CprE 588
Embedded Computer Systems

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #8 – Architectural Specialization
Outline

• Motivation
• Related Work
• Design Flow
• Basic Concepts
• Multi-Metrics
• Experimental Results
• Conclusion

Motivation

SoC Complexity ↑

Time-to-market ↓

Higher levels of abstraction

Modeling level n

Estimation

Exploration

Verification n+1

Refinement
System Level Estimation

- Fast
- Accurate ➔ Fidelity
- Different abstraction levels
- Wide range of metrics
- Wide variety of target implementation
Related Work

- Static analysis-based approaches
 - **Examples**
 - WCET (Y. Li), scheduling analysis (G. Buttazzo)
 - Memory size estimation (Y. Zhao)
 - **Limitations**
 - Time-consuming, manual interference

- Dynamic simulation-based approaches
 - **Examples**
 - Profiling tools (GNU profiler)
 - Instruction-set simulators
 - Multi-processor, multi-level co-simulation (P. Gerin)
 - Trace-based simulation (K. Lahir, P. Lieverse)
 - **Limitations**
 - A simulation is required for each design alternative
 - Target/host machine-dependent characteristics
 - Operation-related data
Design Flow

Refinement | Estimation | GUI

Profiling

Spec model

Simulation

Profiling

Spec characteristics
Design Flow (cont.)

Refinement
- Spec model
 - Simulation
 - Profiling
 - Spec characteristics
 - Design decision
 - Implt Characteristics

Profiling
- Refining
 - Back annotation

Retargeting
- Retargeting
Design Flow (cont.)

Refinement:
- Spec model
- Back annotation
- Refined model
- Refining
- Instrumenting
- Refined model
- Refinement

Estimation:
- Profiling
- Simulation/estimation
- Impl characteristics
- Impl Estimates

GUI:
- Spec characteristics
- Design decision
Explore and Trim

Exploration Space

Profiling

Implt independent simulation

One-time retargeting

Implt dependent simulation/estimation

Profiling stage

Retargeting stage

Simulation-estimation stage

Design Time
Profiling

- Instrumentation-based profiling
 - B_b: The execution counts of basic block b
 - $C_{b,i,d}$: No. of computed characteristics for item type i and data type d in the block b
 - Data type i: float, int, ..
 - Item type d: metric dependant

- $R_{i,d} = \sum_b C_{b,i,d} B_b$
- $R = \sum_i \sum_d R_{i,d}$

```c
int b, c;
if (a = 0) {
    b++;
}
else {
    b++; c++;
}
```

- $R_{++, int} = \sum_i [B_i * C_{i,++, int}]$
 - $= 1 \times 1 + 3 \times 2$
 - $= 7$

$$B_1 = 1$$
$$C_{1,++, int} = 1$$
$$B_3 = 3$$
$$C_{3,++, int} = 2$$
Retargeting

- Impl. characteristics
 - \(R_{i,d} \): Spec. characteristics
 - \(W_{i,d} \): weights of components which the entity mapped to
 - Manual
 - Simulation

- \(E = \sum_i \sum_d (R_{i,d} \times W_{i,d}) \)

- Time complexity: \(O(n) \)
Challenges

- Separating dynamic and static analysis
Challenges (cont.)

- Separating dynamic and static analysis
- Supporting complex models
 - Hierarchy
 - Recursion
Challenges (cont.)

- Separating dynamic and static analysis
- Supporting complex models
 - Hierarchy
 - Recursion
- Multi-dimensional analysis

Traditional approach
Challenges (cont.)

• Separating dynamic and static analysis
• Supporting complex models
 • Hierarchy
 • Recursion
• Multi-dimensional analysis
 • Multi-entities
 • Behavior, channel, port, variable
Challenges (cont.)

- Separating dynamic and static analysis
- Supporting complex models
 - Hierarchy
 - Recursion
- Multi-dimensional analysis
 - Multi-entities
 - Behavior, channel, port, variable
 - Multi-metrics
 - Operation, traffic, storage
 - Static, dynamic
Challenges (cont.)

- Separating dynamic and static analysis
- Supporting complex models
 - Hierarchy
 - Recursion
- Multi-dimensional analysis
 - Multi-entities
 - Behavior, channel, port, variable
 - Multi-metrics
 - Operation, traffic, storage
 - Static, dynamic
 - Multi-levels
 - Application, transaction, bus-functional
Operation Metrics

- Entities: behavior
- Item types
 - 84 basic types: ‘+’.., ‘=’.., ‘if’..
 - Special operation types: global function
- Specification characteristics

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def.</td>
<td>No. of operations in spec</td>
</tr>
<tr>
<td>Rep.</td>
<td>No. of executed Oper. during simulation</td>
</tr>
<tr>
<td>Code complexity</td>
<td>Computational complexity</td>
</tr>
</tbody>
</table>

- Mapping: behavior → PE
- Implementation characteristics

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
<td>Code Size:</td>
</tr>
<tr>
<td></td>
<td>Program memory size(SW)</td>
</tr>
<tr>
<td></td>
<td>Custom hardware controller(HW)</td>
</tr>
<tr>
<td></td>
<td>No. of executed clock cycles:</td>
</tr>
<tr>
<td></td>
<td>Execution time; power consumption</td>
</tr>
</tbody>
</table>
Traffic Metrics

- Entities: port, variable, channel, behavior
- Item types: in, out
- Specification characteristics

<table>
<thead>
<tr>
<th></th>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def.</td>
<td>No. of connected ports</td>
<td>No. of P/V/C accessed during simulation</td>
</tr>
</tbody>
</table>

- Mapping:
 - Port \rightarrow PE
 - Variable/channel \rightarrow bus
- Implementation characteristics

<table>
<thead>
<tr>
<th>Bus</th>
<th>Communication delay</th>
<th>Static</th>
<th>Sequential behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>Data preparation time</td>
<td>Dyn.</td>
<td>Parallel behaviors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application level</th>
<th>Traffic between behaviors.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus functional level</td>
<td>Fan-in/fan-out, bus capacity, traffic over pin</td>
</tr>
</tbody>
</table>
Deriving Traffic Metrics

- Profiling for the hierarchically instantiated behaviors and recursively called functions

- Different abstraction levels

 - Beh.port → Var
 - Beh.port → Chan
 - Chan in Chan
 - Beh.port → Pin
 - Chan.port ←→ Chan
Storage Metrics

- Entity: variable, behavior
- Item types: local, global
- Specification characteristics

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def.</td>
<td>No. of static variables</td>
</tr>
<tr>
<td>Rep.</td>
<td>Static memory requirement</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Mapping:
 - Variable ➔ local/global memory
- Implementation characteristics

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
<td>Static memory size</td>
</tr>
</tbody>
</table>
Exp. Result: Vocoder Profiling

Floating-point not required
Dedicated hardware multipliers

 HW acceleration

Table 1: Computational complexity of top-level Vocoder behaviors

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP_Analysis</td>
<td>377.0 MOp</td>
</tr>
<tr>
<td>Open_Loop</td>
<td>337.1 MOp</td>
</tr>
<tr>
<td>Closed_Loop</td>
<td>478.7 Mop</td>
</tr>
<tr>
<td>Codebook</td>
<td>646.4 Mop</td>
</tr>
<tr>
<td>Update</td>
<td>43.6 Mop</td>
</tr>
</tbody>
</table>

Table 2: Codebook operation mix

<table>
<thead>
<tr>
<th>Operation</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, int)</td>
<td>46.2%</td>
</tr>
<tr>
<td>(+, int)</td>
<td>33.5%</td>
</tr>
<tr>
<td>(-, int)</td>
<td>9.1%</td>
</tr>
<tr>
<td>(/ ,int)</td>
<td>7.1%</td>
</tr>
<tr>
<td>(others,int)</td>
<td>4.1%</td>
</tr>
</tbody>
</table>
8 behaviors \rightarrow 3 PEs

Total $3^8 = 6561$ design alternatives

Evaluation time: 3:15 hour
- 1 simulation (2.23s)
- 1 profiling (8.41s)
- 6561 retargeting (0.8s)
- 6561 mapping (0.97s)
Exp. Result: JPEG Encoder

- Map 4 behaviors \rightarrow 2 PEs: 2^4 design alternatives
- Accuracy: 12.5%, fidelity = 100%
Conclusion

- Dynamic profiling + static retargeting
 - Profiling: helps completely comprehend the specification
 - Retargeting: ultra-fast (linear time), enables initial, exhaustive exploration of design space.

- Multi-dimensional analysis
 - Multi-entities
 - Behavior, channel, variable, port
 - Multi-abstraction levels
 - Application level, transaction level, bus-functional level
 - Multi-metrics
 - Operation, traffic, storage
 - Static, dynamic