CprE 588
Embedded Computer Systems

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
lowa State University

Lecture #10 — Introduction to SystemC

o=l Qutline

Introduction and Overview
Language Features

Simple Module Design
Some System-Level Design

D. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: From the Ground
Up, Springer, 2004.

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.2

- A C++ based class library and design
environment for system-level design

Suitable for functional description that might

M

SystemC

eventually be implemented as either HW or SW

Open standard

Language definition is publicly available

Libraries are freely distributed
Synthesis tools are an expensive commercial

product

www.systemc.org

ar 31-Apr 2, 2009

CprE 588 — Embedded Computer Systems

Lect-10.3

e-“| Language Architecture (v2.0)

Channels for MoCs
Kahn process networks, SDF, etc

Methodology-specific Channels

Master/Slave library

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc

Core Language
Module

Ports

Processes

Events

Interfaces

Channels

Event-driven simulation kernel

Data types

Bits and bit-vectors

Arbitrary precision integers
Fixed-point numbers

4-valued logic types, logic-vectors
C++ user defined types

C++ Language Standard

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.4

Glossary

- Module
Basic building block for structural partitioning
Contains ports, processes, data
Other modules

- Process
Basic specification mechanism for functional description
Three types

sc_method : sensitive to some ports/signals, no wait statements
sc_thread: sensitive to some ports/signals with wait statements
sc_cthread: sensitive to only clock

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.5

Modules

Hierarchical entity
Similar to VHDL's entity

Actually a C++ class definition

Simulation involves
Creating objects of this class
They connect themselves together

Processes in these objects (methods) are called
by the scheduler to perform the simulation

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.6

Module Example

SC_MODULE(mymod) {
/* port definitions */
/* signal definitions */
/* clock definitions */

/* storage and state variables */
/* process definitions */

SC_CTOR(mymod) {
/* Instances of processes and modules */

}
b

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.7

Ports

Define the interface to each module
Channels through which data is communicated
Port consists of a direction
iInput SC_in
output sc_out
bidirectional sc_Inout
Can be any C++ or SystemC type

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.8

Port Example

SC_MODULE(mymod) {
Sc_In<bool> load, read;
Sc_inout<int> data;
sc_out<bool> full;

/* rest of the module */

};

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.9

Signals

- Convey information between modules within a
module

- Directionless: module ports define direction of
data transfer

- Type may be any C++ or built-in type

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.10

Signal Example

SC_MODULE(mymod) {

/* port definitions */
sc_signal<sc_uint<32> > s1, s2;
sc_signal<bool> reset;

[* .0
SC_CTOR(mymod) {

/* Instances of modules that connect to the
signals */

}
};

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems

Lect-10.11

Instances of Modules

- Each instance is a pointer to an object in the module

SC_MODULE(mod1) {... };
SC_MODULE(mod2) { ... }; Connect instance’s
SC_I\/IO DU _E(foo) { ports to signals
mod1* m1;
mod2* m2;

sc_signal<int> a, b, c;
SC_CTOR(foo) {
m1 = new modi(“i1”); (*m1)(a, b, ¢);
m2 = new mod2(“i2”); (*m2)(c, b);
}
}

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.12

M

Processes

Only thing in SystemC that actually does

anything

Procedural code with the ability to suspend and

resume

Methods of each module class

Like Verilog's initial blocks

ar 31-Apr 2, 2009

CprE 588 — Embedded Computer Systems

Lect-10.13

M

Three Types of Processes

METHOD

Models combinational logic

THREAD

Models testbenches

CTHREAD

Models synchronous FSMs

ar 31-Apr 2, 2009

CprE 588 — Embedded Computer Systems

Lect-10.14

METHOD Processes

- Triggered in response to changes on inputs
- Cannot store control state between invocations

- Designed to model blocks of combinational
logic

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.15

METHOD Processes

SC_MODULE(onemethod) { Process is simply a

scC_in<bool> in; method of this class
SC_out<bool> out;

void inverter();

SC_CTOR(onemethod) {

Instance of this
process created

SC_METHOD(inverter);

sensitive(in); and made sensitive

to an input

}
b

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.16

METHOD Processes

- Invoked once every time input “in” changes
- Should not save state between invocations

- Runs to completion: should not contain infinite loops
Not preempted

void onemethod::inverter() {

bool internal:

. . — Read a value from the port
Internal = in; «—

out = ~internal; ~ Write a value to an

} output port

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.17

THREAD Processes

- Triggered in response to changes on inputs

- Can suspend itself and be reactivated
Method calls wait to relinquish control
Scheduler runs it again later

- Designed to model just about anything

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.18

-| THREAD Processes

SC_MODULE(onemethod) { Process is simply a

scC_in<bool> in; method of this class
SC_out<bool> out;

void toggler();

SC_CTOR(onemethod) { nstance of this

process created
SC_THREAD(toggler): —

. L —alternate sensitivity
} sensitive << In, list notation

b

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.19

THREAD Processes

- Reawakened whenever an input changes
- State saved between invocations

- Infinite loops should contain a wait()

void onemethod::toggler() { Relinquish control
_ until the next
bool last = false; change of a signal
for (;;) { on the sensitivity

last = in: out = last: wait(); list for this process

last = ~in; out = last; wait();

]
]

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.20

CTHREAD Processes

- Triggered in response to a single clock edge

- Can suspend itself and be reactivated
Method calls wait to relinquish control
Scheduler runs it again later

- Designed to model clocked digital hardware

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.21

CTHREAD Processes

SC_MODULE(onemethod) {

sc_in_clk clock; Instance of this

sc_in<bool> trigger, in; process created and
— ’ assigned
void toggler();

SC_CTOR(onemethod) {

SC_CTHREAD(toggler, clock.pos());
}

b

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.22

CTHREAD Processes

- Reawakened at the edge of the clock
- State saved between invocations

- Infinite loops should contain a wait()

Relinquish control
until the next clock

void onemethod::toggler() { cycle in which the
bool last = false; trigger input is 1
for (;;) {

wait_until(trigger.delayed() == true);
last = in; out = last; wait();

last = ~in; out = last; wait();
| Relinquish control
until the next clock

} cycle

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.23

A CTHR

\EAD for Complex Multiply

struct complex_mult : sc_module {

SC_

in<int> a,

b, c, d;

sc_out<int> X, Y;
in_clk clock;

SC_

void do_mult() {
for (55) {
X =a*c-b * d;

}
}

wait(Q);

y=a*d+b * c;

wait();

SC_CTOR(complex_mult) {
SC_CTHREAD(do_mult, clock.pos());

}
}s;

Mar 31-Apr 2, 2009

CprE 588 — Embedded Computer Systems

Lect-10.24

Watching

A CTHREAD process can be given reset-like behavior
Limited version of Esterel’s abort

SC_MODULE(onemethod) {
sc_in_clk clock;
sc_in<bool> reset, in;

void toggler();

SC_CTOR(onemethod) {
SC_CTHREAD(toggler, clock.pos());
watching(reset.delayed() == true);

| Process will be
1 restarted from the
’ beginning when

reset is true

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.25

SystemC Types
- SystemC programs may use any C++ type

along with any of the built-in ones for modeling
systems

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.26

M

SystemC Built-in Types

sc_bit, sc_logic

Two- and four-valued single bit
Sc_Int, sc_unint

1 to 64-bit signed and unsigned integers
sc_bigint, sc_biguint

arbitrary (fixed) width signed and unsigned
integers

sc_bv, sc Iv

arbitrary width two- and four-valued vectors
sc_fixed, sc_ufixed

signed and unsigned fixed point numbers

ar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems

Lect-10.27

M

Clocks

The only thing in SystemC that has a notion of

real time

Only interesting part is relative sequencing

among multiple clocks

Triggers SC_CTHREAD processes

or others if they decided to become sensitive to

clocks

ar 31-Apr 2, 2009

CprE 588 — Embedded Computer Systems

Lect-10.28

M

SystemC 1.0 Scheduler

Assign clocks new values

Repeat until stable

Update the outputs of triggered SC_CTHREAD
Processes

Run all SC_ METHOD and SC_THREAD
processes whose inputs have changed

Execute all triggered SC_CTHREAD methods.
Their outputs are saved until next time

ar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.29

o« SystemC 1.0 Scheduler (cont.)

- Delayed assignment and delta cycles
Just like VHDL and Verilog

Essential to properly model hardware signal
assignments

Each assignment to a signal won't be seen by other
processes until the next delta cycle

Delta cycles don’t increase user-visible time
Multiple delta cycles may occur

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.30

Objectives of SystemC 2.0

- Primary goal: Enable System-Level Modeling
Systems include hardware, software, or both

Challenges:
Wide range of design models of computation
Wide range of design abstraction levels
Wide range of design methodologies

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.31

Objectives of SystemC 2.0 (cont'd)

- Solution in SystemC 2.0

Introduces a small but very general purpose modeling
foundation => Core Language
Elementary channels

Other library models provided (FIFO, Timers, ...)

Even SystemC 1.0 Signals
Support for various models of computation,
methodologies, etc.

Built on top of the core language, hence are separate
from it

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.32

Communication and Synchronization

- SystemC 1.0 Modules and Processes are still useful in
system design

- But communication and synchronization mechanisms
in SystemC 1.0 (Signals) are restrictive for system-
level modeling

Communication using queues
Synchronization (access to shared data) using mutexes

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.33

Communication and Synchronization

- SystemC 2.0 introduces general-purpose

Channel
A container for communication and synchronization
They implement one or more interfaces

Interface

Specify a set of access methods to the channel
- But it does not implement those methods

Event
Flexible, low-level synchronization primitive
Used to construct other forms of synchronization

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.34

Communication and Synchronization

- Other comm. & sync. models can be built based on
the above primitives

Examples

HW-signals, queues (FIFO, LIFO, message queues, etc)
semaphores, memories and busses (both at RTL and
transaction-level models)

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.35

*=“1 Communication and Synchronization

Interfaces

/

P

Events

Ports to Interfaces

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.36

FIFO Modeling Example

Write Interface
Producer / Consumer

FIFO

» Zé ;} »

Read Interface

Problem definition: FIFO communication channel with blocking read and write
operations

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.37

FIFO Example (cont) D

class write_if : public sc_interface

{

public:
virtual void write(char) = O;
virtual void reset () = 0;

};

class read_if : public sc_interface

{
public:
virtual void read(char&) = O;
virtual int num available() = O;

};

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems

Lect-10.38

C

‘ FIFO Example (cont.) P FIFO 1»

class fifo: public sc_channel, void write(char c) {

public write_if,
public read if

private:
enum e {max _elements=10};
char data[max_elements];
int num elements, first;
sc_event write_event,
read_event;

bool fifo _empty() {..};
bool fifo full() ({..};

public:
SC_CTOR (fifo) {

num_elements = first=0;

}

if (fifo full ())
wait (read_event);
data[<you say>]=c;
++num elements;
write_event.notify();

void read(char é&c) {
if(fifo_empty ())
wait (write_event);
¢ = data[first];
——num_elements;
first = <you say>;
read_event.notify();

Mar 31-Apr 2, 2009

CprE 588 — Embedded Computer Systems

Lect-10.39

FIFO Example (cont.) P FIFO 1»

void reset () {
num elements = first = 0;

int num available () {
return num elements;

}

}; // end of class declarations

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.40

FIFO Example (cont.)

- All channels must
be derived from sc_channel class

SystemC internals (kernel\sc_module.h)
typedef sc_module sc_channel;

be derived from one (or more) classes derived
from sc_interface

provide implementations for all pure virtual
functions defined in its parent interfaces

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.41

FIFO Example (cont.)

- Note the following extensions beyond SystemC 1.0
wait () call with arguments => dynamic sensitivity
walt (sc_event)
walt (time) // e.g. wait (200, SC_NS);

walt (time_ out, sc_event) //wait (2, SC_PS, e);

Events
are the fundamental synch. primitive in SystemC 2.0
Unlike signals,
* have no type and no value
 always cause sensitive processes to be resumed
* can be specified to occur:

« immediately/ one delta-step later/ some specific time
later

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.42

¢ ‘ The walt() Function

// wait for 200 ns.
sc_time t(200, SC_NS);
wait(t);

// wait on event e1, timeout after 200 ns.
wait(t, el);

// wait on events e, e2, or 3, timeout after 200 ns.
wait(t, el | e2 | e3);

// wait on events e1, e2, and e3, timeout after 200 ns.
wait(t, e1 & e2 & e3);

// walit one delta cycle.
wait(SC_ZERO_TIME);

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.43

The notify() Method of sc_event

- Possible calls to notify():

sc_event my_event;
my_event.notify(); // notify immediately

my_event.notify(SC_ZERO_TIME); // notify next delta cycle

my_event.notify(10, SC_NS); // notify in 10 ns

sc_time t(10, SC_NS);
my_event.notify(t); // same

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.44

*-| FIFO Example (cont.) ;

5 FIFO 53 ©

SC_MODULE (producer) {
public:
sc_port<write_if> out;

SC_CTOR (producer) {
SC_THREAD (main) ;
}

void main () {
char c;
while (true) {
out—->write (c);
if(...)
out—->reset () ;

};

SC_MODULE (consumer) {
public:
sc_port<read_if> in;

SC_CTOR (consumer) {
SC_THREAD (main) ;

void main () {
char c;
while (true) {
in->read(c);
cout<<
in->num_available();

};

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.45

*-| FIFO Example (cont.) ;

Mar 31-Apr 2, 2009

SC_MODULE (top) {
public:
fifo *afifo;
producer *pproducer;
consumer *pconsumer;

SC_CTOR (top) {

afifo = new fifo (“Fifo”);

pproducer=new producer (“Producer”);
pproducer->out (afifo) ;

pconsumer=new consumer (“Consumer”);
pconsumer—>in (afifo);

};

CprE 588 — Embedded Computer Systems Lect-10.46

FIFO Example (cont.)

- Note:

Producer module
SC_port<write ifs out;
« Producer can only call member functions of write if interface
Consumer module

sc_port<read if> in;
« Consumer can only call member functions of read_ifinterface
* e.g., Cannot call reset() method of write_if

Producer and consumer are
unaware of how the channel works
just aware of their respective interfaces

Channel implementation is hidden from
communicating modules

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.47

Future Evolution of SystemC

- Expected to be SystemC 3.0
Support for RTOS modeling

New features in the core language
Fork and join threads + dynamic thread creation
Interrupt or abort a thread and its children
Specification and checking of timing constraints
Abstract RTOS modeling and scheduler modeling

- Expected to be SystemC 4.0

New features in the core language
Support for analog mixed signal modeling

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.48

Future Evolution of SystemC (cont.)

Extensions as libraries on top of the core language

Standardized channels for various MOC (e.g. static
dataflow and Kahn process networks)

Testbench development

Libraries to facilitate development of testbenches

 Data structures that aid stimulus generation and response
checking

* Functions that help generate randomized stimulus, etc.
System level modeling guidelines

Library code that helps users create models following the
guidelines

Interfacing to other simulators

Standard APIs for interfacing SystemC with other simulators,
emulators, etc.

Mar 31-Apr 2, 2009 CprE 588 — Embedded Computer Systems Lect-10.49

