
CprE 588

Embedded Computer Systems

Prof. Joseph Zambreno

Department of Electrical and Computer Engineering

Iowa State University

Lecture #9 – ASIP Synthesis



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.2

Topics

W. Wolf, Computers as Components: Principles of Embedded Computing 
System Design, Morgan Kaufman Publishers, 2004. 

• CPU selection

• Application-specific processors in SoCs

• Instruction set design

• Compilers



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.3

Figures of Merit in CPU Selection

• Performance on the application:

• Average case

• Worst-case

• Power/energy consumption

• Interrupt handling latency

• Context switch time

• Other issues:

• Code compatibility

• Development environment

• Fab support



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.4

CPU Families Example: ARM

• Low end:

• No cache

• No floating point

• No MMU

• High end:

• Cache

• Floating-point

• MMU

ARM7TDMI-S



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.5

CPU Families Example: ARM (cont.)

ARM 11 MPCore



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.6

Configurable vs. Reconfigurable

• Configurable:

• CPU architectural features are selected at 

design time

• Reconfigurable:

• Hardware can be reconfigured in the field

• May be dynamically reconfigured during 

execution



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.7

Tensilica Configurable Processors

• Configurability:

• Processor parameters (cache size, etc.)

• Instructions

• Result:

• HDL model for processor

• Software development environment



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.8

Tensilica Configurable Processors

Tensilica XTensa 7



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.9

Xtensa Configurability

• Instruction set:
• ALU extensions, coprocessors, wide 

instructions, DSP-style, function unit 
implementation

• Memory:
• I cache config, D cache config, memory 

protection/translation, address space size, 
mapping of special-purpose memories, DMA 
access

• Interface:
• Bus width, protocol, system register access, 

JTAG, queue interfaces to other processors
• Peripherals:

• Timers, interrupts, exceptions, remote debug



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.10

TIE Extensions

• Tensilica Instruction Extension (TIE) language 

used to define instruction set defintions

• State declarations

• Instruction encodings and formats

• Operation descriptions



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.11

TIE Example [Rowen]

Regfile LR 16 128 l

Operation add128

{out LR sr, in LR ss, in LR st}

{ assign sr = st + ss;}

Register file 16 x 128 wide

Operation name

Declarations

Operations



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.12

Using TIE Instructions in C

main() {
int i;
LR src1[256], src2[256], src3[256];

for (i=0; i<256; i++)
dest[i] = add128(src1[i],src2[i]);

}



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.13

Performance Improvement

• Compare Xtensa optimized vs. Xtensa out-of-the-box:

• Compare performance/MHz

• EEMBC ConsumerMark:

• Xtensa optimized: 2.02

• Xtensa out-of-the-box: 0.66

• EEMBC TeleMark:

• Xtensa optimized: 0.47

• Xtensa out-of-the-box: 0.23

• EEMBC NetMarks:

• Xtensa optimized: 0.123

• Xtensa out-of-the-box: 0.03



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.14

In-Class Exercise

• Operations for which an instruction extension 
may be useful:

• Example 1: bit reversal

• Example 2: majority function

• Example 3: class decision

• Write a C function to implement these

• How long would it take to execute?

• Design an extension instruction

• How complex of a functional unit would be 
required?



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.15

• Application-Specific Instruction Set Processor 

(ASIP)

• A stored-memory CPU whose architecture is 

tailored for a particular set of applications

• Programmability allows changes to 

implementation, use in several different 

products, high datapath utilization

• Application-specific architecture provides 

smaller silicon area, higher speed

Introduction to ASIPs



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.16

ASIP Enhancements

• Performance/cost enhancements:

� Special-purpose registers and busses to 

provide the required computations without 

unnecessary generality

� Special-purpose function units to perform long 

operations in fewer cycles

� Special-purpose control for instructions to 

execute common combinations in fewer cycles



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.17

ASIP Co-Synthesis

• Given:
� A set of characteristic applications

� Required execution profiling

• Automatically generate:
� Microarchitecture for ASIP core

� Optimizing compiler targeted to the synthesized ASIP

• Implement application using core + compiler



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.18

ASIP Design Problems

� Processor synthesis

• Choose an instruction set

• Optimize the datapath

• Extract the instruction set from the register-
transfer design

� Compiler design

• Drive compilation from a parametric description 
of the datapath and instruction set

• Bind values to registers

• Select instructions for code matched to 
parameterized architecture

• Schedule instructions



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.19

Instruction Set Selection

• [1] – Choose instruction set based on application 
program set

• Assumes that datapath is given

• Inputs: datapath architecture, execution traces of 
benchmarks, live register analysis

• Instruction selection based on N% rule: instruction 
accepted only if it improves performance by N%

[1] B. Holmer and A. Despain, “Viewing Instruction Set Design as an 
Optimization Problem”, Proceedings of the 24th Annual Symposium on 
Microarchitecture (MICRO), 1991.



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.20

Instruction Selection Process

• Code is divided into segments at random

• (Segments may contain jumps.)

• Symbolic execution turns segments into 
symbolic form: outputs as a function of 
beginning program state

• Use heuristic search to find minimal-time 
microoperation sequence for each symbolic 
state transition

• Selected instructions must cover all required 
operations

• Use N% rule to evaluate coverings



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.21

• [2] – View instruction set design as scheduling of 
microoperations (MOPs)

• Objective: (100/N)*ln(perf) + cost

• Application code is divided into basic blocks

• User weights basic blocks by importance

• Constraints on combining MOPs: instruction word 
width, data dependencies, timing constraints

Instruction Selection Process (cont.)

[2] I.-J. Huang and A. Despain, “Synthesis of Application Specific Instruction 
Sets”, IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, Vol. 14, No. 5, June 1995. 



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.22

Synthesis Procedure

• Schedules operations using simulated annealing, as 
constrained by data dependencies, timing of multi-
cycle events, and max # opcodes

• Instruction manipulation operations:

• unify/split two register operands

• make a register implicit

• make implied operands explicit

• Instruction move operations:

• swap MOPs in time

• move MOP in time

• add/delete empty time step



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.23

Another Instruction Set Definition

[3] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man, “Instruction Set 
Definition and Instruction Selection for ASIPs”, Proceedings of the 7th

International Symposium on High-Level Synthesis, May 1994. 

• [3]: semi-automatically derive instruction set

• Designer provides an initial collection of datapath

components and application program

• Application code is expanded onto given components. 

Operations are bundled into interconnected sets

• Scheduling of operations gives occupation graph

• Datapath components can be modified to improve 

occupation and datpath resource sharing



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.24

Architecture Template

• Designer specifies architecture template; 

synthesis fills in the template

• Template is specified in terms of MOPs and 

timing parameters

• Typical MOP specification:

• name, R1 <- R1 + R2; format cost; hardware 

cost; execution stages used

• Typical timing parameters:

• data path module, latency



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.25

microarchitectural

model

for (i=0; i<N; i++)

c[i] = foo(a[i],b[i]);

application

code

front end

code

generation

object code

from ASIP core synthesis

instruction

set definition

Retargetable Compilation



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.26

• Microarchitectural model is structural

• Basic elements: registers, function units, 

RAM/ROM

R1

R2

ALU

ALU

ROM

Microarchitectural Model



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.27

R1 R2

R3

Resource Scheduling

• Timmer et al: model all possible conflicts, then 
use those conflicts in scheduling

• Register transfer: path from one register to 
another

• Overall conflict graph (OCG) has edge between 
RTs if those register transfers use same 
resource in different modes. Add extra edges for 
instruction conflicts



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.28

Scheduling for Spill Minimization

• Liao et al: schedule operations to minimize 

number of register spills. Particularly important 

for accumulator architectures such as 

TMS32010

• Given DAG of basic block, find linear ordering 

of operations to minimize register spill. Solve 

by branch-and-bound, constructing partial 

schedule. Lower bounds improve efficiency:

� outputs of basic block must be spilled

� multiple fanouts must be spilled

� some multiple-input instructions require spill



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.29

+

1 -

a b

expression instruction

templates

+

op1 op2

plus

-

op1 op2

minus
*

op1 op2

plus

Template Matching



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.30

minus

plus

Tree Covering

+

1 -

a b

step 1

minus

+

1 -

a b

step 2



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.31

Dynamic Programming Approach

• Contiguous evaluation property: optimal evaluation 

of expression tree comes from evaluating subtrees

into memory, then combining results

• Three-step dynamic programming algorithm (Aho, 

Sethi, Ullman):

• Compute costs for each node, proceeding bottom-
up; cost c[i] is optimal cost of subtree assuming that 

i registers are available

• Use costs to determine which subtrees must be 

computed into memory

• Traverse tree to generate code



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.32

• Liem et al: generalize traditional pattern-matching 
code generation to handle irregular datapath
structures

• Patterns:

read/write variable

data

operation

read/write

array

control

flow

CodeSyn code generation



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.33

Patterns and Code Generation

� Build patterns for data flow, control flow

� Arrange each in DAG for search. Descendants are 

supersets of ancestor patterns. Pseudo-patterns 
organize tree by type

� Match patterns to tree

� Can use dynamic programming for simple cost functions

� Need more complex matching algorithm for other cost 

functions



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.34

Register Allocation

• Many DSPs/ASIPs have irregular register 

organizations – few/no general-purpose registers

• Divide registers into classes. Register may belong 

to more than one class. Class may be divided into 

subclasses

• Initially determine candidate register sets for each 

data flow operation

• Assign values to registers using variation of left-

edge algorithm, based on variable lifetimes



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.35

MIMOLA Approach

• Major steps in MIMOLA code generation:

• Program transformation—choose variable layout 

in memory, transform loops into conditional jumps

• Preallocation—initial assignment of hardware 

function units to operations

• Code generation—pattern matching

• Scheduling—pack microoperations into 

microinstructions



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.36

Instruction Set Extraction

• Circuit representation models datapath structure

• Every microoperation assigns an expression to a 

target storage module, creating a condition tree

• A condition tree description may be described in 

terms of intermediate modules—must expand 

each condition tree to storage nodes

• Final checks: condition refers to memory or 

register; conflicts among common subranges of 

instruction word; consistent condition



CprE 588 – Embedded Computer SystemsMar 24-26, 2009 Lect-09.37

Bootstrapped Microcode Generation

• Phase 1: generate possible control

� Generate control for each possible instruction

� Generate microcontrol ROM for available 

instructions using MIMOLA

• Phase 2: generate actual control

� Add microcontrol ROM to the microarchitectural

model

� Generate code for application, making use of 

microcontrol instructions


