
CprE 588

Embedded Computer Systems

Prof. Joseph Zambreno

Department of Electrical and Computer Engineering

Iowa State University

Lecture #10 – Introduction to SystemC

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.2

Outline

D. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: From the Ground
Up, Springer, 2004.

• Introduction and Overview

• Language Features

• Simple Module Design

• Some System-Level Design

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.3

SystemC

• A C++ based class library and design

environment for system-level design

• Suitable for functional description that might

eventually be implemented as either HW or SW

• Open standard

• Language definition is publicly available

• Libraries are freely distributed

• Synthesis tools are an expensive commercial

product

• www.systemc.org

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.4

C++ Language Standard

Core Language
Module

Ports

Processes

Events

Interfaces

Channels

Event-driven simulation kernel

Data types

Bits and bit-vectors

Arbitrary precision integers

Fixed-point numbers

4-valued logic types, logic-vectors

C++ user defined types

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc

Channels for MoCs
Kahn process networks, SDF, etc

Methodology-specific Channels
Master/Slave library

Language Architecture (v2.0)

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.5

Glossary

• Module

• Basic building block for structural partitioning

• Contains ports, processes, data

• Other modules

• Process

• Basic specification mechanism for functional description

• Three types

• sc_method : sensitive to some ports/signals, no wait statements

• sc_thread: sensitive to some ports/signals with wait statements

• sc_cthread: sensitive to only clock

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.6

Modules

• Hierarchical entity

• Similar to VHDL’s entity

• Actually a C++ class definition

• Simulation involves

• Creating objects of this class

• They connect themselves together

• Processes in these objects (methods) are called

by the scheduler to perform the simulation

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.7

Module Example

SC_MODULE(mymod) {
/* port definitions */
/* signal definitions */

/* clock definitions */

/* storage and state variables */

/* process definitions */

SC_CTOR(mymod) {

/* Instances of processes and modules */
}

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.8

Ports

• Define the interface to each module

• Channels through which data is communicated

• Port consists of a direction

• input sc_in

• output sc_out

• bidirectional sc_inout

• Can be any C++ or SystemC type

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.9

Port Example

SC_MODULE(mymod) {

sc_in<bool> load, read;

sc_inout<int> data;

sc_out<bool> full;

/* rest of the module */

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.10

Signals

• Convey information between modules within a

module

• Directionless: module ports define direction of

data transfer

• Type may be any C++ or built-in type

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.11

Signal Example

SC_MODULE(mymod) {

/* port definitions */

sc_signal<sc_uint<32> > s1, s2;

sc_signal<bool> reset;

/* … */

SC_CTOR(mymod) {

/* Instances of modules that connect to the
signals */

}

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.12

Instances of Modules

Connect instance’s
ports to signals

• Each instance is a pointer to an object in the module

SC_MODULE(mod1) { … };

SC_MODULE(mod2) { … };
SC_MODULE(foo) {

mod1* m1;
mod2* m2;

sc_signal<int> a, b, c;
SC_CTOR(foo) {

m1 = new mod1(“i1”); (*m1)(a, b, c);

m2 = new mod2(“i2”); (*m2)(c, b);
}

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.13

Processes

• Only thing in SystemC that actually does

anything

• Procedural code with the ability to suspend and

resume

• Methods of each module class

• Like Verilog’s initial blocks

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.14

Three Types of Processes

• METHOD

• Models combinational logic

• THREAD

• Models testbenches

• CTHREAD

• Models synchronous FSMs

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.15

METHOD Processes

• Triggered in response to changes on inputs

• Cannot store control state between invocations

• Designed to model blocks of combinational

logic

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.16

METHOD Processes

Process is simply a
method of this class

Instance of this
process created

and made sensitive
to an input

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

void inverter();

SC_CTOR(onemethod) {

SC_METHOD(inverter);
sensitive(in);

}

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.17

• Invoked once every time input “in” changes

• Should not save state between invocations

• Runs to completion: should not contain infinite loops
• Not preempted

void onemethod::inverter() {
bool internal;

internal = in;
out = ~internal;

}

METHOD Processes

Read a value from the port

Write a value to an
output port

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.18

THREAD Processes

• Triggered in response to changes on inputs

• Can suspend itself and be reactivated

• Method calls wait to relinquish control

• Scheduler runs it again later

• Designed to model just about anything

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.19

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {

SC_THREAD(toggler);
sensitive << in;

}

};

THREAD Processes

Process is simply a
method of this class

Instance of this
process created

alternate sensitivity
list notation

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.20

• Reawakened whenever an input changes

• State saved between invocations

• Infinite loops should contain a wait()

void onemethod::toggler() {

bool last = false;
for (;;) {

last = in; out = last; wait();

last = ~in; out = last; wait();
}

}

THREAD Processes

Relinquish control
until the next
change of a signal
on the sensitivity
list for this process

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.21

CTHREAD Processes

• Triggered in response to a single clock edge

• Can suspend itself and be reactivated

• Method calls wait to relinquish control

• Scheduler runs it again later

• Designed to model clocked digital hardware

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.22

CTHREAD Processes

Instance of this
process created and
relevant clock edge
assigned

SC_MODULE(onemethod) {
sc_in_clk clock;
sc_in<bool> trigger, in;

sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {

SC_CTHREAD(toggler, clock.pos());

}

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.23

• Reawakened at the edge of the clock
• State saved between invocations
• Infinite loops should contain a wait()

void onemethod::toggler() {

bool last = false;
for (;;) {

wait_until(trigger.delayed() == true);
last = in; out = last; wait();
last = ~in; out = last; wait();

}
}

CTHREAD Processes

Relinquish control
until the next clock
cycle

Relinquish control
until the next clock
cycle in which the
trigger input is 1

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.24

A CTHREAD for Complex Multiply

struct complex_mult : sc_module {
sc_in<int> a, b, c, d;
sc_out<int> x, y;
sc_in_clk clock;

void do_mult() {
for (;;) {
x = a * c - b * d;
wait();
y = a * d + b * c;
wait();

}
}

SC_CTOR(complex_mult) {
SC_CTHREAD(do_mult, clock.pos());

}

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.25

Watching

Process will be
restarted from the
beginning when
reset is true

• A CTHREAD process can be given reset-like behavior

• Limited version of Esterel’s abort

SC_MODULE(onemethod) {

sc_in_clk clock;

sc_in<bool> reset, in;

void toggler();

SC_CTOR(onemethod) {

SC_CTHREAD(toggler, clock.pos());

watching(reset.delayed() == true);

}

};

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.26

SystemC Types

• SystemC programs may use any C++ type

along with any of the built-in ones for modeling

systems

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.27

SystemC Built-in Types

• sc_bit, sc_logic

• Two- and four-valued single bit

• sc_int, sc_unint

• 1 to 64-bit signed and unsigned integers

• sc_bigint, sc_biguint

• arbitrary (fixed) width signed and unsigned
integers

• sc_bv, sc_lv

• arbitrary width two- and four-valued vectors

• sc_fixed, sc_ufixed

• signed and unsigned fixed point numbers

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.28

Clocks

• The only thing in SystemC that has a notion of

real time

• Only interesting part is relative sequencing

among multiple clocks

• Triggers SC_CTHREAD processes

• or others if they decided to become sensitive to

clocks

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.29

SystemC 1.0 Scheduler

• Assign clocks new values

• Repeat until stable

• Update the outputs of triggered SC_CTHREAD

processes

• Run all SC_METHOD and SC_THREAD

processes whose inputs have changed

• Execute all triggered SC_CTHREAD methods.

Their outputs are saved until next time

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.30

• Delayed assignment and delta cycles

• Just like VHDL and Verilog

• Essential to properly model hardware signal

assignments

• Each assignment to a signal won’t be seen by other
processes until the next delta cycle

• Delta cycles don’t increase user-visible time

• Multiple delta cycles may occur

SystemC 1.0 Scheduler (cont.)

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.31

Objectives of SystemC 2.0

• Primary goal: Enable System-Level Modeling

• Systems include hardware, software, or both

• Challenges:

• Wide range of design models of computation

• Wide range of design abstraction levels

• Wide range of design methodologies

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.32

Objectives of SystemC 2.0 (cont’d)

• Solution in SystemC 2.0

• Introduces a small but very general purpose modeling
foundation => Core Language

• Elementary channels
• Other library models provided (FIFO, Timers, ...)

• Even SystemC 1.0 Signals

• Support for various models of computation,
methodologies, etc.

• Built on top of the core language, hence are separate
from it

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.33

Communication and Synchronization

• SystemC 1.0 Modules and Processes are still useful in
system design

• But communication and synchronization mechanisms
in SystemC 1.0 (Signals) are restrictive for system-
level modeling

• Communication using queues

• Synchronization (access to shared data) using mutexes

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.34

Communication and Synchronization

• SystemC 2.0 introduces general-purpose

• Channel

• A container for communication and synchronization

• They implement one or more interfaces

• Interface

• Specify a set of access methods to the channel

• But it does not implement those methods

• Event

• Flexible, low-level synchronization primitive

• Used to construct other forms of synchronization

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.35

Communication and Synchronization

• Other comm. & sync. models can be built based on
the above primitives

• Examples

• HW-signals, queues (FIFO, LIFO, message queues, etc)
semaphores, memories and busses (both at RTL and
transaction-level models)

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.36

Communication and Synchronization

Channel

Module1 Module2

Events

Interfaces

Ports to Interfaces

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.37

FIFO Modeling Example

FIFO

Producer Consumer
Write Interface

Read Interface

Problem definition: FIFO communication channel with blocking read and write

operations

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.38

FIFO Example (cont)

class write_if : public sc_interface

{

public:

virtual void write(char) = 0;

virtual void reset() = 0;

};

class read_if : public sc_interface

{

public:

virtual void read(char&) = 0;

virtual int num_available() = 0;

};

FIFO
p c

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.39

FIFO Example (cont.)

class fifo: public sc_channel,

public write_if,

public read_if

{

private:

enum e {max_elements=10};

char data[max_elements];

int num_elements, first;

sc_event write_event,

read_event;

bool fifo_empty() {…};

bool fifo_full() {…};

public:

SC_CTOR(fifo) {

num_elements = first=0;

}

void write(char c) {

if (fifo_full())

wait(read_event);

data[<you say>]=c;

++num_elements;

write_event.notify();

}

void read(char &c) {

if(fifo_empty())

wait(write_event);

c = data[first];

--num_elements;

first = <you say>;

read_event.notify();

}

FIFO
p c

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.40

FIFO Example (cont.)

void reset() {

num_elements = first = 0;

}

int num_available() {

return num_elements;

}

};// end of class declarations

FIFO
p c

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.41

FIFO Example (cont.)

• All channels must

• be derived from sc_channel class

• SystemC internals (kernel\sc_module.h)

typedef sc_module sc_channel;

• be derived from one (or more) classes derived
from sc_interface

• provide implementations for all pure virtual

functions defined in its parent interfaces

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.42

FIFO Example (cont.)

• Note the following extensions beyond SystemC 1.0

• wait() call with arguments => dynamic sensitivity

• wait(sc_event)

• wait(time) // e.g. wait(200, SC_NS);

• wait(time_out, sc_event) //wait(2, SC_PS, e);

• Events

• are the fundamental synch. primitive in SystemC 2.0

• Unlike signals,

• have no type and no value

• always cause sensitive processes to be resumed

• can be specified to occur:

• immediately/ one delta-step later/ some specific time
later

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.43

The wait() Function

// wait for 200 ns.
sc_time t(200, SC_NS);
wait(t);

// wait on event e1, timeout after 200 ns.
wait(t, e1);

// wait on events e1, e2, or e3, timeout after 200 ns.
wait(t, e1 | e2 | e3);

// wait on events e1, e2, and e3, timeout after 200 ns.
wait(t, e1 & e2 & e3);

// wait one delta cycle.
wait(SC_ZERO_TIME);

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.44

• Possible calls to notify():
sc_event my_event;

my_event.notify(); // notify immediately

my_event.notify(SC_ZERO_TIME); // notify next delta cycle

my_event.notify(10, SC_NS); // notify in 10 ns

sc_time t(10, SC_NS);

my_event.notify(t); // same

The notify() Method of sc_event

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.45

FIFO Example (cont.)

SC_MODULE(producer) {

public:

sc_port<write_if> out;

SC_CTOR(producer) {

SC_THREAD(main);

}

void main() {

char c;

while (true) {

out->write(c);

if(…)

out->reset();

}

}

};

SC_MODULE(consumer) {

public:

sc_port<read_if> in;

SC_CTOR(consumer) {

SC_THREAD(main);

}

void main() {

char c;

while (true) {

in->read(c);

cout<<

in->num_available();

}

}

};

FIFO
p c

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.46

FIFO Example (cont.)

SC_MODULE(top) {

public:

fifo *afifo;

producer *pproducer;

consumer *pconsumer;

SC_CTOR(top) {

afifo = new fifo(“Fifo”);

pproducer=new producer(“Producer”);

pproducer->out(afifo);

pconsumer=new consumer(“Consumer”);

pconsumer->in(afifo);

};

FIFO
p c

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.47

FIFO Example (cont.)

• Note:

• Producer module
• sc_port<write_if> out;

• Producer can only call member functions of write_if interface

• Consumer module
• sc_port<read_if> in;

• Consumer can only call member functions of read_if interface

• e.g., Cannot call reset() method of write_if

• Producer and consumer are
• unaware of how the channel works

• just aware of their respective interfaces

• Channel implementation is hidden from
communicating modules

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.48

• Expected to be SystemC 3.0

• Support for RTOS modeling

• New features in the core language
• Fork and join threads + dynamic thread creation

• Interrupt or abort a thread and its children

• Specification and checking of timing constraints

• Abstract RTOS modeling and scheduler modeling

• Expected to be SystemC 4.0

• New features in the core language
• Support for analog mixed signal modeling

Future Evolution of SystemC

CprE 588 – Embedded Computer SystemsMar 31-Apr 2, 2009 Lect-10.49

• Extensions as libraries on top of the core language

• Standardized channels for various MOC (e.g. static
dataflow and Kahn process networks)

• Testbench development

• Libraries to facilitate development of testbenches

• Data structures that aid stimulus generation and response

checking

• Functions that help generate randomized stimulus, etc.

• System level modeling guidelines

• Library code that helps users create models following the
guidelines

• Interfacing to other simulators

• Standard APIs for interfacing SystemC with other simulators,
emulators, etc.

Future Evolution of SystemC (cont.)

