−1 and any two distinct
symbols are contained in exactly one node. Consider the
FR code C = (�, V ) obtained from it and its transpose.

In general, it is a challenging task to find the file size for
a given FR code. For codes obtained from Steiner systems
and their transposes, lower bounds based on the inclusion-
exclusion principle were presented in [7]. However, it is
important to note that the file size depends critically on the
structure of the Steiner system, i.e., two Steiner systems with
the same parameters can have different file sizes. To see
this, consider two non-isomorphic Steiner systems S(2, 3, 15)
denoted D1 and D2; the nodes of these designs are provided
in Tables VI and VII. These designs can also be found in [10].

Let S be a subset of symbols of the design such that
no 3-subset of S is contained in a node. By checking all
subsets of the symbol set one can observe that the maximum
size of S in D1 and D2 equals 6 ({0, 1, 3, 6, 7, 9}) and
8 ({1, 2, 4, 6, 7, 8, 9, 13}) respectively.

This observation results in different file sizes in the
codes obtained from the transposes of D1 and D2, denoted
DT

1 and DT
2 respectively. In fact for k = 7, the design DT

2
yields a code which has file size M2 = 28 which matches
the inclusion-exclusion lower bound given by 7 × 7 − (7

2

)
.

TABLE VI

NODES OF THE STEINER SYSTEM D1

TABLE VII

NODES OF THE STEINER SYSTEM D2

However, the design DT
1 yields a code with file size M1 = 29

which is strictly larger.1

We now elaborate on the role of S in the above example.
Firstly, note that if Di is a Steiner system, then any two
storage nodes in DT

i intersect in one symbol. Consider the
corresponding transposed codes DT

1 and DT
2 , where the roles

of symbols and nodes is now reversed. As S for D2 is of
size 8, it implies that we can pick k = 7 storage nodes
in DT

2 such that the intersection of any three storage nodes
is empty (owing to the definition of S). Thus, upon applying
the inclusion-exclusion principle, we obtain the file size to be
7 × 7 − (7

2

) = 28.
In contrast, the maximum size of S in D1 is 6. Thus, for any

set of k = 7 storage nodes in DT
1 there is at least one three-way

intersection that is non-empty. Upon exhaustive enumeration,
one can realize that the file size in this case is 29 which is
strictly higher than 28.

The notion of the set S introduced above can be formalized
in terms of a maximal arc in Steiner systems. For Steiner
systems that possess a maximal arc, we can therefore deter-
mine the file size. In addition, prior results in [32] and [33],
demonstrate that such maximal arcs exist in a large class
of Steiner systems. In the discussion below, we make these
arguments in a formal manner.

Definition 12 (s-Arc): Let (�, V ) be a design. A subset
S ⊂ � with |S| = s is called an s-arc if for each node Vi ∈ V
either |Vi ∩ S| = 0 or |Vi ∩ S| = 2 holds.

The definition of s-arc implies that any three symbols
from S are not contained in any node in V . The largest set S
with this property is called a maximal arc of the design [34].
It turns out that we can determine the file size for FR codes
obtained from transposes of Steiner systems with nontrivial
maximal arcs.

For a maximal arc S, consider a symbol q ∈ S. In this case
there are s − 1 pairs of symbols (p, q) such that p, q ∈ S.
Since C is a Steiner system and S is a maximal arc there

1This example corrects an error in [7, Lemma 11].
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TABLE VIII

NODES OF THE STEINER SYSTEM S(2, 4, 16)

are s −1 distinct nodes in V where each of these pairs occurs.
Now, the repetition degree of the system is ρ. Thus, there are
ρ − (s − 1) nodes which contain the symbol q but no other
symbol from S. Based on our assumption, each node in Vi ∈ V
is such that either |Vi ∩ S| = 0 or |Vi ∩ S| = 2. Thus, it has
to be the case that s = ρ + 1.

Lemma 3: Let C = (�, V ) be a FR code derived from a
Steiner system S(2, α, θ) with ρ = θ−1

α−1 , such that it has a
maximal arc of size ρ + 1. Then, the transposed FR code CT

is such that its code rate is
kρ−(k

2)
nα for 1 ≤ k ≤ ρ + 1.

Proof: In the transposed code CT , consider any subset of
nodes of size k, where 1 ≤ k ≤ ρ + 1. As any two symbols
in the original code C occur in exactly one node of C it holds
that two nodes V1 and V2 in CT are such that |V1 ∩ V2| = 1.
In addition, the storage capacity of the nodes in CT is equal
to ρ.

Using the inclusion-exclusion principle (cf. Theorem 1), we
observe that these nodes cover at least kρ−(k

2

)
symbols in CT .

Now we pick a set of k nodes in CT that correspond to a subset
of the maximal arc S in C. Based on the argument above, it
is clear that any two of these nodes intersect in exactly one
symbol and any l of the nodes have an empty intersection if
l ≥ 3. It follows that the union of these nodes has exactly
kρ − (k

2

)
symbols. The result follows.

Next we provide an explicit example. Let C be the FR code
obtained from a Steiner system S(2, α = 4, θ = 16).

Example 5 (File Size of FR Code Obtained From the Trans-
pose of Steiner System S(2, α = 4, θ = 16)): The nodes in C
are specified in Table VIII and the nodes of the transposed
code CT are specified in Table IX.

Since the maximal arc should be a set of with cardinality 6,
we can choose the symbols greedily and construct the set
S = {0, 1, 2, 3, 4, 15} as a maximal arc for this Steiner system.

According to Lemma 3, the file size for CT for 1 ≤ k ≤ 6
can be determined by just considering the nodes

{1, 4, 12, 13, 15}, {0, 2, 13, 14, 16}, {1, 3, 10, 14, 17},
{2, 4, 10, 11, 18}, {0, 3, 11, 12, 19}, and {15, 16, 17, 18, 19}

as these correspond to the symbols of S in C. For these values
of k, the file size of the code is 5k − (k

2

)
. Moreover, it is

optimal with respect to Singleton bound for 1 ≤ k ≤ 3 (cf.
Observation 1).

Remark 1 (Steiner Systems With α = 3, 4): It is known
that several Steiner systems possess maximal arcs. Here we
provide the known results for small values of α.

• (Maximal arcs in Steiner systems with α = 3) By
Skolem’s construction [35] we have S(2, 3, θ) for all
θ ≥ 7 and θ ≡ 1, 3 mod 6. Moreover, for all θ ≥ 7 and

θ ≡ 3, 7 mod 12 there exists a Steiner system S(2, 3, θ)
with at least one maximal arc [32].

• (Maximal arcs in Steiner systems with α = 4) It is
known [12] that Steiner systems with α = 4 exist if and
only if θ ≥ 13 and

θ ≡ 1, 4 mod 12.

Furthermore, if ρ = θ − 1

3
is a prime power, then there

exists an Steiner system S(2, 4, θ) with a maximal arc of
size ρ + 1 [33].

To our best knowledge, there are no other general results about
the existence of maximal arcs in Steiner systems with higher
values of α.

B. FR Codes From Resolvable Designs

A major drawback of FR codes obtained from Steiner
systems is that the repetition degree of the symbols is quite
inflexible. In particular, it is not possible to vary the repetition
degree and hence the failure resilience of the DSS in an easy
way. To address this issue, we now introduce FR codes that
are derived from resolvable designs.

A design (�, V ) is said to be resolvable if we can divide
the blocks in V into equal-sized partitions such that (a) each
partition contains all the symbols in �, and (b) the blocks
in a given partition have no symbols in common. Under cer-
tain conditions, these designs also allow for β-recoverability.
A FR code obtained from such a design is called a resolvable
FR code and is naturally resilient to any failure pattern that
ensures that at least one partition is left intact. In the discussion
below, we introduce the notion of a net FR code (a subclass
of resolvable FR codes) that ensures β-recoverability.

Under this overall framework, we construct several fam-
ilies of net FR codes that allow us to vary the repetition
degree in an easy manner. We demonstrate that there exist
net FR codes with β > 1 that cannot be derived by trivial
β-expansion. Furthermore, we answer an open question of [7]
by demonstrating a FR code that cannot be constructed from
Steiner systems. We also provide explicit calculations of the
file size for certain ranges of k. The overall structure of this
subsection is as follows. We first introduce our construction,
show that it results in a net FR code and then calculate its
file size.

Definition 13 (Resolvable FR Code): Let C = (�, V )
where V = {V1, . . . , Vn} be a FR code. A subset P ⊂ V is
said to be a parallel class if for Vi ∈ P and Vj ∈ P with i �= j
we have Vi ∩ Vj = ∅ and ∪{ j :Vj ∈P}Vj = �. A partition of V
into r parallel classes is called a resolution. If there exists
at least one resolution then the code is called a resolvable
FR code.

For a resolvable FR code, we call two storage nodes parallel
if they belong to the same parallel class and non-parallel
otherwise. The properties of a resolvable FR code are best
illustrated by means of the following example.

Example 6: Consider a DSS with parameters α = 3,
θ = α2 = 9, ρ = 2 and β = 1. Suppose that we
arrange the symbols in � = {1, . . . , 9} in a α × α
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TABLE IX

TRANSPOSED CODE OBTAINED FROM THE STEINER SYSTEM S(2, 4, 16)

Fig. 5. A DSS specified with (n = 6, k = 3, d = 3, α = 3). Note that the nodes numbered 1, 2, 3 and 4, 5, 6 form parallel classes.

array A shown below.

A =
1 2 3
4 5 6
7 8 9.

Let the rows and the columns of A form the nodes in the FR
code C (see Fig. 5), thus n = 6. It is evident that there are
two parallel classes in C, Pr = {V1, V2, V3} (corresponding
to rows) and Pc = {V4, V5, V6} (corresponding to columns).
As ρ = 2, this code can tolerate one failure.

By our construction it is evident that for Vi ∈ Pr and
Vj ∈ Pc, we have |Vi ∩ Vj | = 1. Using this we can compute
the file size M when k = 3, as follows. Let a + b = 3
with a ≥ b. Then, the number of distinct symbols in a set
of 3 nodes from C is

3a + (3 − a)(3 − a) = a2 + 9 − 3a,

where a nodes are from Pr and (3 − a) nodes are from Pc.
This is minimized when a = 2. Thus, M = 7 and RC = 7

18 .
Note also that the code is optimal with respect to the Singleton
bound since k = 
Mα �.

If one starts with a resolvable design with many parallel
classes, the repetition degree ρ can be varied easily by adding
and/or removing parallel classes if needed. We emphasize that
the constructions of [7] that are based on Steiner systems
largely lack this flexibility as many of them are not resolvable.

In our proposed systems, we require recovery from a
node failure by downloading exactly β symbols each from
a specified set of d surviving nodes. To address this issue, we
consider a subclass of resolvable FR codes called net FR codes
where the intersection size of any two nodes from distinct
parallel classes is exactly β.

Definition 14 (Net FR Code): Let C = (�, V ) be a resolv-
able FR code with parameters (n = ar, θ = a2b, α = ab,
ρ = r) such that any two non-parallel nodes intersect in
exactly b symbols. The design determined by C is called a
net [34] and we call C a net FR code.

Examples of net FR codes can be obtained from sev-
eral combinatorial structures, e.g., grids, affine resolvable
designs, Hadamard designs and mutually orthogonal Latin
squares (MOLS). We elaborate on these constructions in the
subsequent discussion.

TABLE X

A NET FR CODE WITH PARAMETERS (16, 16, 4, 4)

Suppose that a net FR code with parameters (n = ar,
θ = a2b, α = ab, ρ = r) exists. Note that the number of
nodes in a parallel class equals θ

α = a. Furthermore, if a
given node V1 ∈ V fails, this node can be reconstructed by
contacting all the nodes in any other intact parallel class and
downloading b symbols from each of them. This implies that
the code has d = a, β = b. Next, the code has ρ = r parallel
classes and any node can be reconstructed as long as there
exists at least one parallel class. Thus, the code is resilient to
at least r − 1 failures, i.e. ρres = r − 1.

Note that the parameter k can be chosen such that
1 ≤ k ≤ d . The code rate RC depends on k and needs to be
determined. As we shall see determining RC can be nontrivial
in many cases. Specifically, much of the literature in the area
of combinatorial designs focuses on pairwise intersections
between the storage nodes, whereas the code rate depends on
the minimum size of the intersection of any k storage nodes.
Some general results about the code rate of net FR codes
can be obtained as discussed in the lemma below. However,
a more careful analysis of the algebraic structure of a given
construction can allow us to arrive at stronger results.

Lemma 4 (An Algorithmic Approach for Determining the
File Size of Net FR Codes): Let C be a net FR code with
parameters (n = ar, θ = a2, α = a, ρ = r), so that β = 1.
Let k be an integer that satisfies k ≤ ρ and

(k−1
2

)
< a. Then,

the code rate of the system is RC = (αk − (k
2

)
)/nα.

Proof: See Appendix.
Example 7: Consider the following FR code obtained

from a net with parameters (n, θ, α, ρ) = (16, 16, 4, 4).
The code arises from mutually orthogonal Latin squares
(see Section III-B2). This FR code can be specified the
nodes presented in Table X. Each row of the table represents
a parallel class.
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Since any two non-parallel nodes intersect in exactly one
point, the code corresponds to a net FR code with a = 4,
b = 1, and r = 4. Thus, d = 4 and β = 1. Suppose that
k = 4, so that

(k−1
2

)
< a. Our algorithm (cf. Appendix) may

choose the following nodes for k = 4.

L = {{1, 2, 3, 4}, {1, 5, 9, 13}, {2, 5, 12, 15}, {4, 6, 9, 15}}.
So the file size is M = 10. However this code is not
optimal with respect to Singleton bound. However, observe
that the code formed by deleting a parallel class has parameters
(n = 12, θ = 16, α = 4, ρ = 3). In this code any three
nodes cover at least 9 symbols. Thus setting k = 
 9

4� = 3
(cf. Observation 1) results in a code that meets the Singleton
bound.

Note that while Lemma 4 applies to all net FR codes with
β = 1, the requirement that the storage capacity α = a ≥(k−1

2

)
is quite restrictive. For certain net FR codes that have

a tractable algebraic and/or geometric characterization we can
perform a more careful analysis and we now turn our attention
to them. Our first example is a net where the file size M is
strictly larger than kα − β

(k
2

)
.

1) Affine Resolvable FR Code: Affine resolvable designs are
a class of resolvable designs where the intersection between
two nodes in different parallel classes can be computed exactly.
These can be derived from affine geometries that can be
intuitively understood as follows. The set of points corresponds
to all elements of F

n
q , the vector space of dimension n over

a finite field of size q , Fq . Thus, the number of points
is qn . The blocks correspond to the solutions of certain sets
of linear equations over the vector space. For the sake of
simplicity, let us consider just one equation, e.g., x1 = a
for a ∈ Fq . For each a ∈ Fq the solution set is of size
qn−1. Each such solution set corresponds to a block in the
design. Furthermore, these solution sets partition F

n
q . In a

similar manner, one can consider other sets of linear equations
of the form

∑n
i=1 bi xi = a where bi ∈ Fq whose solution

sets also partition F
n
q . Furthermore any two linear independent

linear equations will have a solution set of size qn−2, i.e., the
intersection between two such blocks will be exactly qn−2.

The resultant block design is a resolvable design [12]. In the
discussion below, we present a formal presentation of this idea.
We also analyze the file size of the obtained system under the
condition that the equations are chosen in a specific manner
and for an appropriate range of k.

Let q be a prime power, m ≥ 2 and � = F
m
q . Let

1 ≤ δ ≤ m − 1. We treat � as an m-dimensional vector
space over Fq . A δ-flat is the solution set to a system
of m − δ independent linear equations that can be homo-
geneous or non-homogeneous. The set � and the set of
all δ-flats of � comprise the m-dimensional affine geom-
etry over Fq , denoted by AGm(q). It turns out that one
can generate a large class of resolvable designs by con-
sidering AGm(q). Let

[m
δ

]
q denote the Gaussian coefficient,

so that
[

m

δ

]

q
=

{
(qm−1)(qm−1−1)...(qm−δ+1−1)

(qδ−1)(qδ−1−1)...(q−1)
if δ �= 0,

1 if δ = 0.

TABLE XI

REPRESENTATIVES OF PARALLEL CLASSES OF THE FR CODE WITH

PARAMETERS (n = 39, θ = 27, α = 9, β = 3, d = 3, ρ = 13)

Theorem 2 (Affine Resolvable Designs [12]): Let V denote
the set of all δ-flats in AGm(q). Then � = F

m
q and V form

a resolvable BIBD with (θ = qm, ρ, α = qδ, λ)-BIBD with
n = qm−δ

[m
δ

]
q , ρ = [m

δ

]
q and λ = [m−1

δ−1

]

q
.

The case of m = 2, δ = 1 corresponds to affine planes.
When δ = m − 1 we obtain an affine resolvable BIBD with
n = θ + ρ − 1. In this case the DSS is specified by the
parameters θ = qm , α = qm−1, ρ = qm−1

q−1 and n = qρ. The
design can be obtained by means of the following algorithm.
(i) Let � = {(x1, x2, · · · , xm) : xi ∈ Fq for i = 1, 2, · · · , m}

be the symbol set.
(ii) Find ρ, (m − 1)-dimensional subspaces of F

m
q such that

each of them contains the symbol (0, 0, · · · , 0) ∈ F
m
q .

Note that these subspaces of F
m
q are the solutions

to a single homogeneous linear equation over Fq in
q variables. These ρ subspaces are representatives of
the ρ different parallel classes.

(iii) Construct each parallel class by considering the additive
cosets of its representative. Let R1 be a (m − 1)-
dimensional subspace corresponding to a given homoge-
nous equation. Let U = {0, u1, . . . , uq−1} be the full set
of coset representatives of R1. The rest of the blocks can
be obtained by the cosets Ri

1 = ui + R1. Note that each of
these cosets corresponds to a nonhomogeneous equation.

Example 8 (An Example of an Affine Resolvable
Design [12]): Let q = 3 and m = 3. The set of symbols is
� = F

3
3 and there are 39 blocks which can be partitioned

into 13 parallel classes. The representatives of the 13 parallel
classes are specified in the Table XI, where the vector
[x1 x2 x3] is simply written as x1x2x3. The other blocks are
additive cosets of these 13 representatives. For example, the
first parallel class consists of the following blocks.

B1 = {000, 001, 002, 010, 020, 011, 012, 021, 022},
B2 = {100, 101, 102, 110, 120, 111, 112, 121, 122}, and

B3 = {200, 201, 202, 210, 220, 211, 212, 221, 222}.
Here the blocks B1, B2 and B3 correspond to equations x1 = 0,
x1 = 1 and x1 = 2 respectively.

The overlap between blocks from different parallel classes
in the case of affine resolvable designs is known from the
following result.
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Lemma 5 [12]: Any two blocks from different parallel
classes of an affine resolvable (θ, ρ, α, λ)-BIBD intersect in
exactly α2/θ symbols.

Using the above facts, we can conclude that an affine
resolvable BIBD is an instantiation of a net FR code with
parameters (n = q qm−1

q−1 , θ = qm, α = qm−1, ρ = qm−1
q−1 ) and

d = q, β = qm−2. Of course, the repetition degree can be
varied by only retaining as many parallel classes as needed.

Remark 2 (Affine Resolvable FR Codes Cannot be
Obtained by Trivial β-Expansion): It is important to note that
the affine resolvable FR codes are an example of a FR code
family with β > 1 that cannot be obtained by replicating
the symbols of a smaller code. To show this we will simply
use Observation 2. Specifically, consider m ≥ 2q + 1 and
q ≥ 3. In this case the affine resolvable FR code will have
parameters θ = qm, α = qm−1, ρ = qm−1

q−1 , n = qρ and
β = qm−2. If it could be generated from a smaller code
simply by replication, this would imply that the smaller code
had a storage capacity of q and q2 total symbols. This means

it has at most
(θ/β
α/β

) = (q2

q

) ≤
(

q2e
q

)q

= (eq)q ≤ q2q distinct

storage nodes. However, in the affine resolvable FR code we
have n = q qm−1

q−1 ≥ q q2q+1−1
q−1 which can be verified to be

strictly larger than q2q .
We can determine the file size of a code C obtained from

some specific affine resolvable designs, for certain ranges
of k. We consider two scenarios depending on the relationship
between q and m.

• (Case 1: q > m): We choose the code C such that it
has r ≥ m parallel classes such that the i -th parallel
class of C corresponds to the homogeneous equation x1+
αi x2 + α2

i x3 + · · · + αm−1
i xm = 0, where αi , i = 1, . . . r

are all non-zero and distinct. Note that the distinctness
requirement also enforces that q > r . The equations
obtained in this manner are such that any m equations
are linearly independent [36].
For this code we analyze the file size for a fixed k ≤ m.
For a given set of k blocks, denoted Ai , i = 1, . . . , k, it is
possible that multiple blocks from the same parallel class
are chosen; suppose that these blocks come from l distinct
parallel classes, numbered without loss of generality as
1, . . . , l. Let zi denote the number of blocks from the i -th
parallel class, so that

z1 + z2 + · · · + zl = k.

If we pick k1 blocks each from a different parallel
class, we can immediately conclude that the total number
of symbols covered is qm−k1 , as the parallel classes
correspond to linearly independent equations. Using this
fact and the inclusion-exclusion principle, we have

| ∪k
i=1 Ai | =

l∑

i1=1

zi1 qm−1 −
∑

i1<i2

zi1 zi2 qm−2

+
∑

i1<i2<i3

zi1 zi2 zi3 qm−3 + . . .

+(−1)l z1z2 · · · zlq
m−l .

Upon inspection, it is clear that

qm
(

1 − �l
i=1

(

1 − zi

q

))

=
l∑

i1=1

zi1 qm−1 −
∑

i1<i2

zi1 zi2 qm−2

+
∑

i1<i2<i3

zi1 zi2 zi3 qm−3+ (−1)l z1z2 · · · zlq
m−l . (5)

Thus, we need to analyze the minimum value of the LHS
of equation (5) (over the possibilities for zi , i = 1, . . . , l)
to determine the file size. Using the AM-GM inequality,
we obtain

1

l

l∑

i=1

(

1 − zi

q

)

= 1 − k

lq
≥

[

�l
i=1

(

1 − zi

q

)] 1
l

�⇒
[

1 − k

lq

]l

≥ �l
i=1

(

1 − zi

q

)

.

Equality holds in the above equation when all the zi terms
are equal. In addition, we show below that the function

h(l) =
[

1 − k

lq

]l

takes its maximum value over the set l = 1, . . . , k when
l = k. To see this, let 0 < χ = k

q < 1, and consider
log h(l) = l log(1 − χ

l ). Now,

d

dl
log h(l) = log(1 − χ

l
) +

χ
l

1 − χ
l

.

Let χ1 = χ
l and let us study the function h1(χ1) =

log(1 − χ1) + χ1
1−χ1

. Clearly h1(0) = 0. The derivative
of h1(χ1) is non-negative for 0 < χ1 < 1, since it equals

χ1
(1−χ1)2 . This implies that h1(χ1) ≥ 0 for 0 < χ1 < 1
and therefore h′(l) ≥ 0 in the range l = 1, . . . , k, i.e., it
is an increasing function in this range. This implies that
the maximum value of h(l) in the range l = 1, . . . , k is
obtained when l = k and zi = 1 for all i .
We conclude that the minimum value of the LHS of
equation (5) is obtained when k = l and zi = 1,

i = 1, . . . , k and that the file size is qm

(

1 −
(

1 − 1
q

)k)

.

• (Case 2: q ≤ m): In this case we choose the code C so
that it has r ≤ m parallel classes. The chosen parallel
classes are such that they belong to linearly independent
equations. Once again, we can analyze the file size when
k ≤ m. Suppose that we choose l parallel classes and
let zi denote the number of blocks chosen from the i -th
parallel class. Note that in this case l ≥ 
 k

q � and zi ≤ q
for all i = 1, . . . , l. Proceeding as in Case 1, we can
argue that the function

h(l) =
[

1 − k

lq

]l

attains its maximum when l = k and zi = 1 for all
i = 1, . . . , k. Thus, in this case as well the maximum file

size is given by qm

(

1 −
(

1 − 1
q

)k)

.
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2) Resolvable FR Codes From Grids, Hadamard Designs
and MOLS: Note that affine resolvable codes have β which
is a prime power. We now construct families of net FR codes
where β = 1. Overall, the idea here is to relate the exis-
tence of these codes to combinatorial structures such as grids
(two-dimensional arrays), Hadamard designs and mutually
orthogonal Latin squares. While these combinatorial structures
have been studied in their own right, their usage in construct-
ing FR codes is new. In particular, our construction from
MOLS demonstrates an instance of a FR code that cannot
be derived from Steiner systems (answering an open question
in [7]).

An a × a grid is a FR code that is obtained as follows.

• Let � = {0, . . . , a2 − 1}. Create an 2D-array A whose
(i, j) − th entry is a × i + j , where 0 ≤ i, j ≤ a − 1.

• Each column and each row of A determines a storage
node.

It is clear that the FR code so obtained is resolvable.
Specifically, the set of columns and the set of rows form a
resolution. The parameters are (n = 2a, θ = a2, α = a,
ρ = 2). Note that β = 1 as any row and any column intersect
in exactly one symbol. Thus, the code so obtained is also a
net FR code.

Lemma 6 (File Size of Grid FR Codes): Let C be a net FR
code obtained from an a ×a grid. If k is even, the file size M
of C is ka − k2/4 and if k is odd, it is ka − (k2 − 1)/4.

Proof: Assume that we choose s nodes from the parallel
class corresponding to the rows and t nodes from the parallel
class corresponding to the columns such that s + t = k. Note
that k ≤ d = a. It is evident that any three nodes have
an empty intersection. Thus, applying the inclusion-exclusion
principle, we conclude that any k nodes cover exactly αk − st
symbols. Next, note that αk − st = ak − ks + s2 =
(s − k/2)2 + ka − k2/4 which takes the minimum value
ka − k2/4 + min((k/2 − 
k/2�)2, (k/2 − �k/2�)2), i.e., it
equals ka − k2/4 when k is even and ka − (k2 − 1)/4 when k
is odd.

The following corollary can be obtained by examining
conditions under which k = 
Mα �.

Corollary 1:

• Let k = 2u and u2 < a. Then the FR code obtained from
a ×a grid is optimal with respect to the Singleton bound.

• Let k = 2u + 1 and u(u + 1) < a. Then the FR code
obtained from a × a grid is optimal with respect to the
Singleton bound.

A second construction of affine resolvable designs can be
obtained from Hadamard matrices or equivalently difference
sets as discussed below. Consider an algebraic group G of
order θ and D ⊆ G such that |D| = α, with the property
that every nonidentity element of G can be expressed as
a difference d1 − d2 of elements of D in exactly λ ways.
We refer to D as a (θ, α, λ)-difference set.

Lemma 7 (Quadratic Residue Difference Set [12]): Let
q = 4a − 1 ≥ 7 be an odd prime power and G = Fq . Let
D = {z2 : z ∈ Fq , z �= 0} be the set of quadratic residues.
Then D is a (4a − 1, 2a − 1, a − 1)-difference set in (Fq,+),
where + denotes the additive operation over Fq .

TABLE XII

HADAMARD DESIGN OBTAINED FROM THE

(7, 3, 1)-DIFFERENCE SET IN � = F7

For any g ∈ G, we define the translate of D by g + D =
{g + d : d ∈ D}, and define the development of D by
Dev(D) = {g + D : g ∈ G}. If D is a (θ, α, λ)-difference
set in G, then (G, Dev(D)) is a (θ, ρ, α, λ)-BIBD [12].

Let (�, V ) be the (4a − 1, 2a − 1, 2a − 1, a − 1)-BIBD
constructed by using a quadratic residue difference set. Let
∞ /∈ �, and define for V ′ = {B ∪ {∞} : B ∈ V }. Then it can
be shown that (� ∪ {∞}, V ′ ∪ {� − B : B ∈ V }) is an affine
resolvable (4a, 4a −1, 2a, 2a −1)-BIBD. Using the equations
(3) and (4) this corresponds to a net FR code with parameters
θ = 4a, α = 2a, β = a, d = 2, ρ = 4a − 1 and n = 8a − 2
(see [12, Ch. 5).

Example 9: D = {1, 2, 4} is a (7, 3, 1)-difference set in
� = F7. We can construct the Fano plane by using the
difference set D which is a (7, 3, 3, 1)-BIBD. By applying
the above construction we can construct a FR code with
parameters θ = 8, n = 14, α = 4, ρ = 7. Corresponding
storage nodes are presented in Table XII where each row of
the table represents a parallel class.

For this class of codes, d is always 2. However, they offer
more flexibility in the choice of β; unlike affine geometry
based codes, we do not require β to be a prime power.

Remark 3 (FR Codes Derived From Hadamard Designs
Cannot Be Obtained by Trivial β-Expansion With β = a):
In addition, they provide another example of a family of FR
codes that cannot be obtained by trivial β-expansion with
β = a. To show this, we use Observation 2. Suppose that
such a code could be obtained by trivial β-expansion with
β = a, then the original code would correspond to a FR code
with 4 symbols and storage capacity of 2. In this case, there
can be at most

(4
2

) = 6 nodes. In contrast, the code obtained
from the Hadamard design has 8a − 2 > 6 nodes (as a ≥ 2).

Since any two non-parallel nodes share a symbols in
common, any k = 2 nodes cover at least 3a symbols where
α = 2a. Moreover, k = 2 = 
 3a

2a �. Hence the code is optimal
with respect to Singleton bound for k = 2.

We now discuss another construction of net FR codes that
can be obtained from MOLS.

Definition 15 (Latin Square): A Latin square of order a
with entries from a set � with |�| = a is an a × a array L
in which every cell contains an element of � such that every
row of L is a permutation of � and every column of L is a
permutation of �.

Definition 16 (Orthogonal Latin Squares): Suppose that
L1 and L2 are Latin squares of order a with entries from
�1 and �2 respectively (where |�1| = |�2|). We say that
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L1 and L2 are orthogonal Latin squares if for every x ∈ �1
and for every y ∈ �2 there is a unique cell (i, j) such that
L1(i, j) = x and L2(i, j) = y.

Equivalently, one can consider the superposition of L1
and L2 in which each cell (i, j) is occupied by the pair
(L1(i, j), L2(i, j)). Then, L1 and L2 are orthogonal if and
only if the resultant array has every value in �1×�2. A set of r
Latin squares L1, . . . , Lr of order a are said to be mutually
orthogonal if Li and L j are orthogonal for all 1 ≤ i < j ≤ r .

We now demonstrate a procedure of constructing net FR
codes from MOLS [37]. Let � = {1, 2, · · · , a2}, and let
L1, L2, · · · Lr−2 be a set of r − 2 MOLS of order a (r − 2 ≤
a − 1).

• Arrange the elements of � in a a × a array A. Each row
and each column of A corresponds to a storage node (this
gives us 2a nodes).

• Note that Li takes values in {1, . . . , a}. Within Li identify
the set of (i, j) pairs where a given value z ∈ {1, . . . , a}
appears. Create a storage node by including the entries
of A corresponding to the identified (i, j) pairs.

• Repeat this for each Li and all z ∈ {1, . . . , a}. This
creates another (r − 2)a storage nodes.

Thus, a total of ra storage nodes of size a can be obtained.
Of course, one can choose fewer storage nodes if so desired.

Example 10: Let a = 4, and r = 2. Then, we have the
following construction.

A =
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16,

L1 =
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

and L2 =
1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3.

We have the cells (L1(i, j), L2(i, j)) for i, j = 1, 2, 3, 4 in a
matrix form as follows:

(1, 1) (2, 2) (3, 3) (4, 4)
(2, 3) (1, 4) (4, 1) (3, 2)
(3, 4) (4, 3) (1, 2) (2, 1)
(4, 2) (3, 1) (2, 4) (1, 3).

As we can see from this matrix, all possible cells are covered
by the cells (L1(i, j), L2(i, j)). Thus L1 and L2 are orthog-
onal. We have the parallel classes and corresponding storage
nodes illustrated in Example 7.

Note that in describing the above construction we assumed
the existence of r − 2 MOLS. We now discuss the issue of
the existence of such structures. If p is a prime number, m is
a positive integer, and N = pm then we can construct N − 1
mutually orthogonal Latin squares as described below.
(i) Define La : FN × FN → FN , by (r, c) �→ ar + c (where

the addition is over FN ) for all a ∈ FN \ {0}. Then, La is
a Latin square since for a given row r (or column c)
the column (or row) location of an element s is uniquely
specified.

(ii) For any a, b ∈ FN \ {0}, La and Lb are orthogonal since
for given ordered pair (s, t) the system ar + c = s,

br +c = t , determine r = (a−b)−1(s− t) and c = s−ar
uniquely.

Example 11: Let N=3. Then F3 = {0, 1, 2}, L1 : x + y
and L2 : 2x + y. The two orthogonal Latin squares of order 3
constructed by the above method are

L1 =
0 1 2
1 2 0
2 0 1,

and L2 =
0 1 2
2 0 1
1 2 0

It turns out that in general, the construction described above
produces a net FR code. The parameters are discussed in the
following discussion.

Lemma 8: The construction procedure described above pro-
duces a net FR code with θ = a2, n = ra, d = α = a, ρ = r
where non-parallel nodes intersect in exactly one point.

Proof: It is clear from the construction that θ = a2 and
n = ra. Each storage node has a symbols so that α = a.
We need to show that the code is resolvable. Towards this
end, note that it is evident that we obtain a parallel class
by considering the nodes corresponding to the rows of A
(a similar argument holds for the columns of A). Next, the
nodes obtained by considering Latin square Li also form a
parallel class, since the set of elements obtained by considering
the (i, j) pairs corresponding to z1 ∈ {1, . . . , a} are distinct
from those corresponding to z2 ∈ {1, . . . , a}, if z1 �= z2. As we
have r parallel classes, we obtain ρ = r . Next, consider the
overlap between any two storage nodes belonging to different
parallel classes. As Li and L j are orthogonal, any entry
(k, l) ∈ [a] × [a] appears exactly once in the superposition
of Li and L j , which implies that the overlap between storage
nodes from different parallel classes corresponding to the Li ’s
is exactly one element. Similarly, a block from a parallel class
corresponding to Li has exactly one overlap with the blocks
corresponding to the rows and columns of A.

Remark 4 (There are FR Codes Which Can Be Obtained
From MOLS But Not From Steiner Systems): In general,
the construction of orthogonal Latin squares is somewhat
involved. However, the celebrated results of [11], demonstrate
the construction of two orthogonal Latin squares for all orders
N �= 2, 6. This immediately allows us to construct net
FR codes with the following parameters n = 4a, θ = a2,
d = α = a, β = 1, and ρ = 4 for any a �= 2, 6. By applying
Lemma 4 we can get the file size M = 4a − 6 for k = 4
for a > 6 and it is optimal with respect to Singleton bound
(cf. Observation 1).

This construction allows us to design some FR codes whose
parameters cannot be obtained from Steiner systems. For
instance, Let α = 10 and θ = 100. Then to construct a
FR code we need use the Steiner system S(2, 10, 100) which
does not exist [38]. However the above construction with two
orthogonal Latin squares of order 10 provides us a net FR code
with α = 10 and θ = 100.

Lemma 9 (File Size of FR Codes Obtained From MOLS):
Let p be a prime and m be a positive integer, so that there
exist pm − 1 MOLS of order pm . Consider a subset of these
pm −1 MOLS of size r and let C be a net FR code constructed
from them. Then for any k ≤ r , the code rate RC = (k(pm)−(k

2

)
)/npm .
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Fig. 6. FR code derived from an affine plane of order 3.

Proof: Let η be a primitive element of Fpm . From the
construction of the r MOLS, we can associate a set of non-
zero field elements {ηα1, . . . , ηαr } so that the i -th Latin square
is generated by the corresponding ηαi , where αi ’s are distinct.
In the discussion below we demonstrate the existence of r
storage nodes that cover exactly r pm − (r

2

)
symbols. The

argument will also show the required result for any k < r .
From the inclusion-exclusion principle it is evident that any r
nodes cover at least r pm − (r

2

)
symbols. For demonstrating a

set of nodes that cover exactly this number we first pick the
storage nodes from different parallel classes and demonstrate
that the intersection of any three nodes from this set is empty.

Towards this end in the i -th MOLS, consider the storage
node determined by the equation ηαi x + y = η2αi . This
specifies the set of nodes that we will be considering. Three
nodes intersect in some symbol if the following system of
equations has a solution.

ηαi x + y = η2αi (6)

ηα j x + y = η2α j (7)

ηαk x + y = η2αk (8)

Note that any two equations from the set above are linearly
independent and have exactly one solution. Thus, if the above
system has a solution, then there exist μ �= 0 and λ �= 0 such
that

ληαi + μηα j = ηαk

λ + μ = 1

λη2αi + μη2α j = η2αk

Next, we note that it cannot be the case that η2αi = η2α j =
η2αk . To see this note that there are no zero divisors in a finite
field so z2

1 = z2
2 implies z1 = z2 or z1 = −z2. Thus, we can

conclude that

λ = ηαk − ηα j

ηαi − ηα j
= η2αk − η2α j

η2αi − η2α j
.

However

η2αk − η2α j

η2αi − η2α j
= (ηαk − ηα j )(ηαk + ηα j )

(ηαi − ηα j )(ηαi + ηα j )

and this implies ηαi = ηαk which is a contradiction. Thus, a
solution to the system of equations in (6) - (8) does not exist.
The result follows.

Remark 5: The existence of pm − 1 MOLS implies the
existence of an affine plane of order p [12]. Thus choosing
r = pm − 1 = k, we can obtain the corresponding file sizes
for affine planes. Codes constructed from affine planes were
also considered in [7] under Steiner systems.

Example 12: A FR code obtained from affine plane of
order 3 is depicted in Fig. 6. This code can be obtained by
following the construction outlined above with p = 3 and
m = 1. It can be observed that this code is optimal with respect
to the Singleton bound when k = 2. (cf. Observation 1).

C. Discussion of Code Parameters Achieved
by the Proposed Constructions

In this subsection, we summarize the range of DSS para-
meters that our constructions can achieve. Note that there are
certain parameter restrictions that any FR code has to satisfy.
We list these below. To avoid trivialities, we assume there are
no repeated storage nodes in the system.

nα = θρ, by counting the number of ones in the incidence

matrix,

n ≤
(

θ

α

)

, as the nodes are α-sized subsets of the symbols,

2 ≤ α ≤ θ − 1, as the storage capacity can be at most

θ − 1,

1 < k ≤ d = α

β
, as the nodes need to be β-recoverable,

and

α + 1 ≤ M ≤ kα.

If β = 1, the result of [29] shows that the conditions are
also sufficient for the existence of a FR code; however [29]
does not discuss the file size of such a code. It is evident that
specific construction technique imposes additional restrictions.
For instance, if the FR code is obtained from a resolvable

design, then
θ

α
needs to be an integer as it is the number of

nodes in a parallel class. In Tables I – V (cf. section II), we
summarize the parameters (and the corresponding restrictions
that apply) of the different constructions proposed above.

We emphasize that any FR code is equivalent to a biregular
bipartite graph (cf. Definition 8) and the file size for a given
value of k is closely related to the expansion properties of
k-sized subsets of the storage nodes. It is well recognized that
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Fig. 7. A failed node can be recovered by contacting two nodes and downloading two packets from each of them. The code is resilient up to a total of
three failures (corresponding to its minimum distance) and the file size is 6.

determining the expansion of an arbitrary bipartite graph is a
computationally hard problem. In particular, precise numbers
are known only for certain families of graphs. High probability
results for expansion are known; however, such results are
asymptotic in nature and do not provide deterministic con-
structions. Parameters such the file size can only be found by
inspection of the randomly constructed graph. Furthermore,
it is not clear whether the β-recoverability property can be
shown for these codes. For these reasons, it is very hard
to fully characterize the range of achievable parameters for
FR codes (other than the necessary constraints presented
above).

Reference [30] presents results on the file size of resolv-
able FR codes that we have considered above. However, we
emphasize that [30, Th. 19] does not apply in our situation.
For instance, consider the construction of FR codes from
MOLS presented above and Lemma 9. Suppose that we choose
r = pm −1 and k = pm −2. In this case it can be verified that
for large p, the result of Theorem 19 in [30] does not apply.
Furthermore, our affine resolvable design based construction
has β > 1 and the results of [30] do not apply here.

On a different note, it can also be argued that one can
simply treat the FR codes discussed in this section as local
codes, by choosing a value of k that is strictly larger than
d (note that k is under our control as a system designer).
However, we will now argue that this will result in significantly
suboptimal codes with respect to the minimum distance bound
in Lemma 2. Suppose for instance that we consider a net FR
code with parameters (n = ar, θ = a2b, α = ab, ρ = r) with
β = b and d = a. Note that there are r parallel classes
in the code. The bound in eq. (2), reduces to the Singleton
bound as dα = a2b = θ , so that 
Mdα � = 
Mθ � = 1.
Thus, while increasing the value of k above d makes the
code local, it will be far from the achieving the local code
minimum distance bound in Lemma 2. As a concrete example,
consider a grid code (an instantiation of the net FR code) with
(n = 20, θ = 100, α = 10, ρ = 2). In this case d = 10 and
if k = 6, the code is optimal with respect to the Singleton
bound as dmin = 20 − 
 51

10� + 1 = 15. However if choose
k = 11, so that it becomes a local code, the corresponding
file size is M = 80, so that the minimum distance bound is
20 − 
 80

10� + 1 = 13. However, this code can only recover
from at most 9 node failures and not 12. Thus, such a code
is a suboptimal local regenerating code. As all the resolvable
codes presented in this section are instances of net FR codes,
similar statements apply to all these constructions.

IV. SOME CHARACTERISTICS OF FR CODES OBTAINED

FROM KRONECKER PRODUCTS

The resolvable FR codes derived from affine resolvable
designs and Hadamard designs are families of FR codes that
have β > 1 and in many cases cannot be obtained via trivial
β-expansion. In this section, we present the Kronecker product
as a technique for obtaining new codes that have β > 1.
In essence, we demonstrate the following result. Suppose that
we start with a base FR code with storage capacity α where
the pairwise intersection between storage nodes is at most
one symbol and is such that its file size equals the inclusion-
exclusion lower bound in eq. (2). If we consider the Kronecker
product of the code with itself, we get a new FR code,
where the normalized repair bandwidth equals α and a precise
determination of the file size of the new code is possible.
FR codes from Steiner systems and their transposes, form a
large class of base FR codes that satisfy these requirements.
We also demonstrate that the Kronecker product technique
yields infinite families of FR codes that cannot be obtained
from trivial β-expansion method. Furthermore, a careful analy-
sis of the construction also allows to conclude that the failure
resilience of these codes is as high as possible. We conclude
by showing that the property of being resolvable in maintained
under taking Kronecker products.

We begin with a simple example that generates a code that
meets the Singleton bound. Let θ = 2a + 1 for a ≥ 1 and
the incidence matrices N1 and N2 be equal to J − I where
J denotes θ × θ all-ones matrix and I denotes the identity
matrix of the appropriate size. Then, the FR code C obtained
from the incidence matrix N̄ = N1 ⊗ N2 has the following
properties:

• The parameters of the code are n̄ = θ̄ = (2a + 1)2 and
ᾱ = ρ̄ = (2a)2.

• A failed node can be recovered by contacting two nodes.
• Contacting any two nodes recovers at least 2a(2a + 1)

symbols. Thus, when k = 2, we have that the file size
M = 2a(2a+1), where it can be observed that 
Mα � = 2,
so that the code meets the Singleton bound.

Example 13: Let C = (�, V ) be a FR code with � =
{1, 2, 3} and V = {V1 = {2, 3}, V2 = {1, 3}, V3 = {1, 2}},

so that its incidence matrix N =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦. The new code is

obtained from the incidence matrix of N̄ = N ⊗ N and the
storage nodes are shown in Fig. 7.
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Suppose that the outer MDS code has parameters (9, 6),
so that θ = 9,M = 6. In this construction, the file can be
recovered by contacting any two nodes, so that k = 2 and that
a failed node can be recovered by contacting two nodes and
downloading two packets from each of them.

Observation 3 (Non-Trivial FR Codes With β > 1 Obtained
From Kronecker Product): A FR code C with parame-
ters (n, θ, α, ρ), yields a new FR code C̄ with parameters
(n2, θ2, α2ρ2) via Kronecker product method with itself. If α
does not divide θ then storage nodes of C̄ cannot be obtained
from a trivial β-expansion with β = α.

Example 14: Consider the FR code obtained by the Kro-
necker product of the Fano plane (shown in Fig. 2) with itself.
The resultant code will have 49 symbols with nodes with
storage capacity 9. If this code could be obtained by trivial
β-expansion from a base code with number of symbols θ̃ and
storage capacity α̃, then there has to exist an integer m so
that

θ̃m = 49, and

α̃m = 9.

As 9 � 49, the only feasible solution to the above system of
equation is θ̃ = 49, α̃ = 9 and m = 1, which corresponds to
the Kronecker product code.

In fact, there exists a family of codes whose parameters
cannot be obtained via trivial β-expansion, as discussed in the
corollary below.

Corollary 2: Let C be a FR code obtained from a Steiner
system S(2, 3, 6u+1) for some integer u. Then the FR code C̄,
which is obtained by the Kronecker product of C with itself,
cannot be obtained by trivial β-expansion with β = 3.

Lemma 10: Let C1 = (�1, V1) and C2 = (�2, V2) be two
FR codes with parameters (n1, θ1, α, ρ1) and (n2, θ2, α, ρ2)
such that any two storage nodes in C1 (or C2) have at most
one symbol in common. Let M1 and M2 denote the file
sizes of C1 and C2 respectively for a given k1 ≤ min {n1, n2}.
Suppose that either M1 or M2 is equal to k1α − (k1

2

)
. Then

the FR code C obtained from Kronecker product of C1 and C2
has parameters (n = n1n2, θ = θ1θ2, α

2, ρ1ρ2). The file
size for C when k = k1 is given by k1α

2 − α
(k1

2

)
.

Proof: Let N1 and N2 denote the incidence matrices of
the FR codes C1 and C2. Let ci denote a column in N1 and di

denote a column in N2. The overlap between any two columns
in N1 ⊗ N2 can be expressed as (ci ⊗ d j )

t (ci ′ ⊗ d j ′) = ct
i ci ′ ⊗

dt
j d j ′ ≤ α. Thus the overlap between any two columns in

N1 ⊗ N2 is at most α and therefore the file size of C is at least
k1α

2 − α
(k1

2

)
.

We know that any two nodes in C1 and C2 have at most
one symbol in common. Thus, using a simple inclusion-
exclusion principle argument implies that Mi ≥ k1α−(k1

2

)
for

i = 1, 2. Furthermore, we are given that one of them meets
this lower bound. Without loss of generality we assume that
M1 = k1α − (k1

2

)
. This implies that there exists a set of

column vectors I1 = {c1, . . . , ck1 } in N1 such that they cover
M1 = k1α − (k1

2

)
symbols, i.e., any two columns from I1

have exactly one symbol in common and any three columns
from I1 have no symbols in common (see Appendix).

Next, we demonstrate a set of columns in N1 ⊗ N2 that
meets this lower bound. Let us consider a column in N2,
denoted d1 and examine N1 ⊗ d1. Within this set we have a
subset of k1 columns denoted I2 = {ci ⊗ d1, for ci ∈ I1}.
Now (ci ⊗ d1)

t (c j ⊗ d1) = ct
i c j ⊗ dT

1 d1 = α, whereas
any three column vectors from I2 will have a zero overlap.
Thus, the number of symbols covered by this set is exactly
k1α

2 − α
(k1

2

)
.

This lemma can be used to determine the file size for the
Kronecker product of certain Steiner systems.

Lemma 11: Let C be a FR code obtained from a Steiner

system S(2, α, θ) with ρ = θ − 1

α − 1
such that it has a maximal

arc of size ρ+1. Then the Kronecker product of the transposed
code CT with itself is such that the file size equals kρ2 −ρ

(k
2

)

for 1 ≤ k ≤ ρ.
Proof: The result follows from Lemma 3 and

Lemma 10.
Remark 6: By Skolem’s construction [35] we have

S(2, 3, θ) for all θ ≥ 7 and θ ≡ 1, 3 mod 6. Moreover, for
all θ ≥ 7 and θ ≡ 3, 7 mod 12 a Steiner system S(2, 3, θ)
has at least one maximal arc [32]. Thus, Lemma 11 applies.

Lemma 12: Let N1 and N2 be incidence matrices of two FR
codes such that the size of the pairwise intersection of distinct
nodes is at most 1. Let (n1, θ1, α, ρ1) and (n2, θ2, α, ρ2) be
parameters of these FR codes respectively. Assume that the
FR code obtained from N̄ = N1 ⊗ N2 has normalized repair
bandwidth β = α. Then the FR code N̄ is resilient up to
ρ1ρ2 − 1 failures.

Proof: Define N (ci ) (N (d j )) to be the set of storage
nodes in N1 (N2) that have exactly one symbol in common
with ci (d j ). As N1 and N2 are Steiner systems, two nodes
have at most one symbol in common. In the discussion
below we show that if there are at most ρ1ρ2 − 1 failures,
we can recover all the nodes. We proceed by contradiction,
i.e., assume that there exists a set of failed nodes F∗ in N̄
with |F∗| = ρ1ρ2 − 1. Suppose that there is a failed node
ci ⊗ d j ∈ F∗ that cannot be recovered. Note that β = α.
Thus, we need to download α symbols each from the surviving
nodes, i.e., we need to consider nodes in N̄ that have an
overlap of α with ci ⊗ d j .

Our first observation is that only the nodes in N (ci ) ⊗ d j

and ci ⊗ N (d j ) are useful for recovering ci ⊗ d j . To see this
consider a node c′

i ⊗ d ′
j in N̄ such that it does not belong

to N (ci ) ⊗ d j or ci ⊗ N (d j ). If c′
i = ci , then d ′

j /∈ N (d j ),
i.e., (c′

i ⊗ d ′
j )

t (ci ⊗ d j ) = 0; a similar argument holds when
c′

i /∈ N (ci ), d ′
j = d j . Otherwise (c′

i ⊗ d ′
j )

t (ci ⊗ d j ) can be at
most 1. Thus, only the nodes in N (ci ) ⊗ d j and ci ⊗ N (d j )
are useful for reconstructing ci ⊗ d j .

Next, note that ci (d j ) can be expressed as the sum of α
unit vectors of length θ1 (θ2). Let ek denote the unit vector
with a one in the k-th location. Thus, ci = ∑

k∈I1
ek , where

I1 ⊂ [θ1] and d j = ∑
l∈I2

el where I2 ⊂ [θ2]. Thus, the
overlap between ci ⊗ d j and N (ci ) ⊗ d j can be expressed as
ek ⊗ d j for some k ∈ I1. A similar statement holds for the
overlap between ci ⊗d j and ci ⊗N (d j ). Our next observation
is that when we reconstruct ci ⊗ d j , we can either download
symbols from N (ci ) ⊗ d j or from ci ⊗ N (d j ) but not both.
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Indeed, for k ∈ I1, l ∈ I2, we have (ci ⊗ el)
t (ek ⊗ d j ) = 1.

Thus, if we download symbols from both N (ci ) ⊗ d j and
from ci ⊗N (d j ), then we will need to download strictly more
than α2 symbols for reconstructing ci ⊗ d j .

Note that there are ρ1 copies of each ek ⊗d j , where k ∈ I1.
If there is at least one copy of ek ⊗d j , for all k ∈ I1 available
in the surviving nodes, then it is clear that ci ⊗ d j can be
recovered by downloading copies of each ek ⊗ d j from the
surviving nodes. Likewise, there are ρ2 copies of each ci ⊗ el

for l ∈ I2 and ci ⊗d j can be recovered if each of these copies
is available in the surviving nodes. In the discussion below
we say that ci ⊗ d j is recoverable if either or both of these
situations apply.

Thus, it is clear that if ci ⊗ d j is not recoverable it has to
be the case that all copies of ek∗ ⊗ d j for some k∗ ∈ I1 are
unavailable. This implies that there exists a set of failed nodes
denoted F1 ⊂ N (ci )⊗d j of size at least ρ1 − 1. Arguing in a
similar vein, we can consider whether ci ⊗d j can be recovered
from the nodes in ci ⊗N (d j ). Based on the discussion above,
if ci ⊗ d j is not recoverable, it has to be the case that there
exists a set of failed nodes F2 ⊂ ci ⊗ N (d j ) of size at least
ρ2 − 1. In addition the node sets N (ci ) ⊗ d j and ci ⊗N (d j )
are disjoint, thus F1 ∩ F2 = ∅, i.e., it is clear that at least
ρ1 + ρ2 − 2 failures are essential to ensure that ci ⊗ d j is not
recoverable.

Next, we examine whether any of the nodes in F1 ∪ F2
are recoverable. A given node in F1 is of the form ci ′ ⊗ d j

where ct
i ci ′ = 1. It is evident that ci ′ ⊗d j cannot be recovered

from N (ci ′ ) ⊗ d j as all copies of ek∗ ⊗ d j for a specific k∗
are unavailable owing to the failure of the nodes in F1.
Specifically, note that it rules out the possibility of using the
surviving nodes in the set N (ci ) ⊗ d j . From the previous
observation, it can only be recovered exclusively from the
nodes in ci ′ ⊗ N (d j ).

Thus, there need to be at least ρ2 − 1 failures from the
node set ci ′ ⊗N (d j ) to ensure that ci ′ ⊗d j is not recoverable.
Furthermore, these failures are distinct from the failures in
F1 ∪ F2. Arguing in this way for each node in F1, we conclude
that at least (ρ1 − 1)(ρ2 − 1) failures need to be induced to
ensure that none of the nodes in F1 can be recovered.

However, this implies a total of 1 + ρ1 + ρ2 − 2 +
(ρ1 − 1)(ρ2 − 1) = ρ1ρ2 > ρ1ρ2 − 1 failures. Thus, we
conclude that even if an appropriate F1 ∪ F2 can be found
for ci ⊗ d j , at least one node in F1 can be recovered. After
this recovery, the set F1 cannot exist. This implies that ci ⊗d j

can be recovered. As the choice of ci ⊗ d j was arbitrary, we
can recover any node when there are at most ρ1ρ2 −1 failures.

This bound is tight since each symbol in N̄ is repeated ρ1ρ2
times. Thus, we can easily find a set of ρ1ρ2 failures that we
cannot recover from.

Corollary 3: Let N1 and N2 be transposes of incidence
matrices of two Steiner systems namely S(2, α1, θ1) and
S(2, α2, θ2) where the parameters satisfy ρ = θ1−1

α1−1 = θ2−1
α2−1 .

Assume the FR code obtained from N̄ has normalized repair
bandwidth β = ρ. Then, the FR code is resilient up to α1α2−1
failures.

Proof: Any two nodes meet in exactly one symbol in
the FR code obtained by transposes of incidence matrices of

Fig. 8. The resultant FR code has � = {c1, c2, c3, c4, c5, c6, c7, c8, c9,
c10, c11, c12, c13, c14, c15, c16}. Each storage node contains 4 symbols.
A failed node can be recovered by contacting two nodes and downloading
2 packets from each. The code is resilient up to 3 failures.

a Steiner system. Also note that the main ingredient of the
proof Lemma 12 is the property that two nodes meet in at most
one symbol in Steiner systems. So the rest follows similarly
as in the previous proof.

We also investigate the properties of FR codes that are
generated by taking the Kronecker product of net FR codes
with themselves. The Kronecker product does not necessarily
produce a new net FR code but it yields a resolvable FR code.
For example, in Fig. 8 a resolvable FR code is obtained from
the Kronecker product of a net FR code with itself. However,
the obtained code is not a net FR code. To see this, we note
that that node sets {1, 5, 9, 13} and {2, 6, 10, 14} form parallel
classes, but the intersection sizes of node 1 with the nodes in
the set {2, 6, 10, 14} are either two or zero, which implies that
the obtained code is not a net FR code.

Lemma 13: Let N be the incidence matrix of a net FR code
with parameters (n, θ, α, ρ). Then, the FR code obtained from
N̄ = N ⊗ N is a resolvable FR code.

Proof: We can order the columns of N with respect to
the ρ parallel classes. Assume that the j -th block in i -th
parallel class is represented by the column ci, j . We will
show for fixed i and s, ci, j ⊗ cs,r with 1 ≤ j ≤ θ

α and
1 ≤ r ≤ θ

α forms a set of blocks which is a parallel class.

There will be θ2

α2 blocks in this set, hence it is enough to
show any distinct two blocks does not share any points. Since
(ct

i, j ⊗ ct
s,r )(ci,u ⊗ cs,v) = (ct

i, j ci,u ⊗ ct
s,r cs,v) equals the zero,

the θ2

α2 vectors form a parallel class.
Example 15: A simple example can be obtained from

C = (�, V ) where � = {1, 2, 3, 4} and V = {V1 = {1, 2},
V2 = {3, 4}, V3 = {1, 3}, V4 = {2, 4}}. The code obtained
from N̄ = N ⊗ N is illustrated in Fig. 8.



OLMEZ AND RAMAMOORTHY: FR CODES WITH FLEXIBLE REPAIR FROM COMBINATORIAL DESIGNS 1585

V. CONSTRUCTION OF FR CODES WHEN d < k

In the discussion so far, we have considered FR codes where
the recovery degree d ≥ k, i.e., the repair degree (d) of the
code is at least as high as the number of nodes (k) contacted for
recovering the file. Of course, the codes operate at the MBR
point which implies that they download exactly α symbols
for regeneration. However, as discussed in Section I, in many
application scenarios it has been recognized that the number of
nodes that the new node has to contact is an important metric
that needs to be optimized, rather than the repair bandwidth.
Note that the definition of a FR code does not rule out codes
where d < k.

In this section, we discuss constructions of locally
recoverable FR codes that have the property that d < k.
It turns out that the minimum distance bound for locally
recoverable codes that was derived in [3] and [4], needs to
be refined for our scenario of exact, uncoded and table-based
repair. We derive such a bound and present constructions that
meet this bound.

Definition 17 (Locally Recoverable Fractional Repetition
Code): Let C = (�, V ) be a FR code for a (n, k, d, α)-DSS,
with repetition degree ρ and normalized repair bandwidth
β = α/d . If the repair degree d < k, then the FR code C
is called a locally recoverable fractional repetition code.

As before we define ρres to be the maximum number of
node failures such that each failed node can be recovered by
contacting d surviving nodes and downloading symbols from
them. For a node Vi ∈ V in C, let S(Vi ) ∈ V denote the
set of nodes (with |S(Vi )| < k) that are contacted if Vi fails.
We refer to S(Vi ) as the local structure associated with Vi .
Note that it is possible that the set of nodes in S(Vi ) and
the corresponding symbols form a FR code (cf. Definition 2);
however this is not essential.

A. Codes for Systems With ρres = 1

Our first construction is a class of codes which is optimal
with respect to the bound provided in Lemma 2 and allow local
recovery in the presence of a single failure. Our construction
leverages the properties of undirected graphs with large girth.2

The basic idea is to associate the edges of the undirected graph
with the symbols and the vertices with the storage nodes.
Each storage node stores its incident symbols. We explain this
construction and highlight the intuition behind it by means of
the following example.

Example 16: The Petersen graph on 10 vertices and
15 edges is a 3-regular graph with girth 5. We label the
edges 1, . . . , 10 and A, B, . . . , E in Fig. 9. If a given stor-
age node fails, it is evident that it can be regenerated by
contacting its corresponding neighbors in the Petersen graph
and downloading one symbol each from them. For instance,
if node {1, A, 5} fails, it can download one symbol each
from {1, B, 2}, {8, A, 9} and {4, E, 5}. Next, note that there
is no cycle of length 4, in the Petersen graph. Thus, if we
consider any collection of four nodes (as an example), we
are guaranteed that the number of edges incident on them is

2The girth of a graph is the length of its shortest cycle.

Fig. 9. The figure shows the Petersen graph with its edges labeled from
1, …, 10 and A, . . . , E . Each vertex acts as a storage node and stores the
symbols incident on it.

reasonably large. This allows to assert that the file size for
such k = 4 is high. In fact, in the subsequent discussion we
show that the file size in this case and for k = 5 meets the
minimum distance bound for locally recoverable codes.

We now formalize the basic intuition in the above example,
by considering general graphs and precisely calculating the
file sizes and minimum distance bounds.

Definition 18: An undirected graph � is called an (s, g)-
graph if each vertex has degree s, and the length of the shortest
cycle in � is g.

Construction 1: Let � = (V ′, E ′) be a (s, g)-graph with
|V ′| = n.

(i) Arbitrarily index the edges of � from 1 to ns
2 .

(ii) Each vertex of � corresponds to a storage node and stores
the symbols incident on it.

The above procedure yields a FR code C = (�, V ) with n
storage nodes, parameters θ = ns

2 , α = s and ρ = 2. Upon
single failure, the failed node can be regenerated by download-
ing one symbol each from the storage nodes corresponding
to the vertices adjacent to it in � (i.e., β = 1); thus, the
repair degree d = s. Note that for this construction, the local
structures are typically not FR codes. Suppose that the storage
node corresponding to vertex v1 ∈ � fails, then we contact the
storage nodes corresponding to its (s −1) neighbors in �; this
is the local structure associated with v1. If the girth g > 3,
then it is clear that the nodes in the local structure do not have
symbols in common, i.e., they do not form a FR code.

We note that the work of [7] also used the above construc-
tion for MBR codes; however, they did not have the girth
restriction on �. As we discuss next, (s, g)-graphs allow us to
construct locally recoverable codes and provide a better bound
on the file size when k ≤ g. We allow the system parameter k
to be greater than d , however in the work of [7], they consider
only the case k ≤ d . The work of [30] also used high-girth
graphs, but their constructions are not in the context of locally
recoverable codes.
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Lemma 14: Let C = (�, V ) be a FR code constructed by
Construction 1. If s > 2, and k ≤ g, we have | ∪k

i=1 Vi | ≥
k(s − 1) for any Vi ∈ V , i = 1, . . . k.

Proof: Let V1, V2, · · · , Vk−1 and Vk be any k nodes in
our DSS, where k ≤ g. We argue inductively. Note that
|V1| = s > s − 1. Suppose that | ∪ j

i=1 Vi | ≥ j (s − 1) + ξ
for j < k, where 1 ≤ ξ ≤ j is the number of connected
components formed by the nodes V1, . . . , Vj in �. Now
consider |∪ j+1

i=1 Vi | where j +1 < k. Note that since j +1 < g
there can be no cycle in ∪ j+1

i=1 Vi . Thus, Vj+1 is connected at
most once to each connected component in ∪ j

i=1Vi . Suppose
that Vj+1 is connected to � existing connected components
in ∪ j

i=1Vi , where 0 ≤ � ≤ min(ξ, s). Then, the number
of connected components in ∪ j+1

i=1 Vi is ξ − � + 1 and the
number of new symbols that it introduces is s − �. Therefore
| ∪ j+1

i=1 Vi | = j (s − 1)+ ξ + s − � = ( j + 1)(s − 1)+ ξ − �+ 1.
This proves the induction step.

Thus, | ∪k−1
i=1 Vi | ≥ (k − 1)(s − 1) + ξk−1, where ξk−1 is the

number of connected components formed by V1, . . . , Vk−1.
Now consider ∪k

i=1Vi . Note that there can be a cycle intro-
duced at this step if k = g. Now, if ξk−1 ≥ 2, it can be
seen that Vk can only connect to each of the ξk−1 connected
components once, otherwise it would imply the existence of
a cycle of length strictly less than g in �. Thus, in this case
| ∪k

i=1 Vi | ≥ k(s − 1). On the other hand if ξk−1 = 1, then
Vk can connect at most twice to this connected component. In
this case again we can observe that | ∪k

i=1 Vi | ≥ k(s − 1).
Lemma 15: Let � = (V , E) be a (s, g)-graph with |V | = n

and s > 2. If g ≥ k = as + b such that s > b ≥ a + 1, then C
obtained from � by Construction 1 is optimal with respect to
the minimum distance bound in Lemma 2 when the file size
M = k(s − 1).

Proof: We have

k(s − 1) = (as + b)(s − 1) = as2 + (b − a)s − b.

Since, s > b ≥ a + 1 the following holds.
⌈

k(s − 1)

s

⌉

=
⌈

as2 + (b − a)s − b

s

⌉

= as + (b − a),

and
⌈

k(s − 1)

s2

⌉

=
⌈

as2 + (b − a)s − b

s2

⌉

=
⌈

a + (b − a)s − b

s2

⌉

= a + 1.

From Lemma 14, any k nodes cover at least k(s −1) symbols.
Thus, the code is minimum distance optimal since

⌈
k(s − 1)

s

⌉

+
⌈

k(s − 1)

s2

⌉

= k + 1. (cf. Observation 1)

Corollary 4: Let � = (V , E) be a (s, g)-graph with
|V | = n and s > 2. If g ≥ s + 2, then C obtained from
� by Construction 1 is optimal with respect to the bound in
Lemma 2 for file size M = s2 + s − 2.

It can be observed that in the specific case of s = 2,
applying Construction 1 results in a DSS where the union of
any k nodes has at least k + 1 symbols. We now discuss some
examples of codes that can be obtained from our constructions.

Sachs [39] provided a construction which shows that for
all s, g ≥ 3, there exists a s-regular graph of girth g. Also,
explicit constructions of graphs with arbitrarily large girth are
known [40]. Using these we can construct infinite families of
optimal locally recoverable codes.

An (s, g)-graph with the fewest possible number of vertices,
among all (s, g)-graphs is called an (s, g)-cage and will result
in the maximum code rate for our construction. For instance,
the (3, 5)-cage is the Petersen graph. We note here that bipar-
tite cages of girth 6 were used to construct FR codes in [28]
though these were not in the context of locally recoverable
codes. An exhaustive survey of cages can be found in [13].

B. Codes for Systems With ρres > 1

Our second class of codes are such that the local structures
are also FR codes. The primary motivation for considering this
class of codes is that they naturally allow for local recovery
in the presence of more than one failure as long as the local
FR code has a repetition degree greater than two. Thus, in
these codes, each storage node participates in one or more
local FR codes that allow local recovery in the presence of
failures. We motivate the design of these FR codes by means
of the following example.

Example 17: An example of such a code is shown
in Fig. 10. The main idea is to have four FR codes derived from
the Fano plane that are supported on disjoint sets of symbols.
We refer to each of these FR codes as local structures.
Note that if there are at most two failures, the nodes can
be regenerated by simply downloading symbols from the
corresponding local structures. Moreover, upon inspection, it is
not too hard to see that any set of 15 nodes cover at least
17 symbols. Thus, we obtain an instance of a local FR code
with n = θ = 28, α = 3, ρ = 3 that has k = 15 and d = 3.
As d < k, this FR code is local.

Note that it is relatively easy to obtain local codes in
such a manner, i.e., by considering a collection of FR codes
supported on disjoint sets of symbols. However, one really
needs to measure them with respect to minimum distance
bound for local codes. We did this evaluation for the codes
from high girth graphs presented above (cf. Lemma 15) and
demonstrated that for certain ranges of k, the constructed codes
were minimum distance optimal. However, we emphasize the
minimum distance bound for local codes in Lemma 2 holds
for general codes. In our class of codes, we have the added
requirement that each node participates in a local structure
that allows it to be recovered by download in case of failure.
Accordingly the bound in Lemma 2 is too loose.

For the class of codes that we consider, we derive an upper
bound on the minimum distance of such codes when the file
size is larger than the number of symbols in one local structure.
Following this, we examine (fairly technical) conditions on
the local structures that in turn allow for minimum distance
optimality of the local FR code. We also demonstrate that
several FR codes satisfy these conditions and conclude with
some example of minimum distance optimal local FR codes.

Lemma 16: Let C be a locally recoverable FR code with
parameters (n, θ, α, ρ) where each node belongs to a local
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Fig. 10. The figure shows a DSS where n = 28, k = 15, r = 3, θ = 28, α = 3, ρ = 3 and each local FR code (the columns in the figure) is a projective
plane of order 2 which is also known as a Fano plane. Here, ρres = 2. Any set of 15 nodes cover at least M = 17 symbols. Thus, the minimum distance of
the code is 14 when the file size M = 17.

Fig. 11. Algorithm for finding the distance bound.

FR code with parameters (nloc, θloc, α, ρloc). Suppose that the
file size M > θloc. Then,

dmin ≤ max

(

n −
⌈Mρloc

α

⌉

+ ρloc,

n + nloc + 1 −
⌈Mρloc + θloc

α

⌉ )

.

Proof: We will apply an algorithmic approach here
(inspired by the one used in [3]). Namely, we iteratively
construct a large enough set S ⊂ V so that |S| < M.
The minimum distance bound is then given by n − |S|.
Our algorithm is presented in Fig. 11. Towards this end,
let Si and H (Si) represent the number of nodes and the
number of symbols included at the end of the i -th iteration.

Furthermore, let si = |Si | − |Si−1| and hi = |H (Si)| −
|H (Si−1)|, represent the corresponding increments between
the (i − 1)-th and the i -th iteration. We divide the analysis
into two cases.

• Case 1: [The Algorithm Exits Without Ever Entering
Line 8.]: Note that we have 1 ≤ si ≤ nloc and hi ≤ θloc−
a(nloc − si ) where a(nloc − si ) is the minimum number
of symbols covered by (nloc − si ) nodes in the local FR
code and hence a lower bound on |�P f j∗ ∩ H (Si−1)|.
By considering the bipartite graph representing the local
FR code (cf. Definition 8) We see that a(nloc − si ) ≥
(nloc − si )α

ρloc
. Thus, we have

θloc − a(nloc − si ) ≤ θloc − nlocα − siα

ρloc
= siα

ρloc
.

Suppose that the algorithm runs for l iterations and exits
on the l + 1 iteration. Then

l∑

i=1

si ≥ ρloc

α

l∑

i=1

hi .

Since the algorithm exits without ever entering line 8, it is
unable to accumulate even one additional node. Hence

l∑

i=1

hi ≥ M − α, which implies that

l∑

i=1

si ≥
⌈ρloc

α
(M − α)

⌉
by the integer constraint.

Thus, the bound on the minimum distance becomes

dmin ≤ n −
⌈

ρloc M

α

⌉

+ ρloc.

• Case 2: [The Algorithm Exits After Entering Line 8.]:
Note that by assumption, M > θloc. Suppose that
the algorithm enters line 5, l ≥ 1 times. Now we
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have
l∑

i=1

hi ≥ M − θloc, otherwise we could include

another local structure. Hence we need to add nodes

so that strictly less than M −
l∑

i=1

hi symbols are cov-

ered. It can be observed that we can include at least⌈
M − ∑l

i=1 hi

α

⌉

− 1 more nodes. Therefore, the total

number of nodes accumulated is

≥ ρloc

α

l∑

i=1

hi +
⌈
M − ∑l

i=1 hi

α

⌉

− 1

≥ ρloc − 1

α
(M − θloc) + M

α
− 1

= Mρloc + θloc

α
− nloc − 1.

Therefore, we have the following minimum distance
bound.

dmin ≤ n + nloc + 1 −
⌈Mρloc + θloc

α

⌉

.

The final bound is obtained by taking the maximum of
the two bounds obtained above.

The following corollary can be also be established.
Corollary 5: Let C be a locally recoverable FR code with

parameters (n, θ, α, ρ) where each node belongs to a local
FR code with parameters (nloc, θloc, α, ρloc). Furthermore,
suppose that C can be partitioned as the union of � disjoint
local FR codes. If the file size M = tθloc +β for some integer

1 ≤ t < � and β ≤ α, we have dmin ≤ n −
⌈Mρloc

α

⌉

+ ρloc.

Proof: Applying the algorithm in Fig. 11 it can be
observed that we will never enter line 8, as C consists
of the union of disjoint local FR codes and the file size
M = tθloc + β. Thus, after accumulating t disjoint local FR
codes, the algorithm will exit, yielding the required bound.

Construction 2: Let C = (�, V ) be a FR code with
parameters (n, θ, α, ρ) such that any �+1 nodes in V cover θ
symbols and for Vi , Vj ∈ V , we have |Vi ∩ Vj | ≤ β when
i �= j . We construct a locally recoverable FR code C̄ by
considering the disjoint union of l(> 1) copies of C. Thus,
C̄ has parameters (ln, lθ, α, β). We call C the local FR code
of C̄.

Lemma 17: Let C̄ be a code constructed by Construction 2
for some l > 1 such that the parameters of the local FR code
satisfy (ρ − 1)αθ − (θ + α)(� − 1)β ≥ 0. Let the file size
be M = tθ + α for some 1 ≤ t < l. Then C̄ is optimal with
respect to Corollary 5.

Proof: It is evident that C̄ is the disjoint union of l local
FR codes. Thus, the minimum distance bound here is dmin ≤
ln −

⌈
(tθ+α)ρ

α

⌉
+ ρ = (l − t)n. The code is optimal when

any tn + 1 nodes in C̄ cover at least M = tθ + α symbols.
We show that this is the case below.

Let ai be the number of nodes that are chosen from the
i -th local FR code and Xi be the symbols covered by these ai

nodes. Note that for any 1 ≤ i ≤ l if ai ≥ �+1, then Xi = θ

(the maximum possible). Suppose there are 0 ≤ t1 ≤ t local
FR codes that cover θ symbols. In this case it suffices to show
that (t − t1)n + 1 nodes cover at least (t − t1)θ + α symbols.
Here we can omit case of t = t1, since our claim clearly holds
in this situation. Suppose that these nodes belong to s local
FR codes, where ai ≤ �, i = 1, . . . , s. By applying Corradi’s
lemma [41] we obtain

|Xi | ≥ α2ai

α + (ai − 1)β
≥ α2ai

α + (� − 1)β
.

This implies that

s∑

i=1

|Xi | ≥
s∑

i=1

α2ai

α + (� − 1)β

= α2

α + (� − 1)β

s∑

i=1

ai

= α2

α + (� − 1)β
((t − t1)n + 1)

= (t − t1)θρα

α + (� − 1)β
+ α2

α + (� − 1)β
(since nα = θρ)

= (t − t1)θ +
(

ρα

α + (� − 1)β
− 1

)

(t − t1)θ

+ α2

α + (� − 1)β

≥ (t − t1)θ + ((ρ − 1)α − (� − 1)β)θ + α2

α + (� − 1)β
≥ (t − t1)θ + α (using the assumed conditions).

The above lemma can be used to generate several examples
of locally recoverable codes with ρres > 1. We discuss
two examples below.

Example 18: Let q be a prime power. We consider the
codes obtained from affine resolvable designs discussed in
Section III-B1. These codes have parameters θ = qm,

α = qm−1, ρ = qm−1
q−1 and n = qρ. These codes are resolvable

and hence we can vary the repetition degree by choosing an
appropriate number of parallel classes. Note that the number
of nodes in a parallel class is θ/α = q .

Suppose we choose the local FR code by including qm−1

parallel classes, so that the repetition degree is qm−1 and there
are n = qm nodes. Furthermore, since the design is affine
resolvable, β = qm−2. The value of � (cf. Definition 2) can
be determined as follows. For the local FR code, any subset
of at least qm −qm−1 +1 nodes has at least one intact parallel
class, which covers all the θ = qm symbols. Accordingly, for
this code we can conclude that � = qm − qm−1.

Next, we verify the conditions of Lemma 17. For this local
FR code, we have that

(ρ − 1)αθ − (θ + α)(� − 1)β

= (qm−1 − 1)q2m−1 − (qm + qm−1)(qm − qm−1 − 1)qm−2

= q2m−3(qm+1 − q2 − (q + 1)(qm − qm−1 − 1))

= q2m−3(qm+1− q2 − (qm − qm−1− 1) − (qm+1− qm − q))

= q2m−3(qm−1 + q + 1 − q2)

≥ 0, when m ≥ 3.
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Thus, to summarize for the local FR code under consider-
ation, the conditions of Lemma 17 apply when m ≥ 3. Thus,
we can construct a FR code by consider the disjoint union of
l of these local FR codes using Construction 2. The code will
be optimal with respect to the bound derived in Corollary 5
for file sizes of the form tqm + qm−1 for 1 ≤ t < l.

Example 19: A projective plane of order q also forms a
FR code C = (�, V ), where α = q + 1 and ρ = q + 1.
Furthermore, |Vi ∩ Vj | = 1 if i �= j and each pair of symbols
appears in exactly one node; this further implies that β = 1.
A simple counting argument shows that |�| = θ = q2 +q +1
and n = q2 + q + 1. The value of � (cf. Definition 2) can
be determined in the following manner. Applying Corradi’s
Lemma, we note that any q2 +1 nodes cover at least a number
of symbols greater than or equal to

(q + 1)2(q2 + 1)

q2 + q + 1
= q2 + q + q + 1

q2 + q + 1

> q2 + q,

whereby we conclude that q2+1 nodes cover all the q2+q +1
symbols. It can also be observed that there is a set of q2 nodes
that do not cover all the q2 + q + 1 symbols as the repetition
degree of the symbols is q + 1. Thus, in this case we can
observe that � = q2.

We construct a locally recoverable FR code C̄ by taking
l > 1 copies of the code C. So the code C̄ has parameters
(l(q2 + q + 1), l(q2 + q + 1), q + 1, q + 1). Let the file size
be M = t (q2 + q + 1) + q + 1 for some 1 ≤ t < l. Then,
C̄ is optimal with respect to Lemma 16 and has ρres = q .
An example is illustrated in Fig. 10.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have constructed several classes of frac-
tional repetition codes that can be used in distributed stor-
age systems. These codes allow for a repair process that is
exact and uncoded but table-based. Our constructions stem
from combinatorial designs such as Steiner systems, affine
geometries, Hadamard designs and mutually orthogonal Latin
squares. We demonstrate that (i) the repetition degree of the
symbols which dictates the failure resilience of the code can
be varied in an easy manner, and (ii) construct instances of
codes with β > 1 that cannot be obtained in a trivial manner
from codes with β = 1. In addition, we show that new
FR codes can be obtained from taking Kronecker products
of existing ones and analyze their properties. For codes with
exact, uncoded and local repair property (where d < k), we
establish an appropriate minimum distance bound and present
constructions from high-girth graphs and collections of local
FR codes (with specific properties) that meet these bounds.
For most of our constructions, we determine the code rate for
specific ranges of k.

There are several opportunities for future work. It would
be interesting to examine applications of designs in other
areas of network coding. For instance, [42] shows that designs
can be used to construct directed acyclic networks that have
nontrivial implications for distributed function computation.
In principle, several combinatorial designs can be treated as

Algorithm 1 Algorithm for Picking the Nodes in a Net
FR Code
1: Choose a node V0 from 0-th parallel class. Initialize H = ∅,

S = {V0} and i = 1.
2: while |H | ≤ a and |S| < k do
3: Choose Vi from the i -th parallel class such that V�∩Vi /∈

H for all V� ∈ S.
4: Set H = H

⋃
∪V�∈S V� ∩ Vi .

5: Set S = S ∪ Vi .
6: end while

FR codes. However, it would be interesting to examine if
there are other families that have desirable properties and lend
themselves to analysis of the system code rate. It is to be
noted that the code rate depends on the minimum size of the
union of k-sized subsets of the storage nodes. It can also be
viewed as determining the expansion level of a bipartite graph
derived from the incidence matrix of the design. In general,
it is somewhat challenging as most results in the literature
only discuss pairwise intersections. A related problem would
be determine feasible and infeasible parameter ranges for
FR codes.

APPENDIX

Proof of Lemma 4: Note that the properties of net FR codes
imply that any two storage nodes intersect in either one or
zero symbols. Thus, αk − (k

2

)
is the lower bound on the file

size. In the discussion below we demonstrate the existence of
k nodes that cover exactly αk − (k

2

)
symbols. Let the parallel

classes be indexed from 0 to ρ −1. Our procedure for picking
the nodes is described in Algorithm 1.

We need to show that an appropriate Vi can always be
chosen in the algorithm and that |S| = k upon exit. To see this
note that H tracks the set of pairwise intersections between
the nodes at all times. At the beginning of stage i , the size
of H is at most

(i
2

)
(by interpreting

(1
2

) = 0). Note that a
parallel class has a nodes and that two nodes from the same
parallel class do not intersect. Thus, as long as a >

(i
2

)
we can

always find an appropriate Vi . By our assumption
(k−1

2

)
< a.

Thus, the algorithm exits with |S| = k.
Lemma 18: Consider sets A1, . . . , Ak such that |Ai | = α

and |Ai ∩ A j | ≤ 1 when i �= j and |∪k
i=1 Ai | = kα− (k

2

)
. This

implies that |Ai ∩ A j | = 1 for i �= j and |Ai ∩ A j ∩ Al | = 0
for all distinct triples (i, j, l) where i, j, l = 1, . . . , k.

Proof: By the inclusion-exclusion principle, we have that

| ∪k
i=1 Ai | ≥

∑

i

|Ai | −
∑

i< j

|Ai ∩ A j | ≥ kα −
(

k

2

)

.

However, as | ∪k
i=1 Ai | = kα − (k

2

)
, this implies that

|Ai ∩ A j | = 1 for all pairs (i, j) such that i �= j .
For a set I ⊆ [k], let AI denote the set ∩i∈I Ai . We note

that the given conditions also imply that
∑

∅�=I⊆[k],|I |≥3

(−1)|I |+1|AI | = 0. (9)

We argue that it has to be the case that |AI | = 0 for ∅ �=
I ⊆ [k], |I | ≥ 3. Suppose that this is not the case and there
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are l subsets I1, . . . , Il such that |Ii | ≥ 3, i = 1, . . . l and
|AIi | = 1. For each Ii , there has to be a maximal I ∗

i such
that Ii ⊂ I ∗

i . Moreover, it has to hold that |I ∗
i ∩ I ∗

j | ≤ 1,
as otherwise I ∗

i ∪ I ∗
j provides an example of a subset that is

larger than both I ∗
i and I ∗

j . This establishes that for each Ii ,
there is a unique maximal I ∗

i .
Now, we examine contribution of each of the identified

maximal subsets I ∗
i to the LHS of eq. (9). It is evident that

|AJ | = 1 for all ∅ �= J ⊆ I ∗
i . Let |I ∗

i | = δ. This implies that
the subset I ∗

i induces the following contribution to the LHS
of eq. (9):

∑δ
i=3(−1)i+1

(δ
i

) = (δ
2

) − (δ − 1) > 0. Thus, the
subset I ∗

i of maximum cardinality contributes a net positive
value to the LHS of eq. (9). Following this we can repeat
this argument on the next maximal subset. Note that as the
maximal subsets have an intersection of size at most one, each
maximal subset contributes the LHS of eq. (9) via distinct
terms. Finally, it can be observed that the overall contribution
of the maximal subsets accounts for all terms in the LHS
of eq. (9). We conclude that if there exist |AI | > 0 for
∅ �= I ⊆ [k], |I | ≥ 3, we have

∑
∅�=I⊆[k],|I |≥3(−1)|I |+1

|AI | > 0, which is a contradiction.
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