[image: image15.wmf]Class Name

Attributes:

Operations:

[image: image16.wmf]Identify user

requirements

(use cases)

Identify classes

(attributes &

operations) (CRC)

Specify class

hierarchy

(CRC)

Identify object-

to-object

relationships (OR)

Model object

 behavior (OB)

Reapply as needed

OOTiA Workshop #2 v2.0

[image: image17.wmf]

DisplayElement

importance : int

xOrigin : CoordinateValue

yOrigin : CoordinateValue

draw()

highlight()

hide()

NonTextualElement

highlight()

PrimitiveNonTextualElem

ent

draw()

highlight()

AltitudeTape

width : GraphicsDistance

height :

GraphicsDistance

colorScheme : ColorScheme

displayedValue : Altitude

draw()

getDisplayedValue() : Altitude

setDisplayedValue(altitude : Altitude)

AirspeedTape

width : Graphic

sDistance

height :

GraphicsDistance

colorScheme : ColorScheme

displayedValue : Airspeed

draw()

getDisplayedValue() : Airspeed

setDisplayedValue(airspeed : Airspeed)

Compass

radius : GraphicsDistance

colorScheme : ColorScheme

displayedValue : Head

ing

draw()

getDisplayedValue() : Heading

setDisplayedValue(heading : Heading)

TextualElement

width : GraphicsDistance

height : GraphicsDistance

displayedValue : String

draw()

highlight()

getDisplayedValue() : String

setDisplayedValue(string : S

tring)

Client

March 5, 2003

Contents

1Executive Summary

21.
Introduction

21.1
Background

21.2
Scope

21.3
OOTiA Activities

31.4
How To Use This Handbook

31.4.1
Handbook Structure

41.4.2
Software Developers

41.4.3
Certification Authorities

41.5
Future Plans

52.
Overview of OOT

52.1
OOT Basics

52.2
Principles of OOT

62.3
OOT Methodology

72.4
OOT Languages

72.5
Additional Key OO Concepts

72.6
Further OOT Reading

93.
Issues Relevant to Using OOT in Aviation Applications

93.1
Practical Considerations for Using OOT in Aviation

93.1.1
Claimed Benefits

93.1.2
Conceptual Pitfalls

93.1.2.1
Conceptual Pitfalls

103.1.2.2
Analysis and Design Pitfalls

103.1.2.3
Class and Object Pitfalls

103.1.2.4
Verification Pitfalls

113.1.2.5
Reuse Pitfalls

113.2
Overview of Certification Issues

133.3
Additional OOT Issues

163.4
References for Chapters 1 through 3

174.
Guidelines on Single Inheritance and Dynamic Dispatch

174.1
Purpose

174.2
Background

194.3
Issues and Guidelines

194.3.1
Issues

244.3.2
Inheritance with Overriding Pattern

244.3.2.1
Intent

244.3.2.2
Extends

244.3.2.3
Motivation

244.3.2.4
Applicability

254.3.2.5
Guidelines

254.3.2.6
Rationale

274.3.2.7
Related patterns

284.3.3
Inheritance with Overriding and Single Dispatch Pattern

284.3.3.1
Intent

284.3.3.2
Extends

284.3.3.3
Motivation

284.3.3.4
Applicability

284.3.3.5
Guidelines

294.3.3.6
Rationale

294.3.3.7
Related patterns

304.3.4
Inheritance with Overriding and Multiple Dispatch Pattern

304.3.4.1
Intent

304.3.4.2
Extends

304.3.4.3
Motivation

304.3.4.4
Applicability

304.3.4.5
Guidelines

324.3.4.6
Rationale

334.3.4.7
Related patterns

334.3.5
Subtyping (abstract) Pattern

334.3.5.1
Intent

334.3.5.2
Extends

334.3.5.3
Motivation

344.3.5.4
Applicability

344.3.5.5
Guidelines

344.3.5.6
Rationale

354.3.5.7
Related patterns

364.3.6
Unit Level Testing of LSP Pattern

364.3.6.1
Intent

364.3.6.2
Extends

364.3.6.3
Motivation

364.3.6.4
Applicability

364.3.6.5
Guidelines

374.3.6.6
Rationale

384.3.6.7
Related patterns

384.3.7
System Level Testing of LSP Using Assertions Pattern

384.3.7.1
Intent

384.3.7.2
Extends

384.3.7.3
Motivation

394.3.7.4
Applicability

394.3.7.5
Guidelines

404.3.7.6
Rationale

424.3.7.7
Related patterns

424.3.8
System Level Testing of LSP Using Specialized Test Cases Pattern

424.3.8.1
Intent

424.3.8.2
Extends

424.3.8.3
Motivation

424.3.8.4
Applicability

434.3.8.5
Guidelines

444.3.8.6
Rationale

454.3.8.7
Related patterns

454.3.9
Method Extension Pattern

454.3.9.1
Intent

454.3.9.2
Extends

454.3.9.3
Motivation

464.3.9.4
Applicability

464.3.9.5
Guidelines

464.3.9.6
Rationale

464.3.9.7
Related patterns

464.3.10
Class Coupling Pattern

464.3.10.1
Intent

464.3.10.2
Extends

474.3.10.3
Motivation

474.3.10.4
Applicability

474.3.10.5
Guidelines

484.3.10.6
Rationale

494.3.10.7
Related patterns

494.3.11
Deep Hierarchy Pattern

494.3.11.1
Intent

494.3.11.2
Extends

494.3.11.3
Motivation

494.3.11.4
Applicability

494.3.11.5
Guidelines

504.3.11.6
Rationale

504.3.11.7
Related patterns

504.3.12
Formal Subtyping Pattern

504.3.12.1
Intent

504.3.12.2
Extends

504.3.12.3
Motivation

514.3.12.4
Applicability

514.3.12.5
Guidelines

514.3.12.6
Rationale

524.3.12.7
Related patterns

524.4
References for Chapter 4

545.
Guidelines on Multiple Inheritance

545.1
Purpose

545.2
Background

545.3
Issues and Guidelines

555.3.1
Issues

575.3.2
Multiple Interface Inheritance Pattern

575.3.2.1
Intent

575.3.2.2
Extends

575.3.2.3
Motivation

585.3.2.4
Applicability

585.3.2.5
Guidelines

595.3.2.6
Rationale

615.3.2.7
Related patterns

615.3.3
Multiple Implementation Inheritance Pattern

615.3.3.1
Intent

615.3.3.2
Extends

615.3.3.3
Motivation

615.3.3.4
Applicability

615.3.3.5
Guidelines

625.3.3.6
Rationale

635.3.3.7
Related patterns

635.3.4
Mixed Multiple Inheritance Pattern

635.3.4.1
Intent

645.3.4.2
Extends

645.3.4.3
Motivation

645.3.4.4
Applicability

645.3.4.5
Guidelines

645.3.4.6
Rationale

645.3.4.7
Related patterns

655.3.5
Combination of Distinct Abstractions Pattern

655.3.5.1
Intent

655.3.5.2
Extends

655.3.5.3
Motivation

655.3.5.4
Applicability

655.3.5.5
Guidelines

665.3.5.6
Rationale

675.3.5.7
Related patterns

675.3.6
Top Heavy Hierarchy Pattern

675.3.6.1
Intent

675.3.6.2
Extends

675.3.6.3
Motivation

675.3.6.4
Applicability

675.3.6.5
Guidelines

685.3.6.6
Rationale

695.3.6.7
Related patterns

695.4
References for Chapter 5

716.
Guidelines on Templates

716.1
Purpose

716.2
Background

716.3
Issues and Guidelines

716.3.1
Source Code Review

716.3.1.1
Related DO-178B Sections and Objectives

716.3.1.2
Guidelines

726.3.2
Requirements-based Test Development, Review, and Coverage

726.3.2.1
Related DO-178B Sections and Objectives

726.3.2.2
Guidelines

726.3.3
Structural Coverage (and data/control coupling analysis)

726.3.3.1
Issue 1

726.3.3.2
Issue 2

736.3.3.3
Issue 3

736.4
Rationale

746.5
References for Chapter 6

757.
Guidelines on Inlining

757.1
Purpose

757.2
Background

757.3
Issues and Guidelines

757.3.1
Structural Coverage

757.3.1.1
Related DO-178B Sections and Objectives

757.3.1.2
Guidelines

767.3.2
Source Code Review

767.3.2.1
Related DO-178B Sections and Objectives

767.3.2.2
Guidelines

767.4
Rationale

777.5
References for Chapter 7

788.
Guidelines on Type Conversion

788.1
Purpose

788.2
Background

788.3
Issues and Guidelines

788.3.1
Source Code Review, Checklist, and Coding Standards

788.3.1.1
Issue 1

798.3.1.2
Issue 2

798.3.1.3
Issue 3

808.4
Rationale

818.5
References for Chapter 8

829.
Guidelines on Overloading and Method Resolution

829.1
Purpose

829.2
Background

829.3
Issues and Guidelines

829.3.1
Code Review Method

829.3.1.1
Related DO-178B Sections and Objectives

829.3.1.2
Guidelines

839.3.2
Implicit Conversion Issues

839.3.2.1
Related DO-178B Sections and Objectives

839.3.2.2
Guidelines

839.4
Rationale

849.5
References for Chapter 9

8510.
Guidelines on Dead and Deactivated Code, and Reuse

8510.1
Purpose

8510.2
Background

8510.3
Issues and Guidelines

8610.3.1
Reuse of software components

8610.3.1.1
Related DO-178B Sections and Objectives

8610.3.1.2
Guidelines

8710.3.2
Requirements Traceability

8710.3.2.1
Related DO-178B Sections and Objectives

8710.3.2.2
Guidelines

8810.3.3
Certification credit for reused but modified class hierarchy

8810.3.3.1
Related DO-178B Sections and Objectives

8810.3.3.2
Guidelines

8810.3.4
Changes in the status of deactivated code versus actively used code

8810.3.4.1
Related DO-178B Sections and Objectives

8810.3.4.2
Guidelines

8810.3.5
Service history credit and deactivated code

8910.3.5.1
Related DO-178B Sections and Objectives

8910.3.5.2
Guidelines

8910.4
References for Chapter 10

9011.
Guidelines on Object-Oriented Tools

9011.1
Purpose

9011.2
Background

9011.3
Guidelines

9011.3.1
Traceability Using OO Tools

9011.3.2
Software Visual Modeling Tools

9011.3.2.1
Related DO-178B Sections and Objectives

9111.3.2.2
Guidelines

9111.3.3
Visual Modeling Tools Frameworks

9111.3.3.1
Relevant DO-178B Sections and Objectives

9111.3.3.2
Guidelines

9111.3.4
Automatic Code Generators

9211.3.4.1
Related DO-178B Sections and Objectives

9211.3.4.2
Guidelines

9211.3.5
Structural Coverage Analysis Tools

9311.3.6
Structural Coverage Analysis for Inheritance not Consistent

9511.3.6.1
Related DO-178B Sections and Objectives

9511.3.6.2
Guidelines

9511.3.7
Structural Coverage Analysis for Dynamic Dispatch not Consistent

9711.3.7.1
Related DO-178B Sections and Objectives

9811.3.7.2
Guidelines

9811.4
References for Chapter 11

9912.
Guidelines on Traceability

9912.1
Purpose

9912.2
Scope/Background

9912.3
Issues and Guidelines

10012.3.1
Issue 1 – Tracing to functional requirements

10012.3.1.1
Guidelines

10112.3.2
Issue 2 - Class hierarchy and relations may complicate traceability

10112.3.2.1
Guidelines

10112.3.3
Issue 3 - UML Notation may introduce traceability ambiguity

10112.3.3.1
Guidelines

10212.3.4
Issue 4 - Change impact analysis may be difficult due to difficulty in tracing requirements to implementation

10212.3.4.1
Guidelines

10212.3.5
Issue 5 - Providing traceability for dynamic binding/overriding

10212.3.5.1
Guidelines

10212.3.6
Issue 6 - Dead and deactivated code

10212.3.6.1
Guidelines

10212.3.7
Issue 7 – Many to many mapping of requirements to methods

10212.3.7.1
Guidelines

10312.3.8
Issue 8 – Iterative Development

10312.3.8.1
Guidelines

10312.3.9
Issue 9 – Change management for reusable components

10312.3.9.1
Guidelines

10312.4
References for Section 12

10312.5
Placeholder for Traceability Example

104References

105Glossary

119Appendix A
Examples

119A.1
Single Inheritance

119A.1.1
Extension of Inheritance with Overriding and Single Dispatch Pattern

123A.1.2
Extension of Method Extension Pattern

125A.2
Multiple Inheritance

125A.2.1
Composition involving multiple inheritance

128A.2.2
Extended patterns

131A.3
Dead and Deactivated Code, and Reuse

131A.3.1
Deactivated Code Examples

131A.3.2
Hierarchy Changes and Method Overriding

133Appendix B
Acronym List

135Appendix C
OOTiA Workshops

135C.1
Committee

135C.2
Participants

139Appendix D
Index of Terms

142Appendix E
Feedback Form

Figures

5Figure 2.1‑1 Object-Oriented Class Representation

6Figure 2.3‑1 OOA Tasks

65Figure 5.3‑1 Combination of Distinct Abstractions

92Figure 11.3‑1 Code Generation using Visual Modeling Tools

93Figure 11.3‑2 Inheritance

94Figure 11.3‑3 Concrete Coverage

95Figure 11.3‑4 Context Coverage

96Figure 11.3‑5 Flattened Inheritance

97Figure 11.3‑6 Dynamic Dispatch

97Figure 11.3‑7 Multiple Dynamic Dispatch

100Figure 12.3‑1 Overview of Traceability to Use Cases

Tables
13Table 3.2‑1 Certification Authority Concerns with OOTiA

15Table 3.3‑1 OOTiA Issues Categories

23Table 4.3‑1 Single Inheritance and Dynamic Issues

27Table 4.3‑2 Inheritance with Overriding Pattern Rationale

29Table 4.3‑3 Inheritance with Overriding and Single Dispatch Pattern Rationale

33Table 4.3‑4 Inheritance with Overriding and Multiple Dispatch Pattern Rationale

35Table 4.3‑5 Subtyping (abstract) Pattern Rationale

38Table 4.3‑6 Unit Level Testing of LSP Pattern Rationale

42Table 4.3‑7 System Level Testing of LSP Using Assertions Pattern Rationale

45Table 4.3‑8 System Level Testing of LSP Using Specialized Test Cases Pattern Rationale

46Table 4.3‑9 Method Extension Pattern Rationale

49Table 4.3‑10 Class Coupling Pattern Rationale

50Table 4.3‑11 Deep Hierarchy Pattern Rationale

52Table 4.3‑12 Formal Subtyping Pattern Rationale

57Table 5.3‑1 Multiple Inheritance Issues

61Table 5.3‑2 Multiple Interface Inheritance Pattern Rationale

63Table 5.3‑3 Multiple Implementation Inheritance Pattern Rationale

64Table 5.3‑4 Mixed Multiple Inheritance Pattern Rationale

67Table 5.3‑5 Combination of Distinct Abstractions Pattern Rationale

69Table 5.3‑6 Top Heavy Hierarchy Pattern Rationale

74Table 6.4‑1 Templates Rationale

77Table 7.4‑1 Inlining Rationale

81Table 8.4‑1 Type Conversion Rationale

84Table 9.4‑1 Overloading and Method Resolution Rationale

Executive Summary

Many in the mainstream software community see object-oriented technology XE "object-oriented technology" (OOT XE "OOT") as a major advance in software development methods. OOT is intended to promote productivity and reusability of software. Consequently, OOT is touted as a technology that saves money and time, and improves quality. To date, however, few airborne computer systems in civil aviation have been implemented using OOT but there is an increasing desire by manufacturers to do so. Uncertainty about how to comply with certification requirements has been a key obstacle to using OOT.

Compliance with the objectives of RTCA/DO-178B XE "DO-178B" , Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" [9], is the primary means of securing approval of software used in aviation products. DO-178B, which was published in 1992, was not written with OOT XE "OOT" in mind. When DO-178B was written, structured programming was the predominant technique for organizing and coding computer programs. Object orientation is fundamentally different, and how to meet some of the DO-178B objectives when using OOT is not obvious in some cases and complicated in others.

In an effort to address the concerns related to OOT XE "OOT" in aviation, government, academia, international certification authorities, and industry have combined efforts through two workshops and a series of coordination efforts. The result to date is this document, entitled “Handbook for Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" (OOTiA XE "OOTiA"): OOTiA Workshop Proceedings.” XE "\“Handbook for Object-Oriented Technology in Aviation (OOTiA)\: OOTiA Workshop Proceedings.\”"
The handbook strives to address the major OOT XE "OOT" concerns in a practical manner. This handbook is intended to be a guide for practitioners to use while developing safety-critical software intended to meet the objectives of RTCA/DO-178B XE "DO-178B" . The handbook should also assist those involved in certifying systems that use OOT. The major topics relevant to the issues raised by the aviation community and addressed in the handbook are:

· Inheritance XE "Inheritance"
· Templates XE "Templates"
· Inlining XE "Inlining"
· Type Conversion XE "Type Conversion"
· Overloading XE "Overloading"
· Reuse, Dead Code, and Deactivated Code XE "Reuse, Dead Code, and Deactivated Code"
· OOT XE "OOT" Tools XE "Tools"
· Traceability XE "Traceability"
This handbook is not intended to be an endorsement of OOT XE "OOT" , but is intended to be informational and educational. This handbook does not constitute Federal Aviation Administration (FAA) policy or guidance; rather it documents acceptable approaches to address OOT in safety-critical systems.

Since OOT XE "OOT" in aviation is a growing and evolving technology, it is anticipated that this handbook will be updated in the future. Those wishing to suggest changes should complete and submit the form shown in Appendix E of the handbook

Introduction
1.1 Background
Many in the mainstream software community see object-oriented technology (OOT XE "OOT") as a major advance in software development methods. OOT is intended to promote productivity and reusability of software. Consequently, OOT is touted as a technology that saves money and time, and improves quality. To date, however, few airborne computer systems in civil aviation have been implemented using OOT but there is an increasing desire by manufacturers to do so. Uncertainty about how to comply with certification requirements has been a key obstacle to using OOT.

Compliance with the objectives of RTCA/DO-178B XE "DO-178B" , Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" [9], is the primary means of securing approval of software used in aviation products. DO-178B, which was published in 1992, was not written with OOT XE "OOT" in mind. When DO-178B was written, structured programming was the predominant technique for organizing and coding computer programs. Object orientation is fundamentally different, and how to meet some of the DO-178B objectives when using OOT is not obvious in some cases and complicated in others.

Although organizations such as the Object Management Group (OMG) work to develop specifications for OOT, no universal guidelines exist for using OOT in safety-critical systems. Also, lack of guidelines can limit software reuse since different criteria may be applied each time a system containing the software is to be certified. Certification authorities have been using issue papers on a project-by-project basis to address OOT XE "OOT" concerns. These project-specific issue papers document safety issues and concerns with OOT but do not suggest acceptable solutions.

This handbook extends the use of issue papers by providing guidelines to help software developers meet applicable DO-178B XE "DO-178B" objectives when using OOT XE "OOT" ; it also provides useful criteria for certification authorities and Designated Engineering Representatives (DERs) when evaluating OOT projects and the issues that may arise with respect to OOT use in DO-178B certified systems.

This handbook is not intended to be an endorsement of OOT XE "OOT" , but is intended to be informational and educational. This handbook does not constitute Federal Aviation Administration (FAA) policy or guidance; rather it documents acceptable approaches to address OOT in safety-critical systems.

It is anticipated that this handbook and other documents will be used to impact future changes to the FAA’s software guidance (e.g., to impact future revisions to DO-178B XE "DO-178B"). However, at this point in time, this handbook merely provides suggested guidelines to help applicants make informed software development and verification decisions.

The FAA has sponsored the Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" (OOTiA XE "OOTiA") program to develop a practitioner’s guide for addressing OOT XE "OOT" challenges in aviation. The FAA, National Aeronautics and Space Administration (NASA), other government organizations, academia, international certification authorities, avionics manufacturers, and aircraft manufacturers have collaborated through two OOTiA workshops and the OOTiA workshop committee to produce this handbook.
1.2 Scope
This handbook addresses issues that were identified as having potential impact in safely applying OOT XE "OOT" in airborne systems. Certification authorities, industry, and others submitted potential issues through a web site dedicated to the OOTiA XE "OOTiA" program (http://shemesh.larc.nasa.gov/foot/). Some of the issues are not unique to OOT (e.g., inlining XE "inlining" and templates); however, these issues are addressed in the handbook because the way they are addressed is critical to safe implementation of OOT. Note that this handbook does not address all potential issues, nor are the guidelines the only possible solutions. As technology advances and experience with OOT increases within the aviation community, this handbook will likely be updated.

1.3 OOTiA XE "OOTiA" Activities

NASA and FAA sponsored two OOTiA XE "OOTiA" workshops for the purposes of:

· Identifying safety and certification issues related to using OOT XE "OOT" ,

· Coordinating and communicating with industry, government, and academia on OOT XE "OOT" ,

· Working together to establish positions on the key OOT XE "OOT" issues.

The workshops were led and coordinated by a workshop committee and were attended by international government, industry, and academia (see Appendix C for a list of workshop participants and committee members). The first OOTiA XE "OOTiA" workshop was held in April 2002. A main feature of the first workshop was breakout sessions to address the following topics taken from the issue list:

· Single Inheritance XE "Single Inheritance" & Dynamic Dispatch XE "Dynamic Dispatch"
· Multiple Inheritance XE "Multiple Inheritance"
· Dead and Deactivated Code, and Reuse XE "Dead and Deactivated Code, and Reuse"
· OO Tools XE "Tools"
· Templates XE "Templates"
· Inlining XE "Inlining"
· Type Conversion XE "Type Conversion"
· Overloading
· XE "Overloading"
A position paper was developed for each of these topics. The position papers provided background information for each topic, a discussion of relevant safety or certification concerns, and proposed guidelines or recommended practices for complying with DO-178B XE "DO-178B" . The second workshop, held in March 2003, built upon the first workshop to continue development of the position papers. Breakout sessions on traceability XE "traceability" and global OOT XE "OOT" concerns were also conducted at the second workshop in response to comments received on the original eight position papers.

The workshop committee coordinated the input on the original eight position papers plus traceability XE "traceability" and integrated them into this handbook. Workshop attendees were given several opportunities to provide comments on the handbook contents, outside of the workshop environment.

In addition to this practitioner’s handbook, NASA will publish a technical report to address global OOT XE "OOT" concerns and challenges.

1.4 How To Use This Handbook
1.4.1 Handbook Structure

This handbook is structured as follows:

· Section 1 provides the introductory and foundational information needed to use the handbook.

· Section 2 provides a brief overview of OOT XE "OOT" . This is not intended to be an in-depth tutorial on OOT, but rather is a high-level consideration of OOT. The last sub-section of Section 2 provides suggested resources for those who require a more in-depth understanding of OOT.

· Section 3 provides an overview of practical considerations, and safety and certification concerns for OOT XE "OOT" .

· Sections 4-12 correspond to the position papers developed through the OOTiA XE "OOTiA" workshops. Sections 4 and 5 cover topics fundamental to object orientation, namely, single and multiple inheritance XE "multiple inheritance" , and dynamic dispatch XE "dynamic dispatch" . Sections 6-12, in contrast, cover assorted topics that are complicated by the use of OOT XE "OOT" . These topics include reuse and dead and deactivated code XE "deactivated code" , tools, templates, inlining XE "inlining" , type conversion, overloading, and traceability XE "traceability" . Each section is intended to be independent of other sections, unless otherwise stated. The approaches and sections are further described below:

· Sections 4 and 5 address single and multiple inheritance XE "multiple inheritance" , respectively. Each section provides the technical scope and background first, followed by a list of issues with a tie to DO-178B XE "DO-178B" and suggested solutions in the form of “patterns”.

A “pattern XE "pattern" ” describes a successful approach to solving a problem in a particular context. Patterns are often used by the OO community to address common analysis and design problems. Sections 4 and 5 include design patterns that help to address the related safety and certification concerns. Each pattern includes a list of the issues it is intended to address, a discussion of the motivation for doing so, a statement of when the pattern applies (and when it does not), a list of guidelines (expressed as rules) that should be followed when the pattern is applied, and a rationale that relates these rules to individual issues and DO-178B XE "DO-178B" objectives. Note: In these sections, the term “rule XE "rule" ” is used to mean a “rule” to be followed to apply the pattern, and has no relationship to regulatory rules.

· Sections 6 through 12 provide guidelines on templates (section 6); inlining XE "inlining" (section 7); type conversion (section 8); overloading (section 9); dead and deactivated code XE "deactivated code" , and reuse (section 10); OO tools (section 11); and traceability XE "traceability" (section 12). These sections use a similar approach for addressing the specific issues at hand. Each section explains the topic background and then provides the issues and guidelines. Each issue is explained with ties to DO-178B XE "DO-178B" ; then recommendations are made to address each issue. The recommendations may be in the form of rules or practices, but they are not made in the form of patterns.

· The glossary defines terms used in the handbook. Many of the terms are taken from other sources, which are credited, when possible.
· Appendix A provides information that is useful for understanding and applying this handbook, and is referenced from other parts of the handbook.
· Appendices B through D provide additional information, such as acronyms, workshop participants, and index of terms.
· Appendix E provides a feedback form for suggested improvements to the handbook.
1.4.2 Software Developers

The guidelines in this handbook are intended to help developers meet DO-178B XE "DO-178B" objectives and may be applied as needed for the software development effort. The applicability of the guidelines may depend on the software level, the selected language, the OO features being implemented, and other project specifics. Consequently, application of a specific guideline does not guarantee that a related DO-178B objective(s) will be met. Coordination and concurrence on the approach by the certification authority is required.

Guidelines that are used should be documented in the project plans, standards, verification approach, etc.

Developers who use this handbook are encouraged to document the specific guidelines in the Plan for Software Aspects of Certification (PSAC) in order to coordinate with certification authorities early in the program.

1.4.3 Certification Authorities

Certification authorities and their designees may use this guide to identify OOT XE "OOT" issues and to evaluate proposed solutions. It must be noted that guideline applicability may depend on software level, the selected language, the OO features being implemented, and other project specifics. It must also be noted that there are solutions beyond this handbook (i.e., the guidelines in this handbook are not the only way to safely implement OOT).

1.5 Future Plans

It is anticipated that this handbook will be updated in the future, as OOT XE "OOT" in aviation matures and lessons are learned. If you have comments or suggested improvements to this handbook, please complete and submit the feedback form in Appendix E.

Overview of OOT XE "OOT"
1.6 OOT XE "OOT" Basics

Object-oriented approaches date to the introduction of the programming language Simula in 1967. Most recently they have been standardized by the Object Management Group XE "Object Management Group" (OMG XE "OMG") through their definition of a Unified Modeling Language XE "Unified Modeling Language" (UML XE "UML") [11], and in other specifications related to model-driven architectures, distributed object communication, etc.

OOT XE "OOT" is a software development technique that is centered on “objects.” The Institute of Electrical and Electronics Engineers XE "Institute of Electrical and Electronics Engineers" (IEEE XE "IEEE") refers to OOT as “a software development technique in which a system or component is expressed in terms of objects and connections between those objects” [3]. An object can be compared to a “black box” at the software level – it sends and receives messages. The object contains both code (functions) and data (structures). The user does not have insight into the internal details of the object, hence the comparison to a black box. An object can model real world entities, such as a sensor or hardware controller, as separate software components with defined behaviors.

A major concept in OOT XE "OOT" is the “class XE "class" .” A class is a set of objects that share the same attributes, methods, relationships, and semantics – they share a common structure and behavior [11]. A class describes the characteristics and behavior of a real world entity. Figure 2.1‑1 illustrates a representation of a class definition for an object.

[image: image18.wmf]clientMethod

TargetClass

targetObject

1

0..*

1

-

runTimeClass

0..*

SuperClass

SubClass

methodInTargetClas

s

1

1

methodInSuperClass

1

1

methodInSubclass

1

1

targetOperation

calls

1

1

1

+specification

1

1

+specification

1

+specification

executes

Figure 2.1‑1 Object-Oriented Class Representation
1.7 Principles of OOT XE "OOT"
There are seven principles that form the foundation for OOT XE "OOT" : abstraction XE "abstraction" , encapsulation XE "encapsulation" , modularity XE "modularity" , hierarchy XE "hierarchy" , typing XE "typing" , concurrency XE "concurrency" , and persistence XE "persistence" [1]. Not all of these principles are unique to OOT, but OOT is the only development methodology that embodies all seven as a consistent model. Abstraction, modularity, concurrency, and persistence are principles that are commonly used in other development methodologies. However, encapsulation (using a technique called information hiding XE "information hiding"), hierarchy (using a technique called inheritance), and typing (using a concept called polymorphism XE "polymorphism") are relatively unique to OOT. Each of the seven principles is described below.

Abstraction is one of the fundamental ways that complexity is addressed in software development. “An abstraction XE "abstraction" denotes the essential characteristics of an object that distinguish it from all other kinds of objects and thus provide crisply defined conceptual boundaries, relative to the perspective of the viewer" [1].

Encapsulation is the process of hiding the design details in the object implementation. Encapsulation can be described as “the mechanism that binds together code and the data it manipulates, and keeps both safe from outside interference and misuse” [10]. Encapsulation is generally achieved through information hiding XE "information hiding" , which is the process of hiding the aspects of an object that are not essential for the user to see. Typically, both the structure and the implementation methods of the object are hidden.
Modularity is the process of partitioning a program into logically separated and defined components that possess defined interactions and limited access to data. Booch writes that modularity XE "modularity" is a “property of a system that has been decomposed into a set of cohesive and loosely coupled modules” [1].

Hierarchy is simply the ordering of abstractions. Examples of hierarchy XE "hierarchy" are single inheritance XE "single inheritance" and multiple inheritance XE "multiple inheritance" . In OOT XE "OOT" , when a sub-class XE "class" is created, this new class “inherits” all of the existing attributes and operations of the original class, called the “parent” or “superclass XE "superclass" ” [7]. Inheritance is a relationship between classes where one class is the “parent” (also called “base,” “superclass,” or “ancestor”) class of another [6]. One author puts it this way, “Inheritance is a relationship among classes where a child class can share the structure and operations of a parent class and adapt it for its own use” [4].

Inheritance is one of the key differences between OOT XE "OOT" and conventional software development. There are two types of inheritance: single inheritance XE "single inheritance" and multiple inheritance XE "multiple inheritance" . In single inheritance, the sub-class XE "class" inherits the attributes and operations from a single superclass XE "superclass" . In multiple inheritance, the sub-class inherits some attributes from one class and others from another class. Multiple inheritance XE "Multiple inheritance" is controversial, because it complicates the class hierarchy XE "hierarchy" and configuration control [8].

Typing is a principle that is used in OOT XE "OOT" that has many definitions. Booch presents one of the most clear and concise definitions by stating, “Typing is the enforcement of the class XE "class" of an object, such that objects of different types may not be interchanged, or at the most, they may be interchanged only in very restricted ways” [1]. Examples of OOT typing XE "typing" are strong typing, weak typing, static typing, and dynamic typing. Each OOT programming language varies in its implementation of typing.

Another OOT XE "OOT" concept closely related to typing XE "typing" is polymorphism XE "polymorphism" . Polymorphism comes from the Greek meaning “many forms.” It allows one name to be used for two or more related but different purposes [10]. It is the ability of an object to assume or become many different forms of object. Polymorphism specifies slightly different or additional structure or behavior for an object, when assuming or becoming an object [5]. This allows different underlying implementations for the same command. For example, assume there exists a vehicle class XE "class" that includes a steer-left command. If a boat object was created from the vehicle class, the steer-left command would be implemented by a push to the right on a tiller. However, if a car object was created from the same class, it might use a counter-clockwise rotation to achieve the same command.

Concurrency is the process of carrying out several events simultaneously.

Persistence is “the property of an object through which its existence transcends time (i.e., the object continues to exist after its creator ceases to exist) and/or space (i.e., the object’s locations moves from the address space in which it was created)” [1].

1.8 OOT XE "OOT" Methodology

OOT XE "OOT" can typically be described in four phases: Object-Oriented Analysis (OOA), Object-Oriented Design (OOD), Object-Oriented Programming (OOP), and Object-Oriented Verification/Test (OOV/T). The implementation of these phases is typically iterative or evolutionary. An overview of each phase will be addressed below.

OOA is the process of defining all classes that are relevant to solve the problem and the relationships and behavior associated with them [8].

A number of tasks occur to carry out the OOA as shown in Figure 2.3‑1. The tasks are reapplied until the model is completed. As shown in Figure 2.3‑1, use cases, class XE "class" -responsibility-collaborator (CRC) models, object-relationship (OR) models, and object-behavior (OB) models are methods typically used to carry out the OOA. The use case is a method utilized to identify the user’s requirements. The CRC model is used to identify the class attributes, operations, and hierarchy XE "hierarchy" . The OR model is used to illustrate the relationship between the numerous objects. And, the OB model is used to model the behavior of each object.

[image: image19.jpg]

Figure 2.3‑1 OOA Tasks
OOD transforms the OOA into a blueprint for software construction. Four layers of design are usually defined: subsystem layer, class XE "class" and object layer, message layer, and responsibilities layer. The subsystem design layer represents each subsystem that enables software to achieve the requirements. The class and object design layer contains class hierarchies and object designs. The message design layer contains the internal and external interfaces to communicate between objects. The responsibilities design layer contains the algorithm design and data structures for attributes and operations of each object.

OOP is the coding phase of the design project, using an OO language.
OOV/T is the process of detecting errors and verifying correctness of the OOA, OOD, and OOP. OOV/T includes reviews, analyses, and tests of the software design and implementation. OOV/T requires slightly different strategies and tactics than the traditional structured approach. The variance in the approach is driven by characteristics like inheritance, encapsulation XE "encapsulation" , and polymorphism XE "polymorphism" . Most developers use a design for testability approach to begin addressing any verification/test issues early in the program.
1.9 OOT XE "OOT" Languages

Many OO languages exist. Some of the most well known are C++ XE "C++" , Smalltalk XE "Smalltalk" , Ada XE "Ada" 95 XE "Ada 95" , and Java XE "Java" . C++, Ada 95, and Java are of particular interest for designers of embedded software. C++’s tool support, Ada 95’s extension XE "extension" of Ada 83, and Java’s platform independence make these languages very appealing to the developers of airborne systems. But each language has its own set of challenges. This handbook attempts to address language-specific issues, where possible. C# XE "C#" is another OO language being considered for embedded software. However, it is still maturing and is not yet addressed in this handbook.

1.10 Additional Key OO Concepts

In addition to the OO concepts described above, the following concepts are important OO concepts mentioned in this handbook.

Dynamic dispatch XE "Dynamic dispatch" is the association of a method with a call based on the run-time type of the target object. Dynamic dispatch is not related to dynamic linking XE "dynamic linking" or dynamic link libraries. Dynamic dispatch is sometimes referred to as “dynamic binding XE "dynamic binding" .” There are two types of dynamic dispatch XE "dynamic dispatch" used in OO:

· Single dispatch XE "Single dispatch" is dynamic dispatch XE "dynamic dispatch" based on only the run time type of the target object. Most OO languages, including Java XE "Java" , Ada95 and C++ XE "C++" are single dispatching.

· Multiple dispatch XE "Multiple dispatch" is dynamic dispatch XE "dynamic dispatch" based on the run time types of all the arguments to a call, rather than only the run time type of the target object.

The Liskov substitution principle XE "Liskov substitution principle" (LSP XE "LSP") is a set of subtyping XE "subtyping" rules that ensure that instances of a subclass XE "subclass" are substitutable for instances of all parent classes in every context in which they may appear. These rules go beyond the simple checking of signatures, taking into account the behavior of operations (as defined by their pre and post conditions) and the invariants defined by classes. Even if classes are not defined formally, the principle can be upheld by requiring the inheritance of test cases. Reference [12] provides additional insight into the LSP concept.

LSP XE "LSP" requires, quite simply, that subclasses not break the contract between client and implementation established by their superclasses. We cannot make new demands on clients, and must deliver on all promises we have made. As a result, the precondition XE "precondition" of an operation in the subclass XE "subclass" must be weaker (demand less) or the same as the precondition of the same operation in the superclass XE "superclass" . Conversely, the postcondition XE "postcondition" must either be stronger (deliver more) or the same. With regard to errors, the subclass version of an operation can only report the same types of errors as its superclass version. Otherwise, clients would be expected to handle error cases that were not part of the original contract.

LSP XE "LSP" also applies to changes to the signatures of operations introduced in subclasses. In this regard, the types of an operation’s input parameters are logically a part of its precondition XE "precondition" . For instance, consider the UML XE "UML" definition of an operation that takes a natural number and returns a natural number as its result, “f (p: Natural): Natural”. This operation could instead be specified as “f (p: Integer): Natural pre p >=0”, where the client constraint is now given explicitly by the precondition rather than implicitly as an invariant of type Natural.

Similarly, the types of an operation’s output parameters (and any return parameter type) are logically a part of its postcondition XE "postcondition" . For example, if an operation returns a result of type Natural, then this is equivalent to specifying a return type of Integer and a postcondition that requires the result be “>=0”.

1.11 Further OOT XE "OOT" Reading

The following resources are recommended for those who desire to study OOT XE "OOT" in more depth:

· The Object-Oriented Thought Process by Matt Weisfeld (SAMS Publishing, 2000): This book provides a simple introduction to the OO fundamentals. It is good for those transitioning from the structured approach to OO.

· Object-Oriented Analysis and Design by Grady Booch (Addison-Wesley, 2nd edition, 1994): This book provides a practical introduction to OO concepts, methods, and applications.

· Pitfalls of Object-Oriented Development by Bruce Webster (M&T Books, 1995): Although somewhat dated, this book provides a sound overview of the potential problems in OO development.

· Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides (Addison-Wesley, 1995): Patterns are widely used by the OO community to address analysis and design problems. This book provides a guide for effective development and use of patterns.

· Object-Oriented Software Construction by Bertrand Meyer (Prentice Hall, 2nd edition, 1997): Although a large book, this one provides good fundamental information for OO developers.

· Testing Object-Oriented Systems: Models, Patterns, and Tools XE "Tools" by Robert V. Binder (Addison-Wesley, Reading, MA, 2000): This book addresses one of the more difficult aspects of OOT XE "OOT" – testing.

Note: This is by no means an exhaustive list of OO references, but is merely intended to provide a starting point for those interested in learning more about OOT XE "OOT" . The Reference section of this handbook provides additional resources.

2. Issues Relevant to Using OOT XE "OOT" in Aviation Applications

2.1 Practical Considerations for Using OOT XE "OOT" in Aviation
The guidelines in this handbook provide an approach for addressing DO-178B XE "DO-178B" objectives when specific types of Object-Oriented features and tools are used. There are currently sharp divisions within the development and research community regarding the use of OOT XE "OOT" in safety critical systems. This section touches on some of the claimed benefits and potential pitfalls XE "pitfalls" of using OOT in such systems without attempting to be definitive.

2.1.1 Claimed Benefits

The following are some of the claimed benefits for OOT XE "OOT" most relevant to avionics systems:

Well defined interfaces, “design by contract,” encapsulation XE "encapsulation" [6]: It is claimed that the use of OOT XE "OOT" typically leads to more robust, more modular systems. An emphasis on well-defined interfaces also serves as the basis for introducing more rigorous, and more formal approaches (involving the use of preconditions, postconditions, and invariants)

However, achieving the benefits requires an extra effort to specify such interfaces, and the ability to “see” inside modules during testing.

Support for product families/reuse: It is claimed that OOT XE "OOT" supports the ability to specialize components for use on a variety of systems, the development of architectures that support families of products, and the reuse of artifacts (models, code test cases, documentation, and analysis results) across related products.

However, the definition of such product family architectures requires more work and compliance with formal subtyping XE "subtyping" rules (e.g., LSP XE "LSP") when creating and testing specialized versions of components.

Ability to isolate likely future changes, reducing maintenance costs: It is claimed that OOT XE "OOT" makes it possible to isolate likely future changes behind class XE "class" interfaces, reducing maintenance costs.

However, an explicit effort to do so up front is required along with experience developing a number of similar systems to identify what is likely to change.

Ability to represent key policies and strategies as “design patterns”: It is claimed that design patterns can be used to define policies and strategies related to fault tolerance, partitioning, error handling and reporting, concurrency XE "concurrency" , resource allocation, synchronized access to shared resources, fast path optimizations, etc. Such policies can be key to the correctness and performance of safety critical, real-time, embedded applications.

However, the number of patterns that explicitly address safety critical and high assurance properties is small, and tool support for patterns, in general, is currently limited.

Widespread industry support: OOT XE "OOT" claims widespread support in terms of training, research, and commercially available software and tools.
However, most tools, standards, textbooks, and software are not targeted to high assurance systems and must be adapted or extended to be most useful.

2.1.2 Conceptual Pitfalls

There are also a number of potential pitfalls XE "pitfalls" for OOT XE "OOT" developers.

2.1.2.1 Conceptual Pitfalls

Going object-oriented for the wrong reasons: There are number of valid reasons to consider use of OOT XE "OOT" . Unfortunately there are “many more misunderstood, misguided, or just downright bad reasons for going object-oriented” [14, p. 32]. These include (but are not limited to): wanting to cut back on development staff, thinking OOT will significantly reduce the need for testing, thinking that your project can be completed five to ten times faster using OOT, thinking the use of OOT will reduce project risk, and wanting to be able to build future products simply by plugging software components together.

Thinking objects will solve all problems: As Fred Brooks has declared, and experience has repeatedly proven, there is no “silver bullet” to slay the problems associated with software development. A variety of techniques are needed and reliance on a proven process is essential to applying them successfully. OOT XE "OOT" can be a significant part of this process, but it will not (in and of itself) resolve most of the problems. Also, OOT does not come for free (in terms of the need for experience, training, and tools).

Allowing new features to creep (or pour) in: The temptation to add new features certainly isn’t unique to the use of OOT XE "OOT" . The problem is that OOT (by isolating likely future changes) makes it easier to introduce such features. To avoid related problems, new features should generally be introduced only in new increments, as part of a planning process that takes into account cost and schedule.

2.1.2.2 Analysis and Design Pitfalls

Pouring new wine into old bottles (or vice versa): Although the use of OOT XE "OOT" does not invalidate other approaches, problems can arise when OO and non-OO approaches are mixed with regard to development of the same software. For instance, a classic approach to analysis and design may be implemented using OOT techniques. Or an object-oriented analysis and design may be implemented without support for classes, class XE "class" hierarchies, etc. In both cases, the result is often objects that resemble “slightly intelligent data structures, or procedural libraries” [14, p. 108], and problems representing the relationships between classes. It is far better to divide an application into subsystems that either use or do not use OOT, then integrate the overall software system using wrappers to provide the needed subsystem interfaces in the proper style.

2.1.2.3 Class and Object Pitfalls

Confusing subtyping XE "subtyping" with association: There are two basic relationships between classes. The subtyping relationship (inheritance) indicates that all instances of one class XE "class" are logically instances of another. For example, an Airspeed Tape is a subtype of Tape, a GPS Sensor is a subtype of Sensor, etc. This relationship requires that we follow formal rules for subtyping (LSP XE "LSP"). An association (often implemented using pointers) specifies that an instance of one class is linked to some number of instances of another class. For example, a car has an engine and is owned by some person. An engine is not logically a type of car, nor is a person. Relationships between cars, engines, and owners may also change at run time. Although the distinction between these two types of relationships seems obvious, novice OO developers often confuse the two, or misuse implementation inheritance to represent associations. This leads to problems, typically discovered during testing, that are far easier to avoid than to correct.

Converting non-object code straight into objects: Developers with no object-oriented experience are used to treating data and functions (processes) separately. Data is organized into records or structures which may be linked via references or pointers. Functions are decomposed into smaller functions that perform a subset of the steps required by their parent. OOT XE "OOT" combines the data oriented and function oriented approaches, organizing the program around collections of data (records) and the sets of functions that manipulate them. “Developers new to OO sometimes extend their former approaches in a one-sided fashion. For example, they may take a data structure, turn it into a class XE "class" , define methods to access (get and set) the data fields, and leave it at that. The resulting class is little more than a cumbersome version of the original data structure, with no intelligence or behavior built into it. On the process side, developers may take a set of functions and turn them into methods of a single class, possibly with few no data members.” [14, p. 178] Both represent a misuse of OO principles, and lead to poor designs.

2.1.2.4 Verification Pitfalls

Neglecting component testing: Although it is possible to take a subsystem or system level testing approach to an OO system, there are advantages to testing individual components. These components may be individual classes or larger units (assemblies of classes representing libraries or subsystems). They, however, should correspond to reusable entities. Testing at this level makes it easier to enforce the principles of Design by Contract [6], makes it easier to “inherit” test cases, and makes it possible to deliver individual components, their test cases, documentation, etc. as a single package.

2.1.2.5 Reuse Pitfalls

Having or setting unrealistic expectations: OOT XE "OOT" is often sold on promises related to reuse. Reuse, however, is not easy, and is not free. It comes at a cost (in terms of analysis and design) that many organizations are unwilling to pay. It also may only make economic sense if the organization plans to build three or more additional systems that are closely related to one another (form a product family), or if an individual component or subsystem can be reused at least three times.

Being too focused on code reuse: “The most important creation to come from an OOT XE "OOT" project is often the architecture and the design, not the code implementation.” [14] ***Check this reference. This is true because these artifacts are typically more general, and more easily applied to new systems and new applications.

2.2 Overview of Certification Issues
In January 2000, the international Certification Authorities Software Team (CAST XE "CAST") completed a paper that summarizes certification authorities’ concerns regarding OOT XE "OOT" in aviation [13]. The paper particularly focuses on areas where meeting the DO-178B XE "DO-178B" objectives is difficult with OOT. Table 3.2‑1 below summarizes those concerns, but is not considered an exhaustive list.
	Area of Concern
	Description

	Planning
	The OOT XE "OOT" software development process should be carefully planned and documented. In particular, the Plan for Software Aspects of Certification document should address any special certification issues in order to get the certification authority’s “buy-in.” Additionally, the development standards should address any special limitations for the development team to consider (e.g., no multiple inheritance XE "multiple inheritance" , etc.).

	Traceability XE "Traceability"
	DO-178B XE "DO-178B" /ED-12B requires traceability XE "traceability" from requirements to design to code to test cases/results. When inheritance is used in the design, special care must be taken to maintain traceability. This is particularly a concern, if multiple inheritance XE "multiple inheritance" is used. Overall, multiple inheritance is a concern to certification authorities. If used, it should be very carefully applied and addressed in the development standards for the project.

Traceability XE "Traceability" is made more difficult because there is often a lack of OO methods or tools for the full software lifecycle. For example, tools/methods often cover OOA or OOD but not both. New tools are beginning to address this gap [2].

	Target Compatibility
	A number of DO-178B XE "DO-178B" /ED-12B objectives address the topic of target compatibility. Using classes, instantiation, and automatic memory management typically implies the use of dynamic memory allocation. In typical implementations, dynamic memory algorithms require periodic reorganization of the memory to reduce the inevitable fragmentation. This leads to indeterminate execution profiles. As an alternative to the typical implementation provided by most OO languages, the developer might consider the feasibility of designing a deterministic memory allocation subsystem. Another approach which might be feasible, is to pre-allocate objects during program initialization and avoid creating or deleting them after that. Dynamic memory allocation must be verified in terms of both space (available memory) and execution time in order to determine compatibility with the target.

	Structural Coverage
	DO-178B XE "DO-178B" /ED-12B has three forms of structural coverage XE "structural coverage" , which are applicable depending on the software level: statement coverage (Levels A, B, & C); decision coverage (Levels A & B); and modified condition/decision coverage (MC/DC XE "MC/DC") (Level A only). The use of inheritance and polymorphism XE "polymorphism" might cause difficulties in obtaining structural coverage, particularly decision coverage and MC/DC. Source to object code correspondence will vary between compilers for inheritance and polymorphism.

	Dead/Deactivated Code
	DO-178B XE "DO-178B" /ED-12B defines dead and deactivated code XE "deactivated code" as follows:

“Dead code - Executable object code (or data) which, as a result of a design error cannot be executed (code) or used (data) in a operational configuration of the target computer environment and is not traceable to a system or software requirement. An exception is embedded identifiers” [9].
“Deactivated code - Executable object code (or data) which by design is either (a) not intended to be executed (code) or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or used (data) in certain configurations of the target computer environment, for example, code that is enabled by a hardware pin selection or software programmed options” [9].

DO-178B XE "DO-178B" /ED-12B basically requires any dead code XE "dead code" to be removed and deactivated code XE "deactivated code" to be verified (analysis and test) to prove that it cannot be inadvertently activated.

When superclass XE "superclass" methods are replaced by sub-class XE "class" methods (i.e.,overridden methods), there is a possibility that dead or deactivated code XE "deactivated code" could be introduced. Structural coverage analysis is intended to address the dead/deactivated code. However, any such occurrences would need to be addressed.

	Verification/Testing
	Test coverage of high-level and low-level OO requirements will likely require different testing strategies and tactics than the traditional structured approach. The characteristics of inheritance, encapsulation XE "encapsulation" , and polymorphism XE "polymorphism" drive the need for the different strategies and tactics. Most developers are using a “design for testability” approach to begin addressing any test issues early in the program.

	Overuse of Inheritance
	Overuse of inheritance, particularly multiple inheritance XE "multiple inheritance" , can lead to unintended connections among classes [2]. This could lead to difficulty in meeting the DO-178B XE "DO-178B" /ED-12B objective of data and control coupling XE "data and control coupling" .

	Ambiguity
	Inheritance, polymorphism XE "polymorphism" , and operator overloading through dynamic or run-time linkage can lead to ambiguity. Polymorphic and overloaded functions may make tracing and verifying the code difficult [2]. Since DO-178B XE "DO-178B" /ED-12B requires that the source code be verifiable, attention should be paid to such issues.

	Coding Issues
	Some OO languages have “features” that could make it extremely difficult or impossible to satisfy the objectives of DO-178B XE "DO-178B" /ED-12B. In many cases, a well-defined sub-set of the language may be identified and documented in the coding standards that will allow compliance to objectives for a given software level. As an example, ANSI C++ XE "C++" has some “features” that might make meeting the objectives of DO-178B/ED-12B impossible.

	Library Dependence
	The dependence on libraries is a concern for safety-critical systems—it is often unclear as to what is happening in the object libraries. Libraries may not have been developed with safety-critical applications in mind and may not have the integrity required for such applications. Use of libraries must be carefully considered and verified for proper functionality.

	Data/Control Coupling
	OO features tend to make data and control coupling XE "coupling:control coupling"

 XE "coupling" relationships more complicated and obscure than in software developed using structural languages. For example, OO languages support development of many simple methods to perform services provided by classes. Through the use of polymorphism XE "polymorphism" and dynamic binding XE "dynamic binding" , both control flow and data flow and the related control and data coupling XE "coupling:data coupling" , respectively, become implicit in the source code versus explicit. Object interaction also becomes implicit in the code when encapsulation XE "encapsulation" and information hiding XE "information hiding" are used. Other OO features, e.g., constructors XE "constructors" , destructors XE "destructors" , overriding, type conversion, may also impact data and control coupling XE "coupling" by changing dependencies and behavior.

Table 3.2‑1 Certification Authority Concerns with OOTiA XE "OOTiA"
2.3 Additional OOT XE "OOT" Issues
Since September 2001, the OOTiA program web site has been used to collect concerns about OOT in addition to those identified by CAST XE "CAST" . To date, 69 issues have been submitted to the web site. These issues are included in an “OOTiA Issues Report” which is a separate document from this handbook. Cross-references between these OOT XE "OOT" issues and this handbook have been documented is the “Issues Report”.

The issues submitted through the web site are summarized under nine topic areas in Table 3.3‑1. Chapters 4-12 of this handbook address each of these topics. Additional OO issues may be submitted to the OOTiA XE "OOTiA" web site and will be considered in future updates of this handbook.
	Topic
	Summary of Issues

	Single Inheritance XE "Single Inheritance" and Dynamic Dispatch XE "Dynamic Dispatch"

	Inheritance supports the organization of object-oriented systems in terms of classes and class XE "class" hierarchies. Single inheritance XE "Single inheritance" allows each class to have at most one superclass XE "superclass" . In most object-oriented languages, an object is permanently assigned a run-time class XE "run-time class" at the point at which it is allocated and initialized. Although the run-time class of the object never changes, the object can be treated, not only as a member of its run-time class, but also as a member of any superclass of this class. Areas of concern include:

· Impact of dynamic dispatch XE "dynamic dispatch" on data and control flow, timing analysis XE "timing analysis" , requirements based testing, structural coverage XE "structural coverage" , traceability XE "traceability" , initialization,

· Compatibility between classes and subclasses,

· Programmer specified optimizations

· Overriding

· Run time substitutability involving more than the target object.

	Multiple Inheritance XE "Multiple Inheritance"

	Multiple inheritance XE "Multiple inheritance" permits a class XE "class" to have more than one superclass XE "superclass" and may involve interface inheritance XE "interface inheritance" , implementation inheritance, or combination of the two. Most issues arise with multiple implementation inheritance because it is difficult to implement, associated errors have run-time consequences, and the inherited elements reference one another and may interact in `subtle ways, increasing overall complexity and the potential for error. Multiple inheritance is treated in this document as an extension XE "extension" of single inheritance XE "single inheritance" and, as a result, all guidelines related to the use of single inheritance and dynamic dispatch XE "dynamic dispatch" also apply. Areas of concern specific to multiple inheritance XE "multiple inheritance" include:

· repeated inheritance, paths, and independently defined operations with the same signature,
· inheritance via more than one path,
· inheriting different definitions of the same operation,
· independent definitions of an operation with the same signature, and

· top heavy or deep hierarchies.

	Templates XE "Templates"
	Templates XE "Templates" support reusability in programming languages by providing a means of abstracting common structural and behavioral aspects of a family of classes or operations in a domain independent way. The following are impacted by the use of templates:

· source code review,

· coding standards,

· requirements-based test case and procedure development and review,

· timing analysis XE "timing analysis" ,

· memory usage XE "memory usage" ,

· requirements-based test coverage,

· source code to object code traceability XE "traceability" ,

· structural coverage XE "structural coverage" , including data coupling XE "data coupling" analysis and control coupling XE "control coupling" analysis.

· Dead/deactivated code XE "deactivated code" because of potentially unused functionality.

	Inlining XE "Inlining"
	Inline is a compiler option that results in the direct expansion of a method body within the code of a calling method. Since a compiler may choose to follow or ignore a recommendation to inline based on compiler optimization criteria, verification methods may be affected. The following analyses are directly impacted by inlining XE "inlining" :

· memory and stack usage XE "stack usage" analyses,

· timing (performance) analysis,

· structural coverage XE "structural coverage" analysis, and

· source code to object code traceability XE "traceability" .

	Type Conversion XE "Type Conversion"
	Type Conversion XE "Type Conversion" may be implicit or explicit and may be checked or unchecked. Implicit type conversion raises certification issues related to the ability to perform various forms of analyses and to satisfy the verification objectives of DO-178B XE "DO-178B" , including requirements-based testing and structural coverage XE "structural coverage" analysis. The following are directly impacted by implicit type conversion XE "implicit type conversion" :

· potential loss of data or precision,

· performance and timing analysis XE "timing analysis" ,

· requirements-based test development, review and execution results,

· structural coverage XE "structural coverage" analysis,

· data and control flow analyses, and source to object code traceability XE "traceability" .

	Overloading XE "Overloading"
	Although overloading is a simple form of static polymorphism XE "polymorphism" when used consistently, improper use can make source code readability more difficult, may affect verification methods, and can contribute to human error. Overloading XE "Overloading" can also complicate matters for tool use (e.g., structural coverage XE "structural coverage" and control flow analysis tools) if the overloading rules for the language are overly complex.

	Dead and Deactivated Code, and Reuse XE "Dead and Deactivated Code, and Reuse"
	A major objective of OOT XE "OOT" is to provide the ability to create new software systems utilizing reusable software components. Since a reusable component often contains more software functionality than required by the system being certified, deactivated code XE "deactivated code" may result. Areas of concern include:

· Compiler generated default methods (e.g., default constructors XE "constructors" , destructors XE "destructors" , assignment operators)

· Completely unused classes

· Unused methods within classes

· Overridden methods due to use of sub-classes

· Existence of unexecuted paths because the entry conditions for those paths are never satisfied for a given system

· Unused class XE "class" attributes

· Unintended functionality or anomalous behavior

· Traceability XE "Traceability" and how dead code XE "dead code" , deactivated code XE "deactivated code" and active code can be differentiated and verified in OO software.

· Amount of re-verification required when a previously approved class XE "class" hierarchy XE "hierarchy" is updated.

· Changes in the status of deactivated code XE "deactivated code" versus actively used code when previously developed software is submitted for a new certification.

	OO Tools XE "Tools"
	Current OO tools, either internally developed or commercially procured, may not meet the guidelines required to comply with DO-178B XE "DO-178B" with regard to satisfying configuration management, development, and verification objectives. Issues related to OO tool use include:

· Addressing verification coverage for OO software,

· Using OO frameworks XE "frameworks" , automatic code generators, dynamic dispatch XE "dynamic dispatch" , polymorphism XE "polymorphism" , and inheritance, and

· Addressing requirements management and traceability XE "traceability" during OO development.

	Traceability XE "Traceability"
	OO presents new challenges regarding to traceability XE "traceability" that were not necessarily present in the traditional structured development. The general traceability concerns are:
· Requirements may be specified in term of use-cases.

· Using dynamic dispatch XE "dynamic dispatch" , polymorphism XE "polymorphism" , and inheritance can complicate the traceability XE "traceability" .

· Overloading XE "Overloading" and overriding functionality may also complicate traceability XE "traceability" in OO systems.

Table 3.3‑1 OOTiA XE "OOTiA" Issues Categories

References for Chapters 1 through 3

1. Booch, Grady. Object-Oriented Analysis and Design. Addison-Wesley, 2nd edition, 1994.

2. Cuthill, Barbara. “Applicability of Object-Oriented Design Methods and C++ XE "C++" to Safety-Critical Systems” from Proceedings of the Digital Systems Reliability and Safety Workshop (1993).

3. “Glossary of Software Engineering Terminology.” ANSI/IEEE XE "IEEE" Standard, 1983.

4. Gomaa, Hassan. Software Design Methods for Concurrent and Real-time Systems. Addison-Wesley, 1993.

5. Hathaway, Bob. “Frequently Asked Questions on Object-Oriented.” Web-site: http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/oop/faq-doc-0.html.

6. Meyer, Bertrand. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.

7. Montlick, Terry. “What is Object-Oriented Software?” Web-site: http://www.soft-design.com/softinfo/objects.html
8. Pressman, Roger. Software Engineering: A Practitioner’s Approach. McGraw Hill, 4th edition, 1997.

9. RTCA, document DO-178B XE "DO-178B" /ED-12B, “Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" ”, dated December 1, 1992.

10. Schildt, Herbert. Teach Yourself C++ XE "C++" . McGraw Hill, 1998.

11. Object Management Group XE "Object Management Group" . OMG XE "OMG" Unified Modeling Language XE "Unified Modeling Language" Specification, version 1.3, June 1999, available from http://www.omg.org/technology/documents/vault.htm#modeling
12. Liskov, Barbara and Jeanette Wing. “A Behavioral Notion of Subtyping”, ACM Transactions on Programming Languages and Systems, 16(6): 1811-1841, November 1994.

13. “Object-Oriented Technology (OOT XE "OOT") In Civil Aviation Projects: Certification Concerns”, CAST XE "CAST" -4, January 2000, http://av-info.faa.gov/software.
14. Webster, Bruce F., Pitfalls of Object-Oriented Development, M&T Books, New York, New York, 1995.

15. Object Management Group XE "Object Management Group" . OMG XE "OMG" Unified Modeling Language XE "Unified Modeling Language" Specification, version 1.4, September 2001, available from http://www.omg.org/technology/documents/formal/uml.htm
3. Guidelines on Single Inheritance XE "Single Inheritance" and Dynamic Dispatch XE "Dynamic Dispatch"
3.1 Purpose

This section provides guidelines for the safe implementation and use of single inheritance XE "single inheritance" and dynamic dispatch XE "dynamic dispatch" (also known as dynamic binding XE "dynamic binding") in projects that use object-oriented (OO) technology.

3.2 Background

Inheritance supports the organization of object-oriented systems in terms of classes and class XE "class" hierarchies. This is a fundamental concept that permits OO systems to directly represent and classify objects representing real-world entities from the problem domain without introducing redundancy.

Classes may define a variety of elements, including operations (which specify the services provided by the class XE "class"), methods (which provide the code to implement operations), attributes (which represent stored data values), and associations (representing references to other objects).

Class elements may be restricted in terms of their visibility. Unified Modeling Language XE "Unified Modeling Language" (UML XE "UML") [5], for instance, distinguishes between elements that are visible to all classes that have access to the class XE "class" itself (publicly access), elements that are visible to classes within the same package (package access), and elements that are accessible only to subclasses (protected access). Elements may also be accessible to both classes in the same package and to subclasses (e.g., in Java XE "Java"), or to a named set of classes (e.g., in Eiffel XE "Eiffel"). Operations accessible to classes other than the defining class and its subclasses are termed client operations.

Operations are identified by their signatures. The signature of an operation consists of its name and a list of the types of its parameters – the information needed to match a call to the operation being called. Consider the UML XE "UML" definition of an operation “m (p: Integer, q: Float)”. The signature of this operation consists of its name “m” and its parameter types “Integer” and “Float”. In some languages, the return parameter (if any) is considered a part of the signature, while in others (such as C++ XE "C++") it is not.

Most OO languages support constructors XE "constructors" and destructors XE "destructors" . A constructor is an operation called by the run time environment when a new object is allocated to ensure it is properly initialized. Conversely, a destructor is an operation called by the run time environment when an object is deallocated to ensure any resources held by the object are released. In most OO languages, a class XE "class" may define more than one constructor, each with its own signature. The constructor called by the run-time environment is the one that matches the arguments supplied by the program at the point it requests the allocation of a new object. Destructors typically have no parameters and, as a result, at most one destructor is associated with a class.

Class definitions may also include constraints in the form of preconditions, postconditions, and invariants. Preconditions represent constraints that must hold at the time a given method is called. Postconditions represent constraints that are guaranteed to hold once execution of the method completes, provided its preconditions were first met. Invariants represent constraints that are established by the class XE "class" constructor and are considered to be a part of the precondition XE "precondition" and postcondition XE "postcondition" of every client operation. Additional constraints may also apply to the relationships between classes. Constraints may be used to specify safety predicates as well as conditions for correctness, and acceptable use.

Class hierarchies consist of classes connected via generalization relationships. In such a relationship, the more general of the classes is termed the superclass XE "superclass" , while the more specialized class XE "class" is termed the subclass XE "subclass" . The relationship itself is also referred to as subclassing or subtyping XE "subtyping" .

The class XE "class" hierarchy XE "hierarchy" may be extended to any depth, although very deep class hierarchies may cause difficulties. Subclasses inherit the elements of their superclasses. Subclasses may also extend these superclass XE "superclass" definitions to include additional elements they define themselves, or redefine elements by overriding their inherited definitions.

Single inheritance XE "Single inheritance" allows each class XE "class" to have at most one superclass XE "superclass" , while multiple inheritance XE "multiple inheritance" permits a class to have more than one superclass. Interface inheritance involves the inheritance of only interface elements (such as operation specifications and constraints), while implementation inheritance involves the inheritance of implementation elements (such as methods, attributes, and references to other objects).

In most object-oriented languages, an object is permanently assigned a run-time class at the point at which it is allocated and initialized. Although the run-time class XE "run-time class" of the object never changes, the object can be treated not only as a member of its run-time class, but also as a member of any superclass XE "superclass" of this class. This ability to treat an object as a member of any of its superclasses is referred to as polymorphism XE "polymorphism" . Polymorphism supports the replacement of general implementations with more specialized ones. It, however, requires strict adherence to subtyping XE "subtyping" rules that guarantee that instances of subclasses behave like instances of their superclasses.

The basic subtyping XE "subtyping" rules are those given by Liskov and Wing [8]. Because they guarantee that we can substitute an instance of a subclass XE "subclass" for an instance of a superclass XE "superclass" , they are often collectively referred as the Liskov Substitution Principle (LSP XE "LSP"). They have also been popularized by Bertrand Meyer [19, 20] in terms of a contracting metaphor between the clients of a class XE "class" and its implementation.

In contracting terms, the client is responsible for establishing the precondition XE "precondition" of an operation before calling it. Given this precondition, the method that implements the operation is then responsible for either delivering on the postcondition XE "postcondition" , or reporting an error to the client. The class XE "class" invariant is established by the constructor when the object is first created, and must be maintained by all client operations. As a result, it is considered to be a part of the precondition and the postcondition of every client operation. The class invariant, however, need not hold at all points during the execution of a client operation, only at the beginning and at the end. This is sufficient to ensure that temporary violations of the invariant are not observable by clients if data is encapsulated and calls to client operations are properly synchronized.

LSP XE "LSP" requires, quite simply, that subclasses not break the contract between client and implementation established by their superclasses. This applies both to the overriding of one operation by another operation and the implementation of an operation by a method. As a result, the precondition XE "precondition" of an operation in the subclass XE "subclass" must be weaker (demand less) or the same as the precondition of the same operation in the superclass XE "superclass" . Conversely, the postcondition XE "postcondition" must either be stronger (deliver more) or the same. Viewed in this way, LSP requires that we not demand more of clients, i.e., the types of input parameters must be either be made more general or left unchanged, and that we deliver at least as much as promised, i.e., the types of output parameters must either be made more specific or left unchanged.

With regard to errors, the subclass XE "subclass" version of an operation can only report the same types of errors as its superclass XE "superclass" version. Otherwise clients would be expected to handle error cases that were not part of the original contract.

LSP XE "LSP" applies also applies to changes to the signatures of operations introduced in subclasses. In this regard, the types of an operation’s input parameters are logically a part of its precondition XE "precondition" . Similarly the types of an operation’s output parameters (and any return parameter type) are logically a part of its postcondition XE "postcondition" . In most OO languages, dynamic dispatch XE "dynamic dispatch" is used to associate a method with a call based on the run-time type of the target object. Dynamic dispatch XE "Dynamic dispatch" is not related to dynamic linking XE "dynamic linking" or dynamic link libraries, nor is it any more dynamic than the use of a case statement to explicitly select a method based on the run-time type of the target object.

Method selection based only on the type of the target object is referred to as single dispatch (since it involves only consideration of the run-time class XE "class" of a single parameter). In a few OO languages, method selection also includes the run-time classes of the remaining parameters. This is referred to as multiple dispatch. The methods considered for selection are referred to as multi-methods. Languages that support multiple dispatch are more flexible in terms of the overriding of methods than single dispatch languages (and able to deal more elegantly deal with issues such as the binary methods problem [14, 16]). Analogous to single dispatch, multiple dispatch is logically equivalent to the use of a series of nested case statements for method selection.

A number of issues arise when using single inheritance XE "single inheritance" and dynamic dispatch XE "dynamic dispatch" that may make compliance with DO-178B XE "DO-178B" difficult. Section 4.3.1 documents the issues, related DO-178B sections and objectives, and applicable guidelines. Guidelines are provided using “patterns”. Patterns are widely used by the OO community to address analysis and design problems [6]. In this section, the problem that concerns us is resolution of the stated issues with respect to use of single inheritance and dynamic dispatch in a manner that complies with DO-178B.

In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing guidance (DO-178B XE "DO-178B") with respect to the use of particular OO features. The “rules” associated with a pattern XE "pattern" are also rules only in the sense that they must be followed in order to apply the pattern.

3.3 Issues and Guidelines

This section is intended to provide an approach for addressing DO-178B XE "DO-178B" objectives when using OO features related to single inheritance XE "single inheritance" and dynamic dispatch XE "dynamic dispatch" . The issues list in section 4.3.1specifies potential obstacles to DO-178B compliance. The list is not intended to address only OO unique issues, but also related issues that are of particular importance to the use of single inheritance and dynamic dispatch.
Where it appears possible to use a feature or combination of features in a way that complies with DO-178B XE "DO-178B" , we have defined a pattern XE "pattern" to describe this. The existence of a pattern does not constitute a recommendation that the feature(s) be used, only an acceptance that the proposed use of the feature(s) resolves the issues. Each of these patterns should also be understood to be one, of possibly many, solutions that assist in DO-178B compliance.

Patterns are documented in a style similar to Gamma et al. [6]. In accordance with [6], each pattern XE "pattern" specifies the issues it intends to address in its statement of Intent. The manner in which it addresses them is given by a set of rules appearing as Guidelines.

The overall collection of patterns is open-ended in that new patterns may be added that address the same issues as existing patterns, under different circumstances. In order to be concise, the patterns often do not contain examples or provide guidelines specific to a particular target language. Extensions of these patterns appearing in the Appendices provide these additional details.

The concept of extending a pattern XE "pattern" to define a new pattern (a subpattern) is analogous to the extension XE "extension" of a class XE "class" to define a new class (a subclass XE "subclass"). All rules associated with the parent pattern apply to the subpattern. The subpattern, however, may define new rules or override existing rules just as a subclass may extend or override definitions in its parent class.

Analogous to an abstract class XE "class" , a pattern XE "pattern" may be abstract. Abstract patterns define a problem to be solved, but do not attempt to solve it. Instead, subpatterns provide alternative approaches and associated guidelines.

3.3.1 Issues

The issues, related DO-178B XE "DO-178B" sections/objectives, and proposed patterns are correlated in the table below. This issue table is used to present the issues and patterns at a high level. It is not intended to provide a precise correlation between patterns, rules, and DO-178B objectives. This information appears in the Rationale section for each pattern XE "pattern" .

	Issue
	DO-178B XE "DO-178B" objectives
/ sections
	Patterns, assumptions and rules

	1. Data flow analysis and control flow analysis are complicated by dynamic dispatch XE "dynamic dispatch" , because it may be unclear which method in the inheritance hierarchy XE "hierarchy" is going to be called.
	Objectives:

A-4 (9),

A-5 (2),

A-7 (8)

Sections:

2.3.1, 5.2.2d, 6.3.3b, 6.3.4b, 6.4.4.2c
	Inheritance with Overriding Pattern" REF _Ref7772749 \h
 * MERGEFORMAT
Inheritance with Overriding
 Pattern: Assumption 3 (the set of classes associated with the system is statically known), and the Simple dispatch rule XE "rule"

	2. Timing analysis is complicated by dynamic dispatch XE "dynamic dispatch" , because it may be difficult to determine the amount of time expended while determining which method to call.
	Objectives:

A-5 (6)

Sections:

6.3.2c, 6.3.4f, 6.4.2.1b, 6.4.2.2f, 6.4.3a, 11.1b, 11.9b, 11.10e, 11.20d, 12.1.1d
	Inheritance with Overriding Pattern: Dispatch time rule XE "rule"

	3. Requirements-based testing is complicated by dynamic dispatch XE "dynamic dispatch" , because it may be difficult to determine how much superclass XE "superclass" verification activity can be reused for its subclasses. Also, inheritance and overriding raise concern with respect to testing (e.g., it is unclear whether superclass tests and test results for inherited and overridden functions may be reused).
	Objectives:

A-6 (1),

A-6 (2),

A-6 (3),

A-6 (4),

A-7 (4)

Sections:

6.4, 6.4.2, 6.4.3, 6.4.4.1

	Inheritance with Overriding Pattern: All rules except the Object code traceability XE "traceability" rule XE "rule"
Inheritance with Overriding and Single Dispatch Pattern
Inheritance with Overriding and Multiple Dispatch Pattern: Simple overriding rule XE "rule"
Subtyping (abstract) Pattern: All rules

Formal Subtyping Pattern: All rules
Unit Level Testing of LSP Pattern: All rules

System Level Testing of LSP Using Assertions
 Pattern: All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: All rules

	4. Structural coverage analysis is complicated by dynamic dispatch XE "dynamic dispatch" because structural coverage XE "structural coverage" changes when going from subclass XE "subclass" to superclass XE "superclass" . A closely related issue is that inheritance and polymorphism XE "polymorphism" may cause difficulty in obtaining structural coverage (both modified condition/decision coverage (MC/DC XE "MC/DC") and decision coverage).
	Objectives:

A-7 (5, 6)

Sections:

6.4.4.2, 6.4.4.3, 12.1.1

	Inheritance with Overriding Pattern: Assumption 3 (the set of classes associated with the system is statically known), Simple dispatch rule XE "rule"
Subtyping (abstract) Pattern: LSP XE "LSP" compliance rule XE "rule"
Unit Level Testing of LSP Pattern: Separate context rule XE "rule"
System Level Testing of LSP Using Assertions
 Pattern: All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: Test case coverage rule XE "rule"

	5. Source to object code traceability XE "traceability" for dynamic dispatch XE "dynamic dispatch" is complicated because it may be difficult to determine how the dynamically dispatched call is represented in the object code; i.e., inheritance and polymorphism XE "polymorphism" may make source to object code correspondence difficult.
	Objectives:

A-7 (5)

Sections:

6.4.4.2b

	Inheritance with Overriding Pattern: Object code traceability XE "traceability" rule XE "rule"

	6. Use of inheritance and overriding raises issues of compatibility between classes and subclasses.

	Objectives:

A-1 (5),

A-3 (5),

A-4 (5),

A-5 (4, 6),

A-6 (1-4),

A-7 (2),

A-9 (1)

Sections:

5.5, 6.2, 6.3.4

	Inheritance with Overriding pattern XE "pattern" : Simple overriding rule XE "rule"
Inheritance with Overriding and Single Dispatch Pattern or Inheritance with Overriding and Multiple Dispatch Pattern: Simple overriding rule XE "rule"
Subtyping (abstract) Pattern: All rules

Formal Subtyping Pattern: All rules
Unit Level Testing of LSP Pattern: Inherited test case rule XE "rule"
System Level Testing of LSP Using Assertions
 Pattern: All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: All rules

	7. Intuition with regard to classification can lead to superclass XE "superclass" -subclass XE "subclass" relationships that violate the Liskov Substitution Principle.

(A.k.a. “square peg in a round hole”).

	Objectives:

A-1 (5),

A-4 (all),

A-5 (all),

A-7 (1),

A-9 (1)
	Inheritance with Overriding Pattern: Simple overriding rule XE "rule" , Accidental override rule, and Simple dispatch rule (if overriding is used)

Inheritance with Overriding and Single Dispatch Pattern or Inheritance with Overriding and Multiple Dispatch Pattern: Simple overriding rule XE "rule"
Subtyping (abstract) Pattern: All rules

Formal Subtyping Pattern: All rules
Unit Level Testing of LSP Pattern: Inherited test case rule XE "rule" , Separate context rule (if overriding is used)

System Level Testing of LSP Using Assertions
 Pattern: All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: All rules

	8. A subclass XE "subclass" may fail to follow the Liskov substitution principle XE "Liskov substitution principle" , breaking the promises to clients made by superclasses.

(A.k.a. “naughty children” 13, p. 503).
	Objectives:

A-1 (5),

A-4 (all),

A-5 (all),

A-7 (1),

A-9 (1)
	Inheritance with Overriding Pattern: Simple overriding rule XE "rule" , Accidental override rule, and Simple dispatch rule (if overriding is used)

Inheritance with Overriding and Single Dispatch pattern XE "pattern" or Inheritance with Overriding and Multiple Dispatch Pattern: Simple overriding rule XE "rule"
Subtyping (abstract) Pattern: All rules

Formal Subtyping Pattern: All rules
Unit Level Testing of LSP Pattern: Inherited test case rule XE "rule" , Separate context rule (if overriding is used)

System Level Testing of LSP Using Assertions
 Pattern : All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: All rules

	9. Inheritance can be misused to support code sharing XE "code sharing" without consideration of substitutability and the rules for behavioral subtyping XE "subtyping" (i.e., LSP XE "LSP").
	Objectives:

 A-1 (5),

A-4 (all),

A-5 (all),

A-7 (1),

A-9 (1)
	Inheritance with Overriding Pattern: Simple overriding rule XE "rule" , Accidental override rule, and Simple dispatch rule (if overriding is used)

Inheritance with Overriding and Single Dispatch Pattern or Inheritance with Overriding and Multiple Dispatch Pattern: Simple overriding rule XE "rule"
Subtyping (abstract) Pattern: All rules

Formal Subtyping Pattern: All rules
Unit Level Testing of LSP Pattern: Inherited test case rule XE "rule" , Separate context rule (if overriding is used)

System Level Testing of LSP Using Assertions
 Pattern: All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: All rules

	10. Some languages make it easy to break the inheritance and subtyping XE "subtyping" guidelines in order to perform programmer specified optimizations (e.g., by omitting the C++ XE "C++" “virtual” keyword to avoid the overhead of dynamic dispatch XE "dynamic dispatch").
	Objectives:

A-1 (5),

A-5 (3,4,6),

A-7 (1),

A-9 (1)
	Inheritance with Overriding Pattern: Simple dispatch rule XE "rule" (if not enforced by the language)

Inheritance with Overriding and Single Dispatch Pattern or Inheritance with Overriding and Multiple Dispatch Pattern: Simple overriding rule XE "rule"
Subtyping (abstract) Pattern: All rules

Formal Subtyping Pattern: All rules
Unit Level Testing of LSP Pattern: Separate context rule XE "rule"
 System Level Testing of LSP Using Assertions
 Pattern: All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: All rules

	11. It is important that the overriding of one operation by another always be intentional rather than accidental.

(A.k.a. “accidental override”).
	Objectives:

A-1 (5),

A-4 (all),

A-5 (all),

A-9 (1)

Sections:

6.3.2b,

11.0a,

11.7,

11.8
	Inheritance with Overriding Pattern: Accidental override rule XE "rule"

	12. Failure to override a method, e.g., in order to maintain a stronger subclass XE "subclass" invariant, will not be detected by compilers, leading to undetected errors.

(A.k.a. “missing override” 13, p. 502)
	Objectives:

A-1 (5),

A-4 (all),

 A-5 (all),

A-7 (1),

A-9 (1)
	Subtyping (abstract) Pattern: All rules

Formal Subtyping Pattern: All rules
Unit Level Testing of LSP Pattern: Inherited test case rule XE "rule"

System Level Testing of LSP Using Assertions
 Pattern: All rules

System Level Testing of LSP Using Specialized Test Cases
 Pattern: All rules

	13. Dynamic dispatch XE "Dynamic dispatch" can introduce problems related to initialization (i.e., especially with regard to deep class XE "class" hierarchies) 13, pp. 73, 501]
	Objectives:

A-4 (10),

A-5 (6),

A-6 (1-4)

Sections:

6.3.3c, 6.3.4f, 6.4.2.2b, 6.4.3b
	Inheritance with Overriding Pattern: Initialization rule XE "rule"
Method Extension Pattern: Method extension XE "extension" rule XE "rule"
Deep Hierarchy Pattern: Six deep rule XE "rule"

	14. The ability of one class XE "class" to directly reference the attributes of another class may tightly couple the definitions of the two classes. Even when attributes are hidden from client classes, they may not be hidden from subclasses.
	Objectives:

A-4 (9),

A-5 (2),

A-7 (8)

Sections:

2.3.1, 5.2.2d, 6.3.3b, 6.3.4b, 6.4.4.2c
	Class Coupling Pattern: All rules

	15. The selection of the code to implement an operation may depend upon more than just the run time type of the target object. In cases involving binary mathematical operations, for instance, this choice typically depends on the run time types of both arguments. As explained in 14], 15] and 16], this (and other related situations) are not handled well by most current OO languages. (A.k.a. “Binary methods problem”)
	Objectives:

A-1 (5),

A-4 (all),

A-5 (all),

A-6 (3, 4),

A-7 (1,4,7),

A-9 (1)
	Inheritance with Overriding and Multiple Dispatch Pattern: All rules

Table 4.3‑1 Single Inheritance XE "Single Inheritance" and Dynamic Issues

The Inheritance with Overriding Pattern addresses the core issues related to inheritance, overriding and dynamic dispatch XE "dynamic dispatch" . Because all these features are closely related, they are addressed together, rather than separately. In addition, the rules apply both to overriding of one operation by another and the implementation of an operation by a method where operation and method are defined using UML definitions [5]. The emphasis in on simplicity through the strict enforcement of a small set of basic principles, an approach similar to that taken by Meyer with respect to Eiffel XE "Eiffel" [20]. Two variations on the pattern XE "pattern" are provided. The Inheritance with Overriding and Single Dispatch Pattern provides for languages that support single dispatch. The Inheritance with Overriding and Multiple Dispatch Pattern provides for languages that support multiple dispatch.

The Subtyping (abstract) Pattern and Formal Subtyping Pattern complement the Inheritance with Overriding Pattern by specifying how to test for superclass XE "superclass" /subclass XE "subclass" compatibility. Several different approaches are possible. The simplest involves unit level testing and the inheritance of unit level test cases as in the Unit Level Testing of LSP Pattern. For organizations that want to do all testing at a system level, two approaches are provided. The System Level Testing of LSP Using Assertions
 Pattern involves instrumentation of the code with assertion checks. The System Level Testing of LSP Using Specialized Test Cases
 Pattern involves the development of specialized versions of system level test cases for this purpose.

The remaining patterns address special cases and individual issues. The Method Extension Pattern deals with the definition of a subclass XE "subclass" method as an extension XE "extension" of an inherited version of the same method. It applies most often to constructors XE "constructors" , but can be used to extend the implementation of any method.

The Class Coupling Pattern addresses concerns related to coupling XE "coupling" between superclass XE "superclass" and subclass XE "subclass" definitions (issue 15). It recommends the definition of an abstract interface between a class XE "class" and its subclasses analogous to the client interface for the class.

The Deep Hierarchy Pattern provides a rule XE "rule" to help identify class XE "class" hierarchies that are “too deep”. Unlike the rules associated with the other patterns, this is intended only as a rule of thumb. Engineering judgment is required to balance the tradeoffs associated with any proposed changes.

3.3.2 Inheritance with Overriding Pattern

3.3.2.1 Intent

The Inheritance with Overriding Pattern provides a set of guidelines on the use of inheritance, overriding, and dynamic dispatch XE "dynamic dispatch" which is equivalent to hand-coded dispatch using case statements or compound if statements. It helps to address issues 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13.

3.3.2.2 Extends

None

3.3.2.3 Motivation

The unrestricted use of dynamic dispatch XE "dynamic dispatch" raises a number of issues with respect to certification, especially with regard to weakly typed languages, and systems that permit the run-time loading of new classes (that are not a part of a previously verified system configuration). With suitable language restrictions, dynamic dispatch is semantically equivalent to the use of hand-coded dispatch methods containing case statements or compound if statements. The automation of dynamic dispatch by the compiler is then equivalent to the auto-generation of these dispatch routines and inlined calls to them.

3.3.2.4 Applicability

This pattern XE "pattern" assumes:

1. a strongly typed language,

2. dynamic dispatch XE "dynamic dispatch" on at least the target object,

3. the set of classes associated with the system is statically known,

4. no dynamic classification (i.e. the run-time class XE "class" of an object never changes).

3.3.2.5 Guidelines

The following rules define a form of object-oriented inheritance, overriding, and dynamic dispatch XE "dynamic dispatch" which is equivalent to hand-coded dispatch using case statements or compound if statements:

Simple overriding rule (Inheritance with Overriding Pattern) XE "rule" : An operation may override an inherited operation so long as:

- changes to its signature do not violate the Liskov Substitution Principle (LSP XE "LSP")
- dynamic dispatch XE "dynamic dispatch" is based on the run time types of all input parameters whose types are subtyped in overriding methods

- making it more visible to clients,

- being more restrictive regarding the types of errors it can report to clients (e.g., as exceptions or by setting error return codes).
Accidental override rule XE "rule" : To ensure that overriding is always intentional rather than accidental, design and code inspections should consider whether locally defined are intended to override inherited operations/methods with a matching signature
.

Simple dispatch rule XE "rule" : When an operation is invoked on an object, a method associated with the operation in its run time class XE "class" should be executed. This rule applies to all calls except explicit calls to superclass XE "superclass" methods, which should be addressed as described in the Method Extension Pattern.

Initialization rule XE "rule" : Overridden methods should not be called during the initialization (construction) of an object.

Dispatch time rule XE "rule" : All dispatch times should be bounded and deterministic.

Object code traceability XE "traceability" rule XE "rule" : Where concerns about source code to object code traceability and timing analysis XE "timing analysis" dictate, the compiler vendor may be asked to provide evidence of deterministic, bounded mapping of the dispatched call. If the evidence is not available from the compiler vendor, it may be necessary to examine the structure of the compiler-generated code and data structures (e.g., method tables) at the point of call.

In accordance with the Simple dispatch rule XE "rule" , method calls are expected to be dispatching. Dispatch must account for at least the run time type of the target object (single dispatch), but may also account for the run time types of other parameters whose types are subtyped in overridden methods (multiple dispatch). Static resolution is regarded as an optimization in those cases where only one resolution is possible.

Note: The initialization rule XE "rule" is not intended to be an obstacle to the creation of “reset” operations that can be called by clients to reinitialize on object after it has been constructed, or to the sharing of initialization code with class XE "class" constructors XE "constructors" . It suggests only that the client reset operation (which has the class invariant as a part of its precondition XE "precondition") and the constructors (which do not) call an internal operation that performs the initialization steps common to them all.

3.3.2.6 Rationale

The Simple overriding rule XE "rule" (Inheritance with Overriding Pattern) ensures LSP XE "LSP" is not violated at the language level, in terms of method declarations. The Subtyping (abstract) Pattern extends this to include testing for LSP compatible behavior. Compliance with LSP is necessary if instances of subclasses are to be treated as instances of their superclasses. This is not only required by the UML XE "UML" definitions of generalization and inheritance, but a fundamental assumption underlying the use of polymorphism XE "polymorphism" and dynamic dispatch XE "dynamic dispatch" .

The accidental override rule XE "rule" is intended to guard against errors that could occur in languages that assume subclass XE "subclass" operations and methods override superclass XE "superclass" operations and methods with a matching signature. It directly addresses issue 11 (“accidental override”). This rule is unnecessary if the language forces the developer to explicitly state that overriding is intended (as in C# XE "C#").

The simple dispatch rule XE "rule" is intended to support a model of object-oriented behavior in which (1) each class XE "class" can be completely understood by looking at it in flattened form XE "flattened form" , and (2) the behavior of any object can be completely understood by looking at the flattened definition of its run-time class XE "run-time class" . The simple dispatch rule guarantees this even when the declared type of the object is a superclass XE "superclass" of its run-time class (i.e., when polymorphism XE "polymorphism" is used).

The initialization rule XE "rule" is intended to avoid errors that may arise during the construction of an object when a subclass XE "subclass" version of a method is called before associated subclass attributes have been initialized and the subclass invariant (if any) has been established. In particular, the class XE "class" invariant is implicitly a part of the precondition XE "precondition" and postcondition XE "postcondition" of every client operation, and the class invariant is not guaranteed to be true until the constructor completes. As a result, we should not call overridden client operations during object construction. For similar reasons, special care should also be taken with respect to calls to client operations in destructors XE "destructors" , at other points where the class invariant may no longer hold.

The following table summarizes the manner in which the rules address the issues and support related DO-178B XE "DO-178B" objectives.

	Rule

	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Simple overriding rule XE "rule" (Inheritance with Overriding Pattern)
	3, 6, 7, 8, 9
	To ensure enforcement of this rule XE "rule" , it must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" primarily affects low-level requirements, verification of the outputs of design, coding, integration, and testing activities is required per Objectives A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans, including the enforcement of this rule XE "rule" . This is related to Objective A-9 (1).
	A-1 (5)

A-4 (all)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4)

A-9 (1)

	2. Accidental override rule XE "rule"
	3, 7, 8, 9, 11
	Same as the simple overriding rule XE "rule" (above).
	A-1 (5)

A-4 (all)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4)

A-9 (1)

	3. Simple dispatch rule XE "rule"
	1, 3, 4;

7, 8, 9 if overriding is used;

10, if target language does not enforce the simple dispatch rule XE "rule"
	Same as the simple overriding rule XE "rule" (above), plus:

Dynamic dispatch XE "Dynamic dispatch" affects structural coverage XE "structural coverage" (both modified condition/decision coverage (MC/DC XE "MC/DC") and decision coverage) and data and control flow analysis. Given that the set of classes associated with the system is statically known, a dispatching call is equivalent to a call to a case statement with a fixed number of cases. This restriction is related to Objective A-7 (5) for Software level A, Objective A-7 (6) for Software levels A and B, and Objective A-7 (8) for Software levels A, B, and C.
	A-1 (5)

A-4 (all)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4, 5, 6, 8)

A-9 (1)

	4. Initialization rule XE "rule"
	3, 13
	Since initialization is affected, the verification of correct initialization is required per Objective A-4 (10) for Software levels A and B and Objective A-5 (6) for Software levels A, B, and C.

Requirements-based testing (including, applicable robustness testing) also includes tests for correct system initialization. This is related to Objectives A-6 (1 and 2) and A-7 (3) for Software levels A, B, C, and D and Objectives A-6 (3 and 4) and A-7 (4) for Software levels A, B, and C.
	A-4 (10)

A-5 (6)

A-6 (1, 2, 3, 4)

A-7 (3, 4)

	5. Dispatch time rule XE "rule"
	2, 3
	Since dispatching affects system timing, worst case timing execution must be verified. This is related to Objective A-5 (6) for Software levels A, B, and C.

Requirements based testing (including robustness testing) requires test cases for timing functions. This is related to Objectives A-6 (3, 4) and A-7 (4) for Software levels A, B, and C.
	A-5 (6)

A-6 (3, 4)

A-7 (4)

	6. Object code traceability XE "traceability" rule XE "rule"
	5
	Since dynamically dispatched calls complicate the traceability XE "traceability" of object code to source code, structural coverage XE "structural coverage" analysis requires additional analysis of the object code per Objective A-7 (5) for Software level A.
	A-7 (5)

Table 4.3‑2 Inheritance with Overriding Pattern Rationale

3.3.2.7 Related patterns

The Inheritance with Overriding and Single Dispatch Pattern provides guidelines for languages that support only single dispatch.

The Inheritance with Overriding and Multiple Dispatch Pattern does the same for languages that support multiple dispatch.

Guidelines on Overloading XE "Overloading" [21] are closely related to this pattern XE "pattern" because both overriding and overloading define families of operations whose specifications should be related by LSP XE "LSP" .

Top Heavy Hierarchy Pattern [3] and Deep Hierarchy Pattern provide metrics to limit the complexity of inheritance hierarchies.

3.3.3 Inheritance with Overriding and Single Dispatch Pattern

3.3.3.1 Intent

The Inheritance with Overriding and Single Dispatch Pattern provides a set of guidelines on the use of inheritance, overriding, and dynamic dispatch XE "dynamic dispatch" when using languages that support single dispatch. It helps to address issues 3, 6, 7, 8, and 9.

3.3.3.2 Extends

Inheritance with Overriding Pattern
3.3.3.3 Motivation

The unrestricted use of dynamic dispatch XE "dynamic dispatch" raises a number of issues with respect to certification, especially with regard to weakly typed languages, and systems that permit the run-time loading of new classes (that are not a part of a previously verified system configuration). With suitable language restrictions, dynamic dispatch is semantically equivalent to the use of hand-coded dispatch methods containing case statements or compound if statements. The automation of dynamic dispatch by the compiler is then equivalent to the auto-generation of these dispatch routines and inlined calls to them.
3.3.3.4 Applicability

This pattern XE "pattern" assumes:

1. a strongly typed language,

2. single dispatch,

3. the set of classes associated with the system is statically known,

4. no dynamic classification (i.e. the run-time class XE "class" of an object never changes).

3.3.3.5 Guidelines

The following rule XE "rule" defines a form of object-oriented inheritance, overriding, and dynamic dispatch XE "dynamic dispatch" which is equivalent to hand-coded dispatch using case statements or compound if statements.

Simple overriding rule (Inheritance with Overriding and Single Dispatch Pattern) XE "rule" : An operation may override an inherited operation by:

- associating a method with it in the subclass XE "subclass" definition,

- supertyping XE "supertyping" its input parameters,

- subtyping XE "subtyping" its return type or the types of output parameters.
The types of parameters that represent both inputs and outputs must remain unchanged (invariant). No other form of overriding should be allowed for languages supporting only single dispatch.
A dispatching method call is considered semantically equivalent to the invocation of a dispatching routine containing a case statement of the form:

case of <target-object-run-time-class XE "class" >

case <class XE "class" >:

<statically-resolved-call-to-method-implemented-by-class XE "class" >;

...

end

Each case of this case statement handles dispatch to an implementation of the method by the target object’s declared type or one of its subclasses, i.e., the class XE "class" corresponding to the object’s run time type.

With regard to the Simple overriding rule XE "rule" (Inheritance with Overriding and Single Dispatch Pattern), the inability to subtype the types of input parameters does not preclude the use of overloading for this purpose. The developer, however, must clearly understand that the selection of an overloaded method is based on the declared types (rather than the run time types) of the arguments at the point of call.

3.3.3.6 Rationale

	Rule

	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Simple overriding rule XE "rule" (Inheritance with Overriding and Single Dispatch Pattern)
	3, 6, 7, 8, 9
	To ensure enforcement of this rule XE "rule" , it must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" primarily affects low-level requirements, verification of the outputs of design, coding, integration, and testing activities is required per Objectives A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-4 (all)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4)

A-9 (1)

	Other
	See section 4.3.2.6
	Since this pattern XE "pattern" extends the Inheritance with Overriding Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 4.3.2.6
	See section 4.3.2.6

Table 4.3‑3 Inheritance with Overriding and Single Dispatch Pattern Rationale

3.3.3.7 Related patterns

The Inheritance with Overriding and Multiple Dispatch Pattern, addresses the same issues as this pattern XE "pattern" , but for languages that support multiple dispatch. It also resolves issues related to the Binary Methods Problem [14, 16] and permits additional forms of overriding.

Guidelines on Overloading XE "Overloading" [21] are closely related to this pattern XE "pattern" because both overriding and overloading define families of operations whose specifications should be related by LSP XE "LSP" .

Top Heavy HierarchyPattern [3] and Deep Hierarchy Pattern provide metrics to limit the complexity of inheritance hierarchies. The Subtyping (abstract) Pattern extends this pattern XE "pattern" to include testing of LSP XE "LSP" .

3.3.4 Inheritance with Overriding and Multiple Dispatch Pattern

3.3.4.1 Intent

The Inheritance with Overriding and Multiple Dispatch Pattern provides a set of guidelines on the use of inheritance, overriding, and dynamic dispatch XE "dynamic dispatch" when using languages that support multiple dispatch. It helps to address issues 3, 6, 7, 8, 9, and 15.

3.3.4.2 Extends

Inheritance with Overriding Pattern
3.3.4.3 Motivation

The unrestricted use of dynamic dispatch XE "dynamic dispatch" raises a number of issues with respect to certification, especially with regard to weakly typed languages, and systems that permit the run-time loading of new classes (that are not a part of a previously verified system configuration). With suitable language restrictions, dynamic dispatch is semantically equivalent to the use of hand-coded dispatch methods containing case statements or compound if statements. The automation of dynamic dispatch by the compiler is then equivalent to the auto-generation of these dispatch routines and inlined calls to them.

3.3.4.4 Applicability

This pattern XE "pattern" assumes:

1. a strongly typed language,

2. multiple dispatch,

3. the set of classes associated with the system is statically known,

4. no dynamic classification (i.e. the run-time class XE "class" of an object never changes).

3.3.4.5 Guidelines

The following rules define a form of object-oriented inheritance, overriding, and dynamic dispatch XE "dynamic dispatch" which is equivalent to hand-coded dispatch using case statements or compound if statements:

Simple overriding rule (Inheritance with Overriding and Multiple Dispatch Pattern) XE "rule" : An operation may override an inherited operation by:

- associating a method with it,

- either supertyping XE "supertyping" or subtyping XE "subtyping" its input parameters,

- subtyping XE "subtyping" its return type or the types of output parameters.
Coverage rule XE "rule" : To ensure all abstract operations are completely implemented, the set of multimethods implementing a given operation must completely and unambigouously cover all cases implied by the abstract operations’s signature. To ensure the set of multi-methods is complete, every possible call to the operation should map to at least one applicable method. To ensure the set of multi-methods is unambiguous, there should be a single most-specific applicable method XE "most-specific applicable method" associated with each possible call.

Most specific method rule XE "rule" : Dynamic dispatch XE "Dynamic dispatch" should always result in the unambiguous invocation of the most-specific applicable method XE "most-specific applicable method" .
In accordance with [16, p. 135], a method is applicable to a given call if each argument’s run time type is a subtype of the corresponding parameter type in its signature. If this is not true, then the arguments of the call don’t match the method’s signature and the method does not apply.

In accordance with [16, p. 135], the most-specific applicable method XE "most-specific applicable method" is the unique applicable method whose parameter list pointwise subtypes from the parameter lists of every applicable method. One parameter list pointwise subtypes another, if the type of each parameter in the list is a subtype of the type of the corresponding parameter in the other list. In this regard, a type is considered a subtype of itself.

For example, consider the two methods declared in a MultiJava XE "MultiJava" -like notation below. The second method is more specific since each of its parameters subtypes the corresponding parameter of the first method (assuming TwoDimensionalPoint is a subtype of Point).

public boolean Display.drawLine (Point p1, Point p2) {…}

public boolean Display.drawLine (TwoDimensionalPoint p1, TwoDimensionalPoint p2) {…}

A call to Display.drawLine with two arguments whose run time type is TwoDimensionalPoint will result in invocation of the second method. Any other call to Display.drawLine with a combination of Points and TwoDimensionalPoints will result in invocation of the first method.

We create a potentially ambiguous situation, however, if we instead define the following two methods:

public boolean Display.drawLine (TwoDimensionalPoint p1, Point p2) {…}

public boolean Display.drawLine (Point p1, TwoDimensionalPoint p2) {…}

Now both methods apply to a call to Display.drawLine with two arguments whose run time type is TwoDimensionalPoint. And there is no unique most-specific applicable method XE "most-specific applicable method" .

To illustrate the problem addressed by the Coverage rule XE "rule" , let drawLine be defined as an operation in the abstract class XE "class" DisplayInterface, and assume this class has a single subclass XE "subclass" DisplayImplementation.

abstract public boolean DisplayInterface.drawLine (Point p1, Point p2);

public boolean DisplayImplementation.drawLine (Point p1, TwoDimensionalPoint p2) {…}

The problem here is that DisplayInterface advertises and operation that accepts two arguments of type Point, while DisplayImplementation provides a method that implements it only for arguments of type Point and TwoDimensionalPoint. There is no method that applies to cases in which the second argument is a Point or a ThreeDimesionalPoint, i.e. these cases are not covered.

In accordance with the Most specific method rule XE "rule" , a dispatching method call is considered semantically equivalent to the invocation of a dispatching routine containing a series of nested case statement of the form:

case of <target-object-run-time-class XE "class" >

case <class XE "class" >:

case of <subtyped-input-parameter’s-run-time-class XE "class" >

case <class XE "class" >:

…

<statically-resolved-call-to-method >;

…

…

end

The decisions made by these case statements need not appear in any particular order, but should always lead to the unambiguous selection of the “most specific” method that applies to the arguments at the point of call.

In languages that do not directly support multiple dispatch, it is possible to either code such dispatch routines directly or to use double dispatching to achieve the same effect.

3.3.4.6 Rationale

	Rule

	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Simple overriding rule XE "rule" (Inheritance with Overriding and Multiple Dispatch Pattern)
	3, 6, 7, 8, 9
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" primarily affects low-level requirements, verification of the outputs of design, coding, integration, and testing activities is required per Objectives A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-4 (all)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4)

A-9 (1)

	2. Coverage rule XE "rule"
	15
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" primarily affects low-level requirements, verification of the outputs of design, coding, integration, and testing activities is required per Objectives A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

Since this rule XE "rule" requires full case coverage of an abstract operation’s signature by the set of multi-methods, statement coverage is required per Objective A-7 (7) for Software levels A, B, and C.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-4 (1-12)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4, 7)

A-9 (1)

	3. Most specific method rule XE "rule"
	16
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" primarily affects low-level requirements, verification of the outputs of design, coding, integration, and testing activities is required per Objectives A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-4 (1-12)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4,)

A-9 (1)

	Other
	See Section 4.3.2.6
	Since this pattern XE "pattern" extends Inheritance with Overriding Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 4.3.2.6.
	See Section 4.3.2.6.

Table 4.3‑4 Inheritance with Overriding and Multiple Dispatch Pattern Rationale

3.3.4.7 Related patterns

The Inheritance with Overriding and Single Dispatch Pattern addresses many of the same issues as this pattern XE "pattern" , but for languages that support single dispatch. It, however, does not address the Binary Methods Problem [14, 16], and is more restrictive with respect to overriding.

Guidelines on Overloading XE "Overloading" [21] are closely related to this pattern XE "pattern" because both overriding and overloading define families of operations whose specifications should be related by LSP XE "LSP" .

Top Heavy Hierarchy Pattern [3] and Deep Hierarchy Pattern provide metrics to limit the complexity of inheritance hierarchies. The Subtyping (abstract) Pattern extends this pattern XE "pattern" to include testing of LSP XE "LSP" .

3.3.5 Subtyping (abstract) Pattern

3.3.5.1 Intent

The Subtyping (abstract) Pattern extends the Inheritance with Overriding Pattern (which addresses compliance with LSP XE "LSP" at a language level in terms of operation signatures) to verify compliance with LSP at a behavioral level. In doing so, it helps to address issues 3, 4, 6, 7, 8, 9, 10, and 12.

DO-178B XE "DO-178B" verification activities may involve testing (at either a unit or system level), the use of formal or informal proofs, or other techniques. Because this pattern XE "pattern" is abstract it does not prescribe a particular approach. This is left to associated subpatterns.

3.3.5.2 Extends

Inheritance with Overriding Pattern

3.3.5.3 Motivation

Intuition can be misleading when it comes to subtyping XE "subtyping" relationships. We might, for instance, think (intuitively and mathematically) that all squares are rectangles, so Square should be a subclass XE "subclass" of Rectangle. Whether Square should be a subclass of Rectangle, however, should not be based on our intuition, or any mathematical definition, but on the interfaces we define for these classes. If the interface for Square specializes the interface for Rectangle in accordance with LSP XE "LSP" , then it is appropriate for it to be a subclass of Rectangle. Otherwise, it is not.

By assuming that subclasses must always be LSP XE "LSP" compliant subtypes, this pattern XE "pattern" restricts the preconditions and postconditions of overriding operation definitions in addition to their signatures. Formally, the precondition XE "precondition" for an overriding operation must be weaker than or the same as the precondition of the operation it overrides. Conversely, the postcondition XE "postcondition" for an overriding operation must be stronger than or the same as the postcondition of the operation it overrides.

In terms of the client interface, this means that a subclass XE "subclass" is compatible with a superclass XE "superclass" if we

(1) expect no more of clients than we do in the superclass XE "superclass" (the preconditions of overridden operations are weaker or the same), and

(2) deliver at least as much (the postconditions of overridden operations are stronger or the same).

The same rules apply to the relationship between methods and the operations they implement: the precondition XE "precondition" for an implementing method must be weaker than or the same as the precondition of the operation its implements, and the postcondition XE "postcondition" for an implementing method must be stronger than or the same as the postcondition of the operation it implements.

3.3.5.4 Applicability

This pattern XE "pattern" applies when instances of different subclasses may be assigned (polymorphically) to a given variable or parameter.

3.3.5.5 Guidelines

Minimum compatibility rule XE "rule" : At a minimum, superclass XE "superclass" /subclass XE "subclass" compatibility should be verified with respect to all classes involved in the polymorphic assignment of different subclass instances to the same variable or parameter during the execution of the system.

LSP XE "LSP" compliance rule XE "rule" : Any approach used to verify superclass XE "superclass" /subclass XE "subclass" compatibility should be consistent with the principles of behavioral subtyping XE "subtyping" defined by Liskov and Wing 8].

As specified by UML XE "UML" , the semantics of subclassing implies superclass XE "superclass" /subclass XE "subclass" compatibility in accordance with LSP XE "LSP" . In practice we must, at a minimum, ensure that we verify this in all cases where instances of different subclasses may be associated with the same variable or parameter during the execution of the system under test.

Additional guidelines are defined by subpatterns of this pattern XE "pattern" . These guidelines vary with the approach used to verify superclass XE "superclass" /subclass XE "subclass" compatibility. The standard for superclass/subclass compatibility, however, is the same: compliance with the principles of behavioral subtyping XE "subtyping" defined by [8].

3.3.5.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Minimum compatibility rule XE "rule"
	3, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" may affect both high- and low-level requirements, verification of the outputs of requirements, design, coding, integration, and testing activities is required per Objectives A-3 (all), A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-4 (all)

A-5 (all)

A-6 (1-4)

A-7 (1-4)

A-9 (1)

	2. LSP XE "LSP" compliance rule
	3, 4, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" may affect both high and low-level requirements, verification of the outputs of requirements, design, coding, integration, and testing activities is required per Objectives A-3 (all), A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Dynamic dispatch XE "Dynamic dispatch" may complicate structural coverage XE "structural coverage" analysis of both MC/DC XE "MC/DC" and decision coverage. This is related to Objective A-7 (5) for Software level A and Objective A-7 (6) for Software levels A and B.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-4 (all)

A-5 (all)

A-6 (1-4)

A-7 (1-6)

A-9 (1)

	Other
	See Section 4.3.2.6.
	Since this pattern XE "pattern" extends Inheritance with Overriding pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 4.3.2.6.
	See Section 4.3.2.6.

Table 4.3‑5 Subtyping (abstract) Pattern Rationale

3.3.5.7 Related patterns

Related patterns include Unit Level Testing of LSP Pattern, System Level Testing of LSP Using Assertions
 Pattern, and System Level Testing of LSP Using Specialized Test Cases
 Pattern.
See also Liskov and Guttag [10, pp. 235-237, Testing a Type Hierarchy].

3.3.6 Unit Level Testing of LSP XE "LSP" Pattern

3.3.6.1 Intent

The Unit Level Testing of LSP XE "LSP" Pattern checks for superclass XE "superclass" /subclass XE "subclass" compatibility by requiring that all unit level test cases associated with a class XE "class" are inherited by its subclasses. The pattern XE "pattern" helps to address the same issues as the Subtyping (abstract) Pattern (issues 3, 4, 6, 7, 8, 9, 10, and 12).

3.3.6.2 Extends

Subtyping (abstract) Pattern
3.3.6.3 Motivation

The verification of superclass XE "superclass" /subclass XE "subclass" compatibility is straightforward if we develop a set of unit level test cases for all classes identified by the minimum compatibility rule XE "rule" (Subtyping (abstract) Pattern).

Subtype compatibility then means that all superclass XE "superclass" tests should run successfully against all subclass XE "subclass" instances (superclass test cases are inherited by subclasses). Subclasses also often extend this set of superclass test cases to include their own more specialized tests (the subclass test set is a superset of the superclass test set).

3.3.6.4 Applicability

This pattern XE "pattern" applies when concerns exist about compatibility between specific classes, and test cases are written to directly test these classes. Typically, this applies to low-level requirements. This pattern should be applied to situations where instances of different subclasses may be assigned at run-time to a variable or parameter whose declared type is an associated superclass XE "superclass" .

In contrast to other Subtyping subpatterns, this pattern XE "pattern" works best when the development organization relies on a combination of system level and class XE "class" level testing, rather than on system level testing alone. Separate patterns address System Level Testing for LSP XE "LSP" (see System Level Testing of LSP Using Assertions
 Pattern and System Level Testing of LSP Using Specialized Test Cases
 Pattern).

3.3.6.5 Guidelines

The following rules apply to all classes identified by the minimum compatibility rule XE "rule" :
Inherited test case rule XE "rule" : Every test case appearing in the set of test cases associated with a class XE "class" should appear in the set of test cases associated with each of its subclasses.

Separate context rule XE "rule" : If dynamic dispatch XE "dynamic dispatch" is involved in the execution of a method, the method should be separately tested in the context of every concrete class XE "class" in which it appears, irrespective of whether it is defined by the class or inherited by it. An exception is made for simple get and set methods that only assign a value to, or return the value of an attribute or association. Such methods need only be tested once, in the context of the defining class.

These rules are intended to imply that all inherited test cases (other than those for simple gets and sets) should be run against instances of all concrete subclasses. As a result, changes to the code inherited by a class XE "class" that affect its flattened form XE "flattened form" should result in its retest precisely as if the class itself had been edited.

The inherited test case rule XE "rule" is intended to apply to all test cases, including those introduced solely to meet structural coverage XE "structural coverage" criteria. It could be argued that such tests should only be inherited when the tested code is also inherited. It, however, seems simpler and safer to recommend that they be inherited in all cases, since they should pass when run against the subclass XE "subclass" .

When applying the inherited test case rule XE "rule" , if the subclass XE "subclass" invariant is stronger than that of its superclass XE "superclass" , then a check of this invariant (rather than the weaker superclass invariant) should be a part of the pass/fail check of each inherited test case. In this way, the “missing override” issue (issue 12) is resolved.

The separate context rule XE "rule" is intended to ensure that superclass XE "superclass" methods are separately tested in the context of each subclass XE "subclass" . This recommendation addresses the fact that even when a given method is inherited without change, the methods called by it may be overridden in the subclass, leading to a different behavior. An exception is made for simple get and set methods that reference only data, and do not call other methods. A more complete impact analysis could be used to determine whether other inherited methods need to be retested in the context of each subclass. This pattern XE "pattern" , however, considers it simpler and easier to rerun such tests than to perform such an analysis.

Note that testing in accordance with this pattern XE "pattern" will ensure that all dispatch table entries are exercised at some call site, equivalent to providing MC/DC XE "MC/DC" of the case statement assumed to be associated with the dispatch routine.

Although not required to use this pattern XE "pattern" , it is recommended that class XE "class" interfaces be specified in a pre- / post- condition style prior to writing test cases (an approach referred to by Meyer [19] as ‘Design by Contract’). Expressing low-level requirements in this way helps prevent errors by making the semantics of the interface clear to developers before client code is written. Pre- and post- conditions may be specified in a variety of ways, e.g. as informal comments, as formal annotations, in table form, in terms of a state diagram, or in terms of executable run time checks used by a test driver. Such pre- and post- conditions may also be useful as input to test case generation tools.

3.3.6.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Inherited test case rule XE "rule"
	3, 6, 7, 8, 9, 10, and 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects low-level requirements, verification of the outputs of design, coding, integration, and testing activities is required per Objectives A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-4 (all)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4)

A-9 (1)

	2. Separate context rule XE "rule"
	3, 4, 8, 9, 10, and 11
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects low-level requirements, verification of the outputs of design, coding, integration, and testing activities is required per Objectives A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Dynamic dispatch XE "Dynamic dispatch" may complicate structural coverage XE "structural coverage" analysis of both MC/DC XE "MC/DC" and decision coverage. This is related to Objective A-7 (5) for Software level A and Objective A-7 (6) for Software levels A and B.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-4 (all)

A-5 (all)

A-6 (3, 4)

A-7 (1, 4, 5, 6)

A-9 (1)

	Other
	See Section 4.3.5.6.
	Since this pattern XE "pattern" extends the Subtyping (abstract) Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 4.3.5.6.
	See Section 4.3.5.6.

Table 4.3‑6 Unit Level Testing of LSP XE "LSP" Pattern Rationale
Although this pattern XE "pattern" typically applies to the testing of low-level classes and requirements, it can be used at a high level if the classes and subclasses to be tested for compatibility represent the software system as a whole, or some subsystem. For example, given a class XE "class" System with subclasses SystemA and SystemB, SystemA and SystemB should inherit the test cases defined for System (which are based on the high level requirements common to both of them).

3.3.6.7 Related patterns

Related patterns include System Level Testing of LSP Using Assertions
 Pattern, System Level Testing of LSP Using Specialized Test Cases
 Pattern, and Percolation [13, pp. 882-896].

3.3.7 System Level Testing of LSP XE "LSP" Using Assertions Pattern

3.3.7.1 Intent

The System Level Testing of LSP XE "LSP" Using Assertions Pattern checks for superclass XE "superclass" /subclass XE "subclass" compatibility by instrumenting a version of the software with assertion checks related to LSP. Existing system level test cases are then run (without change) against this version (to test for LSP violations), then run a second time against the uninstrumented XE "uninstrumented" target version of the software. The pattern XE "pattern" helps to address the same issues as the Subtyping (abstract) Pattern (issues 3, 4, 6, 7, 8, 9, 10, and 12).

3.3.7.2 Extends

Subtyping (abstract) Pattern
3.3.7.3 Motivation

Some projects prefer to focus exclusively on system level, requirements based testing, without developing any unit level/class XE "class" level test cases. Use of the Unit Level Testing of LSP Pattern is clearly in conflict with this approach. A number of programming languages and tools, however, support the selective use of pre- and post- condition and invariant declarations as run time checks. One particularly simple way to test for LSP at a system level is to take advantage of the use of these checks to verify superclass XE "superclass" /subclass XE "subclass" compatibility for classes identified by the minimum compatibility rule XE "rule" (Subtyping (abstract) Pattern). This does not involve any substantial changes to existing system level, requirements based tests. It does, however, require that these tests be run against both an instrumented XE "instrumented" and uninstrumented XE "uninstrumented" version of the software.

3.3.7.4 Applicability

This pattern XE "pattern" applies when concerns exist about substitutability of various subclasses for one another at run-time and requirements-based test cases are written to test these configurations. Typically, the test cases are based on high-level requirements.

Although this pattern XE "pattern" typically applies to the testing of high-level requirements at a system level, it can also be applied at a subsystem level, in terms of low-level or derived requirements XE "derived requirements" . It differs from the Unit Level Testing of LSP Pattern in that test cases are written against some entity (e.g., system or subsystem) that contains instances of the classes we wish to test for compatibility, and not directly against these classes.
Use of this pattern XE "pattern" is straightforward if a project already instruments the code to measure structural coverage XE "structural coverage" , or is already defining interfaces as contracts [19, 20, Design by Contract]. These, though, are not prerequisites.

The pattern XE "pattern" , however, does assume that system level test cases have been developed (or will be developed) to test for all system configurations in which instances of various subclasses may be substituted for one another at run time. (Development of these test cases should be driven by high-level requirements related to substitutability). Some level of language or tool support is also assumed in order to enable the checking of LSP XE "LSP" related assertions to be turned on and off.

As with the instrumentation of code for any reason (e.g. measurement of structural coverage XE "structural coverage"), timing may be affected, making this approach more difficult to apply.

3.3.7.5 Guidelines

The following rules describe the type of assertion checks required to test for superclass XE "superclass" /subclass XE "subclass" compatibility in accordance with LSP XE "LSP" . Such checks should be performed on all classes identified by the minimum compatibility rule XE "rule" .

Precondition assertion rule XE "rule" : An assertion to check the operation’s precondition XE "precondition" should appear before the body of all methods that implement a public operation. In accordance with LSP XE "LSP" , this precondition may only be weakened or the same in overridden versions of the operation.

Postcondition assertion rule XE "rule" : An assertion to check the operation’s postcondition XE "postcondition" should appear after the body of all methods that implement a public operation. In accordance with LSP XE "LSP" , this postcondition may only be strengthened or the same in overridden versions of the operation.

Invariant assertion rule XE "rule" : An assertion to check the operation’s invariant should be a part of the precondition XE "precondition" check and the postcondition XE "postcondition" check of all public operations. In accordance with LSP XE "LSP" , the invariant may only be strengthened or the same in all subclasses of a class XE "class" .

Instrumented/uninstrumented XE "uninstrumented" testing rule XE "rule" : A test case run against an instrumented XE "instrumented" version of the code should be considered to pass only if all assertion checks associated with LSP XE "LSP" hold during its execution. A test case run against an uninstrumented version of the code should be considered to pass only if it produces the same result that it did when run against an instrumented version of the same code.

The first three rules echo the basic principles of LSP XE "LSP" . Some languages (such as Eiffel XE "Eiffel" [19]20]) enforce these rules directly and provide facilities for enabling and disabling associated run time checks, as required for instrumented XE "instrumented" / uninstrumented XE "uninstrumented" testing. In other languages (such as C++ XE "C++" and Java XE "Java"), it is possible to use language level assertions to achieve the same effect, although the LSP relations between preconditions, postconditions and invariants must be enforced by code reviews.

A simple way in which to ensure that these relations hold is to require that:

· new preconditions be of the form ‘overridden_ pre or some _condition’

· new postconditions be of the form ‘overridden_post and some_condition’

· new subclass XE "subclass" invariants be of the form ‘superclass XE "superclass" _invariant and some_condition’.

Otherwise the precondition XE "precondition" , postcondition XE "postcondition" or invariant must be the same.

Tool support is also available from a number of sources. Usually this includes enforcement of the first three rules, and a facility for enabling and disabling the use of assertions as run time checks (analogous to Eiffel XE "Eiffel"). Assertions may be written in a number of notations, ranging from simple boolean expressions in the target language to first order logic, with quantification.

Assertions may also be introduced at an analysis or design level and mapped down to run time checks in the target language. Many tools that favor this approach, however, rely on proofs for verification, rather than the introduction of run time checks.

Binder discusses the instrumentation of the code with LSP XE "LSP" run time assertion checks in detail (with examples and sample code) in his Percolation pattern XE "pattern" [13, pp. 882-896].

Not all assertion checks should necessarily be removed in the uninstrumented XE "uninstrumented" version of the code. In accordance with the advice of Liskov and Guttag, “it is usually worthwhile to retain at least the inexpensive checks” [10, p. 251].
3.3.7.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Precondition assertion rule XE "rule"
	3, 4, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects high level requirements and timing may also be effected, verification of the outputs of requirements and integration processes is required per Objectives A-3 (all), A-6 (1,2), A-7 (1, 3) for Software levels A, B, C, and D.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Dynamic dispatch XE "Dynamic dispatch" may complicate structural coverage XE "structural coverage" analysis of both MC/DC XE "MC/DC" and decision coverage. This is related to Objective A-7 (5) for Software level A and Objective A-7 (6) for Software levels A and B.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-6 (1, 2, 5)

A-7 (1, 3, 5, 6)

A-9 (1)

	2. Postcondition assertion rule XE "rule"
	3, 4, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects high level requirements and timing may also be effected, verification of the outputs of requirements and integration processes is required per Objectives A-3 (all), A-6 (1,2), A-7 (1, 3) for Software levels A, B, C, and D.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Dynamic dispatch XE "Dynamic dispatch" may complicate structural coverage XE "structural coverage" analysis of both MC/DC XE "MC/DC" and decision coverage. This is related to Objective A-7 (5) for Software level A and Objective A-7 (6) for Software levels A and B.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-6 (1, 2, 5)

A-7 (1, 3, 5, 6)

A-9 (1)

	3. Invariant assertion rule XE "rule"
	3, 4, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects high level requirements and timing may also be effected, verification of the outputs of requirements and integration processes is required per Objectives A-3 (all), A-6 (1,2), A-7 (1, 3) for Software levels A, B, C, and D.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Dynamic dispatch XE "Dynamic dispatch" may complicate structural coverage XE "structural coverage" analysis of both MC/DC XE "MC/DC" and decision coverage. This is related to Objective A-7 (5) for Software level A and Objective A-7 (6) for Software levels A and B.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1) for Software levels A, B, C, and D.
	A-1 (5)

A-3 (all)

A-6 (1, 2, 5)

A-7 (1, 3, 5, 6)

A-9 (1)

	4. Instrumented / uninstrumented XE "uninstrumented" testing rule XE "rule"
	3, 4, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects high level requirements and timing may also be effected, verification of the outputs of requirements and integration processes is required per Objectives A-3 (all), A-6 (1,2), A-7 (1, 3) for Software levels A, B, C, and D.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Dynamic dispatch XE "Dynamic dispatch" may complicate structural coverage XE "structural coverage" analysis of both MC/DC XE "MC/DC" and decision coverage. This is related to Objective A-7 (5) for Software level A and Objective A-7 (6) for Software levels A and B.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-6 (1, 2, 5)

A-7 (1, 3, 5, 6)

A-9 (1)

	Other
	See Section 4.3.5.6.
	Since this pattern XE "pattern" extends the Subtyping (abstract) Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 4.3.5.6.
	See Section 4.3.5.6.

Table 4.3‑7 System Level Testing of LSP XE "LSP" Using Assertions Pattern Rationale

3.3.7.7 Related patterns

Related patterns include Percolation [13, pp. 882-896], Unit Level Testing of LSP Pattern, and System Level Testing of LSP Using Specialized Test Cases
 Pattern.
3.3.8 System Level Testing of LSP XE "LSP" Using Specialized Test Cases Pattern

3.3.8.1 Intent

The System Level Testing of LSP XE "LSP" Using Specialized Test Cases Pattern checks for superclass XE "superclass" /subclass XE "subclass" compatibility by developing system level test cases in a manner that first ignores compliance with LSP, then introduces specialized versions of existing system level test cases to explicitly test for it. The pattern XE "pattern" helps to address the same issues as the Subtyping (abstract) Pattern (issues 3, 4, 6, 7, 8, 9, 10, and 12).

3.3.8.2 Extends

Subtyping (abstract) Pattern
3.3.8.3 Motivation

Some projects prefer to focus exclusively on system level, requirements based testing, without developing any unit level / class XE "class" level test cases. Use of the Unit Level Testing of LSP Pattern is clearly in conflict with this approach. There are, however, ways to test for LSP at a system level. One approach involves the development of specialized system level tests for this purpose. This has the advantage of avoiding instrumentation (System Level Testing of LSP Using Assertions
 Pattern) although it typically requires that test cases be developed with this approach in mind.

3.3.8.4 Applicability

This pattern XE "pattern" applies when concerns exist about substitutability of various subclasses for one another at run-time and requirements-based test cases are written to test these configurations. Typically, the test cases are based on high-level requirements.

Although this pattern XE "pattern" typically applies to the testing of high-level requirements at a system level, it can also be applied at a subsystem level, in terms of low-level and derived requirements XE "derived requirements" . It differs from the Unit Level Testing of LSP Pattern in that test cases are written against some entity (e.g., system or subsystem) that contains instances of the classes we wish to test for compatibility, and not directly against these classes.
Use of this pattern XE "pattern" is straightforward if test cases have not yet been developed or if the current set of test cases ignores substitutability.

3.3.8.5 Guidelines

The following rules relate to the process used to develop system level test cases to test for LSP XE "LSP" [4, section 5].
Generalized test case rule XE "rule" : First construct a set of system level test cases to meet the required DO-178B XE "DO-178B" coverage criteria while considering only the declared classes of objects and object references. The run time classes of objects and dynamic dispatch XE "dynamic dispatch" should be ignored other than to mark test cases that include dispatching calls as polymorphic.

Specialized test case rule XE "rule" : Next create a set of specialized test cases for each polymorphic test case that are explicitly designed to test for LSP XE "LSP" . The set of test cases generated from a given polymorphic test case should be designed to drive dynamic dispatch XE "dynamic dispatch" down different paths with regard to the selection of subclass XE "subclass" methods. The initial state and resulting state associated with each specialized test case should be compatible (in terms of LSP) with the more general test case from which it was derived.

Although the above steps are the same, it is possible to develop a set of test cases by this process that meet any of a number of different LSP XE "LSP" related coverage criteria.

Min LSP XE "LSP" coverage rule XE "rule" : By this test case coverage criteria, the full set of specialized test cases must exercise dynamic dispatch XE "dynamic dispatch" to subclass XE "subclass" methods to the extent required to meet the structural coverage XE "structural coverage" criteria of DO-178B XE "DO-178B" .

Max LSP XE "LSP" coverage rule XE "rule" : By this test case coverage criteria, the set of specialized test cases derived from each polymorphic test case must exercise all reachable subclass XE "subclass" methods at each point of call involving dynamic dispatch XE "dynamic dispatch" .

Mid LSP XE "LSP" coverage rule XE "rule" : By this test case coverage criteria, the full set of specialized test cases must meet the criteria set by the Min LSP coverage rule. Additional specialized test cases, however, are introduced to test specifically for the types of problems raised by issues 7, 8, 9, 10, and 12.

The Min LSP XE "LSP" coverage rule XE "rule" relies on DO-178B XE "DO-178B" to set the criteria for test case coverage. Rather than require additional test cases to test for LSP, it takes advantage of the process for test case generation to add LSP-related compatibility checks to the test cases created (“The initial state and resulting state associated with each specialized test case should be compatible (in terms of LSP) with the more general test case from which it was derived.” 8]). This is not as rigorous as the process of the Unit Level Testing of LSP Pattern, but it does make the most of the test cases already required by DO-178B.

The Max LSP XE "LSP" coverage rule XE "rule" matches the degree of rigor offered by the Unit Level Testing of LSP Pattern, and exceeds it. It is most appropriate when the DO-178B XE "DO-178B" software level is high (e.g. level A) and the number of calls involving dynamic dispatch XE "dynamic dispatch" is small. If run-time substitution of different subclass XE "subclass" instances is commonplace (Subtyping (abstract) Pattern, minimum compatibility rule), exhaustive testing of all subclass methods in the context of every system level test case is impractical. Typically, however, the most safety critical applications are also the most static, making this level of LSP test coverage acceptable in many cases.

The Mid LSP XE "LSP" coverage rule XE "rule" attempts to strike a balance between the previous coverage criteria by requiring compliance with the Min LSP coverage rule, but adding rigor through the introduction of additional test cases targeted specifically to the types of problems raised by issues 7, 8, 9, 10, and 12. Additionally, explicit robustness test cases may need to be developed but this is not unique to LSP-related testing.

3.3.8.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Generalized test case rule XE "rule"
	3, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects high-level requirements, verification of the outputs of requirements and integration processes is required per Objectives A-3 (all), A-6 (1,2), A-7 (1, 3) for Software levels A, B, C, and D.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-6 (1-2)

A-7 (1, 3)

A-9 (1)

	2. Specialized test case rule XE "rule"
	3, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects high-level requirements, verification of the outputs of requirements and integration processes is required per Objectives A-3 (all), A-6 (1,2), A-7 (1, 3) for Software levels A, B, C, and D.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-6 (1-2)

A-7 (1, 3)

A-9 (1)

	3. Test case coverage rule XE "rule"
	3, 4, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" typically affects high-level requirements, verification of the outputs of requirements and integration processes is required per Objectives A-3 (all), A-6 (1,2), A-7 (1, 3) for Software levels A, B, C, and D.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Dynamic dispatch XE "Dynamic dispatch" may complicate structural coverage XE "structural coverage" analysis of both MC/DC XE "MC/DC" and decision coverage. This is related to Objective A-7 (5) for Software level A and Objective A-7 (6) for Software levels A and B.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-6 (1-2)

A-7 (1, 3, 5, 6)

A-9 (1)

	Other
	See Section 4.3.5.6.
	Since this pattern XE "pattern" extends the Subtyping (abstract) Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 4.3.5.6.
	See Section 4.3.5.6.

Table 4.3‑8 System Level Testing of LSP XE "LSP" Using Specialized Test Cases Pattern Rationale

3.3.8.7 Related patterns

Related patterns include Unit Level Testing of LSP Pattern, System Level Testing of LSP Using Assertions
 Pattern, and Percolation [13, pp. 882-896].

3.3.9 Method Extension Pattern

3.3.9.1 Intent

The Method Extension Pattern supports the implementation of an operation as an extension XE "extension" of an inherited operation without introducing redundancy, and with the assurance that the resulting postcondition XE "postcondition" is stronger than or the same as that in the superclass XE "superclass" . It helps to address issue 13 by allowing a subclass XE "subclass" constructor to be defined as an extension of its parent class XE "class" constructor, without introducing problems related to the use of dynamic dispatch XE "dynamic dispatch" during initialization.

3.3.9.2 Extends

None

3.3.9.3 Motivation

Often it is desired to provide a subclass XE "subclass" version of an operation that extends the functionality provided by the operation in its superclass XE "superclass" . This extension XE "extension" in functionality must be consistent with LSP XE "LSP" . As a result, the precondition XE "precondition" for the subclass operation must be weaker than or the same as its precondition in the superclass, and the postcondition XE "postcondition" for the subclass operation must be stronger than or the same as its postcondition in the superclass.

By implementing an extended operation in terms of an explicit call to the superclass XE "superclass" version of the operation, preceded or followed by additional code, we are able to:

· avoid repeating the code appearing in the superclass XE "superclass" method,

· provide code before the call to handle the additional cases implied by a weaker precondition XE "precondition"
,

· provide code after the call that adds to its effect, as implied by a stronger postcondition XE "postcondition" .

Such explicit calls to superclass XE "superclass" methods are by their nature statically bound, and do not involve dynamic dispatch XE "dynamic dispatch" . The code that follows the call to the superclass method must not undo its effects in order for the overall postcondition XE "postcondition" to be an extension XE "extension" of that for the superclass.

3.3.9.4 Applicability

This pattern XE "pattern" is commonly applied to constructors XE "constructors" , which begin by calling the constructor for the superclass XE "superclass" , then initialize all the attributes defined by the class XE "class" itself. It may also be used to select between competing inherited versions of a method (multiple implementation inheritance).

3.3.9.5 Guidelines

The following rule XE "rule" defines the Method Extension Pattern:

Method extension XE "extension" rule XE "rule" : When extending the functionality of an inherited method, the subclass XE "subclass" method should explicitly call the superclass XE "superclass" version of the same method.

Note that the terms method and operation are used in accordance with the UML definitions (see Glossary) since some languages blur the distinction. Rules for the implementation of method extension XE "extension" in different target languages are given in A.1.2.

3.3.9.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Method extension XE "extension" rule XE "rule"
	13
	Since initialization can be affected, verification of correct initialization is required per Objective A-4 (10) for Software levels A and B and Objective A-5 (6) for Software levels A, B, and C.

Requirements based testing, including applicable robustness testing, tests for system initialization. This is related to Objectives A-6 (1 and 2) and A-7 (3) for Software levels A, B, C, and D and Objectives A-6 (3 and 4) for Software levels A, B, and C.
	A-4 (10),

A-5 (6)

A-6 (1-4)

Table 4.3‑9 Method Extension Pattern Rationale

3.3.9.7 Related patterns

None

3.3.10 Class Coupling Pattern

3.3.10.1 Intent

The Class Coupling Pattern limits control coupling XE "control coupling" and data coupling XE "data coupling" between clients and classes and between classes and subclasses to facilitate future changes and to simplify analysis. It helps to address issue 14.

3.3.10.2 Extends

None

3.3.10.3 Motivation

One of the fundamental principles of object-oriented development is data abstraction XE "abstraction" . The goal is to hide the details of the data representation behind an abstract class XE "class" interface. This permits the data representation to change without affecting other classes. It also simplifies the enforcement of class invariants, and permits control over concurrent access to shared data. Extending this principle, we can use abstract class interfaces to control access to hardware resources as well as data.

For example, consider the implementation of a class XE "class" for a Set. The selection of an optimum data representation (list, tree, hash table, etc.) will vary depending on the mix of operations required by the application. Typical strategies involve a choice between a sorted and a hashed representation, and a choice between fast insert/delete and fast lookup. The use of data abstraction XE "abstraction" makes it easy to change this representation with no significant change to client code.

The same situation arises with respect to the abstraction XE "abstraction" of other resources. For example, a number of different hardware devices may perform a given function, or a number of different caching policies may be associated with access to a given file system, or a number of different ways may exist to represent the elements of a given display, with a number of different strategies for drawing/redrawing them. In all these cases, we want to publish a single interface but support a number of different underlying implementations and data representations.

In terms of DO-178B XE "DO-178B" , data abstraction XE "abstraction" supports partitioning [1, p. 9, section 2.3.1] by permitting the developer to restrict access to the resources controlled by the class XE "class" . By limiting the degree of control and data coupling XE "data coupling" between software components, we also simplify analysis [1, p. 74, objective 8] and make it easier to verify key system invariants maintained by a given class [1, p. 70, objectives 1 and 4].

To be effective, the interface should provide a true abstraction XE "abstraction" of the data and other resources controlled by the class XE "class" , rather than simple accessors (get and set operations) for each attribute or hardware register. Any invariants associated with the class should be established by the class constructor, and maintained by every publicly accessible operation. Access restrictions associated with the class interface permit a proof of the invariant to be local to the class, rather than global to the system and different for each system in which the class appears.

These principles apply not only to interfaces provided by the class XE "class" to clients but to interfaces between superclasses and subclasses. In particular, it should be possible for the developer to define the interface between a class and its subclasses in the same manner as the interface between the class and its clients. Both can be considered ‘contracts’, only with different parties. The interface between client and class is concerned with how the class will be used. The interface between superclass XE "superclass" and subclass XE "subclass" is concerned with how the class definition and implementation can be extended. Both can be defined formally (in terms of pre- and post- conditions) when desired.

3.3.10.4 Applicability

This pattern XE "pattern" applies when control and data coupling XE "data coupling" between classes is a concern in an object-oriented system. Access to the attributes of a class XE "class" is provided by public and protected operations, which can be inlined to avoid the overhead associated with a call, producing code comparable to that for direct access. When performance is critical, but the target compiler does not support inlining XE "inlining" , or does not perform inlining efficiently, use of this pattern may not be appropriate.

3.3.10.5 Guidelines

The following rules define the Class Coupling Pattern:

Client data abstraction XE "abstraction" rule XE "rule" :

- Clients should access the data representation of the class XE "class" only through its public operations.

- All attributes should be hidden (private or protected), and all strategies associated with the choice of data representation should be abstracted by its set of public operations.

- All hardware registers should be hidden (private or protected), and all strategies associated with the use of a particular hardware device should be abstracted by its set of public operations.
Invariant rule XE "rule" : The invariant for the class XE "class" should be:

- a part of the postcondition XE "postcondition" of every class XE "class" constructor,

- a part of the precondition XE "precondition" of the class XE "class" destructor (if any),

- a part of the precondition XE "precondition" and postcondition XE "postcondition" of every other publicly accessible operation.

As a result, clients should be able to influence the value of the invariant only through execution of these operations. Private and protected operations are exempted in the invariant rule XE "rule" since the invariant need not hold at all times, but only at points where it is externally observable.

The pattern XE "pattern" may be extended to deal with the coupling XE "coupling" between classes and subclasses by also adopting the following rule XE "rule" :

Subclass data abstraction XE "abstraction" rule XE "rule" :
- A subclass XE "subclass" should access the data representation of its superclass XE "superclass" only through the superclass’ public and protected operations.

- All attributes should be hidden (private), and all strategies associated with the choice of data representation should be abstracted by its set of public and protected operations.

- All hardware registers should be hidden (private), and all strategies associated with the use of a particular hardware device should be abstracted by its set of public and protected operations.
To be most effective, both the client and subclass XE "subclass" interfaces should provide a true abstraction XE "abstraction" of the data and other resources controlled by the class XE "class" , rather than simple accessors (get and set operations) for each attribute or hardware register.

3.3.10.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Client data abstraction XE "abstraction" rule XE "rule"
	14
	Controlled access to data and resources between classes/clients helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.
	A-4 (9)

A-5 (2)

A-7 (8)

	2. Invariant rule XE "rule"
	14
	Controlled access to data and resources between classes/subclasses or classes/clients helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.
	A-4 (9)

A-5 (2)

A-7 (8)

	3. Subclass data abstraction XE "abstraction" rule XE "rule"
	14
	Controlled access to data and resources between classes/subclasses helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.
	A-4 (9)

A-5 (2)

A-7 (8)

Table 4.3‑10 Class Coupling Pattern Rationale

3.3.10.7 Related patterns

None

3.3.11 Deep Hierarchy Pattern

3.3.11.1 Intent

The Deep Hierarchy Pattern addresses issues that can occur when the complexity of class XE "class" hierarchies is very deep. It helps to address issue 13 and is related to [3, issue 8].

3.3.11.2 Extends

None

3.3.11.3 Motivation

Most class XE "class" hierarchies have a characteristic depth of between three and six, irrespective of the application. Class hierarchies that are either too deep or too shallow can cause problems. Dynamic dispatch XE "Dynamic dispatch" can introduce problems related to initialization, especially with regard to deep class hierarchies. Top-heavy multiple inheritance XE "multiple inheritance" and deep hierarchies also tend to be error-prone, even when they conform to good design practice. The wrong variable type, variable, or method may be inherited, for example, due to confusion about a multiple inheritance structure. Binder refers to this as “spaghetti inheritance XE "spaghetti inheritance" ” [13].

3.3.11.4 Applicability

This pattern XE "pattern" applies when the complexity of the class XE "class" hierarchy XE "hierarchy" is a concern.

3.3.11.5 Guidelines

The following rule XE "rule" defines the Deep Hierarchy Pattern:
Six deep rule XE "rule" : Any class XE "class" hierarchy XE "hierarchy" with a depth greater than six warrants a careful review that specifically addresses the above issues and weighs this against the need to isolate various proposed changes. When extending an existing framework, depth should be measured from the point at which the framework is first subclassed. When developing an application specific class hierarchy, depth should be measured from the root. In languages in which all classes implicitly inherit from a common root class, this class should not be included in the count.

A class XE "class" hierarchy XE "hierarchy" that successfully passes an inspection should be marked so as to avoid repeated review with respect to the same issue.

A certain amount of variation in the threshold (e.g., plus or minus two) may also be expected based on the results of reviews using the six deep threshold. Deep hierarchies may also be more of a problem with respect to implementation inheritance than interface inheritance XE "interface inheritance" . The use of multiple inheritance XE "multiple inheritance" can also be an important factor in adjusting the threshold.

This rule XE "rule" is based on the metrics for Class hierarchy XE "hierarchy" nesting level appearing in [11, pp. 61-64]. Note that this rule does not, in anyway, imply that class XE "class" hierarchies with a depth of six or less do not require careful review.

3.3.11.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Six Deep rule XE "rule"
	13
	Since initialization can be affected, verification of correct initialization is required per Objective A-4 (10) for Software levels A and B and Objective A-5 (6) for Software levels A, B, and C.

Requirements based testing, including applicable robustness testing, tests for system initialization. This is related to Objectives A-6 (1 and 2) and A-7 (3) for Software levels A, B, C, and D and Objectives A-6 (3 and 4) for Software levels A, B, and C.
	A-4 (10),

A-5 (6)

A-6 (1-4)

Table 4.3‑11 Deep Hierarchy Pattern Rationale

3.3.11.7 Related patterns

Related patterns include Inheritance with Overriding, Multiple Interface inheritance [3],and Multiple Implementation Inheritance [3].

3.3.12 Formal Subtyping Pattern

3.3.12.1 Intent

The Formal Subtyping Pattern applies the principles of Design by Contract [19] XE "subtyping" with formally defined pre/postconditions and invariants. By requiring formal specification of the classifiers to be checked in a precondition XE "precondition" /postcondition XE "postcondition" /invariant style, these assertions can then be used to either generate the needed test cases, or as the basis for analysis and formal proofs. Providing a complete and precise specification of the interface also helps prevent errors by making the contract between the clients and implementers of a class XE "class" explicit, makes it easier to enforce rules for LSP XE "LSP" , and supports the traceability XE "traceability" of high level requirements to low level requirements. It helps to address issues 3, 6, 7, 8, 9, 10, and 12.

3.3.12.2 Extends

Subtyping (abstract) Pattern
3.3.12.3 Motivation

The signature of an operation, which includes its name, parameter types, result types (if any), and errors (if any), provides clues to the operation’s behavior but, by itself is insufficient. Comments that describe the purpose of the operation and the relationships between inputs, outputs, and errors are also helpful. But most comments are informal, cannot be processed by tools, and lack the precision to serve as a basis for analysis, proofs, or the development of test cases.

As a result, it is generally recommended that class XE "class" interfaces be specified in a precondition XE "precondition" / postcondition XE "postcondition" /invariant style (an approach referred to by Meyer as ‘Design by Contract’). Expressing low level requirements in this way helps prevent errors by making the semantics of the interface clear to developers before client code is written. Such specifications can also be processed by tools and used as a basis for analysis, formal proofs, and the generation of test cases. This, in turn, supports reverification and regression testing in response to changes to the class introduced by other patterns.

3.3.12.4 Applicability

This pattern XE "pattern" applies when instances of different subclasses may be assigned (polymorphically) to a given variable or parameter.

3.3.12.5 Guidelines

The following rules XE "rule" define the Formal Subtyping Pattern:

Explicit pre/postcondition XE "postcondition" / invariant rule XE "rule" : To ensure that all classes define their interfaces as contracts, all pre/postconditions and invariants for operations and methods must be explicitly stated and all errors returned by them must be specified. This includes pre/postconditions, invariants, and error lists that are considered to be trivial (e.g., conditions whose value is true, and error lists that are empty).

Frame condition rule XE "rule" : Ideally each postcondition should also include a ‘frame condition’ which indicates which variables are guaranteed not to change as a result of executing the operation/method.
Software developers tend to rely on testing to ensure compliance with LSP XE "LSP" . While associated test cases may be developed at either the system or the unit level, the development of test cases alone, however, has its limitations. Test cases are no substitute for a complete, precise specification of behavior, which is needed by the clients of a class XE "class" , and by developers seeking to subclass XE "subclass" an existing class.

A complete and precise specification of behavior is also needed in order to develop the test cases for a class XE "class" and to provide traceability XE "traceability" from high level to low level requirements. As a result, it is generally recommended that class interfaces be specified in a precondition XE "precondition" / postcondition XE "postcondition" /invariant style (an approach referred to by Meyer as ‘Design by Contract’). This style provides the basis to make compliance with LSP XE "LSP" easier and helps avoid errors by making contracts between clients and classes explicit. In addition, explicit statement of pre/postcondition and invariants can be used to generate unit level test cases, or can be used as the basis for formal analysis and proofs.
3.3.12.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Explicit pre/ postcondition XE "postcondition" / invariant rule XE "rule"
	3, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" may affect both high- and low-level requirements, verification of the outputs of requirements, design, coding, integration, and testing activities is required per Objectives A-3 (all), A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-4 (all)

A-5 (all)

A-6 (1-4)

A-7 (1-4)

A-9 (1)

	Frame condition rule
	3, 6, 7, 8, 9, 10, 12
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

Since this rule XE "rule" may affect both high- and low-level requirements, verification of the outputs of requirements, design, coding, integration, and testing activities is required per Objectives A-3 (all), A-4 (all), A-5 (all), A-6 (3, 4), A-7 (1, 4) for Software levels A, B, and C.

If run-time substitutability of subclasses is called for by the high-level requirements, then this rule XE "rule" also applies to Objective A-4 (13) for Software level D.

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (all)

A-4 (all)

A-5 (all)

A-6 (1-4)

A-7 (1-4)

A-9 (1)

	Other
	See Section 4.3.5.6.
	Since this pattern XE "pattern" extends the Subtyping (abstract) Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 4.3.5.6.
	See Section 4.3.5.6.

Table 4.3‑12 Formal Subtyping Pattern Rationale

3.3.12.7 Related patterns

Related patterns include Unit Level Testing of LSP Pattern, System Level Testing of LSP Using Assertions
 Pattern, and System Level Testing of LSP Using Specialized Test Cases
 Pattern.
3.4 References for Chapter 4

1. Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , Document No. RTCA/DO-178B XE "DO-178B" , RTCA Inc., 1828 L Street, Northwest, Suite 805, Washington, DC 20036.

2. DO-248B, Final Report For Clarification of DO-178B XE "DO-178B" , Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , 10-12-01.

3. Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" Workshop Paper OOTiA XE "OOTiA" : Multiple Inheritance XE "Multiple Inheritance" , version 2.0, July 2002.

4. Daugherty, Gary. Application of the Subtyping Pattern to System Level Test, Rockwell Collins technical report, April 2002, available from the author (gwdaughe@rockwellcollins.com).

5. Object Management Group XE "Object Management Group" . OMG XE "OMG" Unified Modeling Language XE "Unified Modeling Language" Specification, version 1.3, June 1999, available from http://uml.shl.com/artifacts.htm
6. Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

7. Gosling, James et al. The Java XE "Java" Language Specification, Addison-Wesley, 1996.

8. Lindholm, Tim and Frank Yellin. The Java XE "Java" Virtual Machine Specification: Second Edition, Addison-Wesley, 1999.

9. Liskov, Barbara and Jeanette Wing. “A Behavioral Notion of Subtyping”, ACM Transactions on Programming Languages and Systems, 16(6): 1811-1841, November 1994.

10. Liskov, Barbara with John Guttag. Program Development in Java XE "Java" : Abstraction, Specification, and Object-Oriented Design, Addison-Wesley, ISBN: 0201657686, 2001.

11. Lorentz, Mark and Jeff Kidd. Object-Oriented Software Metrics, Prentice-Hall, Englewood Cliffs, NJ, ISBN: 0-13-179292-X, 1994.

12. Barnes, John. Programming in Ada95, 2nd edition, Addison-Wesley, 1998.

13. Binder, Robert V. Testing Object-Oriented Systems: Models, Patterns, and Tools XE "Tools" , Addison-Wesley, Reading, MA, 2000.

14. Bruce, Kim, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group, Gary T. Leavens and Benjamin Pierce. On Binary Methods, Iowa State University, technical report #95-08a, December 1995.

15. Castagna, Giuseppe. Object-Oriented Programming: A Unified Foundation, Birkauser, Boston, ISBN: 0-8176-3905-5, 1997.

16. Clifton, Curtis, Gary T. Leavens, Craig Chambers, and Todd Millstein. “MultiJava XE "MultiJava" : Modular Open Classes and Symmetric Multiple Dispatch for Java XE "Java" ”, OOPSLA 2000 Conference Proceedings: ACM SIGPLAN Notices, vol. 35, no. 10, October 2000, pp. 130-145.

17. Johnston, Simon. Ada95 for C and C++ XE "C++" Programmers, Addison-Wesley, 1997.

18. Meyers, Scott. Effective C++ XE "C++" , 2nd edition, Addison-Wesley, Reading, MA, 1998.

19. Meyer, Bertrand. “Applying design by contract.” IEEE XE "IEEE" Computer 25(10):40-51, October 1992.

20. Meyer, Bertrand. Object-oriented Software Construction, 2nd edition, Prentice-Hall PTR, Upper Saddle River, NJ, 1997.

21. Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" Workshop Paper OOTiA XE "OOTiA" : Overloading XE "Overloading" , version 2.0, July 2002.

Guidelines on Multiple Inheritance XE "Multiple Inheritance"
3.5 Purpose

This section provides guidelines regarding safe implementation and use of multiple inheritance XE "multiple inheritance" in projects that use object-oriented (OO) technology.

3.6 Background

Single inheritance XE "Single inheritance" , overriding, subtyping XE "subtyping" , and dynamic dispatch XE "dynamic dispatch" are described by [4, section 2]. Multiple inheritance XE "Multiple inheritance" permits a class XE "class" to have more than one superclass XE "superclass" . It may involve either interface inheritance XE "interface inheritance" or implementation inheritance XE "implementation inheritance" , or some combination of these. Interface inheritance involves the inheritance of only interface elements (such as operation specifications and constraints), while implementation inheritance involves the inheritance of implementation elements (such as methods, attributes, and references to other objects).

Multiple inheritance XE "Multiple inheritance" may lead to name clashes involving elements inherited from different superclasses that have the same signature. Some languages support renaming as a means of resolving such name clashes. Eiffel XE "Eiffel" is particularly elegant in dealing with this [9]. Most other languages either require more complicated workarounds [10, section 12.8], or the editing of the superclass XE "superclass" definitions to rename inherited elements.

Most issues arise with respect to multiple implementation inheritance because it is difficult to implement well, because associated errors have run-time consequences, and because the inherited elements reference one another and may interact in subtle ways, increasing overall complexity and the potential for error.
Because delegation is considered an effective substitute for multiple implementation inheritance, many more recent languages (such as Java XE "Java" and C# XE "C#") only support multiple inheritance XE "multiple inheritance" involving interface specifications. The Aerospace Vehicle Systems Institute XE "Aerospace Vehicle Systems Institute" (AVSI XE "AVSI") Guide [3] also recommends the use of delegation rather than multiple implementation inheritance for systems certified to levels A, B, and C.

A number of issues arise when using multiple inheritance XE "multiple inheritance" that may make compliance with DO-178B XE "DO-178B" difficult. Section 3 documents those DO-178B compliance issues and proposes guidelines to address the issues safely. Section 3.1 documents the issues, related DO-178B sections and objectives, and applicable guidelines. Guidelines are provided using “patterns”. Patterns are widely used by the OO community to address analysis and design problems [6].

In this section, the problem that concerns us is resolution of the stated issues with respect to use of multiple inheritance XE "multiple inheritance" in a manner that complies with DO-178B XE "DO-178B" .

In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing guidance (DO-178B XE "DO-178B") with respect to the use of particular OO features. The “rules” associated with a pattern XE "pattern" are also rules only in the sense that they must be followed in order to apply the pattern.

3.7 Issues and Guidelines

This section is intended to provide an approach for addressing DO-178B XE "DO-178B" objectives when using OO features related to multiple inheritance XE "multiple inheritance" . In this regard, multiple inheritance is treated as an extension XE "extension" of single inheritance XE "single inheritance" and, as a result, all guidelines related to the use of single inheritance and dynamic dispatch XE "dynamic dispatch" also apply. Issues specific to multiple inheritance are listed in Section 5.3.1. The list is not intended to address only OO unique issues, but also related issues that are of particular importance to the use of multiple inheritance.

A collection of patterns that attempt to resolve these issues appears in sections 5.3.2 through 5.3.6. Each of these patterns should be understood to be one (of possibly many) solutions that assist in compliance to DO-178B XE "DO-178B" objectives.

All patterns are documented in a style similar to Gamma et al. [6]. In accordance with [6], each pattern XE "pattern" specifies the issues it intends to address in its statement of Intent. The manner in which it addresses them is given by a set of rules appearing as Guidelines.

The overall collection of patterns is open-ended in that new patterns may be added that address the same issues as existing patterns, under different circumstances. In order to be concise, the patterns often do not contain examples or provide guidelines specific to a particular target language. Extensions of these patterns appearing in the Appendices provide these additional details.

The concept of extending a pattern XE "pattern" to define a new pattern (a subpattern) is analogous to the extension XE "extension" of a class XE "class" to define a new class (a subclass XE "subclass"). All rules associated with the parent pattern apply to the subpattern. The subpattern, however, may define new rules or override existing rules just as a subclass may extend or override definitions in its parent class.

Analogous to an abstract class XE "class" , a pattern XE "pattern" may be abstract. Abstract patterns define a problem to be solved, but do not attempt to solve it. Instead, subpatterns provide alternative approaches and associated guidelines.

3.7.1 Issues

The issues, related DO-178B XE "DO-178B" sections/objectives, and proposed patterns are correlated in the table below. This issue table is used to present the issues and patterns at a high level. It is not intended to provide a precise correlation between patterns, rules, and DO-178B objectives. This information appears in the Rationale section for each pattern XE "pattern" .

	Issue
	DO-178B XE "DO-178B" objectives/ sections
	Patterns, assumptions and rules

	1. Multiple inheritance XE "Multiple inheritance" can introduce cases in which the developer’s intent is ambiguous (e.g., repeated inheritance, redefinition along separate paths, and independently defined operations with the same signature) (see Appendix A.2 for detailed examples).
	Objectives:

 A-1 (5), A-3 (2,4, 5), A-4 (2, 4, 5, 6, 9, 11), A-9 (1)

Sections:

5.1.2a, 6.3.1b, 6.3.1d, 6.3.2b, 6.3.2d, 6.3.2f, 6.3.3b, 6.3.3d, 11.0a, 11.6, 11.7, 11.8a
	Multiple Interface Inheritance Pattern: All rules

Multiple Implementation Inheritance Pattern: All rules

Mixed Multiple Inheritance Pattern: All rules

Combination of Distinct Abstractions Pattern: All rules

	2. When the same operation is inherited via more than one path through the classification hierarchy XE "hierarchy" , it may be unclear whether this should result in a single operation in the child, or in multiple operations.

(A.k.a. “repeated inheritance” [9]).
	Objectives:

A-1 (5), A-3 (2, 4,5), A-4 (2, 4, 5, 6, 9, 11),

A-9 (1)

Sections:

5.1.2a, 6.3.1b, 6.3.1d, 6.3.2b, 6.3.2d, 6.3.2f, 6.3.3b, 6.3.3d, 11.0a, 11.6, 11.7, 11.8a
	Multiple Interface Inheritance Pattern: Repeated interface inheritance XE "interface inheritance" rule XE "rule" and Compile time constant rule

Multiple Implementation Inheritance Pattern: Repeated implementation inheritance rule XE "rule"
Mixed Multiple Inheritance Pattern: Repeated interface inheritance XE "interface inheritance" rule XE "rule" , Compile time constant rule, and Repeated implementation inheritance rule
Combination of Distinct Abstractions Pattern: No diamond rule XE "rule"

	3. When a child inherits different definitions of the same operation (as a result of redefinition along separate paths), it may be unclear whether/how they should be combined in the resulting child.

(A.k.a. “conflicting redefinitions” [9]).
	Objectives:

A-1 (5), A-3 (2, 4,5), A-4 (2, 4, 5, 6, 9, 11),

A-9 (1)

Sections:

5.1.2a, 6.3.1b, 6.3.1d, 6.3.2b, 6.3.2d, 6.3.2f, 6.3.3b, 6.3.3d, 11.0a, 11.6, 11.7, 11.8a
	Multiple Interface Inheritance Pattern: Interface redefinition rule XE "rule" and Compile time constant rule
Multiple Implementation Inheritance Pattern: Implementation redefinition rule XE "rule"
Mixed Multiple Inheritance Pattern: Interface redefinition rule XE "rule" , Compile time constant rule, and Implementation redefinition rule

Combination of Distinct Abstractions Pattern: No diamond rule XE "rule"

	4. Use of multiple inheritance XE "multiple inheritance" can lead to “name clashes” when more than one parent independently defines an operation with the same signature.

(A.k.a. “independent identical definitions”[9).
	Objectives:

A-1 (5), A-3 (2, 4,5), A-4 (2, 4, 5, 6, 9, 11),

A-9 (1)

Sections:

5.1.2a, 6.3.1b, 6.3.1d, 6.3.2b, 6.3.2d, 6.3.2f, 6.3.3b, 6.3.3d, 11.0a, 11.6, 11.7, 11.8a
	Multiple Interface Inheritance Pattern: Independent interface definition rule XE "rule" and Compile time constant rule

Multiple Implementation Inheritance Pattern: Independent implementation redefinition rule XE "rule"
Mixed Multiple Inheritance Pattern: Independent interface definition rule XE "rule" , Compile time constant rule, and Independent implementation redefinition rule

Combination of Distinct Abstractions Pattern: Independent implementation definition rule XE "rule"

	5. When multiple inheritance XE "multiple inheritance" is used in the design, special care must be taken to maintain traceability XE "traceability" .
	Objectives:

A-4 (6, 8),

A-8 (2)
Sections:

5.2.2a, 5.5, 6.2, 6.3.2f, 6.3.3a, 7.2.2f, 11.14c, 12.1.1d
	Multiple Interface Inheritance Pattern: All rules

Multiple Implementation Inheritance Pattern: All rules

Mixed Multiple Inheritance Pattern: All rules

Combination of Distinct Abstractions Pattern: All rules

	6. Overuse of multiple inheritance XE "multiple inheritance" can lead to unintended connections among classes, which could lead to difficulty in meeting the DO-178B XE "DO-178B" /ED-12B objective of data and control coupling XE "data and control coupling" .
	Objectives:

A-4 (9), A-5 (2), A-7 (8)

Sections:

2.3.1, 5.2.2d, 6.3.3b, 6.3.4b, 6.4.4.2c
	Multiple Interface Inheritance Pattern: All rules

Multiple Implementation Inheritance Pattern: All rules

Mixed Multiple Inheritance Pattern: All rules

Combination of Distinct Abstractions Pattern: All rules

	7. Top-heavy multiple inheritance XE "multiple inheritance" and deep hierarchies are error-prone, even when they conform to good design practice.

(A.k.a. “spaghetti inheritance XE "spaghetti inheritance" ” [7, p. 503])
	Objectives:

A-1 (5), A-3 (2, 4,5), A-4 (2, 4, 5, 6,8, 9, 11),

A-7 (8), A-8 (2), A-9 (1)

Sections:

5.1.2a, 5.2.2a, 5.3.2c, 5.5, 6.2, 6.3.1b, 6.3.1d, 6.3.2b, 6.3.2d, 6.3.2f, 6.3.3b, 6.3.3d, 7.2.2f, 11.0a, 11.6, 11.7, 11.8a, 11.14c, 12.1.1d
	Top Heavy Hierarchy Pattern: All rules

[4, Deep Hierarchy Pattern]: All rules

	8. Flow Analysis and Structural Coverage Analysis are complicated by Multiple Implementation Inheritance (i.e., it is unclear which of the inherited implementations of a method is going to be called and which of the inherited implementations of an attribute is going to be referenced).

The situation is also complicated by the fact that inherited elements may reference one another and interact in subtle ways which directly affect the behavior of the resulting system.
	Objectives:

A-4 (9), A-5 (2), A-7 (5, 6, 7, 8)
Sections:

2.3.1, 5.2.2d, 6.3.3b, 6.3.4b, 6.4.4.2
	Multiple Implementation Inheritance Pattern: All rules

Combination of Distinct Abstractions Pattern: All rules

Table 5.3‑1 Multiple Inheritance XE "Multiple Inheritance" Issues

A sharp distinction is drawn between the use of interface and implementation inheritance. The Multiple Interface Inheritance Pattern addresses the simpler case, in which we are concerned only with inherited operation specifications (that do not reference one another).

The Multiple Implementation Inheritance Pattern deals with the more difficult case involving the inheritance of code and data. Although use of this pattern XE "pattern" helps us deal with the issues raised with respect to ambiguity and complexity, delegation is still considered preferable to the use of multiple implementation inheritance for most systems (as recommended by the AVSI XE "AVSI" Guide [3]).

The Combination of Distinct Abstractions Pattern provides an alternative to the Multiple Implementation Inheritance Pattern. It forbids the use of repeated inheritance in order to eliminate related sources of ambiguity.

The Mixed Multiple Inheritance Pattern addresses the case in which we have a mix of interface and implementation inheritance.

3.7.2 Multiple Interface Inheritance Pattern

3.7.2.1 Intent

Multiple interface inheritance XE "interface inheritance" permits the categorization of entities in terms of their interfaces, where each entity may appear in more than one category. This pattern XE "pattern" extends guidelines related to single inheritance XE "single inheritance" and dynamic dispatch XE "dynamic dispatch" to address multiple interface inheritance. When applying the Subtyping (abstract) Pattern [4], this means that a subclass XE "subclass" with more than one superclass XE "superclass" inherits the test cases defined by all its superclasses. This pattern helps to address issues 1, 2, 3, 4, 5, and 6.

3.7.2.2 Extends

Inheritance with Overriding Pattern [4]

3.7.2.3 Motivation

In the real world, objects are often classified in more than one way. Multiple interface inheritance XE "interface inheritance" allows us to model this without introducing redundancy (and without the complications associated with multiple implementation inheritance).

3.7.2.4 Applicability

Multiple interface inheritance XE "interface inheritance" involves two or more superinterfaces, each of which contributes features (compile-time constants and operations) to a single subinterface XE "subinterface" . Each super-interface may, in turn, itself inherit from other interfaces, either singly or multiply. The resulting inheritance hierarchy XE "hierarchy" forms a directed acyclic graph that permits the definition of common ancestors, and the inheritance of the same feature along more than one path (repeated inheritance). Features may also be redefined, potentially resulting in different definitions of the same feature along different paths. Appendix A.2 illustrates the following issues with multiple interface inheritance:

· Repeated inheritance,

· Redefinition along separate paths,

· Independently defined operations with same signature

3.7.2.5 Guidelines

This pattern XE "pattern" defines a form of multiple interface inheritance XE "interface inheritance" that addresses the three issues identified above in section 5.3.2.4 based on the rules in the box below:

Repeated interface inheritance XE "interface inheritance" rule XE "rule" : When the same operation declaration is inherited by an interface via more than one path through the interface hierarchy XE "hierarchy" without redeclaration or renaming, this should result in a single operation in the subinterface XE "subinterface" .

Interface redefinition rule XE "rule" : When a subinterface XE "subinterface" inherits different definitions of the same operation (as a result of redefinition along separate paths), the definitions must be combined by explicitly defining an operation in the subinterface that follows the Simple overriding rule [4, Inheritance with Overriding Pattern] with respect to each parent interface.

Independent interface definition rule XE "rule" : When more than one parent independently defines an operation with the same signature, the user must explicitly decide whether they represent the same operation or whether this represents an error. Such decisions should be recorded as explicit annotations to the source code. If the operations are not intended to be the same, one of them should be renamed. If the operations are intended to be the same, any preconditions and postconditions should also be the same.

Compile time constant rule XE "rule" : All of the above rules apply to compile time constants as well as operations. Constants whose value involves run-time computation should not be permitted in interfaces.

The rationale for the repeated interface inheritance XE "interface inheritance" rule XE "rule" is that cases involving the sharing of operations are common while cases that demand replication are not (Appendix A.2). Sharing is also supported by many languages, whereas replication is not. Therefore sharing is defined to be the normal, expected behavior and additional work is needed to support replication in those rare cases in which it is required.

The interface redefinition rule XE "rule" is derived from the guidelines for behavioral subtyping XE "subtyping" [8] that inspired the simple overriding rule [4, Inheritance with Overriding Pattern]. The user is required to define the operation representing the combination of the inherited definitions in order to make its specification explicit even when the language does not require it. The intent here is that clients of the sub-interface be able to directly see the result of combining the inherited definitions.

The independent interface definition rule XE "rule" requires the user to always explicitly decide when two independently defined operations with the same signature are intended to represent the same operation and when they are not. The intent here is to avoid errors resulting from the accidental matching of operation signatures.

The compile time constant rule XE "rule" specifies that compile time constants be treated in the same manner as operations with respect to the previous cases. It applies only to constants with an initial value that can be computed at compilation time. Constants whose value is computed at run-time require the generation of code to perform the computation and assignment. This, in turn, conflicts with the fundamental definition of an interface, which is not permitted to define neither the code nor the data.

Languages specific guidelines are provided in Appendix A.2. In general, it is only necessary to enforce (e.g., by means of design and code inspections) those guidelines that the language does not enforce itself.

3.7.2.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Repeated interface inheritance XE "interface inheritance" rule XE "rule"
	1, 2, 5, 6
	The intent is to reduce the number of opportunities for errors related to composition of competing parent implementations.

To ensure enforcement of this rule XE "rule" , it must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 5,4)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (8)

A-8 (2)

A-9 (1)

	2. Interface redefinition rule XE "rule"
	1, 3, 5, 6
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11)

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1(5)

A-3 (2, 4, 5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (8)

A-8 (2)

A-9 (1)

	3. Independent interface definition rule XE "rule"
	1, 4, 5, 6
	To ensure enforcement of this rule XE "rule" , it must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (8)

A-8 (2)

A-9 (1)

	4. Compile time constant rule XE "rule"
	1, 2, 3, 4, 5, 6
	To ensure enforcement of this rule XE "rule" , it must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (8)

A-8 (2)

A-9 (1)

	Rules in [4, Inheritance with Overriding Pattern]
	
	Since this pattern XE "pattern" extends [4, Inheritance with Overriding Pattern], the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in 4, 3.2.6].
	See 4, 3.2.6].

Table 5.3‑2 Multiple Interface Inheritance Pattern Rationale

3.7.2.7 Related patterns

A related pattern XE "pattern" is the Subtyping (abstract) Pattern [4].

3.7.3 Multiple Implementation Inheritance Pattern

3.7.3.1 Intent

Multiple implementation inheritance supports the construction of a class XE "class" implementation in terms of the implementations of other existing classes. This pattern XE "pattern" extends guidelines related to single inheritance XE "single inheritance" and dynamic dispatch XE "dynamic dispatch" to address multiple implementation inheritance. When applying the Subtyping (abstract) Pattern [4], this means that a subclass XE "subclass" with more than one superclass XE "superclass" inherits the test cases defined by all its superclasses. This pattern helps to address issues 1, 2, 3, 4, 5, 6, and 8.

3.7.3.2 Extends

Inheritance with Overriding Pattern [4]

3.7.3.3 Motivation

Multiple implementation inheritance supports maximum reuse of code.

3.7.3.4 Applicability

A given class XE "class" C is implemented by inheriting the methods and attributes of two or more superclasses S1, S2.

3.7.3.5 Guidelines

The guidelines in the box below address the basic issues raised by multiple inheritance XE "multiple inheritance" of code and data in a manner consistent with the guidelines for multiple inheritance of interface specifications:

Repeated implementation inheritance rule XE "rule" : When the same feature (method or attribute) is inherited by a class XE "class" via more than one path through the interface hierarchy XE "hierarchy" , this should result in a single feature in the subclass XE "subclass" .

Implementation redefinition rule XE "rule" : When a subclass XE "subclass" inherits different definitions of the same method (as a result of redefinition along separate paths), the definitions must be combined by explicitly defining a method in the subclass that follows the Simple overriding rule [4,Inheritance with Overriding Pattern] with respect to each parent class XE "class" .

Independent implementation definition rule XE "rule" : When more than one parent independently defines a method with the same signature, the user must explicitly decide whether they represent the same method or whether this represents an error. If they are intended to be different, renaming should be used to distinguish them. Otherwise, the definitions must be combined by explicitly defining a method in the subclass XE "subclass" that follows the Simple overriding rule [4, Inheritance with Overriding Pattern] with respect to each parent class XE "class" .

As in the Inheritance with Overriding Pattern [4], it is recommended that decisions related to the Independent implementation definition rule XE "rule" be recorded as explicit annotations to the source code.
Languages specific guidelines for C++ XE "C++" are provided in Appendix A.2. In general, it is only necessary to enforce (e.g. by means of design and code inspections) those guidelines that the language does not enforce itself.

3.7.3.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Repeated implementation inheritance rule XE "rule"
	1, 2, 5, 6, 8
	The intent is to reduce the number of opportunities for errors related to composition of competing parent implementations.

To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Structural coverage appropriate to Software levels A, B, and C ensures that test coverage of code and components is accomplished related to the referenced Objectives.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (5, 6, 7, 8)

A-8 (2)

A-9 (1)

	2. Implementation redefinition rule XE "rule"
	1, 3, 5, 6, 8
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Structural coverage appropriate to Software levels A, B, and C ensures that test coverage of code and components is accomplished related to the referenced Objectives.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (5, 6, 7, 8)

A-8 (2)

A-9 (1)

	3 .Independent implementation definition rule XE "rule"
	1, 4, 5, 6, 8
	To ensure enforcement of this rule XE "rule" , it must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Structural coverage appropriate to Software levels A, B, and C ensures that test coverage of code and components is accomplished related to the referenced Objectives.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (5, 6, 7, 8)

A-8 (2)

A-9 (1)

	Rules in [4, 3.2]
	
	Since this pattern XE "pattern" extends the Inheritance with Overriding Pattern [4], the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in 4, 3.2.6].
	See 4, 3.2.6].

Table 5.3‑3 Multiple Implementation Inheritance Pattern Rationale

3.7.3.7 Related patterns

A related pattern XE "pattern" is Subtyping (abstract) Pattern.

3.7.4 Mixed Multiple Inheritance XE "Multiple Inheritance" Pattern

3.7.4.1 Intent

Multiple inheritance XE "Multiple inheritance" may involve only interface specifications, may involve only implementations or may involve some combination of these. This pattern XE "pattern" addresses the issues associated with multiple inheritance XE "multiple inheritance" with respect to the latter case. As a result, it addresses the issues associated with both the Multiple Interface Inheritance Pattern and the Multiple Implementation Inheritance Pattern. This pattern helps to address issues 1, 2, 3, 4, 5, and 6.

3.7.4.2 Extends

Multiple Interface Inheritance Pattern, Multiple Implementation Inheritance Pattern
3.7.4.3 Motivation

Often we want to define a class XE "class" that implements one of more interfaces while building on the implementation provided by a second class. This can be accomplished in a number of ways. In situations where the resulting class is logically a subtype of the other classes, inheritance is a natural choice. This typically works well as long as all the superclasses are interfaces, save one.

In the more general case, involving an arbitrary combination of interfaces, abstract classes, and concrete classes, the problems associated with multiple implementation inheritance may also arise.

3.7.4.4 Applicability

This pattern XE "pattern" applies when a class XE "class" has at least one parent class that is an interface and at least one parent class that is not.

3.7.4.5 Guidelines

Both the guidelines from the Inheritance with Overriding Pattern [4] and the Multiple Interface Inheritance Pattern apply. If more than one superclass XE "superclass" provides an implementation, the guidelines from Multiple Implementation Inheritance pattern XE "pattern" also apply.

Verification in accordance with the Subtyping (abstract) Pattern [4] is also recommended.

3.7.4.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	Rules in 5.3.2.5
	
	Since this pattern XE "pattern" extends the Multiple Interface Inheritance Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 5.3.2.6.
	See Section 5.3.2.6.

	Rules in 5.3.3.5
	
	Since this pattern XE "pattern" extends the Multiple Implementation Inheritance Pattern, the rules defined by that pattern also apply to (are inherited by) this one. The rationale is the same as that documented in Section 5.3.3.6.
	See Section 5.3.3.6

Table 5.3‑4 Mixed Multiple Inheritance XE "Multiple Inheritance" Pattern Rationale

3.7.4.7 Related patterns

The Top Heavy Hierarchy Pattern and the Deep Hierarchy Pattern provide metrics to limit the complexity of the inheritance hierarchy XE "hierarchy" .

3.7.5 Combination of Distinct Abstractions Pattern

3.7.5.1 Intent

Combination of Distinct Abstractions Pattern extends the Multiple Implementation Inheritance Pattern by restricting the use of multiple implementation inheritance to cases that do not involve repeated inheritance or the redefinition of competing implementations along separate paths. This pattern XE "pattern" helps to address issues 1, 2, 3, 4, 5, 6, and 8.

3.7.5.2 Extends

Multiple Implementation Inheritance Pattern

3.7.5.3 Motivation

Combination of Distinct Abstractions Pattern is intended to maximize the reuse of code while maintaining Subtyping (abstract) Pattern [4]. Any use of multiple inheritance XE "multiple inheritance" , however, can lead to ambiguities within the class XE "class" hierarchy XE "hierarchy" . Three potential sources of ambiguity are identified in Appendix A: (1) repeated inheritance, (2) redefinition along separate paths, and (3) independently defined operations with the same signature. The first two are eliminated by this pattern XE "pattern" , which requires that superclasses always be distinct rather than subclasses of a common superclass XE "superclass" . As Meyer suggests, “This is the form that you will need most often in building inheritance structures, …” [2, page 521].

3.7.5.4 Applicability

A given class XE "class" is implemented by inheriting the features of two or more distinct superclasses. The superclasses are considered distinct because they are not variants of a single abstraction XE "abstraction" [9, page 521] (have no common ancestors). The following example illustrates the basic structure.

[image: image1.wmf]Plane

passenger

_count() : int

Asset

purchase

_price() : float

CompanyPlane

Figure 5.3‑1 Combination of Distinct Abstractions

As described by Meyer [9, page 521], a class XE "class" Plane describes the abstraction XE "abstraction" suggested by its name. Operations are provided to query the passenger_count, altitude, position and speed of the airplane. Additional operations include commands to take_off and set_speed. In a completely different domain, we have a class Asset that represents something that a company owns. Our concerns here are related to accounting, the manner in which the asset is paid for, its depreciation and sale. Operations associated with an asset include queries to determine its purchase_price and resale_value, and the actions depreciate, resell, and pay_installment.

These classes are then combined by means of inheritance to create a new class XE "class" CompanyPlane. Because each superclass XE "superclass" is taken from a different domain and because they have no common ancestors, the odds of inheriting two independently defined operations with the same signature is small.

3.7.5.5 Guidelines

Although the Combination of Distinct Abstractions Pattern extends the Multiple Implementation Inheritance Pattern, the structure eliminates ambiguities arising from repeated inheritance and redefinition along separate paths. As a result, we do not need the repeated implementation inheritance rule XE "rule" nor the Implementation redefinition rule defined in the Multiple Implementation Inheritance Pattern.
Only the independent implementation definition rule XE "rule" of the Multiple Implementation Inheritance Pattern is required, to handle cases in which superclasses independently define operations with the same signature. Because the superclasses are distinct, any ambiguity usually represents an error, and should result in a renaming of one of the inherited operations in order to make them distinct.
We must also follow the rules set by the Inheritance with Overriding Pattern [4], and the Subtyping (abstract) Pattern [4].
No diamond rule XE "rule" : Repeated inheritance is not permitted, i.e. no subclass XE "subclass" may inherit from the same superclass XE "superclass" via more than one path.

Independent implementation definition rule XE "rule" : When more than one parent independently defines a method with the same signature, the user must explicitly decide whether they represent the same method or whether this represents an error. If they are intended to be different, renaming should be used to distinguish them. Otherwise, the definitions must be combined by explicitly defining a method in the subclass XE "subclass" that follows the Simple overriding rule [4, Inheritance with Overriding pattern XE "pattern"] with respect to each parent class XE "class" . (Identical to rule of same name in the Multiple Implementation Inheritance Pattern.)

3.7.5.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. No diamond rule XE "rule"
	1, 2, 3, 5, 6, 8
	To ensure enforcement of this rule XE "rule" , it must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 5, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Structural coverage appropriate to Software levels A, B, and C ensures that test coverage of code and components is accomplished consistent with the referenced Objectives.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-5 (2)

A-7 (5, 6, 7, 8)

A-8 (2)

A-9 (1)

	Rules in 5.3.3.5
	
	Since this pattern XE "pattern" extends the Multiple Implementation Inheritance Pattern, the rules defined by that pattern are inherited by this one.

We, however, do not need the Repeated implementation inheritance rule XE "rule" and the Implementation redefinition rule (as explained above).

The rationale is the same as that documented in Section 5.3.3.6 for the Independent implementation definition rule XE "rule" .
	See Section 5.3.3.6, objectives addressed by the independent implementation definition rule XE "rule" .

Table 5.3‑5 Combination of Distinct Abstractions Pattern Rationale

3.7.5.7 Related patterns

Related patterns include Inheritance with Overriding Pattern [4] and Subtyping (abstract) Pattern [4].

3.7.6 Top Heavy Hierarchy Pattern

3.7.6.1 Intent

The Top Heavy Hierarchy Pattern addresses issues of complex class XE "class" hierarchies that contain many classes and inherited features near the top (root) of the hierarchy XE "hierarchy" . The intent is to reduce the number of opportunities for errors related to composition of competing parent implementations.
3.7.6.2 Extends

None

3.7.6.3 Motivation

Most class XE "class" hierarchies have a characteristic shape. They are generally narrow near their top (root) and broad near their base, with a depth of between three and six. As a result the number of classes increases as a function of their distance from the root and the number of inherited elements increases in small steps.

Problems can arise when class XE "class" hierarchies fail to exhibit this shape. A class hierarchy XE "hierarchy" with many classes near the root, and with many features associated with these top-level classes can be difficult to understand and change. “Top-heavy multiple inheritance XE "multiple inheritance" and deep hierarchies are error-prone, even when they conform to good design practice. The wrong variable type, variable, or method may be inherited, for example, due to confusion about a multiple inheritance structure.” [7, p. 503, spaghetti inheritance XE "spaghetti inheritance"]

3.7.6.4 Applicability

This pattern XE "pattern" applies when the complexity of the class XE "class" hierarchy XE "hierarchy" is a concern and there are too many classes near its root. This is a particular concern when multiple inheritance XE "multiple inheritance" is used and the number of features inherited from each of these upper level classes is large.

3.7.6.5 Guidelines

The following rules define the Top Heavy Hierarchy Pattern:

Three parents rule XE "rule" : Any class XE "class" near the top of the hierarchy XE "hierarchy" with three or more parents warrants careful review.

Top heavy composition rule XE "rule" : Any class XE "class" near the top of the hierarchy XE "hierarchy" that inherits more than 20 features from each of two or more parent classes warrants careful review.

Top to bottom rule XE "rule" : Any class XE "class" hierarchy XE "hierarchy" that contains more classes near the top of the hierarchy than near the bottom warrants careful review.

A class XE "class" is considered “near the top of the hierarchy XE "hierarchy" ” if it appears in one of the top two levels. A class is considered “near the bottom of the hierarchy” if it appears in one of the bottom two levels. A class hierarchy that successfully passes an inspection should be marked so as to avoid repeated review with respect to the same issue.

3.7.6.6 Rationale

	Rule
	Issues
	Rationale
	DO-178B XE "DO-178B" Objectives Supported

	1. Three parents rule XE "rule"
	7
	The intent is to reduce the number of opportunities for errors related to composition of competing parent implementations.

To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4, 5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-7 (8)

A-8 (2)

A-9 (1)

	2. Top heavy composition rule XE "rule"
	7
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-7(8)

A-8 (2)

A-9 (1)

	3. Top to bottom rule XE "rule"
	7
	To ensure enforcement, this rule XE "rule" must be included in the software development standards applicable to Objective A-1 (5) for Software levels A, B, and C.

The intent of the rule XE "rule" is to ensure accuracy, precision, consistency, and verifiability related to Objectives A-3 (2, 4) and A-4 (2, 4, 6, 8, 9, 11).

Control of inheritance helps ensure that the proper relationship exists between software architecture components and the code properly implements the flow defined by the architecture. Along with the associated structural coverage XE "structural coverage" , this is related to the referenced Objectives for Software levels A, B, and C.

Software Configuration Management ensures that baselines are established and traceability XE "traceability" exists between previous and current baselines. This is related to Objective A-8 (2).

Software Quality Assurance provides confidence that the software development processes conform to approved standards and plans. This is related to Objective A-9 (1).
	A-1 (5)

A-3 (2, 4,5)

A-4 (2, 4, 5, 6, 8, 9, 11)

A-7 (8)

A-8 (2)

A-9 (1)

Table 5.3‑6 Top Heavy Hierarchy Pattern Rationale

3.7.6.7 Related patterns

Related patterns include Inheritance with Overriding Pattern [4], Multiple Interface Inheritance Pattern, and Multiple Implementation Inheritance Pattern.
3.8 References for Chapter 5

1. Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , Document No. RTCA/DO-178B XE "DO-178B" , RTCA Inc., 1828 L Street, Northwest, Suite 805, Washington, DC 20036.

2. DO-248B, Final Report For Clarification of DO-178B XE "DO-178B" , Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , 10-12-01.

3. AVSI XE "AVSI" . Guide to the Certification of Systems with Embedded Object-Oriented Software, version 1.8b.

4. Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" Workshop Paper OOTiA1: Single Inheritance XE "Single Inheritance" and Dynamic Dispatch XE "Dynamic Dispatch" , version 2.0, July 2002.

5. Object Management Group XE "Object Management Group" . OMG XE "OMG" Unified Modeling Language XE "Unified Modeling Language" Specification, version 1.3, June 1999, available from http://uml.shl.com/artifacts.htm
6. Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

7. Binder, Robert V. Testing Object-Oriented Systems: Models, Patterns, and Tools XE "Tools" , Addison-Wesley, Reading, MA, 2000.

8. Liskov, Barbara and Jeanette Wing. “A Behavioral Notion of Subtyping”, ACM Transactions on Programming Languages and Systems, 16(6): 1811-1841, November 1994.
9. Meyer, Bertrand. Object-oriented Software Construction, 2nd edition, Prentice-Hall PTR, Upper Saddle River, NJ, 1997
10. Stroustrup, Bjarne. The Design and Evolution of C++ XE "C++" , Addison-Wesley, 1994.
Guidelines on Templates XE "Templates"
3.9 Purpose

This section addresses issues raised regarding DO-178B XE "DO-178B" guidelines for development and verification when using templates in an object-oriented technology (OOT XE "OOT") environment. Many of these issues are not unique to OOT.

3.10 Background

Templates XE "Templates" provide a means of abstracting common structural and behavioral aspects of a family of classes or operations in a domain independent way. A template is a parameterized model element with unbound (formal) parameters that must be bound to actual (type) parameters before it can be instantiated.

At a target language level, templates correspond to Ada XE "Ada" generics and to C++ XE "C++" templates. Templates XE "Templates" are a parameterized code replication feature that provide stronger typing XE "typing" than macros. Templates provide for reusability in programming languages. Consider a Stack with a generically parameterized base type. This allows a single Stack class XE "class" to provide many instantiations such as a Stack of integers, a Stack of any fundamental or user defined type, or even a Stack of Stacks.

A template’s behavior results from its implementation, the values of the arguments used to instantiate it, and the behavior of any types specified to it as arguments. The use of templates directly impacts: source code reviews, coding standards, requirements-based test case and procedure development and review, timing analysis XE "timing analysis" , memory usage XE "memory usage" , requirements-based test coverage, source code to object code traceability XE "traceability" , and structural coverage XE "structural coverage" , including data coupling XE "data coupling" analysis and control coupling XE "control coupling" analysis. Dead code and deactivated code XE "deactivated code" may also be a concern because unused functionality of a template may be considered either dead or deactivated code.

3.11 Issues and Guidelines

3.11.1 Source Code Review

The use of templates can complicate source code reviews. Depending on the parameter types and the scope of the call, a different instantiation of the template may be invoked by the compiler. Each instantiation may use different sub-components and features of the template. Source code developers and reviewers should understand the specific features of the template that will be invoked by the compiler, and ensure that they are the correct features for the call. The template may contain features that are not used at all by a specific application. Unused features may be considered dead or deactivated code XE "deactivated code" .

3.11.1.1 Related DO-178B XE "DO-178B" Sections and Objectives

The following DO-178B XE "DO-178B" objectives for verification and coding standards are relevant to the recommendations in section 6.3.1.2 for using templates: Table A-1 objective 5, Table A-5 objectives 1 and 3, and Table A-9 objective 1.

3.11.1.2 Guidelines

The source code developer and code reviewer should be aware of the implications and potential effects of using templates. Review of a template against the low level requirements is not sufficient to verify the behavior of all instantiations. A template must be reviewed with respect to the actual parameters to determine if the source code is verifiable. Consequently, the following practices are recommended:

· Coding standards should require templates to document all the assumptions about types to be used with that template.

· Each template should be reviewed with respect to the actual parameters.

3.11.2 Requirements-based Test Development, Review, and Coverage

Templates XE "Templates" are instantiated by substituting a specific type argument for each formal type parameter defined in the template class XE "class" or operation. Test cases and procedures are developed based on the software high-level, low-level, and derived requirements XE "derived requirements" . Consequently, test developers and reviewers may not be aware whether a template contains additional functionality, and may not be aware of or have visibility into all the functionality contained within a specific function that is instantiated by a template call. In general, requirements-based test cases and procedures may not test all functionality of the template, especially those functions which are not instantiated for a particular template. All instantiations should be tested to guarantee that the template functions as intended [1,2].

3.11.2.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" section 6.4.4.3d, Table A-6: objectives 1-4, and Table A-7: objectives 1-4 regarding verification and integration processes.

3.11.2.2 Guidelines

Each instance of a template should be tested for software at Levels A, B, and C. It is theoretically possible to test the template for all known instances if the types map to the same underlying representation and object code can be shown to be equivalent. In practice, the complexity of the instantiation process makes it difficult to verify all instances of a template without testing each instance individually [1]. It also complicates requirements to test coverage traceability XE "traceability" , as many tests will need to be executed to cover all possible instantiations that do not trace to specific requirement of the application. Also, the developer may need to provide protection that ensures that the unused functionality of the template (deactivated code XE "deactivated code") cannot be inadvertently activated. Therefore, the use of templates may actually substantially increase the amount of requirements-based test development, review, and coverage needed.
3.11.3 Structural Coverage (and data/control coupling XE "control coupling" analysis)

3.11.3.1 Issue 1

Some language constructs in combination with templates can impact structural coverage XE "structural coverage" analysis by increasing the complexity of the code. For example, nested templates and child packages in Ada XE "Ada" and friend classes in C++ XE "C++" can result in complex code. Although complex code is not prohibited by DO-178B XE "DO-178B" , complexity can make structural coverage analysis more difficult.
3.11.3.1.1 Related DO-178B XE "DO-178B" Sections and Objectives

The following DO-178B XE "DO-178B" sections and objectives for integration and test coverage are relevant to recommendations in section 3.3.1.2 for using templates: DO-178B section 6.4.4.2, Table A-6: objectives 1-4 and Table A-7: objectives 5-7.

3.11.3.1.2 Guidelines

The structural coverage XE "structural coverage" of the template should be evaluated with respect to the actual parameters.

Source to object code analysis, which is used only for Level A, should be evaluated with respect to each instantiation.
3.11.3.2 Issue 2

Templates XE "Templates" can be compiled using "code sharing XE "code sharing" " or "macro-expansion XE "macro-expansion" ". Code sharing is highly parametric, with small changes in actual parameters resulting in dramatic differences in object code. Object code coverage XE "Object code coverage" \t "See object code coverage" is difficult and mappings from a template to object code can be complex when the compiler uses the "code sharing" approach.

3.11.3.2.1 Related DO-178B XE "DO-178B" Sections and Objectives

The following DO-178B XE "DO-178B" sections and objectives for structural coverage XE "structural coverage" are relevant to the recommendation in section 3.3.2.2 for using templates: DO-178B section 6.4.4.2 and Table A-7: objectives 5-7.

3.11.3.2.2 Guidelines

Code sharing is not widely used. In general, code sharing XE "code sharing" should be avoided.

3.11.3.3 Issue 3

Use of templates can complicate data coupling XE "data coupling" analysis and control coupling XE "control coupling" analysis by not allowing visibility into the template for the analyst to verify that the correct template functionality is invoked for each instantiation (control coupling XE "coupling") based on the parameters (data coupling).

3.11.3.3.1 Related DO-178B XE "DO-178B" Sections and Objectives

DO-178B XE "DO-178B" section 6.4.4.3 c and Table A-7 objective 8 on data and control coupling XE "data and control coupling" are relevant.

3.11.3.3.2 Guidelines

Data and control coupling XE "control coupling" associated with templates should be evaluated with respect to the actual parameters.

3.12 Rationale

The following table summarizes issues when using templates, provides guidelines, and related DO-178B objectives. The issues are based on the concerns identified through the OOTiA program web site (numbers 50, 51, 52, 62) and documented in an “OOTiA Isssues Report” which is a separate document from this handbook.

	Issues
	Guidelines
	DO-178B Objectives Supported

	1. The use of templates can complicate source code reviews.
	The following practices are recommended:

· Coding standards should require templates to document all the assumptions about types to be used with that template.

· Each template should be reviewed with respect to the actual parameters.

(Section 6.3.1.2 of OOTiA Handbook)
	A-1 (5)

A-5 (1, 2, 3)

A-9 (1)

	2. Requirements-based test cases and procedures may not test all functionality of the template, especially those functions which are not instantiated for a particular template
	The following practices are recommended:

· Each instance of a template should be tested for software at Levels A, B, and C.

· May need to provide protection that ensures that the unused functionality of the template (deactivated code) cannot be inadvertently activated.

(Section 6.3.2.2 of OOTiA Handbook)
	A-6 (1, 2, 3, 4)

A-7 (1, 2, 3, 4)

	3. Structural coverage analysis may be more difficult. Some language constructs in combination with templates can impact structural coverage analysis by increasing the complexity of the code
	The following practices are recommended:

· The structural coverage of the template should be evaluated with respect to the actual parameters.

· Source to object code analysis, which is used only for Level A, should be evaluated with respect to each instantiation.

(Section 6.3.3.1.2 of OOTiA Handbook)
	A-6 (1, 2, 3, 4)

A-7 (5, 6, 7)

	4. Templates can be compiled using "code sharing" or "macro-expansion". Code sharing is highly parametric, with small changes in actual parameters resulting in dramatic differences in object code. Object code coverage is difficult and mappings from a template to object code can be complex.
	Code sharing is not widely used. In general, code sharing should be avoided.

(Section 6.3.3.2.2 of OOTiA Handbook)
	A-7 (5, 6, 7)

	5. Use of templates can complicate data coupling analysis and control coupling
	Data and control coupling associated with templates should be evaluated with respect to the actual parameters.

(Section 6.3.3.3.2 of OOTiA Handbook)
	A-7 (8)

Table 6.4‑1 Templates Rationale

3.13 References for Chapter 6

1. Guide for the Use of the Ada XE "Ada" Programming Language in High Integrity Systems, ISO/IEC PDTR 15942, July 1, 1999, see http://anubis.dkuug.dk/JTC1/SC22/WG9/documents.htm
2. Binder, Robert V., Testing Object-Oriented Systems: Models, Patterns, and Tools XE "Tools" , Addison-Wesley, 2000.
Guidelines on Inlining XE "Inlining"
3.14 Purpose

This section addresses DO-178B XE "DO-178B" guidelines for use and verification when using the inline option in an object-oriented technology (OOT XE "OOT") environment. Many of these issues are not unique to OOT, although inlining XE "inlining" is often used as a way to eliminate the overhead associated with calls to simple get and set methods, while maintaining encapsulation XE "encapsulation" .

3.15 Background

Inline XE "Inline" \t "See inlining" is a compiler option in Java XE "Java" , Ada XE "Ada" , and C++ XE "C++" that results in the direct expansion of a method body at the point of call. A compiler can choose to optimize code by inlining XE "inlining" methods that are relatively small and statically bound. Some languages have commands, such as the Ada “Pragma Inline” and the C++ “Inline”, to “recommend” that methods be inlined, but even then the compiler typically may choose to either follow or ignore the recommendation based on the compiler optimization criteria.

When a compiler chooses to Inline, a method body is compiled without the call overhead (i.e., the inlined method body’s object code is physically placed in the calling method’s object code). This is in contrast to the “usual” implementation of making a call (and potential context switch) during execution to a separate method with the associated parameters, if any being passed to the called method. If the compiler chooses to Inline, the inlined method's object code is inserted into the caller’s object code sequence. If the compiler chooses not to Inline, a call to the method is inserted in the caller’s object code, and the called method’s object code remains separate. The inlining XE "inlining" of methods eliminates the overhead associated with a call, and is thus useful for optimization of performance. This performance optimization results in a space penalty, unless the inlined method is actually shorter than the sequence of instructions used to make the call. Simple get and set methods, for example, are commonly used in object-oriented software and can sometimes be smaller than the calling sequence.

When using the inline command, it is important to know if the compiler will honor or ignore the inline request, whether the code has been inlined or not, and what the impact is to the code.

The following analyses are directly impacted by inlining XE "inlining" : memory and stack usage XE "stack usage" analyses, timing (performance) analysis, structural coverage XE "structural coverage" analysis, and source code to object code traceability XE "traceability" .

3.16 Issues and Guidelines

Inlining XE "Inlining" may affect a number of verification methods as noted below. The use of inlining XE "inlining" , however, is not an obstacle to certification so long as its effects are understood and documented, and each effect upon each of these verification methods is addressed.

3.16.1 Structural Coverage

Some language constructs in combination with inlining XE "inlining" can impact structural coverage XE "structural coverage" analyses, including data and control coupling XE "data and control coupling" and source to object code traceability XE "traceability" analysis.

3.16.1.1 Related DO-178B XE "DO-178B" Sections and Objectives

The following DO-178B XE "DO-178B" sections and objectives for structural coverage XE "structural coverage" and data and control coupling XE "data and control coupling" are relevant to the recommendations in section 3.1.2 for inlining XE "inlining" : Section 6.4.4.2 and Table A-7 objectives 5 through 8.

3.16.1.2 Guidelines

Table A-7, objectives 5-7: Inline expansion may be handled differently at different points of expansion in order to optimize the code for the caller’s context. The structural coverage XE "structural coverage" of the inlined method should be evaluated at the point of each expansion. If object code is removed or object code is added, as determined by the source to object code trace for Level A software, then structural coverage must be verified separately for each expansion.

Table A-7, objective 8: Inline expansion can eliminate parameter passing, which can affect the amount of information pushed on the stack as well as the total amount of code generated. This, in turn, can effect the stack usage XE "stack usage" and timing analysis XE "timing analysis" . In addition, data coupling XE "data coupling" and control coupling XE "control coupling" relationships can transfer from the inlined component to the inlining XE "inlining" component. For data coupling XE "coupling" and control coupling, the verification approach should address the inlining of code including worst-case memory usage XE "memory usage" analysis, stack usage analysis, timing analysis, call tree analysis XE "call tree analysis" , and data set/use analysis XE "data set/use analysis" .
3.16.2 Source Code Review

The use of inline can complicate source code reviews. Both the code developer and the source code reviewers must be aware of the implications and potential effects of inlining XE "inlining" . When an inlined method is expanded in the context of the caller it may be possible for the compiler to simplify it in a number of ways, involving both space and speed. Directly referencing arguments and unrolling loops with known bounds are common examples. This is generally only a problem when an inlined method is optimized based on the context of the caller.
3.16.2.1 Related DO-178B XE "DO-178B" Sections and Objectives

The following DO-178B XE "DO-178B" objectives for verification are relevant to the recommendations in section 3.2.2 for inlining XE "inlining" : Table A-5 objectives 1and 3.

3.16.2.2 Guidelines

Table A-5, objective 1: Review of the inlined method against the low-level requirements is not sufficient to verify the behavior of all expansions. The inlined method must be reviewed at the point of expansion.

Table A-5, objective 3: To determine if the source code is verifiable when templates are used, the template must be reviewed at the point of expansion.

3.17 Rationale

The following table summarizes issues when using the inlining option, provides guidelines and related DO-178B objectives. The issues are based on the concerns identified through the OOTiA program web site (numbers 43, 44, 45, 46) and documented in an “OOTiA Isssues Report” which is a separate document from this handbook.

	Issues
	Guidelines
	DO-178B Objectives Supported

	1. Some language constructs in combination with inlining can impact structural coverage analyses, including data and control coupling and source to object code traceability XE "traceability" analysis.
	The following practices are recommended:

· Table A-7, objectives 5-7: The structural coverage of the inlined method should be evaluated at the point of each expansion. If object code is removed or object code is added, as determined by the source to object code trace for Level A software, then structural coverage must be verified separately for each expansion.

· Table A-7, objective 8: For data coupling and control coupling, the verification approach should address the inlining of code including worst-case memory usage analysis, stack usage analysis, timing analysis, call tree analysis, and data set/use analysis.

(Section 7.3.1.2 of OOTiA Handbook)
	A-7 (5, 6, 7, 8)

	2. The use of inline can complicate source code reviews.
	The following practices are recommended:

· Table A-5, objective 1: Review of the inlined method against the low-level requirements is not sufficient to verify the behavior of all expansions. The inlined method must be reviewed at the point of expansion.

· Table A-5, objective 3: To determine if the source code is verifiable when templates are used, the template must be reviewed at the point of expansion.

(Section 7.3.2.2 of OOTiA Handbook)
	A-5 (1, 3)

Table 7.4‑1 Inlining Rationale

3.18 References for Chapter 7

None

Guidelines on Type Conversion XE "Type Conversion"
3.19 Purpose

This section addresses DO-178B XE "DO-178B" guidelines for verification and coding standards when types are converted in strongly typed languages, including when it is appropriate to convert types implicitly and when type conversion should be explicit. Guidelines are in the form of recommended practices which support compliance with DO-178B objectives. In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing guidance (DO-178B) with respect to the use of particular OO features.

While this section addresses only object-oriented (OO) languages that provide for strong typing XE "typing" with abstraction XE "abstraction" , an analysis should be conducted to examine the effects of type conversion for all strongly typed languages as a part of satisfying the DO-178B XE "DO-178B" verification objectives. Languages that are not strongly typed are not within the scope of this document. Examples of strongly typed languages include Ada XE "Ada" , C++ XE "C++" and Java XE "Java" .

3.20 Background

Type Conversion XE "Type Conversion" may be implicit or explicit and may be checked (to determine if the type conversion results are valid and correct) or unchecked. With implicit type conversion XE "implicit type conversion" , the compiler is given the responsibility for determining that a conversion is required and how to perform the conversion. With explicit type conversion XE "explicit type conversion" , the programmer assumes the responsibilities. Checked types can be checked at compile time (producing a compilation error for an invalid conversion) or at run time (usually resulting in a run-time error). Conversion can result in loss of data. Unchecked type conversions need to be verified by test to ensure conversion was correct.

The following are directly impacted by implicit type conversion XE "implicit type conversion" : potential loss of data or precision, performance and timing analysis XE "timing analysis" , requirements-based test development, review and execution results, structural coverage XE "structural coverage" analysis, data flow and control flow analyses, and source code to object code traceability XE "traceability" .

3.21 Issues and Guidelines

Implicit type conversion raises certification issues related to the ability to perform various forms of analyses and to satisfy the verification objectives of DO-178B XE "DO-178B" , including requirements-based testing and structural coverage XE "structural coverage" analysis. The use of explicitly checked type conversions are regarded as acceptable so long as they are properly verified and do not inhibit other verification methods, such as guaranteeing no loss of information and no unacceptable loss of data accuracy or precision.

3.21.1 Source Code Review, Checklist, and Coding Standards

3.21.1.1 Issue 1

Type conversions that are not checked by the language, either at compile time or at run time, can potentially result in code that has unintended behavior.

3.21.1.1.1 Related DO-178B XE "DO-178B" Sections and Objectives

For object code traceability XE "traceability" , source code review, checklist, and coding standards, see DO-178B XE "DO-178B" Table A-1: objective 5, Table A-5: objectives 1,3,4, and 6, Table A-6: objectives 1-4, Table A-7: objectives 3 and 4, and Table A-9: objective 1.
3.21.1.1.2 Proposed Solution

Unchecked type conversions are error prone and should be addressed specifically in coding standards and during verification. Coding standards may address unchecked type conversions, as in the following recommended practice:

Conversion practice: To help ensure intended function and verification, all checked and unchecked conversions should be justified or should be explicit, use the most restrictive conversion available, be conspicuously marked (identified) in the program source code, and be permitted only after thorough review and analysis of potential adverse effects.

Verification of unchecked type conversions may be accomplished through code reviews, checklists, or analysis (e.g., static code checking), and testing.

3.21.1.2 Issue 2

Conversions, both implicit and explicit, that result in loss of data, data accuracy, or precision result in code that may be incorrect. The following type conversions, for example, may result in loss of data or precision in some languages:

· from integer types to the floating point types

· from a floating point type to an integer type

· from a more precise numeric type to a less precise version of the same numeric type; e.g. long to short, double to float, etc.
Loss of data, data accuracy, or precision can be especially difficult to analyze and detect for implicit conversions and can be language dependent.

3.21.1.2.1 Related DO-178B XE "DO-178B" Sections and Objectives

For source code review, checklist, coding standards, and data coupling XE "data coupling" analysis, see DO-178B XE "DO-178B" Table A-5: objectives 1, 3, 4 and 6; Table A-6: objectives 1-4; and Table A-7: objective 8.
3.21.1.2.2 Proposed Solution

Type conversions should be addressed for loss of data, data accuracy, or precision. This may be accomplished through coding standards and through verification including code reviews, checklists, or analysis. Coding standards may address type conversions that can result in loss of data, data accuracy, or precision, as in the following recommended practice:

Loss of information practice: To help ensure correctness, any conversions that may result in loss of data or data accuracy and precision should be justified or should:

- be explicit,

- use the most restrictive conversion available,

- be conspicuously marked (identified) in the program source code, and only be permitted after thorough review and analysis of potential adverse effects.

A clear understanding of the programming language being used is needed to identify and analyze implicit type conversions for potential loss of information.

3.21.1.3 Issue 3

Some references and pointers can be implicitly converted. Converting a reference from one type to a dissimilar type can result in code that has unintended behavior and is difficult to verify.

3.21.1.3.1 Related DO-178B XE "DO-178B" Sections and Objectives

For source code review, checklist, and coding standards, see DO-178B XE "DO-178B" Table A-5: objectives 1, 3, 4 and 6; and Table A-6: objectives 1-4.
3.21.1.3.2 Proposed Solution

The following recommended practice may address implicitly converted references and pointers that result in code with unintended behavior:

Supertype practice: To help ensure intended function and verification, all implicit type conversions involving references/pointers to class XE "class" instances should be justified or should only represent a conversion from a subtype to one of its supertypes.
3.21.1.3.3 Specific Guidelines

As a result of the proposed solutions, the following language best practices should be taken into consideration [Source code review, checklist, coding standards]:
1. All implicit conversions XE "implicit conversions" should be checked for potential loss of precision or loss of data. Specifically, the following should be justified:

· From integer types to the floating point types (potential loss of precision) (JAVA and C++ XE "C++")
· From a floating point type to an integer type (potential loss of data) (C++ XE "C++")

· From a more precise numeric type to a less precise version of the same numeric type; e.g. long to short, double to float, etc. (potential loss of data or precision) (C++ XE "C++")

2. Implicit conversions between logically unrelated types should be justified. Types are logically unrelated when one does not define a set of operations that is a subset of the other. For example, in C++ XE "C++" single argument constructors XE "constructors" , such as a stack class XE "class" taking a single integer argument, would allow implicit conversion XE "implicit conversion" . It is a good programming practice to use the keyword “explicit” to avoid implicit conversion between logically unrelated types. Unless the single argument constructor was created with the expressed purpose of permitting implicit conversion between the argument type and the class type, the constructor should be declared with the explicit keyword. Not using the explicit keyword should be justified.

3.22 Rationale

The following table summarizes issues when using type conversion, provides guidelines and related DO-178B objectives. The issues are based on the concerns identified through the OOTiA program web site (number 59) and documented in an “OOTiA Isssues Report” which is a separate document from this handbook.

	Issues
	Guidelines
	DO-178B Objectives Supported

	1. Type conversions that are not checked by the language, either at compile time or at run time, can potentially result in code that has unintended behavior.
	The following practices are recommended:

Conversion practice: To help ensure intended function and verification, all checked and unchecked conversions should be justified or should be explicit, use the most restrictive conversion available, be conspicuously marked (identified) in the program source code, and be permitted only after thorough review and analysis of potential adverse effects.

Verification of unchecked type conversions may be accomplished through code reviews, checklists, or analysis (e.g., static code checking), and testing.

(Section 8.3.1.1.2 of OOT Handbook)
	A-1 (5)

A-5 (1,3,4, 6)

A-6 (1, 2, 3, 4)

A-7 (3, 4)

A-9 (1)

	2. Conversions, both implicit and explicit, that result in loss of data, data accuracy, or precision result in code that may be incorrect
	The following practices are recommended to help ensure correctness, any conversions that may result in loss of data or data accuracy and precision should be justified or should:

· be explicit

· use the most restrictive conversion available

· be conspicuously marked (identified) in the program source code, and only be permitted after thorough review and analysis of potential adverse effects.

(Section 8.3.1.2.2 of OOTiA Handbook)
	A-5 (1, 3, 4, 6)

A-6 (1, 2, 3, 4)

A-7 (8)

	3. Some references and pointers can be implicitly converted. Converting a reference from one type to a dissimilar type can result in code that has unintended behavior and is difficult to verify
	The following recommended practice may address implicitly converted references and pointers that result in code with unintended behavior:

· Supertype practice: To help ensure intended function and verification, all implicit type conversions involving references/pointers to class hould be justified or should only represent a conversion from a subtype to one of its supertypes.

(Sections 8.3.1.3.2 and 8.3.1.3.3 of OOTiA Handbook)
	A-5 (1, 3, 4, 6)

A-6 (1, 2, 3, 4)

Table 8.4‑1 Type Conversion Rationale

3.23 References for Chapter 8

1. OOTiA XE "OOTiA" -8, Overloading XE "Overloading" , version 3.0.
2. OOTiA XE "OOTiA" Issue List, Issue 59, version 1.0.
Guidelines on Overloading and Method Resolution XE "Overloading"
3.24 Purpose

This section addresses DO-178B XE "DO-178B" guidelines when overloading is used. Guidelines are in the form of recommended practices which support compliance with DO-178B objectives. In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing guidance (DO-178B) with respect to the use of particular OO features.

3.25 Background

Overloading XE "Overloading" means using the same name for different operators or behavioral features (operations or methods) visible within the same scope. Overloading is a simple but useful form of static polymorphism XE "polymorphism" when used consistently. Conversely, improper use of overloading can make source code readability more difficult, and can thus contribute to human error.

Overloading XE "Overloading" can enhance readability when the overloaded operators, operations or methods are semantically consistent. However, overloaded operators, operations, and methods could coincidentally have the same name and potentially have very different semantic behaviors. Specifically, overloading can be confusing when it introduces methods that have the same name but different semantics. This may be further complicated when overloading is combined with other language features (e.g., overriding, templates, etc.). Overloading can also complicate matters for tool use (e.g., structural coverage XE "structural coverage" and control flow analysis tools) if the overloading rules for the language are overly complex.

3.26 Issues and Guidelines

Overloading XE "Overloading" may affect a number of verification methods as noted below. The use of overloading is not an obstacle to certification so long as it is verified that the intended operation is, in fact, the operation called.

3.26.1 Code Review Method

Overloaded methods and operators can introduce unintended functionality. If methods and operators are not overloaded in a consistent and logical manner, then the use of the code can be ambiguous.

3.26.1.1 Related DO-178B XE "DO-178B" Sections and Objectives

Overloading XE "Overloading" can potentially result in code that is overly complex and difficult to verify. See DO-178B XE "DO-178B" Table A-5: objectives 3-4 related to verifiability of source code and conformance to standards.

3.26.1.2 Guidelines

Overloaded methods and operators should be addressed for inconsistencies which can lead to code complexity and ambiguities. This may be accomplished through code reviews, checklists, or coding standards. Software code standards should include complexity restrictions that address overloading. For example, the following practices are recommended:

Overloaded method practice: Overloaded operations or methods should form "families" that use the same semantics, share the same name, have the same purpose, and that are differentiated by the types of their formal parameters.

Overloaded operator practice: Overloaded operators should obey the "natural" meaning and follow conventions of the language. For example, a C++ XE "C++" operator "+=" should have the same meaning as "+" and "=".

In performing code reviews, the pre- and post- conditions for overloaded methods should be examined for consistent behavior in the context of the code under review.

3.26.2 Implicit Conversion Issues

Object-oriented languages support some level of implicit conversion XE "implicit conversion" of arguments. The use of overloaded operators and methods with arguments that are implicitly convertible can potentially result in problems associating calls with methods that do not share the same structure of preconditions and postconditions.

3.26.2.1 Related DO-178B XE "DO-178B" Sections and Objectives

Overloading XE "Overloading" can impact structural coverage XE "structural coverage" analysis and data and control flow analysis. Overloading can also inhibit source to object code traceability XE "traceability" . See DO-178B XE "DO-178B" Table A-7: objectives 5-8 related to test coverage.

3.26.2.2 Guidelines

To avoid potential problems involving the association of calls with methods, it is recommended that any family of overloaded operators and methods whose arguments (signatures) are implicitly convertible to one another or from one to another be required to have the same semantics. Formally, this means they must have the same structure of preconditions and postconditions. Informally, this means that they may share the same structure of test cases.

The software user of any family of overloaded operators and methods whose arguments (signatures) are implicitly convertible should: (1) perform the call using arguments that do not need to be converted and (2) perform analysis appropriate to the level of the software to ensure the proper method is being called.

3.27 Rationale

The following table summarizes issues when using overloading and method resolution, provides guidelines and related DO-178B objectives. The issues are based on the concerns identified through the OOTiA program web site (numbers 59 and 60) and documented in an “OOTiA Isssues Report” which is a separate document from this handbook.

	Issues
	Guidelines
	DO-178B Objectives Supported

	1. Overloaded methods and operators can introduce unintended functionality. If methods and operators are not overloaded in a consistent and logical manner, then the use of the code can be ambiguous.
	The following practices are recommended:

· Overloaded method practice: Overloaded operations or methods should form "families" that use the same semantics, share the same name, have the same purpose, and that are differentiated by the types of their formal parameters.

· Overloaded operator practice: Overloaded operators should obey the "natural" meaning and follow conventions of the language. For example, a C++ operator "+=" should have the same meaning as "+" and "=".

· In performing code reviews, the pre- and post- conditions for overloaded methods should be examined for consistent behavior in the context of the code under review.

(Section 9.3.1.2 of OOTiA Handbook)
	A-5 (3, 4)

	2. The use of overloaded operators and methods with arguments that are implicitly convertible can potentially result in problems associating calls with methods that do not share the same structure of preconditions and postconditions
	The following practices are recommended:

· Any family of overloaded operators and methods whose arguments (signatures) are implicitly convertible to one another or from one to another be required to have the same semantics. Formally, this means they must have the same structure of preconditions and postconditions. Informally, this means that they may share the same structure of test cases.

· The software user of any family of overloaded operators and methods whose arguments (signatures) are implicitly convertible should:

· perform the call using arguments that do not need to be converted

· perform analysis appropriate to the level of the software to ensure the proper method is being called.

(Section 9.3.2.2 of OOTiA Handbook)
	A-7 (5, 6, 7, 8)

Table 9.4‑1 Overloading and Method Resolution Rationale

3.28 References for Chapter 9

1. Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , Document No. RTCA/DO-178B XE "DO-178B" , RTCA Inc., 1828 L Street, Northwest, Suite 805, Washington, DC 20036.

2. Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" Workshop Paper OOTiA XE "OOTiA" : Type Conversion XE "Type Conversion" , version 2.0, July 2002.

4. Guidelines on Dead and Deactivated Code, and Reuse XE "Dead and Deactivated Code, and Reuse"
4.1 Purpose

This section identifies issues, perspectives, and recommendations for addressing concerns associated with software reuse, deactivated code XE "deactivated code" , and dead code XE "dead code" contained in aviation software applications as a result of using object-oriented technology (OOT XE "OOT") development processes, environments, and tool libraries. This section provides clarification for certain sections of DO-178B XE "DO-178B" and contains no new or additional guidance material.

4.2 Background

A major objective of OOT XE "OOT" is to provide developers with the ability to create new software systems utilizing reusable software components where a component may be comprised of classes, methods, procedures, packages, modules, and so on. A reusable component often contains more software functionality than required by the system being certified. The requirements and design of the reusable component should be more generic and cover more situations if the component is truly reusable. If this extra functionality results in extra code in the system itself, then there may be deactivated code XE "deactivated code" with which to deal. Deactivated code will likely be present in any application that uses general purpose software components and libraries, such as commercial off-the-shelf (COTS) software libraries provided with a compiler, operating system or run-time environment, for object-oriented development frameworks XE "frameworks" .

Particular areas of concern for deactivated code XE "deactivated code" when utilizing object-oriented (OO) techniques include:

· Compiler generated default methods (e.g., default constructors XE "constructors" , destructors XE "destructors" , and assignment operators)

· Completely unused classes

· Unused methods within classes

· Unused operations within overloaded methods

· Overridden methods due to use of sub-classes

· Existence of unexecuted paths because the entry conditions for those paths are never satisfied for a given system

· Unused class XE "class" attributes

· Unintended functionality or anomalous behavior

RTCA documents DO-178B XE "DO-178B" [1] and DO-248B [2] provide guidance for reuse and modification of Previously Developed Software (PDS), deactivated code XE "deactivated code" , and dead code XE "dead code" . FAA Order 8110.SW [8] and AC 20-RSC [4] also provide additional guidance for the use of reusable software components including life cycle data. PDS is included in this discussion as it is one form of a reusable component. DO-178B guidance for upgrading software from a previous development (such as DO-178A) still applies.

OO components taken from the non-avionics or non-commercial avionics industries and reused may have been designed to be highly reusable, but quite often not all of the necessary software life cycle data is available. Again, normal guidance from DO-178B XE "DO-178B" applies in these situations. Generally, the product and process assurance artifacts must be produced as part of a first software approval.

4.3 Issues and Guidelines

While DO-178B XE "DO-178B" already provides guidance for deactivated and dead code XE "dead code" , significantly more software component reuse is expected through OOT XE "OOT" . The following subsections provide elaboration of issues which may become more pervasive as more and more software components are reused through the application of OOT. The issues for reuse, dead code, and deactivated code XE "deactivated code" are addressed in the following subsections. References to existing DO-178B guidance are provided, as appropriate.

4.3.1 Reuse of software components

Reuse of software components may occur in two general ways. One way is through the use of “generic” or non-application specific software components while the other approach, perhaps within the same system, is through the creation of multiple, option-selectable XE "option-selectable" , “custom” or application specific components that implement variants of the same algorithms.

Common examples of non-application specific reusable components are operating systems, standard libraries, math libraries and so on. Often these reusable components are developed by a third party to be highly reusable. The components may or may not be written using OOT XE "OOT" ; this detail may be hidden to the application developer. These non-application specific components may be provided as object libraries, which are linked into the system or alternatively may be provided as source libraries in the form of an OO framework.

An example of reusable, option-selectable XE "option-selectable" , application specific software components would be two slightly different flight control algorithms which correspond to two different airframes. In this case, some of the classes are active in one installation and deactivated in another.

Either of the previously noted approaches will likely result in some unused functionality as well as deactivated code XE "deactivated code" . In all cases the software and the supporting software life cycle data must satisfy the objectives of DO-178B XE "DO-178B" .

4.3.1.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" sections 2.4e, 4.2h, 5.4.3a&b, 11.1g, 11.10k, 12.1, 12.1.1, 12.1.2, 12.1.3, 12.1.4, 12.1.5, and 12.1.6.

Additional clarification is contained in DO-248B sections 3.8 and 3.70. Also refer to AC 20-RSC [4] and N8110.97 [3].

4.3.1.2 Guidelines

For standard libraries, the applicant needs to identify which Application Programming Interfaces (API) of the library are used and unused. For option-selectable XE "option-selectable" software, the applicant needs to identify which classes and methods within classes are used and unused for particular installations.

The use of individual subclasses, each of which represents a different option, is a good way to implement option selectable software. Only the appropriate sub-class XE "class" is actually created in the system. The caller of the desired algorithm need not know which algorithm is actually in the system – it is hidden from the other parts of the program.

Deactivated code for both forms of reusable components should conform to the Developer’s intent rule XE "rule" and the All code verified rule. In both cases unused interfaces, classes, and methods will be tied to either derived requirements XE "derived requirements" or explicit, option-selectable XE "option-selectable" requirements specified by the integrator. The derived requirements must be verified and driven into the System Safety Assessment XE "System Safety Assessment" (SSA) for consideration by the integrator. One acceptable means to identify unused functionality to the integrator would be through the use of traceability XE "traceability" matrices. Verification data for derived requirements must satisfy the objectives of DO-178B XE "DO-178B" . In addition, if the deactivated classes and methods are built into the executable object code for the various installation options, analysis should be performed to show that the deactivated code XE "deactivated code" in a particular installation cannot be activated.

Developer’s intent rule XE "rule" : All code must be exercised by requirements-based tests (the requirements may be derived). Code not associated with requirements should be carefully evaluated and either removed (if it is dead code XE "dead code") or requirements should be developed for the code. Code which exists due to derived requirements XE "derived requirements" needs to be explicitly identified by the developer and the associated requirements must be noted as “derived” for inclusion in the SSA process by the integrator.

All code verified rule XE "rule" : All code executed within any aircraft or engine configuration must be verified per applicable DO-178B objectives, even if it can be demonstrated that a particular piece of code can never be activated in a specific system. Note that requirements will be needed for all deactivated code XE "deactivated code" associated with the various aircraft or engine configurations (either derived requirements XE "derived requirements" or explicit, option-selectable XE "option-selectable" requirements specified by the integrator).

4.3.2 Requirements Traceability XE "Traceability"

Traceability XE "Traceability" can be challenging when utilizing OO techniques. Of particular issue is how dead code XE "dead code" , deactivated code XE "deactivated code" and active code can be differentiated and verified in OO software. Given a method that is not used, or a method of an abstract class XE "class" that is overridden in all subclasses, or an attribute that is never referenced, it may not be clear if this was intentional for possible future use, an accident, or an error. That is, in terms of source code the developer’s original intent may not be clear. It should be noted that additional traceability XE "traceability" concerns are documented in Section 12. of this handbook. This subsection just focuses on traceability as it relates to reuse, dead code, and deactivated code.

4.3.2.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" sections 5.4.3a&b, 5.5, 6.3.1a, 6.3.2a, 6.3.4e, 6.4.3, 6.4.4.1, 6.4.4.2, and 6.4.4.3.

Also refer to DO-248B sections 3.8, 3.28 and 3.70.

4.3.2.2 Guidelines

Requirements should be developed to a sufficiently low level of detail so that the traceability XE "traceability" between requirements and corresponding classes, methods and operators is clear. Tools XE "Tools" to support OO software design and assist with traceability relationships are highly recommended.

An applicant must demonstrate that an adequate process is in place to resolve dead code XE "dead code" issues. A careful evaluation of apparently dead code is needed to ensure that code that appears dead is actually dead and that it is not just a documentation omission that makes it appear to be dead code. The Developer’s intent rule XE "rule" , as discussed in subsection [10.3.1.2], should provide the documentation to make this task much easier. The process also needs to cover overriding of class XE "class" methods including compiler generated default methods, operators, virtual functions or other OO-specific instances where confusion might arise due to the OO structure of the code.

The following points should be observed when dealing with deactivated code XE "deactivated code" :

· Deactivated code which is intended to operate in any configuration used within an aircraft or engine requires associated explicit option-selectable XE "option-selectable" requirements specified by the integrator or derived requirements XE "derived requirements" created by the developer.

· The design and architecture life cycle data will need to account for deactivated methods and attributes.

· The documented traceability XE "traceability" relationships should exist from the source code to either derived or explicit requirements (deactivated code XE "deactivated code" will have associated requirements – dead code XE "dead code" will exist due to a design error and there will be no associated requirements).

· The completeness of requirements based tests against structural coverage XE "structural coverage" objectives (derived requirements XE "derived requirements" must be verified and will have associated source code – dead code XE "dead code" will exist due to a design error and there will be no associated requirements).

· The effect of derived requirements XE "derived requirements" on the SSA process and an examination of unintended functionality which could be introduced by the derived requirements (derived requirements must be provided to the SSA process).

· Runtime examination of methods invoked when the software component is integrated into the final target environment (control and data coupling XE "data coupling" /flow coverage are part of the DO-178B XE "DO-178B" objectives – reusable software component interfaces will need to be examined by the integrator).

Note that many OO languages provide features that if fully utilized will make the above activities much more difficult – e.g., multiple inheritance XE "multiple inheritance" . Developers may find it useful to develop standards which create a deterministic, verifiable subset of a given OO language.

In the case of Level A software, object code not directly traceable to the source code will also be of concern as noted in DO-178B XE "DO-178B" in 6.4.4.2, item b. Examples of non-traceable, compiler generated object code could include default constructors XE "constructors" , default destructors XE "destructors" , default copy methods, and default assignment methods. The developer should provide explicit guidelines in terms of utilization of default methods and the appropriate verification techniques in the planning and standards documents.

See Appendix A.3.1 for an example of deactivated code XE "deactivated code" with both deactivated methods and attributes.

4.3.3 Certification credit for reused but modified class XE "class" hierarchy XE "hierarchy"
When a previously approved class XE "class" hierarchy XE "hierarchy" is updated, it can be unclear how much re-verification must be performed. Current guidance requires that a software change impact analysis XE "software change impact analysis" must be performed to determine the extent of required re-verification activities. The situation is no different for OOT XE "OOT" . See Appendix A.3.2 for an example of how this class hierarchy change can have a subtle effect without any obvious changes to code.

4.3.3.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" [1], sections 11.3h and 12.1. Also, refer to FAA Order 8110.SW [8].

4.3.3.2 Guidelines

This issue applies to a certification when class XE "class" hierarchies are not being completely re-tested. In this case, applicants must provide a regression analysis of all changes to a class hierarchy XE "hierarchy" in the form of flattened class hierarchy. More succinctly, the applicant should adhere to the following rule XE "rule" :

Flattened class XE "class" re-verification rule XE "rule" : When a change to an element of a class occurs, re-verification of all subclasses whose flattened form XE "flattened form" contains the changed element is recommended.

A clear trace of the subclasses that are affected by changes in base classes could be created either manually or with tools.

If full re-testing is performed, an alternative (and recommended) approach is to apply the guidelines described for the Inherited test case rule XE "rule" [6]. This states that “every test case appearing in the set of test cases associated with a class XE "class" should appear in the set of test cases associated with each of its subclasses.” This conforms to the Liskov Substitution Principle [7] and will ensure the behaviors of the inherited methods are appropriate for each subclass XE "subclass" .
4.3.4 Changes in the status of deactivated code XE "deactivated code" versus actively used code

4.3.4.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" [1] sections 5.4.3a, 6.4.4.2c, 11.1g, 11.10k, 12.1.2a, and 12.1.3e. Also, refer to AC 20-RSC [4].

4.3.4.2 Guidelines

When previously developed software is submitted by an applicant for a new certification, changes in the status of deactivated code XE "deactivated code" versus actively used code must be documented. Since the reusable components should follow the All code verified rule XE "rule" as previously discussed, the components should have already have been verified to obtain regulatory approval. However, in order to gain regulatory approval for the previously deactivated code, the integrator will need to document and verify the interfaces associated with the newly activated code. This may drive requirements, design, code, and verification changes from the previously approved baseline.
4.3.5 Service history credit and deactivated code XE "deactivated code"
Software verification data has the potential to be valid for a particular certification basis and installation but not valid for different certification basis and installation. Often, applicants may apply for service history XE "service history" credit rather than re-doing the artifacts to comply with the certification basis.

For example, assume an entire class XE "class" hierarchy XE "hierarchy" is developed and approved under DO-178B XE "DO-178B" . A portion of this class hierarchy is approved in a certified system and has 10 years of service history XE "service history" . Ten years later, a new system is developed and potentially the regulatory guidance or certification basis has changed and it is now desired to use portions of the previously unused class hierarchy. It is not clear that one can use service history at this point or the old certification as a baseline, because of the activation of previously inactive code.

4.3.5.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" [1] section 12.3.5. Also, refer to DO-248B [2] 3.19 and 4.4.

4.3.5.2 Guidelines

Service history credit may be granted for deactivation mechanisms with appropriate service history XE "service history" data.

The applicant should adhere to the following rule XE "rule" :

Service history rule XE "rule" : Service history credit may only be given for activated code and deactivation mechanisms that have been actually executed. The target environment, certification basis, and SSA will need to be considered in this process.

Integrators and regulators need to be aware that deactivated code XE "deactivated code" in a previous certification basis could easily become active in a newer certification effort (previously identified derived requirements XE "derived requirements" for deactivated code that were provided for the earlier SSA process can assist this activity). Integrators and regulators need to review the documentation for code that has now become active and ensure that at least for that particular code, proper certification artifacts and life cycle data for the appropriate (new) standard as well as potentially new hazards within the system have been addressed. Code that becomes deactivated in a later certification is fine to leave in the code, as long as it is documented per subsection 3.3 of this document. Note DO-248B [2] addresses this issue in section 4.4.
4.4 References for Chapter 10

1. RTCA, Incorporated, document RTCA/DO-178B XE "DO-178B" , Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , dated December 1, 1992.

2. RTCA, Incorporated, document RTCA/DO-248B, Final Report for Clarification of DO-178B XE "DO-178B" Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , dated October 12, 2001.

3. FAA Notice 8110.97, Guidelines for Approving Reused Software Life Cycle data, dated February 5, 2002.(*** is being replaced by Order 8110.SW, Chapter 4). Remove when references are consolidated.)

4. FAA AC 20-RSC, Reusable Software Components, draft 3, dated January 27, 2003. (*** will update when AC is finished)

5. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, ISBN: 0201633612, 1995.

6. OOTiA XE "OOTiA" -1, Single Inheritance XE "Single Inheritance" and Dynamic Dispatch XE "Dynamic Dispatch" , version 2.0.

7. Liskov, Barbara and Jeanette Wing. “A Behavioral Notion of Subtyping”, ACM Transactions on Programming Languages and Systems, 16(6): 1811-1841, November 1994.

8. FAA Order 8110.SW, Software Approval Guidelines, draft 4, dated November 26, 2002. (*** will update when Order is finished)

Guidelines on Object-Oriented Tools XE "Tools"
4.5 Purpose

This section addresses issues impacting compliance with DO-178B XE "DO-178B" objectives for traceability XE "traceability" , configuration management, development, verification, structural coverage XE "structural coverage" analysis (including data coupling XE "data coupling" and control coupling XE "control coupling" analyses), dead code XE "dead code" , and deactivated code XE "deactivated code" when object-oriented development and verification tools are used. Additionally, tool issues related to dynamic dispatch XE "dynamic dispatch" , polymorphism XE "polymorphism" , inheritance, frameworks XE "frameworks" and automatic code generation will be discussed. Tool qualification with regard to object-oriented technology (OOT XE "OOT") will also be discussed. As with most of the sections in this handbook, UML XE "UML" terminology and examples are used, since UML is the predominant OO modeling language currently being considered by the aviation community, and other modeling languages present similar issues.

4.6 Background

Current object-oriented (OO) tools (either internally developed or commercially procured) may not fully satisfy DO-178B XE "DO-178B" objectives with regard to configuration management, development, and verification. This section provides guidelines for object-oriented tools to assist applicants in satisfying DO-178B objectives. OO may present new challenges to OO tool vendors and applicants that have not been prevalent with structure-based development. The specific OO tool issues and guidelines are presented in Section 11.3; however, the more general concerns are:

1. Addressing verification coverage for OO software,

2. Using OO frameworks XE "frameworks" , automatic code generators, dynamic dispatch XE "dynamic dispatch" , polymorphism XE "polymorphism" , and inheritance, and

3. Addressing requirements management and traceability XE "traceability" during OO development.

4.7 Guidelines

The following subsections discuss issues related to OO development and verification tools.

4.7.1 Traceability XE "Traceability" Using OO Tools XE "Tools"
Specific traceability XE "traceability" issues and guidelines are addressed in sections 10.3.2 and 12. of this handbook. OO tools should implement the best practices as defined in those traceability sections.

4.7.2 Software Visual Modeling Tools XE "Tools"

When using OO tools to develop software requirements, design and implementation, it is beneficial to work at the visual model level, especially when using UML. XE "UML" When working with OO tools, configuration management might be done at the modeling level (i.e., diagrams). This may cause a concern when the OO tools can introduce subtle errors into the diagrams. Since the model contains the software requirements and design, there must be some checks or assurance that the raw data files (model files) are not changed by the tool when saving, opening, checking files into the Configuration Management (CM) system or checking files out of the CM system. Some of the OO tools may introduce errors at the modeling level when opening, saving, or closing files.

4.7.2.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" [1] Section 7 on the software configuration management process and objectives. Files that are part of the software “type design” (See [1], Section 9.4) should be controlled to Control Category 1 (CC1) criteria ([1], Section 7.3 and Table 7-1, and Annex A, Table A-2). It is likely that the visual models XE "visual models" and charts and their corresponding files should be controlled to CC1, as they represent the Software Requirements Data ([1], Section 11.9) and the software Design Description ([1], Section 11.10). Guidance for tool qualification is in [1], Section 12.2.

4.7.2.2 Guidelines

The developer should control the visual models XE "visual models" , charts, any intermediate translations of the models and the code generated from the model. It is important to understand that there are two parts to UML XE "UML" : (1) a graphical notation, and (2) an underlying model representation with a well-defined semantics. The diagrams are simply views of the underlying model, and are physically separate from it. Each model element may appear in any number of diagrams, or none at all. In the extreme, a UML model need not have any graphical representation at all. If the tools used to develop the models will automatically track the different components of the software requirements and design, then the tool may need to be qualified, unless the tool can be shown to be deterministic or the output of the tool is verified.

Visual modeling tools should be shown to be deterministic and preserve software life cycle data integrity. Software visual modeling XE "visual modeling" tools may need to add integrity checks to their raw data files to ensure that when the tool opens or closes a file, the file’s integrity is maintained. For example, checksums or printed copies of the models can be compared to the electronic visual models XE "visual models" \t "See visual modeling" to ensure integrity or electronic copies could have integrity checks (cyclic redundancy checks) of the files computed and compared to ensure the tool does not introduce errors. The visual tools can also be qualified as software development tools.

4.7.3 Visual Modeling Tools XE "Tools" Frameworks

Current visual modeling XE "visual modeling" tools that are used for OO development make use of frameworks XE "frameworks" for automatic code generation, replacing tedious programming tasks. Frameworks may include patterns, templates, generics, and classes in ways requiring new verification approaches. The tool’s framework may or may not enforce requirements, design and coding standards. The tool’s framework may or may not ensure that the relevant objectives for software requirements, design and source code are achieved for all software to be included in the final airborne software to be embedded in the airborne system.

4.7.3.1 Relevant DO-178B XE "DO-178B" Sections and Objectives

DO-178B XE "DO-178B" [1], Sections 4.4, 4.4.1 and 4.4.2 contain guidance for planning the software development environment to be used to develop the airborne software, including some language and compiler considerations. The environment and tools to be used are specified in [1], Section 11.15, the Software Life Cycle Configuration Index. Tool qualification criteria for software development tools are in [1], Section 12.2. Since components of the “framework” may end up embedded in the airborne software, guidance related to Previously Developed Software should also be addressed [2].

4.7.3.2 Guidelines

Some of the OO tools provide a framework to automate and generate the source code from the UML XE "UML" model and framework “libraries” of patterns, templates, generics and classes; replacing the tedious coding tasks for the user. This will add code or objects (i.e., some tools may generate dynamic constructors XE "constructors" , destructors XE "destructors" , queues, stubs, skeletons, and other features). Engineers should understand the tools that are used to develop the airborne application and what components of the framework are ending up embedded in the airborne software. The framework and the tool may need to be qualified, and components of the framework embedded in the airborne application should be assured to the same level as the application.

If components of the framework are going to be part of the airborne application, they must be assured to the same level as other components of the airborne application.

4.7.4 Automatic Code Generators

[image: image20.png]

Current visual modeling XE "visual modeling" tools that are used for OO development provide a capability to generate source code directly from UML XE "UML" models. Most of the existing UML tools today can use visual modeling diagrams to construct models and generate source code from these models. The level of source code generation depends on the tool and on the user of the tool. Some of the tools support “full” automatic code generation and some generate only the skeleton of the code. For “full” automatic code generation, the user may also need to produce additional information (e.g., state charts, activity diagrams, and/or UML action semantics) to specify additional detail of their implementations.

[image: image21.wmf]Class Name

Attributes:

Operations:

[image: image22.wmf]Identify user

requirements

(use cases)

Identify classes

(attributes &

operations) (CRC)

Specify class

hierarchy

(CRC)

Identify object-

to-object

relationships (OR)

Model object

 behavior (OB)

Reapply as needed

[image: image23.emf]A

f() : A

<<Interface>>

B

f() : B

<<Interface>>

C

<<Interface>>

D

<<Interface>>

[image: image24.emf]A

f() : A

<<Interface>>

B

f() : B

<<Interface>>

C

<<Interface>>

D

f() : B

<<Interface>>

[image: image25.emf]B

sameSignature(i : int) : float

<<Interface>>

C

sameSignature(i : int) : float

<<Interface>>

D

<<Interface>>

[image: image26.emf]Driver

getAge() : int

getAddress() : String

getViolationCount()

passBirthday()

payFee()

<<Interface>>

FrenchDriver

<<Interface>>

USDriver

<<Interface>>

FrenchUSDriver

<<Interface>>

[image: image27.emf]ProducerInterface

getDataChannel(name : String) : DataChannel...

advertise(name : String) : DataItem

setProducerRole(channel : DataChannel, pushProducer : boolean)...

setDataValue(item : DataItem, validity : boolean, value : Object))...

setDefaultValue(item : DataItem, validity : boolean, value : Object))...

sendDefault(item : DataItem)

ConsumerInterface

getDataChannel(name : String) : DataChannel

subscribe(name : String) : DataItem

setConsumerRole(channel : DataChannel, pushConsumer : boolean)...

setRate(item : DataItem, rateInHertz : float)

setPriority(item : DataItem, priority : int)

getDataIValue(tem : DataItem, out validity : Validity, out value : Object))...

isStale(item : DataItem) : boolean

AvionicsDataServiceInterface

init()

addDataChannel(name : String) : DataChannel...

deleteDataChaqnnel(name : String)

deleteDataChannel(channel : DataChannel)

getDataChannel(name : String) : DataChannel...

getAllProducerDataItems(channel : DataChannel)...

getAllConsumerDataItems(channel : DataChannel)...

assignBandwidth(channel : DataChannel, minBandwidth : double, maxBandwidth : double)...

advertise(name : String) : DataItem

subscribe(name : String) : DataItem

setProducerRole(channel : DataChannel, pushProducer : boolean)...

setConsumerRole(channel : DataChannel, pushConsumer : boolean)...

setDataValue(item : DataItem, validity : boolean, value : Object))...

setDefaultValue(item : DataItem, validity : boolean, value : Object))...

sendDefault(item : DataItem)

setRate(item : DataItem, rateInHertz : float)

setPriority(item : DataItem, priority : int)

getDataIValue(tem : DataItem, out validity : Validity, out value : Object))...

isStale(item : DataItem) : boolean

AdminInterface

init()

addDataChannel(name : String) : DataChannel...

deleteDataChaqnnel(name : String)

deleteDataChannel(channel : DataChannel)

getDataChannel(name : String) : DataChannel

getAllProducerDataItems(channel : DataChannel)...

getAllConsumerDataItems(channel : DataChannel)...

assignBandwidth(channel : DataChannel, minBandwidth : double, maxBandwidth : double)...

[image: image28.wmf]

DisplayElement

importance : int

xOrigin : CoordinateValue

yOrigin : CoordinateValue

draw()

highlight()

hide()

NonTextualElement

highlight()

PrimitiveNonTextualElem

ent

draw()

highlight()

AltitudeTape

width : GraphicsDistance

height :

GraphicsDistance

colorScheme : ColorScheme

displayedValue : Altitude

draw()

getDisplayedValue() : Altitude

setDisplayedValue(altitude : Altitude)

AirspeedTape

width : Graphic

sDistance

height :

GraphicsDistance

colorScheme : ColorScheme

displayedValue : Airspeed

draw()

getDisplayedValue() : Airspeed

setDisplayedValue(airspeed : Airspeed)

Compass

radius : GraphicsDistance

colorScheme : ColorScheme

displayedValue : Head

ing

draw()

getDisplayedValue() : Heading

setDisplayedValue(heading : Heading)

TextualElement

width : GraphicsDistance

height : GraphicsDistance

displayedValue : String

draw()

highlight()

getDisplayedValue() : String

setDisplayedValue(string : S

tring)

Client

[image: image29.wmf]clientMethod

TargetClass

targetObject

1

0..*

1

-

runTimeClass

0..*

SuperClass

SubClass

methodInTargetClas

s

1

1

methodInSuperClass

1

1

methodInSubclass

1

1

targetOperation

calls

1

1

1

+specification

1

1

+specification

1

+specification

executes

[image: image2]
Figure 11.3‑1 Code Generation using Visual Modeling Tools XE "Tools"
When discussing automatic code generation, this section assumes that the tool is an automatic code generator that generates source code. Then the source code is provided to a compiler that generates the object code. The object code can then be linked to generate the executable object code, and then loaded (or burned) into computer memory for execution. The tool may automate this process by providing one make file to do all of the steps.

4.7.4.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" [1] sections 5.5 and 6.4.4, and see section 12.2 for software development tool qualification.

4.7.4.2 Guidelines

Most of the OO UML XE "UML" -based tools use some type of automatic code generation. Since the UML is a formally defined language, the tools can take the class XE "class" diagrams, object model diagrams, state charts, and activity diagrams and generate the source code, or at least the structure. The code generator is a software development tool that may need to be qualified to the same level as the airborne software application, unless the output of the automatic code generator is verified and is able to satisfy the development and verification objectives. If the applicant will be making manual changes to the automatically generated code, then the applicant should have a defined process for making those changes and maintaining the configuration control of the code, and the results of the code generator.

Automatic code generators should be deterministic and should be qualified to the same level as the airborne application, unless the tool’s output is fully verified. If the automatically generated code will be manually modified, the applicant should define and implement a process for controlling the automatically generated code, manually modified code and keeping track of all changes.

4.7.5 Structural Coverage Analysis Tools XE "Tools"
Typically, for providing requirements-based normal range and robustness testing coverage, the developer provides traceability XE "traceability" from the requirements to the test cases and procedures that verify those requirements and the robustness of the software. For structural coverage XE "structural coverage" , however, because of the large manual effort required to perform and measure structural coverage, developers have become increasingly reliant on tools that measure the structural coverage and identify “gaps” in that coverage. The current structural coverage tools available may not “be aware” or have visibility to the internals of inherited methods and attributes and polymorphic references supported with dynamic binding XE "dynamic binding" such that they can provide a reliable measurement of the structural coverage achieved by the requirements-based testing. Sections 11.3.6 and 11.3.7 provide the details for inheritance and dynamic binding respectively.

4.7.6 Structural Coverage Analysis for Inheritance not Consistent

One issue raised on the NASA OOTiA XE "OOTiA" web-site was: “Current structural coverage XE "structural coverage" analysis tools for object-oriented languages use multiple approaches for measuring the structural coverage of inherited entities. What is the preferred approach?” This subsection strives to address the proposed issue and question.

There are two major approaches to the structural coverage XE "structural coverage" analysis of inherited entities (attributes and methods). One approach is to treat object-oriented source code in the same manner as traditional, functional source code. This first approach measures structural coverage against concrete features only. The other approach is to treat object-oriented source code as existing in multiple contexts: the context of the class XE "class" where it is defined, and the contexts of the classes where it is inherited. This second approach measures structural coverage against both concrete and inherited features. There are existing structural coverage analysis tools which support one or both of these approaches.

To illustrate the differences between the two approaches, we will examine the structural coverage XE "structural coverage" analysis of Class_1.Method_1 from the class XE "class" (inheritance) hierarchy XE "hierarchy" presented in Figure 11.3‑2. Figure 11.3‑2 presents the hierarchy in two forms. On the left hand side of the diagram, the class appears as specified, while on the right hand side it appears in flattened form XE "flattened form" . In the flattened form of this figure, all inherited attributes and methods appear italicized.

[image: image3.wmf]Inheritance Heirarchy

Flattened Inheritance Heirarchy

Class_2

Attribute_2

Method_2()

Method_3()

Class_3

Attribute_3

Method_4()

Class_1

Attribute_1

Method_1()

Method_2()

Class_1

Attribute_1

Method_1()

Method_2()

Class_2

Attribute_1

Attribute_2

Method_1()

Method_2()

Method_3()

Class_3

Attribute_1

Attribute_3

Method_1()

Method_2()

Method_4()

Figure 11.3‑2 Inheritance

For the first approach of measuring structural coverage XE "structural coverage" against concrete features only, the tool will instrument the source code for Class_1.Method_1 and collect execution data from those probes. Assume that our system has an Object_A of Class_1, an Object_B of Class_2, and an Object_C of Class_3. When we run our tests against our system, coverage for Class_1.Method_1 will represent a composite of the executions for Object_A.Method_1(), Object_B.Method_1() and Object_C.Method_1(). This allows for partial coverage being achieved for Method_1 in the context of Class_1, partial coverage in the context of Class_2, and partial coverage in the context of Class_3. The composite may show complete coverage, as illustrated in Figure 11.3‑3.

[image: image4.wmf]Class_1

Class_3

Class_2

Method_1()

Method_1()

Method_1()

Structural

Coverage

Report

Figure 11.3‑3 Concrete Coverage
In Figure 11.3‑3, the coverages obtained from each of the different class XE "class" contexts are shown with a different patterned box. All of the coverage obtained from executions of Object_B.Method_1() and Object_C.Method_1() are reflected in Class_1.Method_1, from which the Structural Coverage report is generated. Note that there is overlap between the coverage obtained from executions of Object_A.Method_1() and Object_B.Method_1(). Also note that while Class_1.Method_1() shows complete coverage in total, reflected in the Structural Coverage Report, complete coverage was not obtained in any class context.

For the second approach of measuring structural coverage XE "structural coverage" against concrete and inherited features within the class XE "class" context, the tool will again instrument the source code for Class_1.Method_1, just as with the first approach. However, these probes will have an additional feature in that they will ascertain the class of the object that invoked Method_1. Execution data will now be collected against the class context from which the method was invoked. This is illustrated in Figure 11.3‑4, which is derived from Figure 11.3‑3. In Figure 11.3‑4, the Structural Coverage Report shows coverage for Method_1 in each of its contexts separately. In essence, this approach treats our system as if there was a Class_1.Method_1, a Class_2.Method_1 and a Class_3.Method_1.

[image: image5.wmf]Class_1

Class_3

Class_2

Method_1()

Method_1()

Method_1()

Structural

Coverage

Report

 Figure 11.3‑4 Context Coverage
To determine the preferred approach, consider that structural coverage XE "structural coverage" is used as one adequacy measure of requirements-based testing. The prevailing wisdom in the object-oriented testing community is that testing should be carried out against the flattened class XE "class" [4]. In order that structural coverage properly reflect the testing of flattened classes, structural coverage analysis tools should measure structural coverage against both concrete and inherited features.

Note that there are situations where there is no change impact for a method between its concrete (defining) class XE "class" and its inheriting class(es). In this situation it is perfectly permissible to combine the coverage results from the separate contexts into a single coverage analysis. It is believed that these situations are rare enough that the preferred approach for tools should stand, and the combination of coverage results should be accomplished manually.

4.7.6.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" [1] Table A-7 objectives 5, 6, 7 & 8, and sections 6.4.4.2 and 6.4.4.3 regarding structural coverage XE "structural coverage" analysis and related sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14.

4.7.6.2 Guidelines

Structural coverage analysis tools for OO languages should measure coverage for each attribute and concrete method in the concrete class XE "class" of each invoking object that uses it, whether defined or inherited by that class. If the tool is incapable of this, then a process should be performed to augment the tool’s analysis capabilities to satisfy structural coverage XE "structural coverage" objectives. Additionally, the structural coverage tool may need to be qualified as a software verification tool.

4.7.7 Structural Coverage Analysis for Dynamic Dispatch XE "Dynamic Dispatch" not Consistent

Several issues on the tool relationship to structural coverage XE "structural coverage" and dynamic dispatch XE "dynamic dispatch" were posed on the NASA OOTiA XE "OOTiA" web-site. The following three issues are of particular concern and will be addressed in this subsection.

· “How can we meet the structural coverage XE "structural coverage" requirements of DO-178B XE "DO-178B" with respect to dynamic dispatch XE "dynamic dispatch" ? There is cause for concern because many current Structural Coverage Analysis tools do not “understand” dynamic dispatch, i. e. do not treat it as equivalent to a call to a dispatch routine containing a case statement that selects between alternative methods based on the run- time type of the object.”

· “How can we meet the control and data flow analysis requirements of DO- 178B with respect to dynamic dispatch XE "dynamic dispatch" ?”

· “Current structural coverage XE "structural coverage" analysis tools for object-oriented languages use multiple approaches for measuring the structural coverage of dynamic dispatch XE "dynamic dispatch" (polymorphic references). What is the preferred approach?”

There are multiple approaches to the structural coverage XE "structural coverage" analysis of dynamic dispatch XE "dynamic dispatch" (polymorphic reference). One approach is to treat dynamic dispatch as being equivalent to static dispatch and record execution of the “dispatch” statement as sufficient structural coverage. This first approach measures structural coverage against the source code only. However, this approach ignores the fact that a polymorphic reference conditionally dispatches to multiple entities instead of only one. Another approach is to require every polymorphic reference dispatch to each possible resolution as sufficient structural coverage. This second approach measures structural coverage against the source and object code. However, this approach ignores the fact that many polymorphic references are identical, and coverage from multiple identical dispatches can be combined. Another approach is a combination of the previous two. In this third approach, each polymorphic reference must be executed and one of each set of identical polymorphic references must dispatch to each possible resolution for sufficient structural coverage. There are existing structural coverage analysis tools which support each of these approaches.

To illustrate the differences between the three approaches, we will use the flattened class XE "class" (inheritance) hierarchy XE "hierarchy" presented in Figure 11.3‑2 repeated in Figure 11.3‑5. In Figure 11.3‑5, all inherited attributes and methods appear italicized.

[image: image6.wmf]Class_1

Attribute_1

Method_1()

Method_2()

Class_2

Attribute_1

Attribute_2

Method_1()

Method_2()

Method_3()

Class_3

Attribute_1

Attribute_3

Method_1()

Method_2()

Method_4()

Figure 11.3‑5 Flattened Inheritance
Assume that in our system we have an Object_X that can be either of Class_1, Class_2 or Class_3. When we see the call to Object_X.Method_2(), either Class_1.Method_2 or Class_2.Method_2 can be called. Class_1.Method_2 will be called if Object_X is of Class_1 or Class_3, while Class_2.Method_2 will be called if Object_X is of Class_2. This is depicted graphically in Figure 11.3‑6.

[image: image7.wmf]Object_X

Method_2

Class_1.Method_2()

Class_2.Method_2()

Figure 11.3‑6 Dynamic Dispatch XE "Dynamic Dispatch"
For the first structural coverage XE "structural coverage" option, executing the reference to Object_X.Method_2() would be sufficient. As Figure 11.3‑6, shows, this would mean executing only one of the lowest level boxes, ignoring the options present. For the second structural coverage option, both resolutions for Method_2 would be required. This means executing each of the lower level boxes in Figure 11.3‑6. However, this can lead to a large amount of unnecessary redundancy in testing as shown in Figure 11.3‑7.

[image: image8.wmf]Object_Y

Method_2

Class_1.Method_2()

Class_2.Method_2()

Object_Z

Object_X

Figure 11.3‑7 Multiple Dynamic Dispatch XE "Dynamic Dispatch"
In Figure 11.3‑7, the second structural coverage XE "structural coverage" option will require that each of Object_X.Method_2(), Object_Y.Method_2() and Object_Z.Method_2() resolve their calls to both Class_1.Method_2 and Class_2.Method_2. The third structural coverage option requires that each of Object_X.Method_2(), Object_Y.Method_2() and Object_Z.Method_2() be executed, and that one of them resolve their calls to both Class_1.Method_2 and Class_2.Method_2.

As both Figure 11.3‑6 and Figure 11.3‑7 make clear, dynamic dispatch XE "dynamic dispatch" involves a conditional selection based on the run-time type (class XE "class") of the object making the reference. Both the second and third structural coverage XE "structural coverage" options have execution of the polymorphic resolutions as one of their features. Unfortunately, both have redundant coverage of those resolutions. At a minimum, every polymorphic reference, and every possible resolution for each set of identical polymorphic references should be executed. This is equivalent to executing every polymorphic call in the source code and covering every method table entry in the object code. This can also be achieved as a result of using the LSP test patterns described in section 4 of this handbook (covering every method table entry), combined with statement coverage (executing every polymorphic call).

4.7.7.1 Related DO-178B XE "DO-178B" Sections and Objectives

See DO-178B XE "DO-178B" [1] sections 6.4.4.2 and 6.4.4.3; and also related sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14.

4.7.7.2 Guidelines

Structural coverage analysis tools for OO languages should measure coverage for each polymorphic reference and each resolution for each set of identical polymorphic references. If the tool is incapable of this, then a process will need to be performed to augment the tools analysis capabilities to satisfy structural coverage XE "structural coverage" objectives. For example, this can be achieved as a result of using the LSP test patterns described in section 4 of this handbook (covering every method table entry), combined with statement coverage (executing every polymorphic call). Additionally, the structural coverage tool may need to be qualified as a software verification tool.

4.8 References for Chapter 11

1. RTCA, Incorporated, document RTCA/DO-178B XE "DO-178B" , Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , dated December 1, 1992.

2. FAA Order 8110.SW, Software Approval Guidelines, draft 4, dated November 26, 2002. (***revise name/date as Order progresses)

3. OOTiA XE "OOTiA" Issue List, version 1.0.

4. Binder, Robert V. Testing Object-Oriented Systems: Models, Patterns, and Tools XE "Tools" , Addison-Wesley, Reading, MA, 2000.

Guidelines on Traceability XE "Traceability"
4.9 Purpose

This section addresses issues influencing compliance with DO-178B objectives regarding traceability XE "traceability" , when object-oriented development and verification methods and tools are used. As with most of the sections in this handbook, UML terminology is used, since UML is the predominant OO modeling language currently being considered by the aviation community, and other modeling languages present similar issues.

4.10 Scope/Background

Current object-oriented (OO) methods and tools (either internally developed or commercially procured) may not satisfy the DO-178B objectives related to traceability XE "traceability" . This section of the handbook documents the issues related to traceability when OO methods and tools are used and defines some guidelines for addressing those issues.

Traceability is an important aspect of meeting DO-178B objectives. Traceability is used to:

1. enable verification of implemented system requirements, high-level requirements, and low-level requirements;

2. verify the absence of unintended function and/or undocumented source code; and

3. provide visibility to the derived requirements. Traceability applies to both the verification and configuration management processes [1].

In general, traceability XE "traceability" is complicated by:

· Functional requirements specified by Use Cases XE "Use Cases" ,

· Dynamic dispatch, polymorphism, and inheritance, and

· Overloading and overriding functionality.

4.11 Issues and Guidelines

This subsection focuses on traceability XE "traceability" that provides the evidence of a link between a requirement and its implementation, including the identification of derived requirements. Additionally, the link between UML artifacts and source code is discussed.

DO-178B guidelines require traceability XE "traceability" between system requirements and software requirements to enable verification of the complete implementation of the system requirements. The low-level requirements should be traced to the high-level requirements ensure full implementation of the high-level requirements and to verify the architectural design decisions made during the software design process. In addition, traceability between source code and low-level requirements should be provided to enable verification of the absence of undocumented source code and verification of the complete implementation of the low-level requirements. Traceability from system requirements to high-level requirements to low-level requirements to code also helps identify derived requirements and ensure they are passed up to the system safety assessment process.

The following DO-178B objectives are directly related to traceability XE "traceability" :

· Objective 6 of Table A-3;

· Objective 6 of Table A-4;

· Objective 5 of Table A-5;

· Objectives 3 through 8 of Table A-7; and

· Objective 2 of Table A-8.

Other objectives within DO-178B are indirectly related to traceability XE "traceability" . The following nine issues specifically make it difficult to comply with DO-178B’s objectives. Each issues is discussed with recommended guidelines to address the issues.

4.11.1 Issue 1 – Tracing to functional requirements

Traceability of functional requirements through implementation may be lost or difficult with an object-oriented design or life cycle that supports OOT. A mismatch between function-oriented requirements and an object-oriented implementation may cause traceability XE "traceability" problems. For example, providing traceability from a code sequence to a specific requirement may be difficult. Tracing to a "logical view" may not be sufficient.

4.11.1.1 Guidelines

In UML, Use Cases XE "Use Cases" represent the functional requirements of the system. These functional requirements can be traced to the system level requirements that can be documented in text. After specifying the functional requirements of the system, the main classes that realize the Use Cases are created and traced to the Use Cases. Class diagrams represent the static architecture of the system. Class behavior can be specified using functions or Statecharts. Every function or an event consumption of each class should be traced to its Use Case (s) (functional requirements); furthermore, each object should be traced to its classes.

The diagram below shows the traceability XE "traceability" between instances of the classes to their subsystems or high level classes and then the high level classes to Use Cases XE "Use Cases" . Each class should have its own requirements that can be specified using Use Cases and Use Case descriptions. The functional requirements of the system should be specified as Use Cases and the quality of service requirements should be specified as constraints or in text.

[image: image9.wmf]Class Level

Use Case Level

Object Level

Figure 12.3‑1 Overview of Traceability to Use Cases XE "Use Cases"
4.11.2 Issue 2 - Class hierarchy and relations may complicate traceability XE "traceability"

Class hierarchies can become overly complex, which complicates traceability XE "traceability" . Generalization XE "Generalization" , weak aggregation, strong aggregation, association and composition are some of the relations that can be used to create the class diagrams.

4.11.2.1 Guidelines

The realization of a Use Case may be specified by a set of collaborations. The collaborations define how instances in the software interact to perform the sequences of the Use Case. Traceability should be done at the instance level. When someone creates an instance, they must know what that instance is traced to and where its requirements are coming from. The objects themselves must be traced to their classes. The class and all of its contents and relations should be traced to a higher-level class or to a Use Case. Since the high level classes are the realization of Use Cases XE "Use Cases" , which is the functional requirements of the software, the high level classes should be traced to the Use Cases that they utilize. The Use Case must be traced to a system level requirement or a higher-level Use Case. Not all of the UML diagrams must be traced; tracing all of the objects in the software should be sufficient. Only the diagrams and UML modeling elements that add some requirements or affect the generation of the executable should be traced. Class hierarchies and their relations need to be flattened and every class should have clear traceability XE "traceability" to its high level class, Use Case, or text requirements.

The following relations affect traceability XE "traceability" in the following ways:

· Association XE "Association" is the semantic relationship between two or more classes that specifies connections among their instances. In this case, there is no need to trace associations, since they only indicate that one class can talk to the other. Each class should have its own traceability XE "traceability" to its requirements.

· Aggregation XE "Aggregation" is a special form of association that specifies the whole-part relationship between the aggregate (whole) and a component (part). Aggregation will affect traceability XE "traceability" , because the instance of the aggregate (whole) will have to be traced to both the whole and the part requirements. The part will only have to be traced to its own requirements

· Generalization XE "Generalization" is the relationship between a more general element and a more specific element. The specific element is fully consistent with the more general element. An instance of the more specific element may be used where the more general element is allowed. Generalization will affect traceability XE "traceability" , because any instance of the specific element should be traced to its own requirements. Additionally, it should be traced to the requirements of the general element from which it is inherited.

4.11.3 Issue 3 - UML Notation may introduce traceability XE "traceability" ambiguity

When working with UML or OOT in general, the requirements, design, and implementation may have multiple views. Each view may add or show different information. Unfortunately, many of the UML tools do not currently provide a traceability XE "traceability" mechanism. Additionally, UML is a language that was written to provide the user with maximum flexibility, which in the safety-critical world might reduce controllability.

4.11.3.1 Guidelines

Each UML element (e.g., class, method, object, Use Case) should have traceability XE "traceability" , but not every diagram containing those elements needs to be traced. For example, an object model diagram may not need to be traced, but every object in the diagram should be traced to its own requirements. The developer should have a process that enforces the guidelines for traceability, some of the basic guidelines include:

· Every object in the software should be traced to its class.

· Every class in the software should be traced to its super class.

· Every function call or an event should be traced to its class.

· Each overridden or overloaded operation should be traced to some requirement(s) or Use Case (s).

· Every class or super class should be traced to the Use Case (s) that they realize.

4.11.4 Issue 4 - Change impact analysis may be difficult due to difficulty in tracing requirements to implementation

Traceability analysis is one aspect of performing change impact analysis. The object-oriented implementation may make this traceability XE "traceability" analysis more difficult, and therefore may make it difficult to manage software changes. Object oriented implementation may seem more difficult because of the additional capabilities provided by OO methodology. For example, would we trace our objects or our classes? How would someone trace an overwritten operation? How would they trace a virtual function?

4.11.4.1 Guidelines

When using OO design and implementation, it is recommended that the basic principles of OO technology be used and that each project develop standards for how OO will be used in their specific project. These standards should include how the UML elements should be traced (e.g., instances of classes are traced to Use Cases XE "Use Cases" and to their classes. Classes are traced to their super classes and Use Cases). An overridden operation should be traced as well as any implementation of virtual functions. Additionally, implementing the guidelines recommended for issues 1, 2, and 3 above should help with the traceability XE "traceability" and change impact analysis.

4.11.5 Issue 5 - Providing traceability XE "traceability" for dynamic binding/overriding

Establishing functional requirements coverage of a class is difficult to assess given dynamic binding and overriding. Specifically, it may be difficult to know if a class has been fully exercised.

4.11.5.1 Guidelines

Traceability must be performed to the concrete classes and all of their functions and events. This will provide traceability XE "traceability" to the implementation of any virtual functions or functions that have been overridden.

4.11.6 Issue 6 - Dead and deactivated code

The difference between dead and deactivated code is not always clear when using OOT. Without good traceability XE "traceability" , identifying dead versus deactivated code may be difficult or impossible.

4.11.6.1 Guidelines

If the OOT traceability XE "traceability" is done to the function or event (message) level, then it will be possible to identify dead code at the function level. This will not cover code within a function. OO concepts encourage building reusable classes. The idea of reuse means that classes are built with generic functional requirements that can be used in multiple systems. In this case, the reusable library may include some deactivated or dead code in a specific application. Traceability analysis should be performed on the reusable library in order to identify dead and deactivated code. Dead and deactivated code is further addressed in section 10 of this handbook.

4.11.7 Issue 7 – Many to many mapping of requirements to methods

The isolation of functions into classes results in a mapping of requirements to OOT models in which:

a) a given requirement may map to a number of functions spread over several classes, and

b) the same function, in a given class, may contribute to more than one requirement.

This issue applies to the mapping of requirements to methods at all levels of OO modeling (during both analysis and design).

4.11.7.1 Guidelines

Each function within an instance should be traced to its requirements. The function can have more than one requirement but it should not have more than one Use Case. In this case we may have one Use Case traced to many functions. Once this traceability XE "traceability" is done, each Use Case should have the references to all of the functions within the objects that implement that Use Case.

If it is necessary to trace one function to multiple Use Cases

 then Use Case relationships may be used to help eliminate redundancy and support traceability XE "traceability" .

4.11.8 Issue 8 – Iterative Development

Iterative development is often desired in OO implementation. Each iteration has its own requirements (normally a set of Use Cases XE "Use Cases"), design, implementation, and test. There is a risk of losing traceability XE "traceability" when using iterative development. This can be caused by adding or changing requirements, design, or implementations.

4.11.8.1 Guidelines

Iterative development is most effective when each iteration is complete. The iteration should have its own requirements, design, implementation, and test. Traceability for each iteration is recommended, and an impact analysis should be done on the current iteration whenever the requirements from the previous iterations are changed.

4.11.9 Issue 9 – Change management for reusable components

Reusability is one of the objectives of OO development, but reusable components may be hard to trace because they are designed to support multiple usages of the same component. Reusable components may also have functionality that may not be used in every application.

4.11.9.1 Guidelines

Traceability must be done for each application regardless of its usage of reusable components. When reusable components are used, the traceability XE "traceability" should show implementation and verification mapping for all requirements, or as a minimum, provide verification and justification for the unused functionality. See section 10 of this handbook for further guidelines on reuse.

4.12 References for Section 12

1. DO-248B, FAQ #71.

4.13 Placeholder for Traceability Example

An example of traceability XE "traceability" should be added (perhaps during or after the workshop).

References

To be consolidated from all section references after OOTiA XE "OOTiA" Workshop #2. This includes consistency in how material is referenced, e.g., underlining vs quotes for book titles.

Glossary

This glossary provides definitions for terms used in this handbook to discuss object-oriented technology issues. Many terms are taken directly from the glossary
 of RTCA/DO-178B XE "DO-178B" Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" [1]. Other terms are taken from references on object -oriented technology. References are noted, as appropriate, after each definition.
Abstract class XE "class" - A class that cannot be directly instantiated. Any class containing an abstract operation must itself be abstract. Contrast: concrete class XE "concrete class" . [2], [3]

Abstract operation - An operation that is declared but not implemented by an abstract class XE "class" . Abstract operations do not have associated methods (bodies) in the class that defines them, but must have an associated implementation in concrete subclasses. See: operation, method. [3], [4]

Access mechanism - The manner in which a software component is called upon to perform its intended function. This includes invocation mechanisms and data flow to and from the component. This is typically part of the interface control document. [5]

Actual parameter - See: argument

Algorithm - A finite set of well-defined rules that gives a sequence of operations for performing a specific task. [1]

Anomalous behavior - Behavior that is inconsistent with specified requirements. [1]

Applicant - A person or organization seeking approval from the certification authority. [1]

Approval - The act or instance of expressing a favorable opinion or giving formal or official sanction. [1]

Argument - A binding for a parameter that resolves to a run-time instance. Synonym: actual parameter. Contrast: parameter. [2]

Aspect-oriented programming - An approach used to encapsulate policies and strategies that cross cut the core functionality of a system. Such system or subsystem wide policies are referred to aspects. They include policies for error handling, synchronization, resource allocation, fault-tolerance, performance, software monitoring, distributed data access, and other potentially safety related issues. Aspect-oriented programming is generally viewed as complementary to object-oriented development. [3]

Association XE "Association" - The semantic relationship between two or more classifiers that specifies connections among their instances. Such connections may be represented as pointers or access types that reference other objects. They may also be computed rather than stored. [2], [3]

Assurance - The planned and systematic actions necessary to provide adequate confidence and evidence that a product or process satisfies given requirements. [1]

Attribute - A feature within a class XE "class" that describes a range of values those instances of the class may hold. Attributes are stored values or fields in Ada95, C++ XE "C++" and Java XE "Java" . [2], [3]
Audit - An independent examination of the software life cycle processes and their outputs to confirm required attributes. [1]

Baseline - The approved, recorded configuration of one or more configuration items, that thereafter serves as the basis for further development, and that is changed only through change control procedures. [1]

Certification - Legal recognition by the certification authority that a product, service, organization or person complies with the requirements. Such certification comprises the activity of technically checking the product, service, organization or person and the formal recognition of compliance with the applicable requirements by issue of a certificate, license, approval or other documents as required by national laws and procedures. In particular, certification of a product involves: (a) the process of assessing the design of a product to ensure that it complies with a set of standards applicable to that type of product so as to demonstrate an acceptable level of safety; (b) the process of assessing an individual product to ensure that it conforms with the certified type design; (c) the issuance of a certificate required by national laws to declare that compliance or conformity has been found with standards in accordance with items (a) or (b) above. [1]

Certification Authority - The organization or person responsible within the state or country concerned with the certification of compliance with the requirements.

Note:
A matter concerned with aircraft, engine or propeller type certification or with equipment approval would usually be addressed by the certification authority; matters concerned with continuing airworthiness might be addressed by what would be referred to as the airworthiness authority. [1]

Certification credit - Acceptance by the certification authority that a process, product, or demonstration satisfies a certification requirement. [1]

Change control - (1) The process of recording, evaluating, approving or disapproving and coordinating changes to configuration items after formal establishment of their configuration identification or to baselines after their establishment. (2) The systematic evaluation, coordination, approval or disapproval and implementation of approved changes in the configuration of a configuration item after formal establishment of its configuration identification or to baselines after their establishment.

Note: This term may be called configuration control in other industry standards. [1]

Checked type conversion - Types are checked if conversion from one type to the other includes a determination either by the compiler or at run time as to whether they are normally convertible.

Child - In a generalization relationship, the specialization of another element, the parent. See: subclass XE "subclass" , subtype. Contrast: parent. Child classes inherit from their parent classes. Similarly, subclasses inherit from their superclasses. [2], [3]

Class - Informally, any classifier. Formally, a description of a set of objects that share the same attributes, operations, methods, relationships, and semantics. A class XE "class" may use a set of interfaces to specify collections of operations it provides to its environment. [2], [3]

Class hierarchy XE "hierarchy" - A collection of classes connected by generalization relationships. The root of the hierarchy represents the most general of these classes. The leaves represent the most specific of these classes. Synonym: Inheritance hierarchy.

Classifier – The Unified Modeling Language XE "Unified Modeling Language" (UML XE "UML") defines the term classifier to include interfaces, classes, datatypes, and components. In the Aerospace Vehicle Systems Institute XE "Aerospace Vehicle Systems Institute" (AVSI XE "AVSI") guide (and elsewhere) the term class XE "class" is often used informally as a synonym for classifier. Formally, however, classes describe only objects, which have an identity and state, and not datatypes, interfaces, or components. [2], [3]

Client class XE "class" – a class that can reference the attributes of another class

Client operation – an operation accessible to classes other than the defining class XE "class" and its subclasses.

Code - The implementation of particular data or a particular computer program in a symbolic form, such as source code, object code or machine code. [1]

Code-sharing - The sharing of code by more than one class XE "class" or component, e.g. by means of implementation inheritance or delegation. See: implementation inheritance, delegation.

Note:
There are many ways to support the sharing of code. The risk is that inheritance can be misused to support only the sharing of code and data structure, without attempting to follow behavioral subtyping XE "subtyping" rules.
Commercial off-the-shelf (COTS) software - Commercially available applications sold by vendors through public catalog listings. COTS software is not intended to be customized or enhanced. Contract-negotiated software developed for a specific application is not COTS software. [1]

Compiler - Program that translates source code statements of a high level language, such as FORTRAN or Pascal, into object code. [1]

Component - (1) A self-contained part, combination of parts, sub-assemblies or units, which performs a distinct function of a system. (2) A physical, replaceable part of a system that packages implementation and provides the realization of a set of interfaces. [1], [2]

Concrete class XE "class" - A class that can be directly instantiated. A concrete class XE "concrete class" has no abstract operations. Contrast: abstract class. [2], [3]

Concrete operation - An operation that has an associated method in the context of a given class XE "class" . Contrast: abstract operation. [3]

Condition - A Boolean expression containing no Boolean operators. [1]

Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least once, every condition in a decision in the program has taken on all possible outcomes at least once, and every decision in the program has taken on all possible outcomes at least once. [1]

Configuration identification - (1) The process of designating the configuration items in a system and recording their characteristics. (2) The approved documentation that defines a configuration item. [1]

Configuration item - (1) One or more hardware or software components treated as a unit for configuration management purposes. (2) Software life cycle data treated as a unit for configuration management purposes. [1]

Configuration management - (1) The process of identifying and defining the configuration items of a system, controlling the release and change of these items throughout the software life cycle, recording and reporting the status of configuration items and change requests and verifying the completeness and correctness of configuration items. (2) A discipline applying technical and administrative direction and surveillance to: (a) identify and record the functional and physical characteristics of a configuration item, (b) control changes to those characteristics, and (c) record and report change control processing and implementation status. [1]

Configuration status accounting - The recording and reporting of the information necessary to manage a configuration effectively, including a listing of the approved configuration identification, the status of proposed changes to the configuration and the implementation status of approved changes. [1]

Constraint - A semantic condition or restriction. Constraints include preconditions, postconditions, and invariants. They may apply to a single class XE "class" of objects, to relationships between classes of objects, to states, or to use cases. [2]

Constructor - An operation that creates an object and/or initializes its state. Formally the constructor is responsible for establishing any class XE "class" invariant. [4]

Control coupling XE "coupling" - The manner or degree by which one software component influences the execution of another software component. [1]

Control coupling XE "coupling" analysis - Evaluation of the execution relationships and dependencies between software components and in component logic to ensure application execution is correctly designed and implemented.
Control flow analysis - (1) Analysis typically used in the identification and confirmation of control coupling XE "control coupling" . DO-178B XE "DO-178B" does not explicitly define this term or the related term control flow. However, it references both (on pages 21, 28, 52, 61, and 57). [1] (2) Analysis whose objectives are: to ensure the code is executed in the right sequence, to ensure the code is well structured, to locate any syntactically unreachable code, and to highlight parts of the code where termination needs to be considered, i.e. loops and recursion. Call tree analysis is cited as an example of one of many control flow analysis techniques, and is offered as a means of confirming that design rules for the partitioning of critical and non-critical code have been followed. [7]

Control program - A computer program designed to schedule and to supervise the execution of programs in a computer system; e.g., operating system, executive, run-time system. [1]

Conversion - See: type conversion.
CORBA - An industry wide standard for communication between distributed objects, independent of their location and target language. The CORBA standard is defined by the Object Management Group XE "Object Management Group" (OMG XE "OMG"). CORBA itself is an acronym for Common Object Request Broker Architecture. [3]

Coupling - A relationship between components or elements.

Coverage analysis - The process of determining the degree to which a proposed software verification process activity satisfies its objective. [1]

Credit - The compliance to one or more RTCA/DO-178B XE "DO-178B" objectives supported by RTCA/DO-178B software life cycle data. This compliance is used to show that the certification basis has been met and the equipment may receive a certificate. Three types of credit are referred to throughout AC 20-RSC:

(1)
Full credit – fully meets the RTCA/DO-178B XE "DO-178B" objective and requires no further activity by the user.

(2)
Partial credit – partially meets the RTCA/DO-178B XE "DO-178B" objective and requires additional activity by the user to complete compliance.

(3)
No credit – does not meet the RTCA/DO-178B XE "DO-178B" objective and must be completed by the user for compliance. [5]

Data abstraction XE "abstraction" - An abstraction denotes the essential characteristics of an object that distinguish it from all other kinds of objects, suppressing all non-essential details. In data abstraction the non-essential details deal with the underling data representation. [2], [4]

Database - A set of data, part or the whole of another set of data, consisting of at least one file that is sufficient for a given purpose or for a given data processing system. [1]

Data coupling XE "coupling" - The dependence of a software component on data not exclusively under the control of that software component. [1]

Data coupling XE "coupling" analysis - An evaluation of the data flow relationships and dependencies between software components to ensure they are correctly designed and implemented.

Data dictionary - The detailed description of data, parameters, variables, and constants used by the system. [1]

Data flow analysis - (1) Analysis typically used in the identification and confirmation of data coupling XE "data coupling" . DO-178B XE "DO-178B" does not explicitly define this term or the related term data flow. However, it references both (on pages 21, 28, 52, 61, and 57). [1] (2) Analysis whose objective is to show that there is no execution path in the software that would access a variable that has not been set a value. Data flow analysis uses the results of control flow analysis in conjunction with the read or write access to variables to perform the analysis. Data flow analysis can also detect other code anomalies such as multiple writes without intervening reads. [7]

Data type, Datatype - (1) A class XE "class" of data characterized by the members of the class and the operations that can be applied to them. Examples are character types and enumeration types. (2) A descriptor of a set of values that lack identity and whose operations do not have side effects. Datatypes include primitive pre-defined types and user-definable types. Pre-defined types include numbers, string and time.User-definable types include enumerations.
Note:
Instances of datatypes, unlike objects, do not have identity or state, but are immutable. As a result, operations on data types do not change the state of values they act upon, but compute new values based on existing ones. Some languages use the term immutable in combination with terms class XE "class" and object to denote a data type and its values. [1], [2]

Deactivated code - Executable object code (or data) which by design is either (a) not intended to be executed (code) or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or used (data) in certain configurations of the target computer environment, for example, code that is enabled by a hardware pin selection or software programmed options. [1]

Dead code - Executable object code (or data) which, as a result of a design error cannot be executed (code) or used (data) in a operational configuration of the target computer environment and is not traceable to a system or software requirement. An exception is embedded identifiers. [1]

Decision - A Boolean expression composed of conditions and zero or more Boolean operators. A decision without a Boolean operator is a condition. If a condition appears more than once in a decision, each occurrence is a distinct condition. [1]

Decision Coverage - Every point of entry and exit in the program has been invoked at least once and every decision in the program has taken on all possible outcomes at least once. [1]

Declared type - The type associated with a name (such as a variable, constant or parameter) at its point of declaration. The run-time type of any associated object must be a subtype of its declared type. [3]

Delegation - The implementation of an operation by means of a call to an equivalent operation on a component object (the delegate). Delegation can be used as an alternative to implementation inheritance. Contrast: inheritance. [3]

Derived high-level requirements - The highest level software requirements that the reusable software component (RSC) developer uses to design and implement his software. They are being called derived because they are not traceable to any higher level requirements by the RSC developer. They may be traceable by the integrator of the RSC to requirements of his system or software. Calling these requirements derived means they should be reviewed by the integrator’s systems group for safety implications. [5]

Derived requirements - Additional requirements resulting from the software development processes, which may not be directly traceable to higher level requirements. [1]

Derived type - A type derived for specialization from another type. The derived type is a specialization from the conceptual point of view and may be an expansion from the structural point of view. [6]

Design pattern XE "pattern" – A documented solution to a commonly encountered design problem. In general, a design pattern presents a problem, followed by a description of its solution in a given context and programming language. In this handbook, each pattern presents a problem addressed by a specific OO feature, followed by a description of acceptable use of the feature in the context of DO-178B XE "DO-178B" . [3]

Destructor - An operation that frees the state of an object and/or destroys the object itself. [4]

Dynamic binding - See: dynamic dispatch XE "dynamic dispatch" .

Dynamic classification - A semantic variation of generalization in which an object may change its classifier. Contrast: static classification. Using dynamic classification, the class XE "class" of an object may change during its life time. Using static classification, it may not. [2], [3]

Dynamic dispatch XE "Dynamic dispatch" - The association of a method with a call based on the run-time type of the target object. Dynamic dispatch is not related to dynamic linking XE "dynamic linking" or dynamic link libraries. Synonym: dynamic binding XE "dynamic binding" . [3]

Dynamic loading (of classes) - The loading of classes dynamically (at run time) when they are first referenced by an application. The desktop Java XE "Java" environment, for example, provides a class XE "class" loader capable of finding and loading a named class appearing in any of a prescribed list of locations, which may be either local or remote. In real-time systems, class loading is generally not supported or permitted.
Emulator - A device, computer program, or system that accepts the same inputs and produces the same output as a given system using the same object code. [1]

Equivalence class XE "class" - The partition of the input domain of a program such that a test of a representative value of the class is equivalent to a test of other values of the class. [1]

Error - With respect to software, a mistake in requirements, design or code. [1]

Executable Object Code - Consists of a form of Source/Object Code that is directly usable by the central processing unit of the target computer and is, therefore, the software that is loaded into the hardware or system. [1], page 54

Explicit type conversion - Conversion of a value from its type to a designated type by use of a conversion routine.

Failure - The inability of a system or system component to perform a required function within specified limits. A failure may be produced when a fault is encountered. [1]

Failure condition - The effect on the aircraft and its occupants both direct and consequential, caused or contributed to by one or more failures, considering relevant adverse operational and environmental conditions. A failure condition is classified according to the severity of its effect as defined in FAA AC 25.1309-1A or JAA AMJ 25.1309. [1]

Fault - A manifestation of an error in software. A fault, if it occurs, may cause a failure. [1]

Fault tolerance - The built-in capability of a system to provide continued correct execution in the presence of a limited number of hardware or software faults. [1]

Feature - An attribute or operation. [3]

Flattened class XE "class" - The flattened form XE "flattened form" of a class is a self contained module representing the composition of its elements with those inherited by it, taking into account the rules for inheritance associated with the language. Inherited elements appear in the flattened class if 1) they are defined by a superclass XE "superclass" and never overridden, or 2) if they are defined by a superclass and referenced by some other element that is not overridden. Some languages (e.g., Eiffel XE "Eiffel") allow you to print the flattened form of a class interface. This is useful to clients because it specifies the full client interface, eliminating the need to refer to superclass definitions. [8]

Flow analysis - A term encompassing both control flow analysis and data flow analysis. [3]

Formal methods - Descriptive notations and analytical methods used to construct, develop and reason about mathematical models of system behavior. [1]

Framework - A framework is a partially completed software application, which has a set of related classes that can be specialized and/or instantiated to implement the application. Since the UML XE "UML" is a formally defined language, some of the existing visual modeling XE "visual modeling" tools use existing frameworks XE "frameworks" to help the coder/developer generate complete applications from UML models.

Note:
Most applications contain about 70% of reused code, which is redeveloped every time we compose an application (i.e. task managers, memory managers, queues, and event managers).
Generalization XE "Generalization" - A taxonomic relationship between a more general element and a more specific element. The more specific element is fully consistent with the more general element and contains additional information. An instance of the more specific element may be used where the more general element is allowed. See: inheritance. [2]

Generic - An Ada XE "Ada" program unit that allows the same logical function on more than one type of data.

Hardware/software integration - The process of combining the software into the target computer. [1]

High-level requirements - Software requirements developed from analysis of system requirements, safety-related requirements, and system architecture. [1]

Host computer - The computer on which the software is developed. [1]

Immutable - Incapable of being changed. Immutable objects represent values whose state cannot be changed (e.g., the string literal “ABC” or the integer literal “4”). Immutable values, however, may be combined to produce new values. The string “ABC”, for example, may be concatenated with the string “DEF” to produce a new immutable string value “ABCDEF”.
Implementation - A definition of how something is constructed or computed. For example, a class XE "class" is an implementation of a type, a method is an implementation of an operation. [2]

Implementation inheritance - The inheritance of the implementation of a more specific element. Includes inheritance of the interface. Contrast: interface inheritance XE "interface inheritance" . Unlike interface inheritance, the inherited elements are more than specifications. They contribute to the executable object code. [2], [3]

Implicit type conversion - A type conversion generated by the compiler as the result of an association between variables of different types, resulting in a value being converted to an expected type based on context.

Independence - Separation of responsibilities which ensures the accomplishment of objective evaluation. (1) For software verification process activities, independence is achieved when the verification activity is performed by a person(s) other than the developer of the item being verified, and a tool(s) may be used to achieve an equivalence to the human verification activity. (2) For the software quality assurance process, independence also includes the authority to ensure corrective action. [1]

Inheritance - A mechanism by which more specific elements incorporate (inherit) the structure and behavior of more general elements. Inheritance can be used to support generalization, or misused to support only code sharing XE "code sharing" , without attempting to follow behavioral subtyping XE "subtyping" rules. See: generalization, Liskov substitution principle XE "Liskov substitution principle" . [2
Inheritance hierarchy XE "hierarchy" - See: class XE "class" hierarchy

Inherited element - An element of a class XE "class" inherited by its subclasses. In UML XE "UML" , inherited elements include operations, methods, associations and constraints involving classes.

Inline - A command used in Java XE "Java" , Ada XE "Ada" , and C++ XE "C++" to hint to the compiler that expansion of a method body within the code of a calling method is to be preferred to the usual call implementation. For all of these languages, the compiler can follow or ignore the recommendation to inline. [3]

Instance - An entity to which a set of operations can be applied and which has a state that stores the effects of the operations. See: object. [3]

Integral process - A process which assists the software development processes and other integral processes and, therefore, remains active throughout the software life cycle. The integral processes are the software verification process, the software quality assurance process, the software configuration management process, and the certification liaison process. [1]

Integrator - The manufacturer responsible for integrating the reusable software component into the target computer and system with other software components. [5]

Interface - A definition of the features accessible to clients of a class XE "class" . Interfaces are distinct from classes, which may also contain methods, associations and modifiable attributes.

Note:
The UML XE "UML" definition of interface differs slightly from that defined by Java XE "Java" in that Java interfaces may contain constant fields, while UML interfaces may contain only operations. [3]

Interface control document - Document used to identify the interface details of the reusable software component (RSC). The interface control document is provided by the RSC developer for use by the integrator and applicant. The interface control document should explicitly define what activities are required by the integrator and/or applicant to ensure that the RSC will function in accordance with its approval basis. [5]

Interface inheritance - The inheritance of the interface of a more specific element. Does not include inheritance of the implementation. Contrast: implementation inheritance. Unlike implementation inheritance, the inherited elements are only specifications. They are not contained in the executable object code. [2], [3]

Interrupt - A suspension of a task, such as the execution of a computer program, caused by an event external to that task, and performed in such a way that the task can be resumed. [1]

Invariant - A condition associated with a class XE "class" that is established when a new instance of the class is created and must be maintained by all its publicly accessible operations. As a result, the invariant is effectively a part of the precondition XE "precondition" and the postcondition XE "postcondition" of every such operation. It may be violated in the intermediate states that represent the execution of a given method so long as the operations of the object are properly synchronized and such violations are not externally observable. [3]

Liskov substitution principle XE "Liskov substitution principle" (LSP XE "LSP") - A set of subtyping XE "subtyping" rules that ensure that instances of a subclass XE "subclass" are substitutable for instances of all parent classes in every context in which they may appear. These rules go beyond the simple checking of signatures, taking into account the behavior of operations (as defined by their pre and post conditions) and the invariants defined by classes. Even if classes are not defined formally, the principle can be upheld by requiring the inheritance of test cases. [3]

Logically unrelated types - Types are logically unrelated when one does not define a set of operations that is a subset of the other.

Low-level requirements - Software requirements derived from high-level requirements, derived requirements XE "derived requirements" , and design constraints from which source code can be directly implemented without further information. [1]

Macro-expansion - Full expansion of the code generated by the compiler for each instantiation of a template.

Maintenance code - Code residing in a line replaceable unit (LRU) that interfaces with an onboard maintenance computer or computer used by maintenance personnel. The function of this code is usually to report to the maintenance computer any problems detected during normal operations; e.g., built-in-test (BIT) software, monitoring software, fault recording software. [5]

Means of compliance - The intended method(s) to be used by the applicant to satisfy the requirements stated in the certification basis for an aircraft or engine. Examples include statements, drawings, analyses, calculations, testing, simulation, inspection, and environmental qualification. Advisory material issued by the certification authority is used if appropriate. [1]

Media - Devices or material which act as a means of transferal or storage of software, for example, programmable read-only memory, magnetic tapes or discs, and paper. [1]

Memory device - An article of hardware capable of storing machine-readable computer programs and associated data. It may be an integrated circuit chip, a circuit card containing integrated circuit chips, a core memory, a disk, or a magnetic tape. [1]

Method - The implementation of an operation. A method specifies the algorithm or procedure associated with an operation. A method corresponds to a subprogram with a body in Ada95, to a function member with a body in C++ XE "C++" , and to a concrete method in Java XE "Java" . See: operation. [2], [3]

Modified Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least once, every condition in a decision in the program has taken all possible outcomes at least once, every decision in the program has taken all possible outcomes at least once, and each condition in a decision has been shown to independently affect that decision's outcome. A condition is shown to independently affect a decision's outcome by varying just that condition while holding fixed all other possible conditions. [1]

Monitoring - (1) [Safety] Functionality within a system which is designed to detect anomalous behavior of that system. (2) [Quality Assurance] The act of witnessing or inspecting selected instances of test, inspection, or other activity, or records of those activities, to assure that the activity is under control and that the reported results are representative of the expected results. Monitoring is usually associated with activities done over an extended period of time where 100% witnessing is considered impractical or unnecessary. Monitoring permits authentication that the claimed activity was performed as planned. [1]

Multimethod – A method invoked using multiple dispatch. Multimethods differ from ordinary methods in that the run-time classes of all parameters are considered when the most method to respond to a particular call.

Multiple dispatch - Dynamic dispatch XE "Dynamic dispatch" based on the run time types of all the arguments to a call, rather than only the run time type of the target object. Contrast: single dispatch. [3]

Multiple inheritance XE "Multiple inheritance" - A semantic variation of generalization in which a type (a class XE "class") may have more than one supertype (superclass XE "superclass"). Contrast: single inheritance XE "single inheritance" . [2]

Multiple-version dissimilar software - A set of two or more programs developed separately to satisfy the same functional requirements. Errors specific to one of the versions are detected by comparison of the multiple outputs. [1]

Object - An entity with a well-defined boundary and identity that encapsulates state and behavior. State is represented by attributes and relationships; behavior is represented by operations, methods, and state machines. An object is an instance of a class XE "class" . See: class, instance. [2]

Object Code - A low-level representation of the computer program not usually in a form directly usable by the target computer but in a form which includes relocation information in addition to the processor instruction information. [1]

Object Management Group XE "Object Management Group" (OMG XE "OMG") - A standards body for the object-oriented development community. The membership includes all major object-oriented tool vendors, many companies offering OO training and consulting services, many companies offering COTS software, and many end users of OO technology, including several of the members of AVSI XE "AVSI" . The OMG defines interface standards for distributed object communication (CORBA) and for OO modeling tools (UML XE "UML"). [3]

Object-oriented (OO) - (1) the use of classes to support encapsulation XE "encapsulation" , (2) the use of inheritance of interfaces to support subtyping XE "subtyping" , (3) the use of inheritance of implementation (state and code) to support subclassing, and (4) the use of dynamic dispatch XE "dynamic dispatch" (virtual method invocation) to support polymorphism XE "polymorphism" and the inheritance of code. [3]

Operation - A service that can be requested of an object. An operation has a signature, which may restrict the actual parameters that are possible. An operation corresponds to a subprogram declaration in Ada95, to a function member declaration in C++ XE "C++" , and to an abstract method declaration in Java XE "Java" . It does not define an associated implementation. See method. [2], [3]

Other memory usage XE "memory usage" analysis - related to the sharing of resources between different software ‘partitions’. These forms of analysis include, but are not limited to, memory (heap), I/O ports, and special purpose hardware, which perform specific computations or watch dog timer functions. [7 see p. 6, section 2.3.6]

Overloading XE "Overloading" – Use of the same name for different operators or behavioral features (operations or methods) visible within the same scope.

Overriding - The redefinition of an operation or method in a subclass XE "subclass" . [3]

Parameter - The specification of a variable that can be changed, passed, or returned. A parameter may include a name, type, and direction. Parameters are used for operations, messages, and events. [2]

Parent - In an inheritance relationship, the generalization of another element, producing the child. See: superclass XE "superclass" , supertype. Contrast: child, subclass XE "subclass" , subtype. Child classes inherit from their parent classes. Similarly, subclasses inherit from their superclasses. [2], [3]

Part number - A set of numbers, letters or other characters used to identify a configuration item. [1]

Patch - A modification to an object program, in which one or more of the planned steps of re-compiling, re-assembling or re-linking is bypassed. This does not include identifiers embedded in the software product, for example, part numbers and checksums. [1]

Pattern - A documented solution to a commonly encountered analysis or design problem. Each pattern XE "pattern" documents a single solution to the problem in a given context. Patterns are used in this handbook to document object-oriented solutions to common analysis and design problems in the context of DO-178B XE "DO-178B" . [3]

Polymorphism - A concept in type theory, according to which a name (such as a variable) may denote objects of many different classes that are related by some common superclass XE "superclass" ; thus, any object denoted by this name is able to respond to some common set of operations in different ways. [4]

Postcondition - A constraint that must be true at the completion of an operation. [2]

Precondition - A constraint that must be true when an operation is invoked. [2]

Process - A collection of activities performed in the software life cycle to produce a definable output or product. [1]

Process pattern XE "pattern" – A documented solution to a problem with the software development process. A process pattern presents the problem, followed by a description of its solution in a given context. In this handbook, the context is generally DO-178B XE "DO-178B" compliance. [3]

Product service history XE "service history" - A contiguous period of time during which the software is operated within a known environment, and during which successive failures are recorded. [1]

Proof of correctness - A logically sound argument that a program satisfies its requirements. [1]

Range checking - verification that data values lie within specified ranges and maintain a specified accuracy. Range checking includes, but is not limited to, overflow and underflow analysis, the detection of rounding errors, range checking, and the checking of array bounds. [7]
Relationship - A semantic connection among model elements. Examples of relationships include associations and generalizations. [2]

Release - The act of formally making available and authorizing the use of a retrievable configuration item. [1]

Repeated inheritance – The inheritance of an element via more than one path through the inheritance hierarchy XE "hierarchy" .

Requirements-Based Testing – (1) Testing performed using test cases and procedures developed to confirm that the software performs its intended function as specified by its requirements. Requirements-based testing includes both normal range test cases, and robustness (abnormal range) test cases. The test cases are to be developed from the software requirements and the errors sources inherent in the software development process. [1] (2) Testing performed with the objective of showing that the actual behavior of the program is in accordance with its requirements. Two common methods are cited for conducting requirements-based testing: equivalence class XE "class" testing, and boundary value testing. [7] The use of the term in this handbook is intended to encompass both definitions.
Requirements, Design, and Code Standards (R-D-C Standards) - Guidelines used to control, develop and review software requirements, design, and code. [1]

Reusable software component (RSC) - The software, its supporting RTCA/DO-178B XE "DO-178B" software life cycle data, and additional supporting documentation being considered for reuse. The component designated for reuse may be any collection of software, such as, libraries, operating systems, or specific system software functions. [5]

Reverse engineering - The method of extracting software design information from the source code. [1]

Robustness - The extent to which software can continue to operate correctly despite invalid inputs. [1]

Run-time type/class XE "class" - The type/class associated with an object at run-time, e.g. when the object is first created. In Ada95, this is the tag associated with objects of a tagged type. [3]

Scalar types - A type that defines a variable containing a single value at run time. A scalar type is either a discrete type or a real type. The values of a scalar type are ordered.
Signature - The name and parameter types of an operation or method. A signature may include an optional returned parameter type (depending upon the target language). [2]

Simple dispatch - A restricted form of single dispatch, in which (a) all calls other than method extensions are dispatching, and (b) dispatch is semantically equivalent to invocation of a dispatch routine containing a case statement. [3]

Simulator - A device, computer program or system used during software verification, that accepts the same inputs and produces the same output as a given system, using object code which is derived from the original object code. [1]

Single dispatch XE "Single dispatch" - Dynamic dispatch XE "Dynamic dispatch" based on only the run time type of the target object. Most OO languages, including Java XE "Java" , Ada95 and C++ XE "C++" are single dispatching. Contrast: multiple dispatch. [3]

Single inheritance XE "Single inheritance" - A semantic variation of generalization in which a type (a class XE "class") may have only one supertype (superclass XE "superclass"). Contrast: multiple inheritance XE "multiple inheritance" . [2]

Software - Computer programs and, possibly, associated documentation and data pertaining to the operation of a computer system. [1]

Software architecture - The structure of the software selected to implement the software requirements. [1]

Software change - A modification in source code, object code, executable object code, or its related documentation from its baseline. [1]

Software integration - The process of combining code components. [1]

Software Level - One of the software levels defined by DO-178B XE "DO-178B" , section 2.2.2. Software level is based upon the contribution of software to potential failure conditions as determined by the safety assessment process. [1]

Software library - A controlled repository containing a collection of software and related data and documents designed to aid in software development, use or modification. Examples include software development library, master library, production library, program library and software repository. [1]

Software life cycle - (1) An ordered collection of processes determined by an organization to be sufficient and adequate to produce a software product. (2) The period of time that begins with the decision to produce or modify a software product and ends when the product is retired from service. [1]

Software partitioning - The process of separating, usually with the express purpose of isolating one or more attributes of the software, to prevent specific interactions and cross-coupling XE "coupling" interference. [1]

Software product - The set of computer programs, and associated documentation and data, designated for delivery to a user. In the context of DO-178B XE "DO-178B" , this term refers to software intended for use in airborne applications and the associated software life cycle data. [1]

Software requirement - A description of what is to be produced by the software given the inputs and constraints. Software requirements include both high-level requirements and low-level requirements. [1]

Software tool - A computer program used to help develop, test, analyze, produce or modify another program or its documentation. Examples are an automated design tool, a compiler, test tools and modification tools. [1]

Source code - Code written in source languages, such as assembly language and/or high level language, in a machine-readable form for input to an assembler or a compiler. [1]

Stack usage analysis - A form of shared resource analysis that establishes the maximum possible size of the stack required by the system and whether there is sufficient physical memory to support this stack size. Some compilers use multiple stacks, and this form of analysis is required for each stack. Potential stack-heap allocation collisions, when these forms of storage compete for the same space, are also included. [7]

Standard - A rule XE "rule" or basis of comparison used to provide both guidance in and assessment of the performance of a given activity or the content of a specified data item. [1]

State - A condition or situation during the life of an object during which it satisfies some condition, performs some activity, or waits for some event. [2]

Statement coverage - Every statement in the program has been invoked at least once. [1]

Static analyzer - A software tool that helps to reveal certain properties of a program without executing the program. [1]

Static classification - A semantic variation of generalization in which an object may not change [its] classifier. Contrast: dynamic classification. Using dynamic classification, the class XE "class" of an object may change during its life time. Using static classification, it may not. [2], [3]

Strongly typed - A characteristic of a programming language, according to which all expressions are guaranteed to be type consistent. [4]

Strongly typed language - A strongly typed language associates a type with each data element (variable or expression), and ensures that only operations appropriate to that type are applied to the data element. Only meaningful conversions between logically related types are permitted. A subset of a language may be considered strongly typed, even if the full language is not.

Structural coverage - A software-program method of determining the adequacy of the extent of the verification accomplished in the composition/decomposition of the software program.

Structural coverage analysis - An analysis that (1) determines which software structures and code structures were not exercised by the requirements based test procedures; and (2) provides traceability XE "traceability" between the implementation of the software requirements in the code structure and the verification of those requirements via test cases. [1]

Structure - A specified arrangement or interrelation of parts to form a whole. [1]

Subclass - In a generalization relationship, the specialization of another class XE "class" ; the superclass XE "superclass" (parent). See: generalization, child. Contrast: superclass (parent).

Note: “subclass XE "subclass" ” and “child” are used interchangeably in object-oriented development. [2]

Subinterface - a subclass XE "subclass" /subtype that is an interface (defines no methods, associations or modifiable attributes). See: interface.

Subtype - In a generalization relationship, the specialization of another type; the supertype. See: generalization. Contrast: supertype. [2], [3]

Superclass - In a generalization relationship, the generalization of another class XE "class" ; the subclass XE "subclass" . See: generalization. Contrast: subclass.

Note: “superclass XE "superclass" ” and “parent” are used interchangeably in object-oriented development. [2]

Superinterface - a superclass XE "superclass" /supertype that is an interface (defines no methods, associations or modifiable attributes). See: interface.

Supertype - In a generalization relationship, the generalization of another type; the subtype. See: generalization. Contrast: subtype. [2]

System - A collection of hardware and software components organized to accomplish a specific function or set of functions. [1]

System architecture - The structure of the hardware and the software selected to implement the system requirements. [1]

System safety assessment - An ongoing, systematic, comprehensive evaluation of the proposed system to show that relevant safety-related requirements are satisfied. [1]

System safety assessment process - Those activities which demonstrate compliance with airworthiness requirements and associated guidance material, such as, JAA AMJ/FAA AC 25.1309. The major activities within this process include: functional hazard assessment, preliminary system safety assessment, and system safety assessment. The rigor of the activities will depend on the criticality, complexity, novelty, and relevant service experience of the system concerned. [1]

Target computer - The physical processor that will execute the program while airborne. [5]

Target computer environment - The target computer and all its support hardware and systems needed to function in its actual airborne environment. [5]

Target environment - See: target computer environment. [5]

Target object - The object that is the target of a method call [most often written targetObject.methodName (argumentList);]. Dynamic dispatch XE "Dynamic dispatch" typically involves selection of a method based on the declared types of the arguments and the run-time type of the target object. [3]

Task - The basic unit of work from the standpoint of a control program. [1]

Template - A parameterized model element with unbound (formal) parameters that must be bound to actual (type) parameters before it can be used. At a target language level, templates correspond to Ada XE "Ada" generics and to C++ XE "C++" templates. [3]

Template class XE "class" - A parameterized class. Template classes are implemented as generic packages in Ada XE "Ada" , and to template classes in C++ XE "C++" . Java XE "Java" does not currently support parameterized class definitions. [3]

Template operation - A parameterized operation or method. Template operations are referred to as generic subprograms in Ada XE "Ada" , and as template member functions in C++ XE "C++" . Java XE "Java" does not currently support parameterized class XE "class" definitions. [3]

Test case - A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. [1]

Testing - The process of exercising a system or system component to verify that it satisfies specified requirements and to detect errors. [1]

Test procedure - Detailed instructions for the set-up and execution of a given set of test cases, and instructions for the evaluation of results of executing the test cases. [1]

Timing analysis – A form of analysis to establish the temporal properties of the input/output dependencies. A common and important aspect of this analysis is the worst-case execution time for the correct behavior of the overall system. Certain languages offer features that make timing analysis XE "timing analysis" difficult, e.g., loops without static upper bounds and the manipulation of dynamic data structures. [7]

Tool qualification - The process necessary to obtain certification credit for a software tool within the context of a specific airborne system. [1]

Traceability XE "Traceability" - The evidence of an association between items, such as between process outputs, between an output and its originating process, or between a requirement and its implementation. [1]

Transition criteria - The minimum conditions, as defined by the software planning process, to be satisfied to enter a process. [1]

Type - The concepts of type and class XE "class" are in general distinguished, with a type representing an abstraction XE "abstraction" implemented by one or more classes. In most of the classical object-oriented programming languages this distinction is not performed. [6] In UML XE "UML" and languages such as Java XE "Java" , however, a distinction is made between interface types (abstractions) and class types, which implement them.

Type conversion - The act of producing a representation of some value of a target type from a representation of some value of a source type. Type conversion is used to resolve mismatched types in assignments, expressions, or when passing parameters. Type conversions may be either implicit or explicit. With implicit type conversion XE "implicit type conversion" the compiler is given the responsibility for determining that a conversion is required and how to perform the conversion. With explicit type conversion XE "explicit type conversion" the programmer assumes the responsibility.
Unchecked type conversion - Types are unchecked if conversion from one type to the other does not include a determination either at compiler time or run time as to whether they are normally convertible.
Unified Modeling Language XE "Unified Modeling Language" (UML XE "UML") - A language for specifying, visualizing, constructing, and documenting the artifacts of software systems, as well as for business modeling. The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems. [2]

Use case - The specification of a sequence of actions, including variants, that a system (or other entity) can perform, interacting with actors of the system. [2]

Validation - The process of determining that the requirements are the correct requirements and that they are complete. The system life cycle process may use software requirements and derived requirements XE "derived requirements" in system validation. [1]

Variables - Named memory locations that contain data that may change during software execution.

Verification - The evaluation of the results of a process to ensure correctness and consistency with respect to the inputs and standards provided to that process. [1]

Virtual - A C++ XE "C++" keyword that specifies a given method (member function) may be overridden in subclasses, and that calls to it are dispatching.

References for Glossary

1. Software Considerations in Airborne Systems and Equipment Certification XE "Software Considerations in Airborne Systems and Equipment Certification" , Document No. RTCA/DO-178B XE "DO-178B" , RTCA Inc., 1828 L Street, Northwest, Suite 805, Washington, DC 20036, December 1, 1992.

2. Object Management Group XE "Object Management Group" . OMG XE "OMG" Unified Modeling Language XE "Unified Modeling Language" Specification, version 1.3, June 1999, available from http://www.omg.org/cgi-bin/doc?ad/99-06-08/
3. AVSI XE "AVSI" . Guide to the Certification of Systems with Embedded Object-Oriented Software, version 1.5.

4. Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd edition, Benjamin/ Cummings, Redwood City, CA, 1994.

5. FAA AC 20-RSC, “GUIDELINES FOR APPROVING REUSED SOFTWARE LIFE CYCLE DATA”, draft 11, dated 10/18/01. ***revise name/date

6. Dictionary of Computer Science, Engineering, and Technology, Editor-in-Chief Phillip A. Laplante, CRC Press LLC, Boca Raton, Florida, 2001.

7. Guide for the Use of the Ada XE "Ada" Programming Language in High Integrity Systems, ISO/IEC PDTR 15942, July 1, 1999, see http://anubis.dkuug.dk/JTC1/SC22/WG9/documents.htm

8. Bertrand Meyer. Object-Oriented Software Construction, 2nd edition, Prentice-Hall, 1997.
Appendix A Examples

A.1 Single Inheritance XE "Single Inheritance"
A.1.1 Extension of Inheritance with Overriding and Single Dispatch Pattern

A.1.1.1 Intent

The following sections extend the definition of the Inheritance with Overriding and Single Dispatch Pattern to include:

· an avionics related example,

· a description of the general structure of the problem and the roles of the participants, and

· a mapping of the general guidelines it offers to language specific guidelines for Java XE "Java" , Ada95, and C++ XE "C++" .

A.1.1.2 Examples

Consider an avionics display system that defines a class XE "class" DisplayElement and its subclasses (Figure A.1-1).

A given display is composed by drawing its associated elements. In order to draw the pilot's attention to critical information, we highlight specific elements while hiding others. The specifics of drawing an element, hiding it and highlighting it vary according to the type of element. To allow variations on the display for specific customers and aircraft, and to minimize the impact of future changes, the overall application should deal with elements only abstractly (e.g., in terms of the kind of information they display and not how they display it).
The code to draw the display is then:

for each display element

call the draw method associated with its run time class XE "class"
end

The code to highlight a selected set of elements is then:

for each display element

call the highlight method associated with its run time class XE "class"
end

The code to declutter the display is then:

for each display element

compare the importance of the element to a cutoff value for the importance of elements to be displayed

if the element is not important enough

call the hide method associated with its run time class XE "class"
end

end
Figure A.1-1 Class Hierarchy

A.1.1.3 Structure

In general, a client method calls an operation associated with a target object. The client method may be associated with any object, including the target object itself. The run time class XE "class" of the target object is a concrete class XE "concrete class" which may have superclasses and subclasses. The method associated with the run time class of the object is determined at compile time using the simple guidelines for specialization and overriding.

Figure A.1-2 Class Relationships

Polymorphically the client method may view the target object at run time as an instance of its run time class XE "class" or, more abstractly, as an instance of any of its superclasses. In all circumstances, however, it is the method associated with the run time class of the target object that is executed when the operation is called.

A.1.1.4 Participants

The client method calls the target operation on the target object, which executes the method associated with it by the run time class XE "class" of the object.

A.1.1.5 Java XE "Java" guidelines

Java XE "Java" is a strongly typed language. It provides dynamic dispatch XE "dynamic dispatch" based on the target object of a method call. The dynamic loading of classes is supported but can be restricted (by eliminating the class XE "class" loader from the run time environment). Only single inheritance XE "single inheritance" of implementation is permitted. The run time type of an object is assigned at the point at which it is created and cannot be changed during the object’s life time.

The Simple overriding rule XE "rule" (Inheritance with Overriding and Single Dispatch Pattern) is enforced by the language if the overriding of concrete methods by abstract methods [7, p. 159, section 8.4.3] is disallowed, and if all explicitly thrown exceptions are checked exceptions (in the Java XE "Java" sense). When exception handling is not used, code reviews should be used to enforce the more general guideline that an overridden version of a method can only report either the same errors, or a more restricted set of errors than its parent version.

The use of the keyword super in a call expression can be used to violate the Simple dispatch rule XE "rule" . As a result, the use of the keyword super should only be permitted as a means of extending a superclass XE "superclass" method (in accordance with the Method Extension Pattern).

In accordance with the Initialization rule XE "rule" , the body of a constructor should not be permitted to call any operations on the object under construction except other constructors XE "constructors" or private operations.

The bounded and deterministic nature of dynamic dispatch XE "dynamic dispatch" must be demonstrated based on the actual implementation. Typically dispatch tables are constructed by a static linker, or by the Java XE "Java" Virtual Machine (JVM) or a Java processor as classes are pre-loaded. This makes dispatch times for invokevirtual [8] both small and fixed. The dispatch time for invokeinterface [8] potentially involves a search and may introduce a higher overhead. Dispatch times, however, should still be both bounded and deterministic. Invokeinterface can also be implemented using dispatch tables if the implementation takes advantage of the fact that new classes cannot be loaded dynamically, making it equivalent to invokevirtual.

A.1.1.6 Ada95 guidelines

Ada XE "Ada" is a strongly typed language. To introduce basic object-oriented features, Ada95 provides tagged types as an extension XE "extension" to the existing concept of a record. Class wide types provide a means to declare objects that may (polymorphically) hold any of a number of related tagged type values, or corresponding access type values. The Ada95 language requires primitive operations on a tagged type to appear in the same declaration list as the type declaration, and to have at least one parameter or a return type that is of the tagged type. Operations can also be provided that take a corresponding class XE "class" wide parameter. An Ada package that defines a single tagged type and primitive and class wide operations on that type corresponds to the concept of a class in C++ XE "C++" and Java XE "Java" [17, p. 169, section 6.2.1]
. The dynamic loading of classes is generally not supported, and only single inheritance XE "single inheritance" of either interface or implementation is permitted. For tagged types, the run time type (tag) of an object is assigned at the point at which it is created and cannot be changed during the object’s life time.

With regard to the Simple overriding rule XE "rule" (Inheritance with Overriding and Single Dispatch Pattern), code reviews should be used to enforce the rule that an overridden version of a method can only report either the same errors, or a more restricted set of errors than its parent version. The other restrictions are enforced by the language.

Tagged types provide the run-time type information (tag) required to make dispatching calls to primitive operations associated with a type. Dynamic dispatch XE "Dynamic dispatch" occurs when the argument corresponding to the tagged type parameter is of a class XE "class" wide type (polymorphic). With regard to the Simple dispatch rule XE "rule" , the risk is that an overridden operation might be called with an argument declared to be of a specific tagged type, when the argument itself has the run-time tag of some derived type
. This can occur because Ada95 permits view conversions between specific tagged types so long as this conversion is toward the root of the hierarchy XE "hierarchy" [12, pp. 278]. In such conversions the underlying object (and its tag) are not changed, only the program’s view of it [12, pp. 288]. The easiest way to enforce the Simple dispatch rule is to forbid view conversions between specific tagged types, ensuring that all arguments are either of a class wide type or of a specific tagged type with a matching tag. Conversions between a specific tagged type and a class wide type of an ancestor type, however, are still allowed.

In accordance with the Initialization rule XE "rule" , the body of a constructor should not be permitted to call any operations on the object under construction except other constructors XE "constructors" or private operations. Ada95 does not provide implicitly called constructors. By convention, however, we can provide initialization procedures that can be called explicitly.

Such an initialization procedure should call the parent type’s initialization procedure to initialize all inherited fields, then initialize the fields defined by the type extension XE "extension" . In accordance with the Method extension rule XE "rule" , this call to the parent initialization procedure should involve an explicit view conversion of the argument to the specific parent type, intentionally avoiding the use of dynamic dispatch XE "dynamic dispatch" . To help ensure the initialization procedure is called when an object is created, we can also provide a create function [17, p. 194] that allocates the object, calls the initialization procedure, and returns the initialized result.

The bounded and deterministic nature of dynamic dispatch XE "dynamic dispatch" must be demonstrated based on the actual implementation. Typically, however, dispatch tables are constructed by the compiler or linker, making dispatch times both small and fixed.

A.1.1.7 C++ XE "C++" guidelines

C++ XE "C++" is a strongly typed language if conversions between logically unrelated types are avoided. It supports single dispatch based on the target object of the method call. The dynamic loading of classes is generally not supported. The run time type of an object is assigned at the point at which it is created and cannot be changed during the object’s life time.

With regard to multiple inheritance XE "multiple inheritance" , code reviews should be used to ensure that only single inheritance XE "single inheritance" is permitted with respect to implementation.

With regard to the Simple overriding rule XE "rule" (Inheritance with Overriding and Single Dispatch Pattern), code reviews should be used to ensure that the overridden version of a method can only report either the same errors, or a more restricted set of errors than its parent version. Overriding methods should not declare default parameter values [18, p. 171]. All other restrictions are enforced by the language.

Dynamic dispatch XE "Dynamic dispatch" occurs in C++ XE "C++" when the called method is declared to be virtual and the target object is specified as a pointer or reference. With regard to the Simple dispatch rule XE "rule" , the risk is that an overridden operation might be called with respect to a target object whose declared type is a superclass XE "superclass" of its actual run-time type, and dynamic dispatch XE "dynamic dispatch" might not occur.

To avoid problems with the declaration of overridden methods, a subclass XE "subclass" should never be allowed to redefine an inherited non-virtual function [18, p. 169]. This requires all public and protected operations to be declared using the keyword “virtual” if subclasses are allowed to redefine them.

To avoid problems with the specification of the target object, all calls to virtual functions should involve a target object specified as a pointer or reference.

Since the normal rules for dynamic dispatch XE "dynamic dispatch" do not apply during the execution of constructors XE "constructors" and destructors XE "destructors" , calls to overridden methods during their execution should also be avoided.

Doing so is also consistent with the Initialization rule XE "rule" , which forbids calls to overridden methods during object construction.

The bounded and deterministic nature of dynamic dispatch XE "dynamic dispatch" must be demonstrated based on the actual implementation. Typically, however, dispatch tables are constructed by the compiler or linker, making dispatch times both small and fixed.

A.1.2 Extension of Method Extension Pattern XE "pattern"
A.1.2.1 Intent

The following sections extend the definition of the Method Extension Pattern to describe its implementation in Java XE "Java" , Ada95, and C++ XE "C++" .

A.1.2.2 Java XE "Java" guidelines

In Java XE "Java" , the implementation of this pattern XE "pattern" involves a call to the superclass XE "superclass" version of the same method using the keyword super. Only calls to the superclass version of the same method should be allowed.

A.1.2.3 Ada95 guidelines

In Ada95, the implementation of this pattern XE "pattern" involves a view conversion from the derived type to the parent (superclass XE "superclass") type and then a call to the parent operation that supports this implementation. This has the same effect as the use of the keyword super in Java XE "Java" . Only calls to superclass versions of the same method should be allowed.

A.1.2.4 C++ XE "C++" guidelines

In C++ XE "C++" , the implementation of this pattern XE "pattern" involves the use of qualification “::”. Only qualified calls to the immediate base class XE "class" version of the same member function should be allowed.

A.2 Multiple Inheritance XE "Multiple Inheritance"
A.2.1 Composition involving multiple inheritance XE "multiple inheritance"
The following cases illustrate the primary issues to be resolved with respect to composition involving multiple inheritance XE "multiple inheritance" . They are based on examples appearing in Meyer [9].

A.2.1.1 Case 1: Repeated inheritance

“As soon as multiple inheritance XE "multiple inheritance" is allowed into a language, it becomes possible for a class XE "class" (e.g. FrenchUSDriver) to inherit from two classes (e.g. FrenchDriver and USDriver), both of which are subclasses of the same class (e.g. Driver). This situation is called repeated inheritance.”[9, p. 543]. It is characterized by the diamond shape of the inheritance hierarchy XE "hierarchy" (Figure A.2).

Figure A.2 Repeated inheritance: sharing and replication, based on [9, p. 547]

The fundamental question with respect to repeated inheritance is whether inheritance of the same operation along more than one path should result in a single operation in the subinterface XE "subinterface" or in multiple operations.

Since we are dealing with this issue with respect to interfaces (and not implementation), we must view this question from the client’s perspective. In general, a client will be satisfied if all subinterfaces of a given interface inherit a definition of the expected operation. Since this is guaranteed (we will have at least one definition of the operation), clients will always be happy in this regard.

The remaining question is whether repeated inheritance should ever result in more than one definition of the operation in the subinterface XE "subinterface" . A case for this can be made by the example appearing in Figure A.2‑2. Each driver [of a motor vehicle] has an age, and a primary residence (and associated address). We are also interested in tracking the number of traffic violations committed by the driver, leading to a potential revocation of the person’s license. Subinterfaces of Driver represent French drivers and US drivers. Drivers who have licenses in both countries are categorized as both French and US drivers
.

In terms of this example, it is clear that there should be a single operation to get the driver’s age, which will be the same in both countries. Address and number of traffic violations, however, are potentially a different matter. The driver may have different addresses in each country and traffic violations committed in one country may not count against his/her driving record in the other. Similarly license fees may have to be paid at different times in each country and paying the fee in one country will not necessarily satisfy the other (although it may be possible to obtain an international driving license that can be used in both).

The need to be able to define both shared operations (such as getAge and passBirthday) and replicated operations (such as getAddress, getViolationCount and payFee) can be satisfied in a number of ways.

We could require that all replicated operations be specified redundantly. Doing so, we would require that FrenchDriver define the operation getFrenchAddress, while UsDriver defines an otherwise identical operation getUsAddress.

Alternately, the language could simply permit the renaming of those operations to be replicated in the subinterface XE "subinterface" and assume that repeated inheritance otherwise implies sharing. This is appealing because the situations in which replication is the right choice are relatively rare. In most cases (especially those involving interfaces), sharing is the desired result. As Meyer notes, “Cases of repeated inheritance similar to the transcontinental drivers (Figure A.2‑2), with duplicated operations as well as shared ones, do occur in practice, but not frequently.” The case involving only shared operations is far more common, especially with regard to interface inheritance XE "interface inheritance" . For this reason, it is most important that sharing be supported well at the language level, or in any patterns we prescribe. Additional work (or the use of work arounds) is probably acceptable in the less common case involving replication.

Sharing is also appropriate when we view multiple interface inheritance XE "interface inheritance" as a means of breaking up a large interface specification into smaller interface specifications (superinterfaces) intended for particular categories of clients. In Figure A.2‑3, for instance, we begin with the definition of a single large interface AvionicsDataServiceInterface. This interface is large because it contains the operations needed by all clients. This, unfortunately, makes it unwieldy for them all.

No particular type of client, however, may need the full set of operations. Rather clients of type Producer may need a given subset of the operations, while clients of type Consumer may need a different (but overlapping) subset, and so on. To simplify each client’s view, we define a separate interface containing only the operations that it needs (Figure A.2‑4). Because operations that appear in more than one of these client specific superinterfaces have the same source (AvionicsDataServiceInterface), it is clear that they are intended to represent the same operation. (The operation getDataChannel in the Producer interface is the same as the operation getDataChannel in the Consumer interface because both are taken from the definition of getDataChannel provided by AvionicsDataServiceInterface.) As a result, definitions of such operations should always be shared. This view is also consistent with the policies of Java XE "Java" and C++ XE "C++" .

[image: image10.emf]Driver

getAge() : int

getAddress() : String

getViolationCount()

passBirthday()

payFee()

<<Interface>>

FrenchDriver

<<Interface>>

USDriver

<<Interface>>

FrenchUSDriver

getFrenchAddress() : String

getUsAddress() : String

getFrenchViolationCount()

getUsViolationCount()

payFrenchFee()

payUsFee()

<<Interface>>

Figure A.2‑2 Shared and replicated operations

[image: image11.emf]AvionicsDataServiceInterface

init()

addDataChannel(name : String) : DataChannel...

deleteDataChaqnnel(name : String)

deleteDataChannel(channel : DataChannel)

getDataChannel(name : String) : DataChannel...

getAllProducerDataItems(channel : DataChannel)...

getAllConsumerDataItems(channel : DataChannel)...

assignBandwidth(channel : DataChannel, minBandwidth : double, maxBandwidth : double)...

advertise(name : String) : DataItem

subscribe(name : String) : DataItem

setProducerRole(channel : DataChannel, pushProducer : boolean)...

setConsumerRole(channel : DataChannel, pushConsumer : boolean)...

setDataValue(item : DataItem, validity : boolean, value : Object))...

setDefaultValue(item : DataItem, validity : boolean, value : Object))...

sendDefault(item : DataItem)

setRate(item : DataItem, rateInHertz : float)

setPriority(item : DataItem, priority : int)

getDataIValue(tem : DataItem, out validity : Validity, out value : Object))...

isStale(item : DataItem) : boolean

Figure A.2‑3 A Single large interface to an avionics data source
Figure A.2‑4 Separate interfaces for different types of clients

A.2.1.2 Case 2: Redefinition along separate paths

The ability to specialize the definition of an operation in a subinterface XE "subinterface" is fundamental to object-oriented development. The same operation, however, may be specialized (redefined) in different ways along different paths in the classification hierarchy XE "hierarchy" . The question then arises as to what the result should be when we inherit more than one definition/redefinition of the same operation in a given subinterface.

The answer hinges on whether sharing or replication is intended, and (if sharing is intended) whether the specializations are compatible.

A simple way to guarantee this result is to require the user to define a version of the operation in the subinterface XE "subinterface" that obeys the Simple overriding rule XE "rule" [Inheritance with Overriding Pattern] with respect to each of its parent interfaces. This leads us to the result in Figure A.2‑5.

Figure A.2‑5 Redefinition along separate paths, based on [9, p. 551]

In general, the combined operation has a precondition XE "precondition" that represents an or’ing of the preconditions of all inherited definitions of the operation, and a postcondition XE "postcondition" that represents an and’ing of all inherited postconditions. Type constraints on in parameters are considered part of the precondition. Type constraints on out parameters and the result, and any restrictions on errors reported/exceptions thrown are considered part of the postcondition.

These guidelines are simply intended to help the user write the correct signature for the combined operation. The target language compiler should catch all errors associated with the result of doing so, including errors resulting from attempts to combine conflicting definitions.

Adopting the simple view of interface inheritance XE "interface inheritance" as a factoring of a large interface into smaller ones targeted to specific categories of clients, we could instead forbid refinement of operations along separate paths. This is certainly consistent with the idea that all refinements of an operation be compatible (in this case they would have to be identical). However, forbidding refinement of operations may be less flexible than we would like in situations such as that given above, and would certainly be more restrictive than is required to type safe
.

Figure A.2‑6 Explicit definition of combined operation in subinterface XE "subinterface"
A.2.1.3 Case 3: Independently defined operations with same signature

A different situation arises when two parent interfaces independently define operations with the same signature. This is not repeated inheritance since we are not talking about inheriting the same operation via more than one path, but different operations, independently defined, that have the same signature. The key question is whether the matching of the signatures is intentional or accidental.

If the operations were completely and formally specified, we could compare preconditions and postconditions to see if the semantics are the same. If they are, then a single operation that does what they both promise to do should be sufficient in all cases.

Figure A.2‑7 Independently defined operations with same signature, based on [9, p. 550]

Alternately we could adopt the view that interface inheritance XE "interface inheritance" represents only a factoring of a large interface into smaller ones targeted to specific categories of clients. If we use interface inheritance in only this way, then it is clear that we intend the separately inherited operations to be the same (i.e. sharing is always the right answer). This view is also consistent with the policies of Java XE "Java" and C++ XE "C++" .

A.2.2 Extended patterns

A.2.2.1 Extension of the Multiple Interface Inheritance Pattern

A.2.2.1.1 Intent

The following sections extend the definition of the Multiple Interface Inheritance Pattern to include language specific guidelines for Java XE "Java" and C++ XE "C++" . In general, it is only necessary to enforce (e.g., by means of design and code inspections) those guidelines that the language does not enforce itself.

A.2.2.1.2 Java XE "Java" guidelines

In Java XE "Java" , a UML XE "UML" interface is represented by a Java interface defining only abstract methods and compile time constants. Constants whose value is computed at run-time should not be permitted, even when this value is computed once and never again changed.

The Java XE "Java" language enforces the Repeated interface inheritance XE "interface inheritance" rule XE "rule" . Where operations should be replicated rather than shared, they must be given distinct names.

Java XE "Java" implicitly combines redefined methods inherited along different paths, enforcing the subtyping XE "subtyping" guidelines with respect to method signatures and the use of checked exceptions. It also permits the explicit combination of redefined methods in the sub-interface as recommended by the Interface redefinition rule XE "rule" . Code reviews must be used to enforce this.

When more than one super-interface independently defines a method with the same signature, Java XE "Java" considers them to represent the same method. Code reviews must be used to ensure this is the real intent, i.e. that the matching of signatures is not simply accidental. As suggested in the main text of the Multiple Interface Inheritance pattern XE "pattern" , a comment annotation should be used to document this intent, ensuring it is properly maintained.

A.2.2.1.3 C++ XE "C++" guidelines

In C++ XE "C++" , a UML XE "UML" interface is represented by an abstract class XE "class" defining only pure virtual member functions and compile time constants. Constants whose value is computed at run-time should not be permitted, even when this value is computed once and never again changed.

In accordance with the repeated interface inheritance XE "interface inheritance" rule XE "rule" , all base classes of a C++ XE "C++" interface class XE "class" must be virtual base classes. Where operations should be replicated rather than shared, they must be given distinct names.

C++ XE "C++" implicitly combines redefined methods inherited along different paths, enforcing the subtyping XE "subtyping" guidelines with respect to method signatures. It also permits the explicit combination of redefined methods in the sub-interface as recommended by the Redefinition interface rule XE "rule" . Code reviews must be used to enforce this.

When more than one super-interface independently defines a method with the same signature, C++ XE "C++" considers them to represent the same method. Code reviews must be used to ensure this is the real intent, i.e. that the matching of signatures is not simply accidental. As suggested in the main text of the Multiple Interface Inheritance Pattern, a comment annotation should be used to document this intent, ensuring it is properly maintained.

A.2.2.2 Extension of the Multiple Implementation Inheritance Pattern

A.2.2.2.1 Intent

The following section extends the definition of the Multiple Implementation Inheritance Pattern to include language specific guidelines for C++ XE "C++" . In general, it is only necessary to enforce (e.g., by means of design and code inspections) those guidelines that the language does not enforce itself.

A.2.2.2.2 C++ XE "C++" guidelines

In accordance with the repeated Implementation inheritance rule XE "rule" , virtual inheritance should be used by default. Performance considerations should be taken into account only in response to a demonstrated need, and in accordance with the 80-20 rule (which suggests that some 20% of the code is executed 80% of the time).

Renaming [10, pp. 273..275] should always be used to distinguish inherited methods that are intended to be different in the subclass XE "subclass" . Otherwise, an overriding method should be defined in the subclass that either selects between the competing implementations or otherwise combines them
.

The overridden methods must be compatible with one another (in terms of their preconditions and postconditions) for their overriding by a single overriding subclass XE "subclass" method to be valid. This is true both when the competing implementations have a common definition in a superclass XE "superclass" (in accordance with the Implementation redefinition rule XE "rule") or when they do not (in accordance with the Independent implementation definition rule).
A.3 Dead and Deactivated Code, and Reuse XE "Dead and Deactivated Code, and Reuse"
A.3.1 Deactivated Code Examples

Section 10.3.2.2 references this example.

Figure A.3‑1 presents a class XE "class" (C_x) being used by a client (our system). In this diagram, the methods (M_x) are annotated with the attributes (A_x) and methods they access in italics, as is the client. From the point of view of the client, class (C_3), methods (M_3, M_4, M_6) and attributes (A_2, A_4) appear to be dead code XE "dead code" (i.e., not used by this system).

[image: image12.wmf]Client

M_1,

M_2,

M_5

C_1

A_1

A_2

M_1() --

A_1

M_2() --

A_1

M_3() --

A_2

M_4() --

A_2

C_2

A_3

M_5() --

A_3, M_1, M_2

C_3

A_4

M_6() --

A_4, M_3, M_4

Figure A.3‑1 Deactivated Code

A.3.2 Hierarchy Changes and Method Overriding

Subsection [10.3.3] references this example.

For an example of a subtle effect in object-oriented (OO) software, consider the classes, shown in Figure A.3‑2, displayed in both a normal and flattened hierarchy XE "hierarchy" . Here, class XE "class" C_1, which contains methods M_1() and M_2(). M_1() calls M_2(). Now consider a sub-class, C_2 that inherits C_1, but overrides M_2(). M_1() in class C_2 is effectively also overridden as it makes a call to a different M_2() than the M_1() in C_1. There are other situations where changes in the class hierarchy can be subtle and difficult to discover.

[image: image13.png]c1 c1
Al AT
W10 ~ calls M_20 M_10 - calls C_1 M_20
M_20 M_2()
c2 c2
3
M_2() M_1() - calls C_2.M 20
M_2()

Inheritance Hierarchy Flattened Inheritance Hierarchy

Figure A.3‑2 Method Overriding

Acronym List

The following acronyms are used in this Handbook:

	AC
	Advisory Circular

	AMJ
	Advisory Material Joint

	API
	Application Programming Interface

	AVSI XE "AVSI"
	Aerospace Vehicle Systems Institute XE "Aerospace Vehicle Systems Institute"

	BIT
	Built-in Test

	CAST XE "CAST"
	Certification Authorities Software Team

	CC
	Control Category

	CM
	Configuration Management

	CORBA
	Common Object Request Broker Architecture

	COTS
	Commercial-off-the-Shelf

	CRC
	Class-Responsibility Collaborator

	DER
	Designated Engineering Representative

	EUROCAE
	European Organization for Civil Aviation Equipment

	FAA
	Federal Aviation Administration

	IEEE XE "IEEE"
	Institute of Electrical and Electronics Engineers

	JAA
	Joint Aviation Authorities

	LRU
	Line Replaceable Unit

	LSP XE "LSP"
	Liskov Substitution Principle

	MC/DC XE "MC/DC"
	Modified Condition / Decision Coverage

	NASA
	National Aeronautics and Space Administration

	OB
	Object Behavior

	OMG XE "OMG"
	Object Management Group XE "Object Management Group"

	OO
	Object-Oriented

	OOA
	Object-Oriented Analysis

	OOD
	Object-Oriented Design

	OOP
	Object-Oriented Programming

	OOT XE "OOT"
	Object-Oriented Technology

	OOTiA XE "OOTiA"
	Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation"

	OOV/T
	Object-Oriented Verification/Test

	OR
	Object Relationship

	PDS
	Previously Developed Software

	PSAC
	Plan for Software Aspects of Certification

	R-D-C
	Requirements-Design-Code

	RSC
	Reusable Software Component

	RTCA
	RTCA, Inc.

	SSA
	System Safety Assessment XE "System Safety Assessment"

	UML XE "UML"
	Unified Modeling Language XE "Unified Modeling Language"

OOTiA XE "OOTiA" Workshops

A.4 Committee

	J. Chilenski
	Boeing Commercial Airplanes

	G. Daugherty
	Rockwell Collins, Inc.

	K. Hayhurst
	NASA Langley Research Center

	C. Kilgore
	FAA Technical Center (AAR-470)

	J. Knickerbocker
	Sunrise Certification & Consulting, Inc.

	J. Lewis
	FAA Headquarters (AIR-120)

	B. Lingberg
	FAA Headquarters (AIR-120)

	S. Obeid
	embeddedPlus Engineering

	B. Ocker
	FAA Chicago ACO (ACE-117C)

	T. Rhoads
	Goodrich

	L. Rierson
	FAA Chief Scientist (AIR-106N)

	W. Schultz
	Honeywell

	W. Struck
	FAA Transport Directorate (ANE-111)

	D. Wallace
	FAA Ft. Worth ACO (ASW-170)

A.5 Participants

	K. Achenbach
	Rolls-Royce Corporation

	M. Almesåker
	Saab AB Sweden

	J. Angermayer
	MITRE

	J. Auld
	NovAtel Inc.

	I. Baxter
	Semantic Designs

	A. Bell
	The Boeing Company

	D. Bernier
	Rockwell Collins

	B. Bianchi
	Ametek

	B. Bogdan
	Computer Science Corporation

	M. Brennan
	Applied Microsystems

	D. Brown
	Rolls-Royce plc

	V. Brown
	Honeywell, Inc.

	R. Butler
	NASA Langley Research Center

	B. Calloni
	Lockheed Martin Aeronautics Company

	R. Calloway
	NASA Langley Research Center

	S. Chappell
	Computer Science Corporation

	J. Chelini
	Verocel, Inc.

	J. Chilenski
	Boeing Commercial Airplanes

	M. Christie
	Universal Avionics Systems Corporation

	J. Coleman
	Hamilton Sundstrand

	O. Collins
	Raytheon - IATC

	M. Consiglio
	ICASE

	M. Cors
	Goodrich Avionics Systems

	J. Daly
	TRW (Aeronautical Systems)

	G. Daugherty
	Rockwell Collins, Inc.

	R. Deal
	Honeywell

	D. DeHoff
	Raytheon Technical Services Company

	M. DeWalt
	Certification Services, Inc.

	V. Dovydaitis
	Foliage Software Systems, Inc.

	P. Dunn
	Northrop Grumman Commercial Nav Systems

	G. Edmands
	The MITRE Corporation

	E. Edora
	Solers, Inc.

	C. Erwin
	FAA Wichita ACO (ACE-115)

	T. Ferrell
	FAA Consulting

	U. Ferrell
	FAA Consulting

	G. Finelli
	NASA Langley Research Center

	S. Fischer
	LITEF GmbH, Germany

	L. Framarini
	BAE Systems

	D. Geis
	Goodrich Avionics Systems

	G. Graessle
	Honeywell, Intl.

	S. Grainger
	Marinvent Corporation

	M. Gulick
	Solers, Inc.

	T. Hammer
	Honeywell

	K. Hayhurst
	NASA Langley Research Center

	M. Haynes
	Marinvent Corporation

	R. Hirt
	Raytheon Aircraft Company

	M. Holloway
	NASA Langley Research Center

	G. Horan
	FAA Engine Directorate (ANE-110)

	M. Isaacs
	FAA MMAC (AOS-240)

	D. Johnson
	Astronautics Corporation of America

	R. Johnson
	Bell Helicopter

	M. Jones
	NovAtel Inc.

	G. Kelly
	Honeywell

	C. Kilgore
	FAA Technical Center (AAR-421)

	J. Klein
	Lockheed Martin Air Traffic Management

	J. Knickerbocker
	Sunrise Certification & Consulting, Inc.

	J. Knight
	University of Virginia

	T. Lambregts
	FAA Chief Scientist (ANM-113N)

	P. Lawrence
	Boeing

	J. Lee
	Boeing

	Y. Lee
	Arizona State University

	S. Leichtnam
	Computer Science Corporation

	J. Lewis
	FAA Headquarters (AIR-120)

	B. Lingberg
	FAA Headquarters (AIR-120)

	J. Masalskis
	Boeing

	J. Mason
	Boeing

	G. Millican
	Honeywell

	J. Monagan
	Rockwell Collins

	J. Monfret
	BarcoView

	B. Moody
	USAF

	B. Newman
	Astronautics Corporation of America

	S. Obeid
	embeddedPlus Engineering

	B. Ocker
	FAA Chicago ACO (ACE-117C)

	A. Oswald
	MITRE/CAASD

	C. Paganoni
	SAIC

	M. Patel
	WPAFB

	G. Pavlin
	Brightline Avionics GmbH

	L. Peckham
	NASA Langley Research Center

	T. Petroski
	Boeing

	M. J. Peuser
	Honeywell

	C. Pohlman
	Lockheed Martin Aeronautics Company

	G. Putsche
	Boeing

	H. Quach
	Lockheed Martin Corporation

	R. Rader
	Lockheed Martin

	R. Randall
	Boeing Wichita Modification & Maintenance Center

	T. Reeve
	Patmos Engineering Services

	T. Rhoads
	Goodrich FUS

	W. Rieger
	Boeing

	L. Rierson
	FAA Chief Scientist (AIR-106N)

	K. Rigby
	BAE Systems

	B. Rivet
	Hamilton Sundstrand

	D. Robinson
	FAA Headquarters (AIR-130)

	C. Rosay
	JAA-CEAT

	T. Roth
	Honeywell International Inc.

	V. Santhanam
	Boeing Wichita Development & Modification Center

	T. Schavey
	Smiths Aerospace

	S. M. Schedra
	Wind River Systems, Inc.

	W. Schultz
	Honeywell International

	M.l Smith
	Ametek

	F. Sogandares
	MITRE/CAASD

	M. Sonnek
	Honeywell

	R. Souter
	FAA Wichita ACO (ACE-116W)

	C. Spitzer
	AvioniCon

	E. Startzman
	Boeing Wichita Development & Modification Center

	D. Stephens
	Boeing

	W. Struck
	FAA Transport Directorate (ANM-111)

	D. Sungenis
	Computer Science Corporation

	A. Theodore
	UNITECH

	H. Thomas
	Honeywell, Inc.

	M. Valentin
	Airbus France

	J. Leeuwen
	United Technologies - Sikorsky Aircraft

	D. Wallace
	FAA Ft. Worth ACO (ASW-170)

	D. Woodward
	BAE Systems

	P. Wright
	Boeing

Index of Terms

“Handbook for Object-Oriented Technology in Aviation (OOTiA): OOTiA Workshop Proceedings.”
1

abstraction
5, 47, 48, 65, 78, 108, 117

Ada
7, 71, 72, 74, 75, 78, 110, 111, 116, 118, 122

Ada 95
7

Aerospace Vehicle Systems Institute
54, 106, 136

Aggregation
101

Association
101, 105

AVSI
54, 57, 69, 106, 112, 117, 136

C#
7, 26, 54

C++
7, 8, 12, 16, 17, 22, 39, 53, 61, 70, 71, 72, 75, 78, 80, 82, 105, 111, 112, 113, 114, 116, 117, 119, 122, 123, 124, 126, 130, 131, 132, 133

call tree analysis
76

CAST
11, 13, 16, 136

class
5, 6, 7, 9, 10, 12, 13, 15, 17, 18, 19, 23, 24, 25, 26, 28, 29, 30, 31, 32, 36, 37, 38, 39, 42, 45, 46, 47, 48, 49, 50, 51, 54, 55, 61, 64, 65, 66, 67, 68, 71, 72, 80, 85, 86, 87, 88, 92, 93, 94, 95, 96, 97, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 119, 120, 121, 122, 124, 125, 132, 134

code sharing
22, 72, 73, 111

concrete class
105, 107, 120

concurrency
5, 9

constructors
12, 15, 17, 24, 25, 46, 80, 85, 87, 91, 121, 122, 123

control coupling
14, 46, 71, 72, 73, 76, 90, 107

coupling
12, 24, 48, 73, 76, 107, 108, 115

control coupling
12

data coupling
12

data and control coupling
12, 56, 73, 75

data coupling
14, 46, 47, 71, 73, 76, 79, 87, 90, 108

data set/use analysis
76

deactivated code
3, 4, 12, 14, 15, 71, 72, 85, 86, 87, 88, 89, 90

Dead and Deactivated Code, and Reuse
3, 15, 85, 134

dead code
12, 15, 85, 86, 87, 90, 134

derived requirements
39, 42, 72, 86, 87, 89, 111, 117

destructors
12, 15, 17, 26, 85, 87, 91, 123

DO-178B
1, 2, 3, 4, 9, 11, 12, 14, 15, 16, 18, 19, 26, 29, 32, 33, 34, 37, 40, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 59, 62, 64, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 97, 98, 105, 107, 108, 109, 113, 114, 115, 117

dynamic binding
8, 12, 17, 93, 109

dynamic dispatch
3, 8, 13, 15, 17, 18, 19, 20, 22, 23, 24, 25, 28, 30, 36, 43, 45, 46, 54, 57, 61, 90, 95, 96, 97, 109, 113, 121, 122, 123

Dynamic dispatch
8, 18, 23, 27, 30, 35, 37, 40, 41, 44, 49, 109, 112, 114, 116, 122, 123

Dynamic Dispatch
3, 13, 17, 70, 89, 95, 97

dynamic linking
8, 18, 109

Eiffel
17, 24, 39, 40, 54, 110

encapsulation
5, 7, 9, 12, 75, 113

explicit type conversion
78, 117

extension
7, 13, 19, 23, 24, 45, 46, 54, 55, 122

flattened form
26, 36, 88, 93, 110

frameworks
15, 85, 90, 91, 110

Generalization
101, 110

hierarchy
5, 6, 15, 17, 19, 49, 55, 58, 61, 64, 65, 67, 68, 88, 93, 96, 106, 111, 113, 122, 125, 129, 134

IEEE
5, 16, 53, 136

implementation inheritance
54

implicit conversion
80, 83

implicit conversions
80

implicit type conversion
14, 78, 117

information hiding
5, 6, 12

Inheritance
1

Inheritance with Overriding Pattern
19

Inline
See inlining

inlining
2, 3, 4, 14, 47, 75, 76

Inlining
1, 3, 14, 75

Institute of Electrical and Electronics Engineers
5

instrumented
38, 39

interface inheritance
13, 49, 54, 55, 57, 58, 59, 110, 126, 130, 131, 132

Java
7, 8, 17, 39, 53, 54, 75, 78, 105, 109, 111, 112, 113, 114, 116, 117, 119, 121, 122, 123, 126, 130, 131

Liskov substitution principle
8, 21, 111

LSP
8, 9, 10, 18, 20, 21, 22, 23, 24, 25, 27, 29, 30, 33, 34, 35, 36, 38, 39, 40, 42, 43, 45, 50, 51, 52, 111, 136

macro-expansion
72

MC/DC
11, 20, 27, 35, 37, 40, 41, 44, 136

memory usage
14, 71, 76, 113

modularity
5, 6

most-specific applicable method
30, 31

MultiJava
31, 53

Multiple dispatch
8

multiple inheritance
3, 6, 11, 12, 13, 17, 49, 54, 56, 61, 63, 65, 67, 87, 114, 123, 125

Multiple inheritance
6, 13, 54, 55, 63, 112

Multiple Inheritance
3, 13, 52, 54, 57, 63, 64, 125

Object code coverage
See object code coverage

Object Management Group
5, 16, 52, 70, 107, 112, 117, 136

object-oriented technology
1

Object-Oriented Technology in Aviation
1, 2, 52, 53, 70, 84, 137, 145

OMG
5, 16, 52, 70, 107, 112, 117, 136

OOT
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 71, 75, 85, 86, 88, 90, 137

OOTiA
1, 2, 3, 13, 15, 52, 53, 81, 84, 89, 93, 95, 98, 104, 137, 138, 145

option-selectable
86, 87

Overloading
1, 3, 14, 15, 27, 29, 33, 53, 81, 82, 83, 113

pattern
4, 18, 19, 20, 21, 24, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 65, 66, 67, 109, 113, 123, 124, 131

persistence
5

pitfalls
9

polymorphism
5, 6, 7, 11, 12, 14, 15, 18, 20, 25, 26, 82, 90, 113

postcondition
8, 17, 18, 26, 34, 39, 45, 46, 48, 50, 51, 111, 129

precondition
8, 17, 18, 25, 26, 34, 39, 45, 48, 50, 51, 111, 129

Reuse, Dead Code, and Deactivated Code
1

rule
4, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 86, 87, 88, 89, 115, 121, 122, 123, 129, 131, 132, 133

run-time class
13, 18, 26

service history
88, 89, 113

Single dispatch
8, 114

single inheritance
6, 13, 17, 18, 19, 54, 57, 61, 112, 121, 122, 123

Single inheritance
13, 17, 54, 114

Single Inheritance
3, 13, 17, 23, 70, 89, 119

Smalltalk
7

software change impact analysis
88

Software Considerations in Airborne Systems and Equipment Certification
1, 2, 16, 52, 69, 84, 89, 98, 105, 117

spaghetti inheritance
49, 56, 67

stack usage
14, 75, 76

structural coverage
11, 13, 14, 20, 27, 35, 36, 37, 39, 40, 41, 43, 44, 48, 59, 60, 68, 69, 71, 72, 75, 78, 82, 83, 87, 90, 92, 93, 94, 95, 96, 97, 98

subclass
8, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 45, 46, 47, 48, 51, 55, 57, 61, 66, 88, 106, 111, 113, 115, 116, 123, 133

subinterface
58, 125, 126, 129, 130

subtyping
8, 9, 10, 17, 18, 22, 28, 30, 33, 34, 50, 54, 58, 106, 111, 113, 131, 132

superclass
6, 8, 12, 13, 17, 18, 20, 21, 24, 25, 26, 34, 36, 37, 38, 39, 42, 45, 46, 47, 48, 54, 57, 61, 64, 65, 66, 110, 112, 113, 114, 115, 116, 121, 123, 133

supertyping
28, 30

System Safety Assessment
86, 137

Templates
1, 3, 14, 71, 72

timing analysis
13, 14, 25, 71, 76, 78, 116

Tools
1, 3, 8, 15, 53, 70, 74, 87, 90, 91, 92, 98

traceability
3, 4, 11, 13, 14, 15, 20, 25, 27, 50, 51, 56, 59, 60, 62, 63, 66, 68, 69, 71, 72, 75, 76, 78, 83, 86, 87, 90, 92, 99, 100, 101, 102, 103, 115

Traceability
1, 11, 15, 87, 90, 99, 117

Type Conversion
1, 3, 14, 78, 84

typing
5, 6, 71, 78

UML
5, 8, 17, 25, 34, 90, 91, 92, 106, 110, 111, 112, 117, 131, 132, 137

Unified Modeling Language
5, 16, 17, 52, 70, 106, 117, 137

uninstrumented
38, 39, 40, 41

Use Cases
99, 100, 101, 102, 103

visual modeling
91, 110

visual models
90, 91. See visual modeling

Feedback Form

[image: image14.wmf]
U.S. Department

of Transportation

Federal Aviation

Administration
Handbook Feedback Information

Please submit any written comments or recommendations for improving this handbook. You may also

suggest new items or subjects to be added. And, if you find an error, please tell us about it.

Subject:
Handbook for Object-Oriented Technology in Aviation XE "Object-Oriented Technology in Aviation" (OOTiA XE "OOTiA")

To: Handbook POC,
FAA/AIR-120

(Please check all appropriate line items)

(An error (procedural or typographical) has been noted in paragraph _______ on

 page _______ .

(Recommend paragraph _______ on page _______ be changed as follows:

 (attach separate sheet if necessary)
(In a future change to this handbook, please include coverage on the following subject

 (briefly describe what you want added):
(Other comments:

(I would like to discuss the above. Please contact me.

Submitted by: __ Date: _________________

Phone: ____________________ Address: __

Email: ____________________ Routing Symbol (if applicable): ______________________

Handbook for Object-Oriented Technology in Aviation (OOTiA)

OOTiA Workshop Proceedings

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

Visual Model

(i.e. UML)

 Source code

Object code

Executable

Compiler

Auto code generator

Linker

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� Patterns are applicable to software level D if high-level requirements call for runtime substitutability of subclasses.

� When the language itself does not allow the user to make the intent to override an inherited operation/method explicit.

� Rule applies to Level D only if the high level requirements call for the assignment of different subclass� XE "subclass" � instances to a variable of a parent type at run time, e.g. as part of a run time reconfiguration of the system, or in the body of a method that is passed values of an argument whose run time class� XE "class" � may vary.

� Rule applies to Level D only if the high-level requirements call for the assignment of different subclass� XE "subclass" � instances to a variable of a parent type at run-time, e.g. as part of a run-time reconfiguration of the system, or in the body of a method that is passed values of an argument whose run time class� XE "class" � may vary.

� Rule applies to Level D only if the high level requirements call for the assignment of different subclass� XE "subclass" � instances to a variable of a parent type at run time, e.g. as part of a run time reconfiguration of the system, or in the body of a method that is passed values of an argument whose run time class� XE "class" � may vary.

� Weakening the precondition� XE "precondition" � makes it valid to call an operation with additional inputs or input combinations. Consider the operation f(p: Integer) pre p (0. If we weaken the precondition to give us f(p: Integer) pre p (0., then the implementation must handle the additional case in which p is zero.

� The glossary definition from RTCA/DO-178B� XE "DO-178B" � are used with permission of the RTCA.

� Although, unlike C++� XE "C++" � and Java� XE "Java" �, we cannot control the visibility of individual attributes (record fields). This, however, is of little consequence if all data is hidden, as in normal practice. The Ada95 tagged type can be designated as private to ensure this.

� This would not be a problem if the argument were declared to be of a class� XE "class" � wide type because dynamic dispatch� XE "dynamic dispatch" � would then occur.

� Bertrand Meyer, whose wife is French, is a case in point.

� With respect to the languages of primary interest, the ways in which operations may be refined are limited (C++� XE "C++" � permits the return type to be made more specific, Java� XE "Java" � permits the elimination of exceptions from the exception list). The ability to make the return type more specific, however, has been shown to have a large effect upon the number of run time casts required � REF _Ref7941021 \r \h ��0�].

� This explicit form of selection is preferred even though C++� XE "C++" � provides for implicit selection in some cases in accordance with its own dominance rule� XE "rule" � � REF _Ref7941021 \r \h ��0�, p. 263].

PAGE

_1094380093.vsd

_1094380593.vsd

_1094381553.vsd

_1108228072.ppt

Class Level�

Use Case Level�

Object Level�

Class Level

Use Case Level

Object Level

_1094380135.vsd

_1075372088.vsd

_1094373847.vsd

_1094374251.vsd

_1081695234.doc

Plane

passenger_count() : int

Asset

purchase_price() : float

CompanyPlane

_1077096294.doc

DisplayElement

importance : int

xOrigin : CoordinateValue

yOrigin : CoordinateValue

draw()

highlight()

hide()

NonTextualElement

highlight()

PrimitiveNonTextualElement

draw()

highlight()

AltitudeTape

width : GraphicsDistance

height : GraphicsDistance

colorScheme : ColorScheme

displayedValue : Altitude

draw()

getDisplayedValue() : Altitude

setDisplayedValue(altitude : Altitude)

AirspeedTape

width : GraphicsDistance

height : GraphicsDistance

colorScheme : ColorScheme

displayedValue : Airspeed

draw()

getDisplayedValue() : Airspeed

setDisplayedValue(airspeed : Airspeed)

Compass

radius : GraphicsDistance

colorScheme : ColorScheme

displayedValue : Heading

draw()

getDisplayedValue() : Heading

setDisplayedValue(heading : Heading)

TextualElement

width : GraphicsDistance

height : GraphicsDistance

displayedValue : String

draw()

highlight()

getDisplayedValue() : String

setDisplayedValue(string : String)

Client

_995640760.ppt

Identify user

requirements

(use cases)

Identify classes

(attributes &

operations) (CRC)

Specify class

hierarchy

(CRC)

Identify object-

to-object

relationships (OR)

Model object

 behavior (OB)

Reapply as needed

_1003152106

_1018796227.doc

clientMethod

TargetClass

targetObject

1

0..*

1

-runTimeClass

0..*

SuperClass

SubClass

methodInTargetClass

1

1

methodInSuperClass

1

1

methodInSubclass

1

1

targetOperation

calls

1

1

1

+specification

1

1

+specification

1

+specification

executes

_995639679.ppt

Class Name

Attributes:

Operations:

