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The authors present an authentication system that applies machine 
learning techniques to observe a user’s cognitive typing rhythm.  
Results from a large-scale experiment at Iowa State University show  
the system’s effectiveness.

C
onventional authentication systems 
verify a user only during initial login. 
Active authentication performs verifi-
cation continuously as long as the ses-

sion remains active. This work focuses on using 
behavioral biometrics, extracted from keystroke 
dynamics, as “something a user is” for active au-
thentication. This scheme performs continual 
verification in the background, requires no addi-
tional hardware devices, and is invisible to users.

Keystroke Dynamics
Keystroke dynamics—the detailed timing infor-
mation of keystrokes when using a keyboard—
has been studied for the past three decades. The 
typical keystroke interval time, referred to as a 

digraph, is expressed as the time between typing 
two characters. A user’s keystroke rhythms are 
distinct enough from person to person for use 
as biometrics to identify people. However, key-
stroke rhythm has generally been considered less 
reliable than physical biometrics, such as fin-
gerprints. The main challenge is the presence of 
within-user variability.

Owing to this within-user variability of interval 
times among identical keystrokes, most research 
efforts have focused on verification techniques 
that can manage such variability. For example, 
researchers proposed a method called degree of 
disorder to cope with time variation issues,1,2 ar-
guing that although the keystroke typing dura-
tions usually vary between each digraph, the 
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order of the timing tends to be consistent. This 
suggested that the distance of the order between 
two keystroke patterns can be used to measure 
the similarity. 

A recent survey on biometric authentication 
using keystroke dynamics classified research 
papers on the basis of their feature-extraction 
methods, feature-subset-selection methods, and 
classification methods.3 Most of the systems 
described in the survey were based on typing 
rhythms for short sample texts, which are domi-
nated by users’ physical characteristics (such 
as how fast your fingers can move) and are too 
brief to capture a “cognitive fingerprint.” In the 
current keystroke-authentication commercial 
market, some products combine the timing in-
formation of the password with password-based 
access control to generate a hardened password.4

Here, we present a biometric-based active au-
thentication system that continuously moni-
tors and analyzes various keyboard behaviors 
performed by the user. We extract the features 
from keystroke dynamics that contain cognitive 
factors, resulting in cognitive fingerprints. Each 
feature is a sequence of digraphs from a specif-
ic word. This method is driven by our hypoth-
esis that a cognitive factor can affect the typing 
rhythm of a specific word. Cognitive factors have 
been largely ignored in previous keystroke dy-
namics studies.

Searching for Cognitive Fingerprints
Physical biometrics rely on physical characteris-
tics, such as fingerprints or retinal patterns. The 
behavioral biometric of keystroke dynamics must 
incorporate cognitive fingerprints to advance the 

field, but the cognitive fingerprint doesn’t have 
a specific definition. We hypothesize that natu-
ral pauses (delays between typing characters in 
words) are caused by cognitive factors (for exam-
ple, spelling an unfamiliar word or pausing after 
certain syllables),5–9 which are unique among in-
dividuals. Thus, a cognitive factor can affect the 
typing rhythm of a specific word.

In this research, each feature is represented by 
a unique cognitive typing rhythm (CTR), which 
contains the sequence of digraphs from a spe-
cific word. Such features include natural pauses 
among the CTR’s timing information (digraphs, 
for example) and could be used as a cognitive fin-
gerprint. Conventional keystroke dynamics don’t 
distinguish timing information for different 
words and only consider a collection of digraphs 
(such as trigraphs or n-graphs). Cognitive factors 
have been ignored.

Figure 1a shows a collection of digraphs ob-
served for one user. It might seem as if the collec-
tion of digraphs represents a part of a keystroke 
rhythm, but in reality, the digraphs are clustered 
around different words. For example, we can sep-
arate the collection of digraphs “re” according to 
four different words (really, were, parents, and store). 
This shows that examining digraphs in isolation 
might result in missing some important informa-
tion related to specific words. Figure 1b shows 
two users who both typed the word “really” sev-
eral times, illustrating the typing rhythm for each.

This observation confirms our hypothesis: a 
cognitive factor can affect the typing rhythm of a 
specific word. Thus, we extract CTRs from key-
stroke dynamics and use them as features (cogni-
tive fingerprints) for active authentication. Each 

Figure 1. A cognitive factor can affect the typing rhythm of a specific word: (a) the digraph “re” 
from the same user and (b) two users typing the same word, “really.”
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feature is a sequence of digraphs of a specific 
word (instead of a collection of digraphs). For 
each legitimate user, we collect samples of each 
feature and build a classifier for that feature dur-
ing the machine-learning training phase.

Building an Authentication System
We developed two authentication systems based 
on two different machine-learning techniques. 
The first one uses an off-the-shelf support vector 
machine (SVM) library,10 and the second one em-
ploys a library developed in-house, based on kernel 
ridge regression (KRR).11 We used these libraries 
to build each classifier during the training phase.

Although we can’t know the patterns of all 
imposters, we use patterns from the legitimate 
user and some known imposters to build each 
classifier so it can detect a potential imposter. In 
machine learning, this is known as a two-class 
(legitimate user vs. imposters) classification ap-
proach. We built a trained profile with multiple 
classifiers for each legitimate user. Then, during 
the testing phase (authentication), we gave a set of 
testing data to the trained profile for verification. 
Each classifier under testing yielded a matching 
score between the testing dataset and trained file. 
The final decision (accept or reject) was based on 
the sum of scores from all classifiers.

The two systems had different basic machine-
learning libraries (SVM and KRR) but shared the 
same feature selection and fusion method. Using 
the fusion method, we evaluated each classifier 

to determine the confidence level of its decision. 
We conducted this evaluation during the training 
phase using datasets from each legitimate user 
and from imposters (see Figure 2). We separated 
the dataset into k equal-sized subsets. Each time, 
we used k – 1 subsets as training data, and we 
used the remaining subset for testing. We repeat-
ed the testing k times, until each subset had been 
used to test the model. This technique is called 
k-fold cross-validation (or rotation estimation).

The test results let us estimate the probabilities 
of the classifier’s true acceptance (Pta) and false 
acceptance (Pfa) rates. For example, after testing 
with the dataset from a legitimate user, there were 
N acceptances out of M samples, so Pta is N/M. 
The confidence of the acceptance decision (Wa) 
is expressed as the ratio of Pta to Pfa. The confi-
dence of the rejection decision (Wr ) is expressed 
as the ratio of the probability of true rejection  
(1 – Pfa) to the probability of false rejection (1 – Pta).

After the training, in the trained profile, we have 
Wa and Wr for each classifier. During the testing 
phase, each classifier generates a decision (accep-
tance or rejection). Either Wa or Wr will be applied 
to this decision. The final decision is based on the 
sum of the scores from all involved classifiers.

A Large-Scale Experiment
We developed a Web-based software system to 
collect the keystroke dynamics of individuals in 
a large-scale testing project conducted at Iowa 
State University (ISU). This system provided three 

Figure 2. Training and cross-validation in machine learning: (a) training phase for building a 
classifier and (b) evaluation to obtain the confidence of each classifier.
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simulated user environments: typing short sen-
tences, writing short essays, and browsing web-
pages. We stored the users’ cognitive fingerprints 
in a database for further analyses and applied ma-
chine-learning techniques to authenticate users 
by performing pattern recognition.

During November and December of 2012, we 
sent email invitations to 36,000 members of the 
ISU community. There were 1,977 participants 
who completed two segments, each lasting ap-
proximately 30 minutes, resulting in approxi-
mately 900 words for each participant for each 
segment. In addition, 983 participants (out of the 
1,977) completed another segment of approxi-
mately 30-minutes in length, in which we collect-
ed approximately 1,200 words for each participant. 
We then developed 983 individual profiles (trained 
files). Each profile was trained under two-class 
classification, in which one legitimate user had 
2,100 collected words, and the imposter training 
set was based on collected words from the other 
982 known participants. Each profile was tested 
with the data of the 1,977 participants (with a test-
ing dataset of 900 words per participant).

Figure 3 shows the results. Figure 3a summarizes 
the performance comparison of the two verification 
systems, and Figure 3b shows the detection error 
trade-off chart from the KRR-based system. In this 
experiment, each legitimate profile had been tested 
using the dataset collected from the same user; 
seven (out of 983) users were recognized as impos-
ters using the SVM library, so it correctly identified 
the other 976 users, and 17 (out of 983) users with 
the KRR library, so it correctly identified 966 us-
ers. Also, we tested each profile with the other 1,976 
participants, and the false-accept rate was 0.055 
percent for both SVM and KRR.

In summary, the proposed scheme is effective 
for authentication on desktop devices. More-
over, because of the increasing popularity of 

mobile devices, it’s interesting to find the cogni-
tive fingerprint and apply our authentication sys-
tem on mobile devices. In the future, we’ll study 
keystroke dynamics on different platforms.�
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Figure 3. Experiment results: (a) performance 
comparison of the two verification systems and 
(b) the detection error trade-off chart from the 
kernel-ridge-regression-based system.
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