P1. (10 points) Show that the circuit in Figure 3.4 implements a full adder circuit whose canonical SOP expressions are
\[c_{i+1} = x_i y_i + x_i c_i + y_i c_i, \]
\[s_i = x_i'y_i'c_i' + x_i'y_i'c_i + x_i'y_i c_i. \]

P2. (15 points) Consider the addition of the two n-bit 2's complement numbers \(X=x_{n-1} x_{n-2} \ldots x_1 x_0 \) and \(Y=y_{n-1} y_{n-2} \ldots y_1 y_0 \). Suppose the sum is \(s_{n-1} s_{n-2} \ldots s_1 s_0 \) and the carry is \(c_n c_{n-1} \ldots c_2 c_1 \).
(a) If \(X \) is positive, \(Y \) is negative, and \(c_{n-1} = 0 \), what should be the values of \(c_n \) and \(s_{n-1} \)? Will overflow occur?
(b) If \(X \) is negative, \(Y \) is negative, and \(c_{n-1} = 0 \), what should be the values of \(c_n \) and \(s_{n-1} \)? Will overflow occur?
(c) Following the idea in part (a) and (b), please construct a truth table listing the values of \(c_n \) and \(s_{n-1} \) for all combinations of the sign of \(X \), the sign of \(Y \), and the value of \(c_{n-1} \). For each combination, please also state if overflow occurs or not.
(d) Based on the truth table in part (c), prove that Overflow = \(c_n \oplus c_{n-1} \).

P3. (10 points) Design a circuit to add 1 to a given n-bit number (i.e., design an increment-by-1 circuit) using n half-adders.

P4. (10 points) Represent the decimal number 13.5 in IEEE 754 single-precision floating-point format.

P5. (10 points) What is the decimal value of the following IEEE 754 single-precision floating-point number?
1011111 00101000 00000000 00000000

P6. (10 points) Consider constructing a \(2^n \times 1 \) multiplexer using only 2x1 multiplexers, with \(n \) being a positive integer.
(a) How many 2x1 multiplexers would a \(2^n \times 1 \) multiplexer require? Give an answer in terms of \(n \).
(b) Design an 8x1 multiplexer (\(8=2^3 \)) using a minimal number of 2x1 multiplexers. Please label all signals clearly.

P7. (10 points) The question considers the design of an 8x1 multiplexer using gates. Assume the data inputs are \(I_0, \ldots, I_7 \) and the select inputs are \(S_2, S_1 \) and \(S_0 \).
(a) Write a sum-of-products expression for the 8x1 multiplexer.
(b) Implement the expression in part (a) using NOT and NAND gates with any number of inputs. Please use as few gates as possible.
P8. (10 points) Consider a function F with 4 bits of input A_3, A_2, A_1, A_0 such that the output of F is 1 if the unsigned binary number represented by $A_3A_2A_1A_0$ is integer divisible by 3 or 7 (i.e., 0, 3, 6, 7, 9, 12, 14 or 15). Otherwise, the output of F is 0.
(a) Write the truth table for F.
(b) Implement F using a 16x1 MUX and nothing else.
(c) Implement F using an 8x1 MUX, some AND gates, some OR gates, and some NOT gates.

P9. (5 points) Write the truth table for a 1-to-2 decoder. Draw a circuit which implements a 1-to-2 decoder using AND gates, OR gates and NOT gates only.

P10. (10 points) Given a supply of 2-to-4 decoders, show how to get a 4-to-16 decoder circuit. Assume each of the 2-to-4 decoders has an ENABLE input (ENABLE = 1 enables the decoder), but you need not include an enable capability on the 4-to-16 decoder circuit.