OpenCV Overview

Nate Kent
nkent@iastate.edu

January 28, 2016
1. Class Information

2. Which Version?

3. Tutorials

4. Installing OpenCV

5. How It All Works

6. Sample Programs
Which Version?

1. Class Information
2. Which Version?
3. Tutorials
4. Installing OpenCV
5. How It All Works
6. Sample Programs
Differences

V1: Old version. Written in C.

V2: Recent version. Written in C++ with interfaces and wrappers for other language. Most tutorials will be focused on this version. Use this version unless you have a good reason to use one of the other two.

Interfaces and Wrappers

Interfaces
- Python
- Java
- MATLAB/OCTAVE (v2.5 and after)

Wrappers
- C#
- Perl
- Ch
- Ruby
1. Class Information
2. Which Version?
3. Tutorials
4. Installing OpenCV
5. How It All Works
6. Sample Programs
Where To Find Tutorials

A huge number of tutorials are available on the OpenCV Website.

docs.opencv.org/doc/tutorials/tutorials/tutorials.html
Installing OpenCV

1. Class Information
2. Which Version?
3. Tutorials
4. Installing OpenCV
5. How It All Works
6. Sample Programs
Windows

This method requires the latest Microsoft Visual Studio IDE.

1. Download OpenCV binaries
2. Extract along the build path
3. Set the OpenCV environment variable. This can be done in the command prompt:

   ```
   setx -m OPENCV_DIR D:\OpenCV\Build\x86\vc10
   setx -m OPENCV_DIR D:\OpenCV\Build\x64\vc10
   setx -m OPENCV_DIR D:\OpenCV\Build\x86\vc11
   setx -m OPENCV_DIR D:\OpenCV\Build\x64\vc11
   ```
1. Download the OpenCV source code
2. Install CMake
3. Open the terminal and navigate to the OpenCV folder
4. In the terminal, run the following commands:

 `$ cmake -G "Unix Makefiles"
 $ make -j8 && make install`
Do it through your package manager. I believe almost all distros have OpenCV available.
Tutorials for your specific IDE are available online.

Warning: I’ve only ever used OpenCV’s C and C++ interfaces.
How It All Works

1. Class Information
2. Which Version?
3. Tutorials
4. Installing OpenCV
5. How It All Works
 - An Example Program
 - The Mat Class
 - Windows And Trackbars
 - Example Operations
 - Working With Videos And Cameras
6. Sample Programs
A Complete Example Program

Link!
Mat is simply a header — not the actual data!

```cpp
// Creates just the header parts
Mat A, C;
// Here we’ll know the method used (allocate matrix)
A = imread(argv[1], CV_LOAD_IMAGE_COLOR);
// Use the copy constructor
Mat B(A);
// Assignment operator
C = A;
```
Creating Submatrices

These don’t allocate any new data. They simply point the header to portions of a matrix that is already in memory.

```cpp
// Using a rectangle
Mat D (A, Rect(10, 10, 100, 100) );
// Using row and column boundaries
Mat E = A(Range::all(), Range(1,3));
```
These actually allocate a new matrix.

```cpp
// Clone method
Mat F = A.clone();

// Copy method
Mat G;
A.copyTo(G);
```
// Constructor
Mat M(2,2, CV_8UC3, Scalar(0,0,255));

// Via initializers
int sz[3] = {2,2,2};
Mat L(3,sz, CV_8UC(1), Scalar::all(0));

// Create function
M.create(4,4, CV_8UC(2));

// Matlab style
Mat E = Mat::eye(4, 4, CV_64F);
Mat O = Mat::ones(2, 2, CV_32F);
Mat Z = Mat::zeros(3,3, CV_8UC1);
Mat image;

// Create the window
namedWindow("Display Window", WINDOW_AUTOSIZE);

// Display in the window
imshow("Display Window", image);

// Wait for the user to press a key
waitKey(0);
Creating Trackbars

String name = "Trackbar Name";
String windowName = "Display Window";
int value; // Initial position
int count; // Max position
void* userdata; // Userdata

void Callback(int, void*);

// Create our trackbar
createTrackbar(name, windowName, value,
 count, Callback, userdata);
There are many functions used to draw.

http://docs.opencv.org/modules/core/doc/drawing_functions.html
Thresholding

A source matrix can be the destination matrix!

```c++
Mat src, dst;
double threshold;
double maxval;
int type = THRESH_BINARY; // Many different types

threshold(src, dst, threshold, maxval, type);
```
Mat srcA, srcB, dst;
Mat mask;
int depth; // Many defined

// Addition
add(srcA, srcB, mask, depth);

// Finding the determinant
determinant(srcA);

// Flip the matrix
// 0 is vertical, > 0 horizontal, < 0 both
int flipcode;
flip(srcA, dst, flipcode);
// Try to open based on video file
VideoCapture cap(arg);

// Try to open a camera based on index
cap.open(0);

// Process each frame like a normal image
Mat frame;
for(;;) {
 // Put the frame in the matrix
 cap >> frame;

 // ... do your thing
}

// Write the last frame to a file
imwrite(frame, "lastframe.jpg");
Sample Programs

1. Class Information
2. Which Version?
3. Tutorials
4. Installing OpenCV
5. How It All Works
 - An Example Program
 - The Mat Class
 - Windows And Trackbars
 - Example Operations
 - Working With Videos And Cameras
6. Sample Programs
Sample Code Location

Sample code is downloaded along with the rest of OpenCV for Windows and OSX. Linux users may have to install a separate package. They can be found in: $OPENCV_HOME/samples
Let’s Do Some Samples

`bgfg_gmg` and `bgfg_segm`: Background filters

`convexhull*`: Creating convex hull around a set of points

`demhist`: Creates a histogram of the image

`drawing`: Basic drawing commands

`edge`: Canny edge detection

`fback` and `lkdemo`: Optical flow

`fitellipse`: Fit an ellipse around a shape

`gencolors*`: Generate a set of \(n \) easily distinguishable colors

`houghcircles` and `houghlines`: Detect circles and lines

`image`: Open and display an image

`kalman`: Create an use a Kalman filter

`minarea`: Find minimum enclosing box and circle

`morphology2`: Erosion and dilation

`squares`: Square detection

`starter_video` and `video_dmtx`: Load, modify, display, and save videos
// Lines 28 to 40
vector<Point> points;

for(i = 0; i < count; i++)
{
 Point pt;
 pt.x = rng.uniform(img.cols/4, img.cols*3/4);
 pt.y = rng.uniform(img.rows/4, img.rows*3/4);

 points.push_back(pt);
}

vector<int> hull;
convexHull(Mat(points), hull, true);
// Lines 39 to 46
Mat dst, hist;
image.convertTo(dst, CV_8U, a, b);
imshow("image", dst);

calcHist(&dst, 1, 0, Mat(), hist, 1, &histSize, 0);
Mat histImage = Mat::ones(200, 320, CV_8U)*255;
// Lines 21 to 23
vector<Scalar> colors;
theRNG() = (uint64)time(0);
generateColors(colors, colorsCount);
Questions?