
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006

B
D
D

A

K
S
F
O
R
R
R
B
D
T
R

1

d
[
w
a
f
r
i
o

T
r
u
j
t
R
S

h
R
A
2
(

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks, Standards and
Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

enchmarking for Observability: The Case of Diagnosing Storage Failures
uo Zhang, Mai Zheng ∗

epartment of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA

R T I C L E I N F O

eywords:
torage systems
ailure diagnosis
bservability
eproducibility
eliability
obustness
enchmarking
ebugging
racing
ecord and replay

A B S T R A C T

Diagnosing storage system failures is challenging even for professionals. One recent example is the ‘‘When
Solid State Drives Are Not That Solid’’ incident occurred at Algolia data center, where Samsung SSDs were
mistakenly blamed for failures caused by a Linux kernel bug. With the system complexity keeps increasing,
diagnosing failures will likely become more difficult.

To better understand real-world failures and the potential limitations of state-of-the-art tools, we first
conduct an empirical study on 277 user-reported storage failures in this paper. We characterize the issues
along multiple dimensions (e.g., time to resolve, kernel components involved), which provides a quantitative
measurement of the challenge in practice. Moreover, we analyze a set of the storage issues in depth and derive
a benchmark suite called 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. The benchmark suite includes the necessary workloads and software
environments to reproduce 9 storage failures, covers 4 different file systems and the block I/O layer of the
storage stack, and enables realistic evaluation of diverse kernel-level tools for debugging.

To demonstrate the usage, we apply 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to study two representative tools for debugging. We
focus on measuring the observations that the tools enable developers to make (i.e., observability), and derive
concrete metrics to measure the observability qualitatively and quantitatively. Our measurement demonstrates
the different design tradeoffs in terms of debugging information and overhead. More importantly, we observe
that both tools may behave abnormally when applied to diagnose a few tricky cases. Also, we find that neither
tool can provide low-level information on how the persistent storage states are changed, which is essential for
understanding storage failures. To address the limitation, we develop lightweight extensions to enable such
functionality in both tools. We hope that 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 and the enabled measurements will inspire follow-up
research in benchmarking and tool support and help address the challenge of failure diagnosis in general.
. Introduction

The storage stack in the Linux kernel is witnessing a sea-change
riven by the advances in non-volatile memory (NVM) technologies
1–13]. For example, the SCSI subsystem and the Ext4 file system,
hich have been optimized for hard disk drives (HDDs) for decades,
re adding multi-queue support [14–16] and DAX support [17] for
lash-based solid state drives (SSDs) and persistent memories (PMs),
espectively. While such modifications may offer higher performance
n general, the implications on system reliability is much less measured
r understood.

One real-world example is the ‘‘When Solid-State Drives Are Not
hat Solid’’ incident occurred in Algolia data center [18], where a
andom subset of SSD-based servers crashed and corrupted files for
nknown reasons. The developers ‘‘spent a big portion of two weeks
ust isolating machines and restoring data as quickly as possible’’. After
rying to diagnose almost all software in the stack (e.g., Ext4, Software
AID [19]), they finally (mistakenly) concluded that it was Samsung’s
SDs to blame. Samsung’s SSDs were criticized and blacklisted, until

∗ Corresponding author.
E-mail addresses: duozhang@iastate.edu (D. Zhang), mai@iastate.edu (M. Zheng).

one month later Samsung engineers found that it was a TRIM-related
Linux kernel bug that caused the failure [20]. Similar confusing failures
will likely increase in the foreseeable future as the system complexity
keeps increasing [21–24].

Addressing the grand challenge will require cohesive efforts from
the communities. Among others, a better understanding of real-world
failure incidents and the potential limitations of state-of-the-art tools
is critical. To this end, we first conduct an empirical study on 277
real-world storage failure issues in this paper. We characterize the
issues along multiple dimensions (e.g., time to resolve, kernel compo-
nents involved, hardware dependency), which enables us to quantita-
tively measure the reliability challenge as well as the need for better
solutions.

Moreover, we analyze a set of storage issues in depth. By ex-
amining the user reports and bug patches meticulously and experi-
menting on real storage systems, we derive the necessary conditions
(e.g., user/workload operations, library/kernel versions, system config-
urations) for triggering the failures deterministically. At the time of this
ttps://doi.org/10.1016/j.tbench.2021.100006
eceived 6 August 2021; Received in revised form 11 October 2021; Accepted 20 O
vailable online 12 November 2021
772-4859/© 2021 The Authors. Published by Elsevier Ltd. This is an open access
http://creativecommons.org/licenses/by-nc-nd/4.0/).
ctober 2021

article under the CC BY-NC-ND license

https://doi.org/10.1016/j.tbench.2021.100006
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2021.100006&domain=pdf
mailto:duozhang@iastate.edu
mailto:mai@iastate.edu
https://doi.org/10.1016/j.tbench.2021.100006
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006

C
s
a
n
w
o

w

d

writing, we are able to reproduce nine cases successfully, which covers
four different file systems as well as the low-level block I/O layer of
the Linux storage stack.

Based on the reproducible cases, we create a benchmark suite called
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, which includes a set of portable virtual machine (VM) im-
ages containing all the necessary software programs and environments
to reproduce the nine storage failures caused by kernel-level bugs.1

omplementary to existing benchmark suites which are mostly de-
igned for measuring the performance [26–29], 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 enables re-
listic evaluation on the capability of diverse reliability tools (e.g., ker-
el bug detectors [30,31], tracers [32], record & replay tools [33]),
hich is critical for identifying the potential limitations as well as the
pportunities for further improvement.

To demonstrate the usage, we leverage 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to analyze two
representative tools for debugging: (1) FTrace, the Linux kernel internal
tracer [32]; and (2) PANDA, a VM-based record & replay tool [33].
Different from existing studies which mostly measure the tools’ runtime
overhead [34], we focus on measuring the observability, which means
the observations that the tool allows the developers to make in order
to diagnose the failure symptoms [35]. While the basic concept of
observability is not new [35], we derive a set of concrete metrics to
quantitatively and/or qualitatively measure the observability based on
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. Our experiments demonstrate the different design tradeoffs
of the tools in terms of debugging information and space overhead.
More importantly, we find that there are multiple tricky failure cases
where both tools may fail to function properly. In other words, the
usage of the tools may introduce interference to the target storage stack
and make the failure symptom un-reproducible.

In addition, we find that neither tool can directly provide low-level
information (e.g., storage device commands) on how the persistent stor-
age states are changed, which is crucial for understanding host-device
interactions in the storage stack. To address the limitation, we explore
different ways to extend both FTrace and PANDA, and shows that it
is possible to enhance both of them with such low-level observability
without relying on special hardware (e.g., bus analyzer [36,37]).

It is well acknowledged that effective benchmark suites and tools
are essential for improving various computer systems; on the other
hand, building effective benchmark suites and tools is a long-term,
iterative process that requires cohesive efforts from broad communi-
ties [25,34,38]. To the best of our knowledge, this work is the first
effort to benchmark the observability of debugging tools with concrete
metrics. We hope the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 prototype as well as the initial efforts
demonstrated in this paper will inspire follow-up research on bench-
marking and tool support for reliability, and help improve computer
systems in general.2

The rest of the paper is organized as follows: in Section 2, we
describe the background and extended motivation; in Section 3, we
characterize real-world storage failures and derives the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘; in
Section 4, we measure the observability of FTrace and PANDA based on
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 and describe our extensions; in Section 5, we discuss related
work; finally, we conclude the paper in Section 6.

2. Background & motivation

2.1. The storage stack & reliability challenge

Fig. 1 shows the typical storage stack,3 which traditionally includes
several major layers such as file systems, the block I/O layer, and
device drivers. The recent introduction of PM technologies can provide
access latencies less than 3X of DRAM while maintaining durability

1 Coincidentally, there is an early work on application-level BugBench [25];
e elaborate on the difference and the synergy in Section 5.
2 We release 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 publicly on GitLab: https://git.ece.iastate.edu/

ata-storage-lab/prototypes/bugbench.
3 Adapted from SNIA NVM Programming Model [39].
2

Fig. 1. The Storage Stack. The kernel-level software modules (green) are the major
focus of this work. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Source: Adapted from [39].

guarantee [40], which blurs the line between the storage management
and the memory management in the kernel. Consequently, the memory
management subsystem is also becoming part of the storage stack for
persistent data.

The storage system is notoriously complex and difficult to get right
despite decades of efforts [41–44]. Moreover, almost all layers in the
storage stack are being optimized aggressively in recent years. For ex-
ample, SSDs and PMs are replacing HDDs as the durable device [10–13,
18,45]; NVMe [46] and CXL [47] are redefining the host-device inter-
face; blk-mq [48] alleviates the single queue and lock contention bottle-
neck at the block I/O layer; the SCSI subsystem and the Ext4 file system
are being adapted for NVM (e.g., scsi-mq [14–16] and DAX [17]); in
addition, various NVM-oriented new designs/optimizations have been
proposed (e.g., F2FS [49], NOVA [50], Kevlar [51]), some of which
require cohesive modifications throughout the storage stack (e.g., the
TRIM support [52]). Such modifications could potentially introduce
various software bugs leading to system failures [41,53].

In practice, storage failures may occur due to various reasons includ-
ing but not limited to software bugs [41–43,53], power outages [41,
54], device errors [42,55,56], etc. Once a failure occurs, it is often
difficult to diagnose the root cause due to the complexity of the storage
stack, as demonstrated in the Algolia incident described in Section 1.
However, despite the various anecdotes, there is little quantitative
measurement or understanding of the characteristics of storage failures
occurred in the real world. We attempt to address the issue in this work.

2.2. Debugging tools

Many tools have been built to improve system reliability. For exam-
ple, testing tools (e.g., model checkers [41], fuzzers [30,31,57], fault
injectors [58–61]) focus on triggering the potential bugs in target sys-
tems in a controlled testing environment before deployment to reduce
the possibility of real-world failures. Once a system failure occurred in
practice, however, testing tools can help little for pinpointing the root
causes due to the different environments and assumptions.

Another category is debugging tools, which aims to facilitate diag-
nosing the root causes after a failure occurred in practice. While a
benchmark suite containing real world cases may be used for evaluating
both testing tools and debugging tools, we focus on debugging tools
in this paper because: (1) they are much less studied compared to
the abundant efforts on testing tools; (2) they are much needed in
diagnosing real-world failure incidents. We classify existing debugging
tools into three types as follows:

Interactive Debuggers. This category includes classic debuggers such

as GDB/KDB/KGDB [62–64], which represents the de facto way to

https://git.ece.iastate.edu/data-storage-lab/prototypes/bugbench
https://git.ece.iastate.edu/data-storage-lab/prototypes/bugbench

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006

l
a
l
w
e
c
s
i
b

R
a
T
w
w
s
s
w
i
(
m
(

p
k
c
o
d
i
t
f
r

2

[
i
o
s

o

d
t
(
q

s

diagnose software system failures. They usually support fine-grained
manual inspection (e.g., setting breakpoints at specific statements,
checking the values of specific memory bytes). However, significant
human efforts and expertise are needed to harness the power and
to diagnose the complicated storage stack efficiently. Such traditional
debugging methods are arguably not scalable, because the required
manual effort and experience will keep increasing as the system be-
comes more and more complex. More automation and/or intelligence
are probably needed to make debugging scalable.

Software & Hardware Tracers. Software tracers [32,65–69] can col-
ect various events from a running target system automatically, which
re typically implemented via dynamic instrumentation. The traced
ogs can help understand the system anomalies (among other purposes),
hich are often invaluable for failure diagnosis. Similarly, bus analyz-
rs [36,37] are hardware equipments that can capture the low-level
ommunication data (e.g., SCSI commands [70]) between the storage
oftware and the device. However, since they only trace bus-level
nformation, they cannot help much on understanding system-level
ehaviors.

ecord & Replay Tools. Record & replay tools [33,71] have been
pplied to debugging for both user-level applications and the kernel.
ypically, these tools leverage virtual machines to run the target soft-
are stack as a whole. Meanwhile, they record system snapshots as
ell as non-deterministic events (e.g., interrupts) to ensure replaying

ystem execution faithfully. Developers can replay the recorded whole
ystem execution logs repeatedly without the needs of re-running the
orkloads. Also, it is possible to integrate record & replay tools with

nteractive debuggers (e.g., GDB) to perform traditional debugging
e.g., setting breakpoints) during the replay. Additional analysis passes
ay also be implemented based on the record & replay mechanism

e.g., plugins in PANDA [33]).
Note that all of the three types of tools mentioned above are im-

ortant debugging tools widely used in practice. But to the best of our
nowledge, there is little quantitative measurement of their debugging
apability. We attempt to address the deficiency in this work. We focus
n software tracers and record & replay tools because they enable
ifferent degrees of automation for failure diagnosis, which we believe
s critically important for a scalable debugging methodology. We leave
he measurement of interactive debuggers (which requires manual ef-
ort/expertise that is difficult to quantify) and hardware tracers (which
equires special hardware) as future work.

.3. Observability of debugging tools

A few researchers have studied and benchmarked debugging tools
34] due to their prime importance in practice. However, existing stud-
es mostly focus on the performance (e.g., runtime overhead) instead
f their effectiveness, largely due to the lack of reliability benchmark
uites.

Complementary to the existing efforts, we focus on the effectiveness
f failure diagnosis. Specifically, we propose to measure the observ-
ability of debugging tools, which is a concept proposed recently for
improving system reliability [35]. The observability includes three de-
sired properties (i.e., visibility, repeatability, and expressibility) for
debugging failures. Intuitively, the concept describes the observations
that a tool allows the developers to make [35], which is critically
important for debugging. While the concept of observability is well
known, there is no practical methodologies to measure it to the best
of our knowledge. We demonstrate how to measure the observability
using realistic cases and concrete metrics in this work.

3. Characterization of storage failures

In this section, we describe how we collect the storage failure
dataset (Section 3.1); the overall characteristics of the dataset (Sec-

𝑘
tion 3.2); and how we derive the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ (Section 3.3).

3

Table 1
Overview of storage issues on Bugzilla.

Group Count Avg. Avg. Comments/
(%) Days Participants

Resolved 136 (49.1%) 146.9 8/3
Unresolved 141 (50.9%) 1444.2 5/2

Overall 277 807.3 6/2

3.1. Methodology

To understand the characteristics of real-world problems of the
storage stack, we collect failure issues reported by the end users from
Linux Bugzilla [72]. We choose this platform because it is one major
venue for regular users to report encountered failures to the Linux
kernel community, and the reported issues are typically examined by
the kernel developers with detailed status updates. Since the platform
includes issues of the entire Linux kernel which is beyond the scope of
the storage stack, we apply the following methods to refine the dataset.

First, Bugzilla organizes the issues based on major kernel com-
ponents (e.g., ‘‘Process Management’’, ‘‘Networking’’), so we search
for the issues tagged with storage-related components (e.g., ‘‘File Sys-
tems’’, ‘‘IO/Storage’’, ‘‘Memory Management’’, ‘‘Drivers’’) or generic
components (i.e., ‘‘Others’’); also, the time of the issues is limited to
the recent ten years. Next, in order to identify a manageable and
important subset for study, we refine the dataset further by using a
set of keywords implying severe failure consequences (e.g., ‘‘data loss’’,
‘‘corrupt’’). Moreover, for the ‘‘Other’’ category, we further analyze
the issues manually based on our domain knowledge and only keep
storage-related ones (e.g., keeping software RAID issues but excluding
GPU buffer corruptions). The resulting dataset contains 277 issues in
total, which represents a subset of severe storage failures experienced
by Linux end users. Note that this method is similar to the keyword
search in previous studies [53,73].

Threats to validity. The characterization results presented in this
section should be interpreted with the methodology in mind. In partic-
ular, the dataset was refined via critical keywords and manual efforts,
which might be incomplete. Also, only a limited subset of Linux end
users are aware of Linux Bugzilla and only a limited subset of them
would report issues. Therefore, it is likely that there are more storage-
related issues occurred in the wild but not captured in this study. Nev-
ertheless, we believe our effort is one important step toward addressing
the challenge.

3.2. Overall characteristics

Bugzilla maintains various status tags for the issues reported (e.g.,
‘‘new’’, ‘‘closed’’). For simplicity, we classify the issues into two groups
based on their status tags: (1) Resolved, which includes issues with the
‘‘resolved’’ or ‘‘closed’’ status; (2) Unresolved, which includes issues with
‘‘new’’, ‘‘assigned’’, ‘‘reopened’’, or ‘‘verified’’ status. We summarize
the two groups in Table 1. The second column shows the number of
issues (and the percentage) in each group. The third column shows
the average duration of the issues in days. For the Resolved group, the
duration is calculated based on the report date and the date of the last
comment; for the Unresolved group, it is the period between the report
date and the time of this writing. The last column shows the average
numbers of comments and participants in resolving the issues. We make
multiple observations as follows:

First, the issues took multiple months to resolve on average (e.g., 146.9
ays for the Resolved group in Table 1), and the diagnosis process
ypically involve multiple rounds of discussions and multiple people
e.g., 8 comments and 3 participants for the Resolved group), which
uantitatively suggests the difficulty of diagnosing storage failures.

Second, the issues involve all major components in the storage software
tack. As shown in Fig. 2, both Resolved and Unresolved groups span

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006
Fig. 2. Distributions of Resolved (orange) and Unresolved (green) Issues across
Different Storage Components.. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Characteristics of Resolved Issues across Storage Components in terms of
Average Duration (green bar), Average Number of Comments (orange line) and Average
Number of Participants (gray line).. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

over all the five storage components studied. This implies that an ideal
debugging tool should provide the full-stack observability. In partic-
ular, ‘‘File System’’ and ‘‘Driver’’ contains the most issues reported,
which is consistent with previous studies [53].

Third, for the resolved issues, the average debugging time is consistently
long across components. As shown in Fig. 3, the average debugging time
of all five components is more than 100 days. This implies that due to
the complexity of the storage stack, no single component is particularly
easier to diagnose, which again suggests the importance of capturing
the full-stack observability for debugging tools.

Fourth, 37 out of 136 (26.3%) resolved issues involve multiple OS
distributions or kernel versions. The manifestation symptoms of the issues
often differ on different systems, which suggests that the software envi-
ronment (e.g., kernels, libraries) is critically important for reproducing
the failures for diagnosis.

Fifth, only 5 out of 136 (3.7%) resolved issues were caused by hard-
ware. This implies that software remains the major source of storage
failures, which is consistent with previous studies [74]. Also, it suggests
that observing the behavior of the storage software stack is critically
important for failure diagnosis.

3.3. 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘

To identify the limitations of state-of-the-art debugging tools as well
as the opportunities for further improvement, it is necessary to have a
set of reproducible failure cases, so that we can apply the target tools and
conduct the measurement. To this end, we analyze a set of storage fail-
ure issues in depth, identify the specific conditions required to trigger
the issues (e.g., user/workload operations, software libraries involved,
Linux kernel versions and configurations), and attempt to reproduce the
cases on our server machines. This turns out to be a challenging and
time-consuming process due to the complexity of the Linux kernel as
well as the diversity of the Linux end users’ system setups. For example,
4

the reproducing procedure typically requires finding and (re)compiling
specific versions of the Linux kernel with non-default configurations,
pulling specific software packages which may not be well maintained,
deriving workload programs to emulate various users’ inputs, etc. At
the time of this writing, we have identified 61 cases with relatively
complete information for reproducing, and we are able to reproduce
3 cases successfully in our environment. This first-hand experience
further confirms the challenge of failure diagnosis and the needs for
a readily reproducible benchmark suite.

To ensure that the cases can be reliably reproduced and to enable
easy sharing of the reproduced cases in the communities, we package
all the required software programs and system environments in VM im-
ages. We create two VM images for each of the successfully reproduced
cases: the first VM image contains the buggy storage stack and the
necessary workload programs, libraries, etc. for reproducing the case;
the second VM image contains the patched kernel (i.e., the bug in the
storage stack has been fixed by the corresponding patch) to serve as a
reference for verification.

In addition, to improve the case count as well as the diversity of
the reproducible cases, we collect additional storage-related bug cases
from the Linux mailing lists [34]. The cases reported on the Linux
mailing lists are often discovered by the developers directly during
the internal regression testing, so they may not contain the same
information as the issues reported by the end users on Bugzilla (e.g., no
user experienced consequences, user environments, or resolving sta-
tus). Such developer-discovered cases are relatively less valuable for
characterizing the real-world failure impact or diagnosis difficulty (as
in Section 3.2). However, these cases are still realistic in that they
may affect Linux distributions released earlier (i.e., before the bug
patch). In other words, if they can be reproduced readily, they are as
valuable as the Bugzilla issues for measuring debugging tools and other
reliability utilities. At the time of this writing, we are able to reproduce
6 storage-related cases from the Linux mailing list successfully. We also
create the corresponding VM images for the 6 cases to facilitate future
reproducible research.

Based on the 9 reproducible cases (i.e., 3 from Bugzilla and 6 from
the Linux mailing list), we have created a benchmark suite called
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, which includes a set of VM images containing all the
necessary workloads and system environments/configurations to repro-
duce the 9 cases. We summarize the 9 cases in Table 2. As shown in
the table, the current prototype of 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 covers 4 different file
systems, including 2 cases for Ext4 (i.e., ‘‘1-EXT4’’, ‘‘2-EXT4’’), 3 cases
for Btrfs file system (i.e., ‘‘3-BTRFS’’, ‘‘4-BTRFS’’, ‘‘5-BTRFS’’), 1 case
for F2FS (i.e., ‘‘6-F2FS’’), and 1 case for GFS2 (i.e., ‘‘7-GFS’’). Moreover,
there are 2 cases for the low-level block I/O layer of the storage stack
(i.e., ‘‘8-BLK’’ and ‘‘9-BLK’’).

The ‘‘Critical Function’’ column in Table 2 shows the major kernel
functions that are identified as problematic for each case. We can see
that the number of critical functions ranges from 1 to 7 (in ‘‘6-F2FS’’),
depending on the complexity of the bug fixes.

The root causes of the 9 cases can be classified into either ‘‘Se-
mantics’’ bugs (7 cases) or ‘‘Memory’’ bugs (2 cases) based on the bug
patterns defined in the literature [53,73,75]. Unlike other types of bugs
that have well-studied patterns to understand (e.g., deadlocks, data
races), ‘‘Semantics’’ bugs is among the hardest issues in practice be-
cause they typically require deep understanding of system design logic
to detect or diagnose. In other words, the cases included 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘

require sophisticated methodologies to diagnose effectively.
The ‘‘Bug Size’’ is defined as the sum of lines of insertion and

deletion code (LoC) in the bug patch, which ranges from 6 (in ‘‘2-
EXT4’) to 121 (in ‘‘4-BTRFS’’) LOC depending on the complexity of the
cases. The last column shows the language we used to implement the
bug triggering workloads. We use Bash, C, or a combination of both
to implement the workloads, depending on the input characteristics
described in the user reports (for Bugzilla cases) or bug patches (for

Linux mailing list cases).

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006

U
L
o
k
B
t
h
a
t
v

Table 2
Overview of reproducible cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘.
Case ID OS Linux Storage Critical Bug Bug Workload

Image Kernel Component Function Type Size Language

1-EXT4 Ubuntu v5.4.0 Ext4 ext4_do_update_inode, Semantics 8 C
20.04 File System ext4_isize_set,

ext4_clear_inode_state,
cpu_to_le16,cpu_to_le32,
ext4_update_inode_fsync_trans

2-EXT4 Ubuntu v5.4.0 Ext4 parse_options Semantics 6 C & Bash
20.04 File System

3-BTRFS Ubuntu v4.4.107 BTRFS btrfs_ioctl_snap_destroy, Semantics 71 C
16.04 File System btrfs_record_snapshot_destroy,

btrfs_set_log_full_commit,
check_parent_dirs_for_sync,
btrfs_log_inode,
btrfs_release_path

4-BTRFS Ubuntu v4.4.107 BTRFS btrfs_log_trailing_hole Semantics 121 C
16.04 File System

5-BTRFS Ubuntu v5.4.0 BTRFS btrfs_log_all_parents, Semantics 13 C
20.04 File System btrfs_log_inode,

btrfs_must_commit_transaction,
btrfs_record_unlink_dir

6-F2FS Ubuntu v4.15.0 F2FS f2fs_submit_page_bio, Memory 94 C & Bash
16.04 File System f2fs_is_valid_blkaddr,

verify_block_addr,
zero_user_segment,,
validate_checkpoint,
datalock_addr

7-GFS Ubuntu v4.4.0 GFS2 gfs2_check_sb, fs_warn Memory 18 Bash
16.04 File System

8-BLK Ubuntu v5.4.0 Block blkdev_fsync, sync_blkdev Semantics 12 C
20.04 Layer

9-BLK Ubuntu v4.19.1 Block __blk_mq_issue_directly, Semantics 9 Bash
18.10 Layer blk_mq_update_dispatch_busy,

__blk_mq_requeue_request
We choose Ubuntu to reproduce the cases by default because
buntu is one of the most well supported OS distributions for many
inux tools. Also, since many utilities and packages are outdated
r even not usable on old kernels, we port the cases to the latest
ernel (i.e., v5.4.0) when possible. For 5 cases (i.e., ‘‘3-BTRFS’’, ‘‘4-
TRFS’’, ‘‘6-F2FS’’, ‘‘7-GFS’’, ‘‘9-BLK’’), we are not able to reproduce
he cases in the latest kernel because the affected kernel structures
ave been changed significantly and the original problematic functions
re no longer compatible with the latest kernel. Therefore, we have
o reproduce them in relatively old versions (e.g., v4.4.107, v4.15.0,
4.4.0) where the cases are still reproducible.

To sum up, the current prototype of 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 includes a set
of VM images for reproducing 9 realistic storage failure cases. These
reproducible cases, including the complete software workloads and
environments encapsulated in VMs, enable us to measure and evaluate
the effectiveness of tools conveniently. We demonstrate the usage of
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 in the context of two representative debugging tools in the
next section (Section 4).

4. Measuring the observability

In this section, we apply 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to study FTrace and PANDA,
both of which are state-of-the-art tools widely used for debugging
(among other usages). We find that 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 can help measuring
tools with completely different design principles. Also, we find that
both FTrace and PANDA may provide useful information for the ma-
jority of the cases evaluated. On the other hand, both of them may
behave abnormally when diagnosing some tricky cases. We elaborate
on the experimental results of FTrace and PANDA in Section 4.1 and
Section 4.2, respectively. In addition, we find that both tools fall
short of providing low-level information on how the persistent states
are changed. We discuss our extensions to improve their low-level

observability in Section 4.3.

5

4.1. FTrace

FTrace is the Linux kernel internal tracer that has been included in
the mainline Linux since v2.6.27 [32]. We measure the observability of
its major feature (i.e., kernel function tracing) in this subsection.

Table 3 summarizes the results of applying FTrace to diagnose the
9 cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 (labeled from ‘‘1-EXT4’’ to ‘‘9-BLK’’ in the first
column). The second column (‘‘Still Reproducible’’) shows whether
the bug cases can still be reproduced when enabling FTrace to trace
the target storage stack. We can see that FTrace do not affect the
reproducibility of any case. In other words, the tool is non-intrusive
for debugging all the cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘.

The third column shows the total number of functions (Func.)
traced by FTrace in each case, which may include duplicated entries
if a kernel function is invoked multiple times during the workload
execution. We run FTrace for three times and calculate the aver-
age count (e.g., ‘‘12,506’’ for ‘‘1-EXT4’’) and the range of variance
(e.g., ‘‘±4.1%’’). We can see that FTrace can generate a large amount
of functions for most cases, ranging from ‘‘6867’’ (in ‘‘8-BLK’’ case)
to ‘‘110,772,722’’ (in ‘‘9-BLK’’ case), which implies that the tool can
provide rich function-level information for diagnosing the target system
behavior.

Similarly, the fourth column shows the number of unique functions
traced in each case (i.e., excluding duplicated entries), which is gener-
ally much smaller compared to the total number of functions traced
(i.e., the third column). This implies that the same kernel functions
may be invoked many times in all the failure cases. From debugging’s
perspective, the large redundancy in the trace could exacerbate the
challenge of diagnosing system behavior.

The fifth column (‘‘Critical Func. Observed’’) measures how many
of the critical functions can be observed by FTrace in each case. As
mentioned in Section 3.3, a critical function is a problematic kernel

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006
Table 3
FTrace results on 9 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 cases.
Case ID Still Total # of Total # of Critical Func. Shortest Log

Reproducible? Func. Traced Unique Func. Observed Distance Size (MB)

1-EXT4 Yes 12,506 (±4.1%) 1,152 (±0.7%) 1/7 – 2.07 (±0.01)
2-EXT4 Yes 54,796 (±2.3%) 1,436 (±15.9%) 0/1 2 9.17 (±0.03)
3-BTRFS Yes 46,370 (±5.6%) 1,339 (±1.5%) 3/6 – 6.87 (±0.10)
4-BTRFS Yes 92,476 (±5.5%) 1,381 (±1.0%) 0/1 1 14.1 (±0.43)
5-BTRFS Yes 30,528 (±3.6%) 1,419 (±1.5%) 3/4 – 5.2 (±0.03)
6-F2FS Yes 0 0 0/7 – 0
7-GFS Yes 0 0 0/2 – 0
8-BLK Yes 6,867 (±2.7%) 901 (±4.3%) 1/2 – 1.1 (±0)
9-BLK Yes 110,772,722(±6.4%) 1,165(±0.8%) 2/3 – 7,496.2 (±153.1)
function that contributes to the storage failure. A failure case may
have multiple critical functions as the root cause, depending on the
complexity of the failure. We can see that although FTrace can trace
many functions, it may not be able to capture the critical functions
effectively for the cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. For example, in ‘‘1-EXT4’’, there
are 7 critical functions but only one of them can be captured by FTrace
(i.e., ‘‘1/7’’). Similarly, in four other cases (i.e., ‘‘3-BTRFS’’, ‘‘5-BTRFS’’,
‘‘8-BLK’’, and ‘‘9-BLK’’), only partial critical functions can be observed
(i.e., ‘‘3/6’’, ‘‘3/4’’, ‘‘1/2’’, and ‘‘2/3’’, respectively).

In terms of ‘‘2-EXT4’’ and ‘‘4-BTRFS’’, none of the critical functions
in the two cases can be directly observed by FTrace (i.e., ‘‘0/1’’ in
the fifth column for both cases). To measure the relevance of the
traced functions in these two cases, we further calculate the ‘‘Shortest
Distance’’ (the sixth column), which is defined by the minimum number
of function invocations needed from the traced functions to the critical
functions. We find that although FTrace misses the critical function in
‘‘4-BTRFS’’, it actually captures the parent function (i.e., the ‘‘Shortest
Distance’’ is ‘‘1’’) correctly. Similarly, it captures the parent’s parent
function of the missing critical function in ‘‘2-EXT4’’ (i.e., the ‘‘Shortest
Distance’’ is ‘‘2’’). This implies that FTrace may still be helpful for
diagnosing failures even if it may miss some specific functions.

To understand why FTrace may not be able to trace all critical func-
tions for debugging the cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, we look into the internals
of FTrace. We find that FTrace relies on a pre-defined list for identifying
traceable functions, which is stored in 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑓𝑖𝑙𝑡𝑒𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 file in
the 𝑑𝑒𝑏𝑢𝑔𝑓𝑠 of the target system. Moreover, the default list may contain
different functions on different kernel versions we evaluated. This list
fundamentally limits the observability of FTrace for debugging diverse
failure scenarios, as exposed by the incomplete critical functions in the
fifth column (‘‘Critical Func. Observed’’),

In terms of ‘‘6-F2FS’’ and ‘‘7-GFS’’, the two cases are still repro-
ducible with FTrace enabled, but FTrace cannot help much in either
case (i.e., ‘‘0’’ in ‘‘Total # of Func. Traced’’). This is because the
manifestation of the two cases is kernel panics. Under such a scenario,
FTrace cannot function normally. This result exposes a fundamental
limitation of FTrace for debugging the storage stack in the kernel:
FTrace itself depends on the probes or tracepoints embedded in the
kernel, so it cannot survive severe kernel problems (e.g., kernel panics),
let alone help diagnosing the problem in such severe scenarios.

The last column shows the size of the logs generated by FTrace
under 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. We can see that FTrace consumes a relatively small
amount of storage space for most cases, ranging from 1.1MB (‘‘8-
BLK’’) to 14.1MB (‘‘4-BTRFS’’). Since the log size largely depends on
the amount of workload operations, the low storage overhead implies
that workloads included in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 are concise and effective for
triggering the 7 cases.

On the other hand, the last case (‘‘9-BLK’’) incurs a relatively large
amount of storage overhead (i.e., around 7496 MB). This is because the
failure requires a relatively heavy workload to trigger. Specifically, the
workload includes pulling and installing many software packages from
the Internet via the dpkg package manager, which involves both the
network subsystem and the storage stack and leads to a large amount
of kernel functions being traced (i.e. , ‘‘110,772,722’’). Since only 3
6

critical functions contribute to the failure in the ‘‘9-BLK’’ case, the
substantial amount of traced functions may dilute the debugging focus.
In other words, more intelligent methodologies are likely needed to
help derive insights from the abundant FTrace logs for debugging.

4.2. PANDA

PANDA (Platform for Architecture-Neutral Dynamic Analysis) is an
open-source platform for program analysis [33]. By leveraging virtual-
ization (i.e., QEMU [76]) and the LLVM compiler infrastructure [77],
PANDA can help understand the behavior of the entire storage software
stack. We focus on measuring its major feature (i.e., record & replay)
and 4 related plugins (i.e., Show Instructions, Taint Analysis, Identify
Processes, Process-Block Relationship) in this subsection because they
are most relevant for diagnosing storage failures.

Since PANDA records the full state of a target system hosted in
QEMU as well as all non-deterministic events in snapshots, it can
achieve full-stack, all-instruction observability by design (i.e., all ex-
ecuted instructions are observable by replaying). Therefore, we do
not calculate the function-based metrics as used in measuring FTrace
(Section 4.1). Instead, we qualitatively measure if the target features
are applicable in diagnosing failures.

Table 4 summarizes the results of applying PANDA to diagnose the
9 cases in 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. Similar to Table 3, the second column (‘‘Still
Reproducible’’) shows whether the bug cases can still be reproduced
when using PANDA. We observe that PANDA do not introduce any
interference for the first 8 cases, similar to FTrace.

Nevertheless, PANDA fails in the last case (‘‘9-BLK’’). Specifically,
we observe that the guest VM is hanging when applying PANDA to
diagnose the ‘‘9-BLK’’ case. Multiple factors may contribute to the hang.
First, as mentioned in Section 4.1, the workload requires installing
many packages which are pulling from the Internet via dpkg. In other
words, this workload involves the network subsystem and tends to
generate many non-deterministic events within the kernel. Secondly,
the QEMU-based PANDA needs to record all such events in order to
ensure a successful replay, which incurs significant overhead in the
critical path of QEMU’s translation of guest instructions. As a result,
QEMU is overloaded by PANDA’s event recording, and cannot finish the
translation of guest instructions on time. Eventually, the guest kernel
(to be diagnosed) hangs in the QEMU VM. This result suggests that
the state-of-the-art record & replay mechanisms may not be lightweight
enough for diagnosing tricky storage failures.

For the remaining 8 cases, we find that PANDA’s major record
& replay feature and the 4 relevant plugins can all work normally
(i.e., ‘‘✓’’) to support full-stack observability. On the other hand, the
full-stack, all-instruction observability comes at the cost of overhead.
The last column shows that PANDA incurs hundreds of MB storage
overhead for its snapshots and event logs in most cases, which is orders
of magnitude larger than the logs generated by FTrace on the same
cases (Table 3).

Note that in terms of ‘‘6-F2FS’’ and ‘‘7-GFS’’ where FTrace fails due
to kernel panics, PANDA can still work properly. This suggests a unique
advantage of VM-based debugging tools like PANDA: by isolating the
target storage software stack in the guest VM, the tool itself can survive
severe problems of the target system and still provide effective support

for diagnosing the problem.

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006
Table 4
PANDA results on 9 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 cases.
Case ID Still Repro-

ducible?
Record &
Replay

Plugin Log Size
(MB)

Show Taint Identify Process-Block
Instructions Analysis Processes Relationship

1-EXT4 Yes � � � � � 659.9
2-EXT4 Yes � � � � � 671.9
3-BTRFS Yes � � � � � 380.7
4-BTRFS Yes � � � � � 811.7
5-BTRFS Yes � � � � � 683.1
6-F2FS Yes � � � � � 451.7
7-GFS Yes � � � � � 408.7
8-BLK Yes � � � � � 658.7
9-BLK No N/A N/A N/A N/A N/A N/A
Fig. 4. An Example of Augmented FTrace Log for 8-BLK.

4.3. Enhancing low-level observability

Through the experiments with 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘, we find that neither
FTrace nor PANDA can provide direct observability on the lowest
level of information communicated between the storage software and
the storage device, i.e., the device commands (e.g., SCSI [70]). Such
command-level information is valuable in diagnosing storage failures
because the persistent storage states are changed by the device com-
mands directly. Traditionally, bus analyzers [36,37] are used to capture
such command-level information. But as mentioned in Section 2.2, bus
analyzers are hardware-based tools which are not as convenient as soft-
ware tools. We introduce software extensions to capture bus-analyzer-
like command information and enhance the low-level observability of
both FTrace and PANDA in this subsection.

FTrace Extension. To avoid introducing unnecessary complexity
to FTrace’s probe mechanism in the kernel, we use an indirect way
to extend FTrace. Specifically, we use a customized iSCSI driver [78]
to collect device commands with timestamp, and align the collected
device commands with the original FTrace logs based on timestamp.
In doing so, the kernel functions are augmented with low-level device
commands under the corresponding critical I/O paths.

We have verified that this extension method works for all the cases

where FTrace can work normally without the extension. As an example,

7

Fig. 5. An Example of Augmented QEMU Log for 8-BLK.

Fig. 4 shows a simplified version of the extended FTrace logs for the ‘‘8-
BLK’’ case. The traced kernel functions are augmented with additional
SCSI commands (bolded) based on timestamp. Fig. 4(a) shows the
augmented log of an abnormal run (i.e., the bug is triggered), where
we can see that the function 𝑏𝑙𝑘𝑑𝑒𝑣_𝑓𝑠𝑦𝑛𝑐 eventually generates a write
command to the device (‘‘SCSI-CMD: WRITE’’). This is problematic
because the high-level sync function (i.e., 𝑏𝑙𝑘𝑑𝑒𝑣_𝑓𝑠𝑦𝑛𝑐) should gen-
erate a low-level sync operation (instead of simply a regular write
operation) at the device command level. Fig. 4(b) shows the augmented
log of a corresponding normal run. We can see that an additional sync
command (‘‘SCSI-CMD: SYNC_CACHE’’) is actually generated within the
scope of the 𝑏𝑙𝑘𝑑𝑒𝑣_𝑓𝑠𝑦𝑛𝑐 function, which is expected.

Essentially, our extension combines the features of FTrace and the
traditional hardware-based bus analyzer [36,37]. By extending FTrace
logs with the command-level information in this way, we enhance the
low-level observability of FTrace without using special hardware.

PANDA Extension. As mentioned in Section 4.2, PANDA uses
QEMU to host the entire storage software stack in the guest VM,
so the iSCSI driver solution for FTrace does not work for PANDA.
Instead, we modify QEMU to capture all command-level information
and leverage QEMU’s internal logging mechanism to align commands
with instructions.

Specifically, in QEMU, the guest OS kernel communicates with a
SCSI device by sending Command Descriptor Blocks (CDBs) over the
bus. QEMU maintains a ‘struct SCSICommand’ for each SCSI command,
which contains a 16-byte buffer (‘SCSICommand->buf’) holding the
CDB. Every SCSI command type is identified by the opcode at the
beginning of the CDB, and the size of CDB is determined by the opcode.
For example, the CDB for the WRITE_10 command is represented by

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006

f
d

5

n

B
b
e
t
p
t
t
o
e
i
q

B
p
t
l
c
l
r
f
t
f
w
a
B
p
n
T
W
a
s
r

S
f
7
6
s
n
v
a

the first 10 bytes of the buffer. For simplicity, we always transfer
16 bytes from the buffer to the command log and use the opcode
to identify valid bytes. QEMU classifies SCSI commands into either
Direct Memory Access (DMA) commands (e.g., READ_10) or Admin
commands (e.g., VERIFY_10), and both are handled in the same way
in our extension since they share the same data structure.

As an example, Fig. 5 shows a simplified version of the augmented
QEMU log for the ‘‘8-BLK’’ case. The two bold lines (i.e., ‘‘SCSI-CMD
...’’) are the added device command information. and the remain-
ing lines are the original QEMU log which includes both instructions
(i.e., lines starting with addresses ‘‘0x5649e2...’’ etc.) and interrupts
(e.g., ‘‘Servicing hardware INT=0xec’’). The dash lines show the trans-
lation iteration of QEMU, each of which includes one basic block
of instructions and the relevant device commands (if any). Similar
to the FTrace extension, we enhance the low-level observability of
PANDA/QEMU log without relying on special hardware.

4.4. Summary & discussion

To sum up, we have measured and evaluated the debugging observ-
ability of FTrace and PANDA via 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘. Through the experiments,
it is clear that FTrace and PANDA have different design tradeoffs and
provide different level of observability. Moreover, we have demon-
strated that it is possible to enhance their low-level observability via
different lightweight extensions without hardware.

In particular, the results of FTrace suggest that tracing-based tools
may be fundamentally limited for diagnosing storage failures in two
aspects: (1) they may trace too many functions/events most of which
may not be relevant to the root cause; (2) they may fail to function
properly when the target storage system is malfunctional severely
(e.g., kernel panics as in ‘‘6-F2FS’’ and ‘‘7-GFS’’).

On the other hand, the results of PANDA suggest that VM-based
tools may be more viable for diagnosing storage failures because they
can isolate the entire storage software stack from the core debugging
functionality. However, in complicated failure scenarios, the events
monitored may overwhelm the virtualization layer (e.g., ‘‘9-BLK’’ for
PANDA), which suggests that more lightweight and less intrusive meth-
ods are needed to leverage virtualization for debugging.

We focus on measuring the observability of the debugging tools
in this work because this is one of the most important metrics for
debugging failures [35]. We envision many opportunities for further
improvements based on the initial effort. For example, we recognize
that observability is only one desired property proposed recently for
improving system reliability [35]. There are other important properties
and tools which may be measured by using 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 (e.g., runtime
overhead of debugging tools, false positive rates of bug detection tools).
Also, the current prototype of 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 only contains 9 reproducible
cases due to the difficulty of reproducing real-world storage failures
with incomplete information (as discussed in Section 3.3). And unfor-
tunately, based on our investigation, none of the 277 issues collected
in our dataset (Section 3) are directly related to the PM modules
introduced to the storage stack recently. In terms of debugging tools,
we only measure the core features of FTrace (i.e., kernel function
tracing) and PANDA (i.e., record & replay and 4 related plugins) in
our experiments. In fact, both FTrace and PANDA provide a rich set of
additional features which might also be helpful for failure diagnosis.
For example, FTrace allows users to add additional events tracing
based on tracepoints [32]. Similarly, PANDA has additional plugins
built on top of its record & replay framework. We leave reproducing
PM-specific cases, deriving additional metrics, and measuring other
debugging features and tools as future work.

While we only touch the observability of diagnosing the storage
stack in this paper, the concept is also applicable in other contexts.
In particular, researchers and practioners have recognized the critical
importance of observability in the Cloud Native environment [79],
where various components have been developed to enhance the observ-
ability to meet service-level objectives (SLOs) [79]. However, different
8

from the modern Cloud-Native environment which supports loosely-
coupled microservices and enables flexible integration of monitoring,
tracing, logging, etc. services for observability, the storage stack in
the monolithic Linux kernel has more constraints. How to improve
the observability for the monolithic kernel with minimal intrusion
remains an open question. Our effort on measuring the observability of
state-of-the-art tools is one first step toward addressing the challenge.

Finally, we would like to point out that our goal of measuring
the observability of different debugging tools in this work is not to
imply which one is better. Instead, we hope to identify the potential
limitations of the state-of-the-art tools in the context of diagnosing
realistic storage failures, and inspire further improvements to address
the debugging challenge. And as shown in our experiments, although
the total number of reproducible cases is relatively small, 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘
and the associated metrics have already exposed the limitations of the
state-of-the-art tools evaluated, which suggests the needs and opportu-
nities for more advanced diagnosis support. We hope that our initial
𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 effort and the proof-of-concept extensions can inspire more
ollow-up research efforts in the communities, and contribute to the
evelopment of benchmarking for system reliability in general.

. Related work

In this section, we discuss four categories of related work that have
ot been covered sufficiently in the previous sections.

enchmarking Storage Systems. Great efforts have been made to
enchmark and measure various storage systems [25–28,80,81]. For
xample, FIO [27] allows specifying diverse I/O patterns (e.g., sequen-
ial/random/mixed read or write operations) in multiple threads or
rocesses. WHISPER [80] includes ten PM applications covering three
ypes of access interfaces to PM, which enables analyzing the charac-
eristics of PM applications (e.g., percentage of writes to PM, number
f ordering points). Complementary to these existing benchmarking
fforts which mostly focus on measuring the performance metrics, we
ntroduce 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 and a set of metrics to enable quantitative and
ualitative measurement of debugging observability.

Coincidentally, there is an early work by Lu et al. which is called
ugBench [25]. The authors collected 17 bug cases in C/C++ ap-
lications, and proposed to evaluate bug detections tools based on
he bug cases. Different from BugBench which includes application-
evel bug cases, 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 includes buggy OS kernels covering major
omponents of the storage stack (e.g., multiple file systems, and low-
evel block I/O software), which are arguably more difficult to package,
eproduce, or diagnose compared to user-level applications. Also, dif-
erent from BugBench which focuses on evaluating user-level testing
ools, we focus on evaluating the debugging tools for diagnosing
ailures, which is critically important for resolving failures in the real
orld but unfortunately is much less investigated compared to the
bundant research on bug detection [30,31]. On the other hand, both
ugBench and 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 focus reliability-oriented metrics (e.g., false
ositive rates, observability) and aims to improve the system robust-
ess, which is different from traditional performance-oriented metrics.
herefore, we view the two efforts as complementary to each other.
e hope that by reviving the concept of benchmarking for observ-

bility and other important reliability-oriented properties of computer
ystems, this work will inspire follow-up research and help improve the
obustness of systems in general.

tudies of Software Bugs and Failures. Many researchers have per-
ormed empirical studies on bugs or failures in software systems [73–
5,82–84]. For example, Lu et al. [75] studied 5079 patches from
Linux file systems and identified evolution trends; Lu et al. [73]

tudied 105 concurrency bugs from 4 applications and identified a
umber of common bug patterns (e.g., atomicity-violation and order-
iolation); Duo et al. [53] studied 1350 PM-related kernel patches
nd identified a number of PM bug characteristics including PM patch

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006
categories, PM bug patterns, consequences, and fix strategies; Gunawi
et al. [85] studied 597 cloud service outages and derived multiple
lessons including the outage impacts, causes, etc; Liu et al. [86] studied
hundreds of incidents in Microsoft Azure.

Generally, our work is complementary to the existing ones as we
focus on bugs in the entire storage stack experienced by the end users,
which has a different scope compared to most of the existing studies.
Moreover, we reproduce a set of cases and derive a 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to
measure representative debugging tools, which is beyond the scope of
existing empirical studies.

Characterizing Storage Devices. Many researchers have studied the
behaviors of storage devices in depth, including both HDDs [87–89]
and SSDs [1,55,56,59,90–96]. For example, Bairavasundaram et al. [88]
analyze the data corruption and latent sector errors in production
systems containing 1.53 million HDDs; Maneas et al. [56] study the
reliability of 1.4 million SSDs deployed in NetApp RAID systems.
Schroeder et al. [89] analyze the disk replacement data of seven pro-
duction systems over five years. Generally, these studies may provide
valuable insights for reasoning complex storage failures caused by
device. Different from these device-level studies, we analyze the storage
failures at the system level involving different kernel components,
which is complementary to the existing work.

Testing Storage Software. Great efforts have been made to test various
storage software systems [41,54,58,60,61,97–101], with the goal of
exposing bugs that could lead to failures. For example, EXPLODE [41]
uses modeling checking to find storage system bugs [41], and B3

applies bounded black-box testing to detect crash-consistency bugs in
file systems [58]. However, testing tools are generally not suitable
for diagnosing system failures because they typically require a well-
controlled environment (e.g., a highly customized kernel [41,58]),
which may be substantially different from the storage stack that need
to be diagnosed. While the goal of this work is not to develop a new
bug detection tool, the 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 created in this work may be used
to evaluate such tools as well (e.g., false positive rate on detecting the
reproducible bugs), which we leave as future work.

6. Conclusions

We have studied 277 real-world storage failures to quantitatively
understand their characteristics. Based on the characterization, we
derived a 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 which includes the necessary workloads and
software environments to reproduce 9 realistic storage failure cases. We
applied 𝐵𝑢𝑔𝐵𝑒𝑛𝑐ℎ𝑘 to study two representative open source tools and
derived concrete metrics to quantitatively/qualitatively measure their
debugging observability. Moreover, we demonstrated that it is possible
to enhance the observability of the state-of-the-art tools via lightweight
extensions.

To the best of our knowledge, this work is the first effort to measure
the observability of debugging tools. The work demonstrated in this
paper suggests many opportunities for further improvements such as
reproducing and packaging other types of bugs cases, deriving addi-
tional metrics for other desirable system properties, and measuring
other tools or features, which we leave as future work. We hope that
our initial effort will inspire follow-up research in the communities
and help measure and improve the robustness of computer systems in
general.

Acknowledgments

We thank the anonymous reviewers for their insightful feedback.
We also thank researchers from Western Digital including Adam Man-
zanares, Filip Blagojevic, Qing Li, and Cyril Guyot for valuable dis-
cussions on the internals of the storage stack and the latest storage
technology. In addition, we thank Wei Xu, Om Rameshwar Gatla,
Prakhar Bansal, Runzhou Han, and Philip Ma for the help on repro-

ducing and/or analyzing failure reports and bug patches. This work

9

was supported in part by NSF, United States under grants CNS-1566554
and CNS-1943204. Any opinions, findings, and conclusions expressed
in this material are those of the authors and do not necessarily reflect
the views of the sponsor.

References

[1] Ryan Gabrys, Eitan Yaakobi, Laura M. Grupp, Steven Swanson, Lara Dolecek,
Tackling intracell variability in TLC Flash through tensor product codes, in:
2012 IEEE International Symposium on Information Theory Proceedings, 2012.

[2] Yu Cai, Erich F. Haratsch, Onur Mutlu, Ken Mai, Error patterns in MLC NAND
flash memory: Measurement, characterization, and analysis, in: Proceedings of
the Conference on Design, Automation and Test in Europe, DATE, 2012.

[3] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan
Yaakobi, Paul H. Siegel, Jack K. Wolf, Characterizing flash memory: anomalies,
observations, and applications, in: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, 2009.

[4] H Kurata, K Otsuga, A Kotabe, S Kajiyama, T Osabe, Y Sasago, S Narumi,
K Tokami, S Kamohara, O Tsuchiya, The impact of random telegraph signals
on the scaling of multilevel flash memories, in: VLSI Circuits, 2006. Digest of
Technical Papers, 2006.

[5] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky, Jeff J Peterson, Robert Shiner,
Neal Mielke, A new reliability model for post-cycling charge retention of flash
memories, in: Proceedings of the 40th Annual Reliability Physics Symposium,
2002.

[6] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi,
Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun
Yum, Jung-Hyuk Choi, Jang-Rae Kim, Hyung-Kyu Lim, A 3.3v 32mb NAND
flash memory with incremental step pulse programming scheme, in: IEEE J.
Solid-State Circuits (JSSC), 1995.

[7] T. Ong, A. Frazio, N. Mielke, S. Pan, N. Righos, G. Atwood, S. Lai, Erratic erase
in ETOX/sup TM/ flash memory Array, in: Symposium on VLSI Technology,
VLSI, 1993.

[8] Adam Brand, Ken Wu, Sam Pan, David Chin, Novel read disturb failure
mechanism induced by FLASH cycling, in: Proceedings of the 31st Annual
Reliability Physics Symposium, 1993.

[9] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, Sam H Noh,
Failure-atomic slotted paging for persistent memory, ACM SIGPLAN Not.
(2017).

[10] Advanced Flash Technology Status, Scaling Trends & Implications to Enterprise
SSD Technology Enablement, https://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2012/20120821_TA12_Yoon_Tressler.pdf.

[11] Justin Meza, Qiang Wu, Sanjeev Kumar, Onur Mutlu, A large-scale study of flash
memory failures in the field, in: ACM SIGMETRICS Performance Evaluation
Review, 2015.

[12] Flash array, https://patents.google.com/patent/US4101260A/en.
[13] Basic Performance Measurements of the Intel Optane DC Persistent Memory

Module, https://arxiv.org/abs/1903.05714.
[14] Scsi-mq, 2017, https://lwn.net/Articles/602159/, March 20.
[15] Blake Caldwell, Improving block-level efficiency with scsi-mq, 2015, arXiv

preprint arXiv:1504.07481.
[16] Bart Van Assche, Increasing SCSI LLD driver performance by using the SCSI

multiqueue approach, 2015.
[17] DAX: Page cache bypass for filesystems on memory storage, https://lwn.net/

Articles/618064/.
[18] When solid state drives are not that solid, 2015, https://blog.algolia.com/when-

solid-state-drives-are-not-that-solid/, June 15.
[19] A guide to mdadm, https://raid.wiki.kernel.org/index.php/A_guide_to_mdadm.
[20] raid0: data corruption when using trim, 2015, https://www.spinics.net/lists/

raid/msg49440.html, July 19.
[21] Failure on freebsd/SSD: Seeing data corruption with zfs trim functionality

, 2013, https://lists.freebsd.org/pipermail/freebsd-fs/2013-April/017145.html,
April 29.

[22] Discussion on kernel TRIM support for SSDs: [1/3] libata: Whitelist SSDs that
are known to properly return zeroes after TRIM , 2014, http://patchwork.
ozlabs.org/patch/407967/, Nov 7 - Dec 8.

[23] Discussion on data loss on mSATA SSD module and Ext4 , 2016, http://
pcengines.ch/msata16a.htm.

[24] HP warns that some SSD drives will fail at 32,768 hours of use,
https://www.bleepingcomputer.com/news/hardware/hp-warns-that-some-
ssd-drives-will-fail-at-32-768-hours-of-use/.

[25] Shan Lu, Zhenmin Li, FengQin, Lin Tan, Pin Zhou, YuanyuanZhou, BugBench:
Benchmarks for evaluating bug detection tools, in: Workshop on the Evaluation
of Software Defect Detection Tools, 2005.

[26] FIO Benchmark, https://fio.readthedocs.io/en/latest/fio_doc.html.
[27] Vasily Tarasov, Erez Zadok, Spencer Shepler, Filebencha flexible framework for

file system benchmarking, in: Login Usenix Magazine, 2016.
[28] TPC Benchmarks, http://tpc.org/information/benchmarks5.asp.
[29] SPEC’s benchmarks, https://www.spec.org/benchmarks.html.

http://refhub.elsevier.com/S2772-4859(21)00006-5/sb4
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb4
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb4
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb4
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb4
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb4
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb4
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb6
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb9
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb9
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb9
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb9
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb9
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120821_TA12_Yoon_Tressler.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120821_TA12_Yoon_Tressler.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120821_TA12_Yoon_Tressler.pdf
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb11
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb11
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb11
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb11
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb11
https://patents.google.com/patent/US4101260A/en
https://arxiv.org/abs/1903.05714
https://lwn.net/Articles/602159/
http://arxiv.org/abs/1504.07481
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb16
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb16
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb16
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://blog.algolia.com/when-solid-state-drives-are-not-that-solid/
https://blog.algolia.com/when-solid-state-drives-are-not-that-solid/
https://blog.algolia.com/when-solid-state-drives-are-not-that-solid/
https://raid.wiki.kernel.org/index.php/A_guide_to_mdadm
https://www.spinics.net/lists/raid/msg49440.html
https://www.spinics.net/lists/raid/msg49440.html
https://www.spinics.net/lists/raid/msg49440.html
https://lists.freebsd.org/pipermail/freebsd-fs/2013-April/017145.html
http://patchwork.ozlabs.org/patch/407967/
http://patchwork.ozlabs.org/patch/407967/
http://patchwork.ozlabs.org/patch/407967/
http://pcengines.ch/msata16a.htm
http://pcengines.ch/msata16a.htm
http://pcengines.ch/msata16a.htm
https://www.bleepingcomputer.com/news/hardware/hp-warns-that-some-ssd-drives-will-fail-at-32-768-hours-of-use/
https://www.bleepingcomputer.com/news/hardware/hp-warns-that-some-ssd-drives-will-fail-at-32-768-hours-of-use/
https://www.bleepingcomputer.com/news/hardware/hp-warns-that-some-ssd-drives-will-fail-at-32-768-hours-of-use/
https://fio.readthedocs.io/en/latest/fio_doc.html
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb27
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb27
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb27
http://tpc.org/information/benchmarks5.asp
https://www.spec.org/benchmarks.html

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006
[30] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, Taesoo Kim, Krace: Data race
fuzzing for kernel file Systems, in: 2020 IEEE Symposium on Security and
Privacy, SP, 2014.

[31] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, In-
sik Shin, Razzer: Finding kernel race bugs through fuzzing, in: 2019 IEEE
Symposium on Security and Privacy, SP, 2019.

[32] ftrace, https://elinux.org/Ftrace.
[33] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, Ryan Whelan,

Repeatable reverse engineering with PANDA, in: Proceedings of the 5th Program
Protection and Reverse Engineering Workshop, 2015.

[34] Mohamad Gebai, Michel R. Dagenais, Survey and analysis of kernel and
userspace tracers on linux: Design implementation and overhead, in: ACM
Computing Survey, 2018.

[35] Andrew Quinn, Jason Flinn, Michael Cafarella, You can’t debug what you
can’t see: Expanding observability with the OmniTable, in: Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS, 2019.

[36] How to Read a SCSI Bus Trace, https://www.drdobbs.com/how-to-read-a-scsi-
bus-trace/199101012.

[37] SCSI bus analyzer, https://www.ibm.com/support/knowledgecenter/en/ssw_
aix_72/diagnosticsubsystem/header_54.html.

[38] Benchmarks by BenchCouncil, https://benchcouncil.org/benchmarks.html.
[39] SNIA NVM Programming Model (NPM).
[40] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, Steve Swanson,

An empirical guide to the behavior and use of scalable persistent memory, 18th
USENIX Conference on File and Storage Technologies, FAST, 2020.

[41] Junfeng Yang, Can Sar, Dawson Engler, Explode: a lightweight, general system
for finding serious storage system errors, in: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, OSDI, 2006.

[42] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, IRON File
Systems, in: Proceedings of the 20th ACM Symposium on Operating Systems
Principles, SOSP, 2005.

[43] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Physical disentanglement in a container-
based file system, in: 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI, 2014.

[44] Richard Stallman, Roland Pesch, Stan Shebs, et al., Debugging with GDB, Free
Software Foundation, 2002.

[45] Brent Welch, Geoffrey Noer, Optimizing a hybrid SSD/HDD HPC storage system
based on file size distributions, in: 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies, MSST, 2013.

[46] NVM Express, 2016, https://nvmexpress.org/.
[47] Computeexpresslink(CXL), https://www.computeexpresslink.org/.
[48] Matias Bjorling, Jens Axboe, David Nellans, Philippe Bonnet, Linux Block IO:

Introducing multi-queue SSD access on multi-core systems, in: Proceedings of
the 6th International Systems and Storage Conference, SYSTOR, 2013.

[49] Changman Lee, Dongho Sim, Joo-Young Hwang, Sangyeun Cho, F2FS: A new
file system for flash storage, in: Proceedings of the 13th USENIX Conference
on File and Storage Technologies, FAST, 2015.

[50] Jian Xu, Steven Swanson, NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories, in: 14th USENIX Conference on File and
Storage Technologies, FAST, 2016.

[51] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Aasheesh Kolli, Peter M.
Chen, Satish Narayanasamy, Thomas F. Wenisch, Software wear management
for persistent memories, in: 17th USENIX Conference on File and Storage
Technologies, FAST, 2019.

[52] Libata: add TRIM support, 2009, https://lwn.net/Articles/362108/, November
15.

[53] Duo Zhang, Om Rameshwar Gatla, Wei Xu, Mai Zheng, A study of persistent
memory bugs in the linux kernel, in: Proceedings of the 14th ACM International
Systems and Storage Conference, SYSTOR, 2021.

[54] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya Eswarappa, Yan
Mu, Yong Chen, PFault: A general framework for analyzing the reliability of
high-performance parallel file systems, in: Proceedings of the 2018 International
Conference on Supercomputing, ICS, 2018.

[55] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, Bill W Zhao, Elizabeth S.
Yang, Reliability analysis of SSDs under power fault, ACM Trans. Comput. Syst.
(TOCS) (2016).

[56] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, Bianca Schroeder, A study of
SSD reliability in large scale enterprise storage deployments, in: 18th USENIX
Conference on File and Storage Technologies, FAST, 2020.

[57] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, Taesoo
Kim, Finding semantic bugs in file systems with an extensible fuzzing frame-
work, in: Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP, 2019.

[58] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, Vi-
jay Chidambaram, Finding crash-consistency bugs with bounded black-box
crash testing, in: 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2018.
10
[59] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, Understanding the
robustness of SSDs under power fault, in: Proceedings of the 11th USENIX
Conference on File and Storage Technologies, FAST, 2013.

[60] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge, Eliz-
abeth S. Yang, Bill W Zhao, Shashank Singh, Torturing databases for fun
and profit, in: 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2014.

[61] Om Rameshwar Gatla, Muhammad Hameed, Mai Zheng, Viacheslav Dubeyko,
Adam Manzanares, Filip Blagojević, Cyril Guyot, Robert Mateescu, Towards
robust file system checkers, in: 16th USENIX Conference on File and Storage
Technologies, FAST, 2018.

[62] GDB: The GNU Project Debugger, https://www.gnu.org/software/gdb/.
[63] Peter A. Buhr, Martin Karsten, Jun Shih, KDB: a multi-threaded debugger for

multi-threaded applications, in: Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, SPDT, 1996.

[64] Kgdb, https://elinux.org/Kgdb.
[65] lTTng, https://lttng.org/.
[66] SystemTap, https://sourceware.org/systemtap/.
[67] XRay: A function call tracing system, https://research.google/pubs/pub45287/.
[68] An introduction to KProbes, https://lwn.net/Articles/132196/.
[69] Dtrace, http://dtrace.org/blogs/.
[70] SCSI Commands Reference Manual by Seagate, https://www.seagate.com/files/

staticfiles/support/docs/manual/Interface%20manuals/100293068j.pdf.
[71] Samuel T. King, George W. Dunlap, Peter M. Chen, Debugging operating systems

with time-traveling virtual machines, in: Proceedings of the 2005 USENIX
Technical Conference, 2005.

[72] Kernel bugzilla, https://www.bugzilla.org/.
[73] Shan Lu, Soyeon Park, Eunsoo Seo, Yuanyuan Zhou, Learning from mistakes:

a comprehensive study on real world concurrency bug characteristics, in:
Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2008.

[74] Haryadi S. Gunawi, Thanh Do, Agung Laksono, Mingzhe Hao, Tanakorn
Leesatapornwongsa, Jeffrey F. Lukman, Riza O. Suminto, What bugs live in
the cloud? A study of issues in scalable distributed systems, in: Proceedings of
the ACM Symposium on Cloud Computing, SOCC, 2014.

[75] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan Lu,
A study of linux file system evolution, in: Proceedings of the 11th USENIX
Conference on File and Storage Technologies, FAST, 2013.

[76] Fabrice Bellard, QEMU, a fast and portable dynamic translator, in: USENIX
Annual Technical Conference, FREENIX Track, 2005.

[77] The LLVM Compiler Infrastructure, https://llvm.org/.
[78] Linux SCSI target framework (tgt), http://stgt.sourceforge.net/.
[79] Catherine Paganini, Danyel Fisher, Franciss Espenido, Gabriel H. Dinh, Heather

Joslyn, Jason Morgan, Joab Jackson, Judy Williams, Libby Clark, Peter Putz,
Steve Tidwell, Susan Hall, Cloud native observability for Devsops teams, in:
The New Stack, 2021.

[80] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Vo-
los, An analysis of persistent memory use with WHISPER, in: Proceedings
of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2017.

[81] Yahoo! Cloud Serving Benchmark, https://en.wikipedia.org/wiki/YCSB.
[82] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, DawsonEngle, An

empirical study of operating systems errors, in: Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, SOSP, 2001.

[83] David Lazar, Haogang Chen, Xi Wang, Nickolai Zeldovich, Why does crypto-
graphic software fail? A case study and open problems, in: Proceedings of the
Second Asia-Pacific Workshop on Systems, APSys, 2014.

[84] Haogang Chen, Yandong Mao, Xi WangDong Zhou, Nickolai Zeldovich, M. Frans
Kaashoek, Linux kernel vulnerabilities:State-of-the-art defenses and open prob-
lem, in: Proceedings of the Second Asia-Pacific Workshop on Systems, APSys,
2014.

[85] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, Kurnia J. Eliazar, Why does the cloud stop comput-
ing? Lessons from hundreds of service outages, in: Proceedings of the ACM
Symposium on Cloud Computing, SOCC, 2016.

[86] Haopeng Liu, Shan Lu, Madan Musuvathi, Suman Nath, What bugs cause
production cloud incidents? in: Proceedings of the Workshop on Hot Topics
in Operating Systems, HotOS, 2019.

[87] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Garth R. Goodson, Bianca Schroeder, An analysis of data corruption
in the storage stack, Trans. Storage (2008).

[88] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, Jiri
Schindler, An analysis of latent sector errors in disk drives, in: Proceedings
of the 2007 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, 2007.

[89] Bianca Schroeder, Garth A. Gibson, Disk failures in the real world: What does
an MTTF of 1, 000, 000 hours mean to you? in: Proceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST), 2007.

[90] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Man-
asse, Rina Panigrahy, Design tradeoffs for SSD performance, in: USENIX 2008
Annual Technical Conference, ATC, 2008.

https://elinux.org/Ftrace
https://www.drdobbs.com/how-to-read-a-scsi-bus-trace/199101012
https://www.drdobbs.com/how-to-read-a-scsi-bus-trace/199101012
https://www.drdobbs.com/how-to-read-a-scsi-bus-trace/199101012
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/diagnosticsubsystem/header_54.html
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/diagnosticsubsystem/header_54.html
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/diagnosticsubsystem/header_54.html
https://benchcouncil.org/benchmarks.html
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb44
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb44
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb44
https://nvmexpress.org/
https://www.computeexpresslink.org/
https://lwn.net/Articles/362108/
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb55
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb55
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb55
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb55
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb55
https://www.gnu.org/software/gdb/
https://elinux.org/Kgdb
https://lttng.org/
https://sourceware.org/systemtap/
https://research.google/pubs/pub45287/
https://lwn.net/Articles/132196/
http://dtrace.org/blogs/
https://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068j.pdf
https://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068j.pdf
https://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068j.pdf
https://www.bugzilla.org/
https://llvm.org/
http://stgt.sourceforge.net/
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb79
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb79
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb79
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb79
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb79
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb79
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb79
https://en.wikipedia.org/wiki/YCSB
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb87
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb87
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb87
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb87
http://refhub.elsevier.com/S2772-4859(21)00006-5/sb87

D. Zhang and M. Zheng BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100006
[91] H Kurata, K Otsuga, A Kotabe, S Kajiyama, T Osabe, Y Sasago, S Narumi, K
Tokami, S Kamohara, O Tsuchiya, The impact of random telegraph signals on
the scaling of multilevel Flash memories, in: 2006 Symposium on VLSI Circuits,
2006.

[92] Jiangpeng Li, Kai Zhao, Xuebin Zhang, Jun Ma, Ming Zhao, Tong Zhang,
How much can data compressibility help to improve NAND flash memory
lifetime? in: Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST, 2015.

[93] Bianca Schroeder, Raghav Lagisetty, Arif Merchant, Flash reliability in produc-
tion: The expected and the unexpected, in: 14th USENIX Conference on File
and Storage Technologies, FAST, 2016.

[94] Huang-Wei Tseng, Laura M. Grupp, Steven Swanson, Understanding the impact
of power loss on flash memory, in: Proceedings of the 48th Design Automation
Conference, DAC, 2011.

[95] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, Jiesheng Wu, Lessons and actions:
What we learned from 10K SSD-related storage system failures, in: Proceedings
of the 2019 USENIX Annual Technical Conference, ATC, 2019.

[96] Erci Xu, Mai Zheng, Feng Qin, Jiesheng Wu, Yikang Xu, Understanding SSD
Reliability in Large-scale Cloud Systems, in: Proceedings of the 3rd IEEE/ACM
International Workshop on Parallel Data Storage & Data Intensive Scalable
Computing Systems, PDSW, 2018.
11
[97] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, Taesoo
Kim, Cross-checking semantic correctness: The case of finding file system bugs,
in: Proceedings of the 25th Symposium on Operating Systems Principles, 2015.

[98] Jinrui Cao, Simeng Wang, Dong Dai, Mai Zheng, Yong Chen, A generic
framework for testing parallel file systems, in: Proceedings of the 1st Joint
International Workshop on Parallel Data Storage & Data Intensive Scalable
Computing Systems, PDSW, 2016.

[99] Om Rameshwar Gatla, Mai Zheng, Understanding the fault resilience of file
system checkers, in: 9th USENIX Workshop on Hot Topics in Storage and File
Systems, HotStorage, 2017.

[100] Runzhou Han, Om Rameshwar Gatla, Mai Zheng, Jinrui Cao, Di Zhang, Dong
Dai, Yong Chen, Jonathan Cook, A study of failure recovery and logging of
high-performance parallel file systems, in: ACM Transactions on Storage TOS,
2021.

[101] Runzhou Han, Duo Zhang, Mai Zheng, Fingerprinting the checker policies of
parallel file systems, in: Proceedings of the 5th ACM/IEEE International Parallel
Data Systems Workshop, PDSW, 2020.

	Benchmarking for Observability: The Case of Diagnosing Storage Failures
	Introduction
	Background motivation
	The storage stack reliability challenge
	Debugging tools
	Observability of debugging tools

	Characterization of storage failures
	Methodology
	Overall characteristics
	BugBenchk

	Measuring the observability
	FTrace
	PANDA
	Enhancing low-level observability
	Summary discussion

	Related work
	Conclusions
	Acknowledgments
	References

