
CprE 588
Embedded Computer Systems

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #1 – Introduction and Overview

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.2

Digital System v. Embedded System

• Digital System: may provide service
• as a self-contained unit (e.g., desktop PC)
• as part of a larger system (e.g., digital control

system for manufacturing plant)
• Embedded System:

• part of a larger unit
• provides dedicated service to that unit

G. De Micheli and R. Gupta, “Hardware/Software Co-Design,”
Proceedings of the IEEE, 85(3), March 1997, pp. 349-365

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.3

Embedded Systems Overview

• Computing systems are everywhere
• Most of us think of “desktop” computers

• PC’s
• Laptops
• Mainframes
• Servers

• But there’s another type of computing system
• Far more common...

F. Vahid and T. Givargis, Embedded System Design: A Unified
Hardware/Software Introduction, John Wiley & Sons, 2002.

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.4

Embedded Systems Overview (cont.)

• Embedded computing systems
• Computing systems embedded

within electronic devices
• Hard to define. Nearly any computing

system other than a desktop
computer

• Billions of units produced yearly,
versus millions of desktop units

• Perhaps 100s per household and per
automobile

Computers are in here...

and here...

and even here...

Lots more of these,
though they cost a lot

less each.

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.5

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.6

A “Short List” of Embedded Systems

And the list goes on and on

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems
Battery chargers
Camcorders
Cell phones
Cell-phone base stations
Cordless phones
Cruise control
Curbside check-in systems
Digital cameras
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Factory control
Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Modems
MPEG decoders
Network cards
Network switches/routers
On-board navigation
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones
Scanners
Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones
Washers and dryers

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.7

Examples of Embedded Systems

• PC having dedicated software programs and
appropriate interfaces to a manufacturing
assembly line

• Microprocessor dedicated to a control function
in a computer, e.g., keyboard/mouse input
control

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.8

Outline

• Embedded systems overview
• Design challenge – optimizing design metrics
• Technologies

• Processor technologies
• Design technologies

• Generic codesign methodology

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.9

Some Application Domains

• CONSUMER PRODUCTS
• Appliances, Games, A/V,

Intelligent home devices
• TRANSPORTATION

• Autos, Trains, Ships,
Aircrafts

• PLANT CONTROL
• Manufacturing, Chemical,

Power Generation
• NETWORKS

• Telecommunication,
Defense

• Local
• e.g., appliance

• Locally distributed
• e.g., aircraft

control over a
LAN

• Geographically
distributed
• e.g., telephone

network

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.10

Parts of an Embedded System

HARDWIRED UNIT
• Application-specific logic
• Timers
• A/D and D/A conversion

MEMORY PROCESSOR

SE
N

SO
R

S

A
C

TU
A

T O
R

S

EMBEDDED SYSTEM

ENVIRONMENT

USER

I/O

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.11

Parts of an Embedded System (cont.)

• Actuators - mechanical components (e.g.,
valve)

• Sensors - input data (e.g., accelerometer for
airbag control)

• Data conversion, storage, processing
• Decision-making

• Range of implementation options
• Single-chip implementation: system on a chip

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.12

Functions and Design Criteria

• Monitoring and control functions for the overall
system (e.g., vehicle control)

• Information-processing functions (e.g.,
telecommunication system -- data
compression, routing, etc.)

• Criteria: performance, reliability, availability,
safety, usability, etc.

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.13

Some Common Characteristics

• Single-functioned
• Executes a single program, repeatedly

• Tightly-constrained
• Low cost, low power, small, fast, etc.

• Reactive and real-time
• Continually reacts to changes in the system’s

environment
• Must compute certain results in real-time

without delay

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.14

An Embedded System Example

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

• Single-functioned -- always a digital camera
• Tightly-constrained -- Low cost, low power, small, fast
• Reactive and real-time -- only to a small extent

• Digital Camera

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.15

Design Challenge – Optimization

• Obvious design goal:
• Construct an implementation with desired

functionality
• Key design challenge:

• Simultaneously optimize numerous design
metrics

• Design metric
• A measurable feature of a system’s

implementation
• Optimizing design metrics is a key challenge

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.16

Design Challenge – Optimization (cont.)

• Common metrics
• Unit cost: the monetary cost of manufacturing each

copy of the system, excluding NRE cost
• NRE cost (Non-Recurring Engineering

cost): The one-time monetary cost of designing the
system

• Size: the physical space required by the system
• Performance: the execution time or throughput of

the system
• Power: the amount of power consumed by the

system
• Flexibility: the ability to change the functionality of

the system without incurring heavy NRE cost

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.17

Design Challenge – Optimization (cont.)

• Common metrics (continued)
• Time-to-prototype: the time needed to build a

working version of the system

• Time-to-market: the time required to develop a
system to the point that it can be released and sold to
customers

• Maintainability: the ability to modify the system
after its initial release

• Correctness, safety, many more

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.18

Design Metric Competition

• Expertise with both
software and hardware
is needed to optimize
design metrics
• Not just a hardware or

software expert, as is
common

• A designer must be
comfortable with
various technologies

SizePerformance

Power

NRE cost

Microcontroller

CCD preprocessor Pixel coprocessorA2D D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

Hardware

Software

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.19

Time-to Market

• Time required to develop
a product to the point it
can be sold to
customers

• Market window
• Period during which the

product would have
highest sales

• Average time-to-market
constraint is about 8
months

• Delays can be costly

R
ev

en
ue

s (
$)

Time (months)

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.20

Delayed Market Entry
• Simplified revenue

model
• Product life = 2W, peak

at W
• Time of market entry

defines a triangle,
representing market
penetration

• Triangle area equals
revenue

• Loss
• The difference between

the on-time and
delayed triangle areas

On-time Delayed
entry entry

Peak revenue

Peak revenue from
delayed entry

Market
rise Market

fall

W 2W
Time

D

On-time

DelayedR
ev

en
ue

s (
$)

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.21

NRE and Unit Cost Metrics

• Costs:
• Unit cost: the monetary cost of manufacturing each copy of the

system, excluding NRE cost
• NRE cost (Non-Recurring Engineering cost): the one-time

monetary cost of designing the system
• total cost = NRE cost + unit cost * # of units
• per-product cost = total cost / # of units

= (NRE cost / # of units) + unit cost

• Example
– NRE=$2000, unit=$100
– For 10 units

– total cost = $2000 + 10*$100 = $3000
– per-product cost = $2000/10 + $100 = $300

Amortizing NRE cost over the units results in an
additional $200 per unit

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.22

NRE and unit cost metrics

$0

$40,000

$80,000

$120,000

$160,000

$200,000

0 800 1600 2400

A
B
C

$0

$40

$80

$120

$160

$200

0 800 1600 2400

Number of units (volume)

A
B
C

Number of units (volume)

to
ta

l c
os

t (
x1

00
0)

p
er

 p
ro

d
uc

t c
os

t

• Compare technologies by costs -- best depends on
quantity
• Technology A: NRE=$2,000, unit=$100
• Technology B: NRE=$30,000, unit=$30
• Technology C: NRE=$100,000, unit=$2

• But, must also consider time-to-market

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.23

The Performance Design Metric

• Widely-used measure of system, widely-abused
• Clock frequency, instructions per second – not good measures
• Digital camera example – a user cares about how fast it processes

images, not clock speed or instructions per second
• Latency (response time)

• Time between task start and end
• e.g., Camera’s A and B process images in 0.25 seconds

• Throughput
• Tasks per second, e.g. Camera A processes 4 images per second
• Throughput can be more than latency seems to imply due to

concurrency, e.g. Camera B may process 8 images per second (by
capturing a new image while previous image is being stored).

• Speedup of B over S = B’s performance / A’s
performance
• Throughput speedup = 8/4 = 2

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.24

Three Key Technologies

• Technology
• A manner of accomplishing a task, especially

using technical processes, methods, or
knowledge

• Three key technologies for embedded systems
• Processor technology (CprE 581, 583, 681)
• IC technology (EE 501, 507, 511)
• Design technology (CprE 588)

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.25

Processor Technology

• The architecture of the computation engine used to
implement a system’s desired functionality

• Processor does not have to be programmable
• “Processor” not equal to general-purpose processor

Application-specific

Registers

Custom
ALU

DatapathController

Program memory

Assembly code
for:

total = 0
for i =1 to …

Control logic
and State
register

Data
memory

IR PC

Single-purpose (“hardware”)

DatapathController

Control
logic

State
register

Data
memory

index

total

+

IR PC

Register
file

General
ALU

DatapathController

Program
memory

Assembly code
for:

total = 0
for i =1 to …

Control
logic and

State register

Data
memory

General-purpose (“software”)

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.26

Processor Technology (cont.)

• Processors vary in their customization for the
problem at hand

total = 0
for i = 1 to N loop

total += M[i]
end loop

General-purpose
processor

Single-purpose
processor

Application-specific
processor

Desired
functionality

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.27

General-Purpose Processors

• Programmable device used in a
variety of applications
• Also known as “microprocessor”

• Features
• Program memory
• General datapath with large

register file and general ALU
• User benefits

• Low time-to-market and NRE
costs

• High flexibility
• “Intel/AMD” the most well-known,

but there are hundreds of others

IR PC

Register
file

General
ALU

DatapathController

Program
memory

Assembly code
for:

total = 0
for i =1 to …

Control
logic and

State
register

Data
memory

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.28

Application-Specific Processors

• Programmable processor optimized
for a particular class of applications
having common characteristics
• Compromise between general-

purpose and single-purpose
processors

• Features
• Program memory
• Optimized datapath
• Special functional units

• Benefits
• Some flexibility, good performance,

size and power

IR PC

Registers

Custom
ALU

DatapathController

Program
memory

Assembly code
for:

total = 0
for i =1 to …

Control
logic and

State
register

Data
memory

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.29

Independence of Processor Technologies

• Basic tradeoff
• General vs. custom
• With respect to processor technology or IC technology
• The two technologies are independent

General-
purpose

processor
ASIP

Single-
purpose

processor

Semi-customPLD Full-custom

General,
providing improved:

Customized,
providing improved:

Power efficiency
Performance

Size
Cost (high volume)

Flexibility
Maintainability

NRE cost
Time- to-prototype

Time-to-market
Cost (low volume)

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.30

Design Technology

• The manner in which we convert our concept of
desired system functionality into an
implementation

Libraries/IP: Incorporates pre-
designed implementation from
lower abstraction level into
higher level.

System
specification

Behavioral
specification

RT
specification

Logic
specification

To final implementation

Compilation/Synthesis:
Automates exploration and
insertion of implementation
details for lower level.

Test/Verification: Ensures correct
functionality at each level, thus
reducing costly iterations
between levels.

Compilation/
Synthesis

Libraries/
IP

Test/
Verification

System
synthesis

Behavior
synthesis

RT
synthesis

Logic
synthesis

Hw/Sw/
OS

Cores

RT
components

Gates/
Cells

Model simulat./
checkers

Hw-Sw
cosimulators

HDL simulators

Gate
simulators

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.31

Design Productivity Exponential Increase

• Exponential increase over the past few
decades

100,000

10,000

1,000

100

10

1

0.1

0.01

19
83

19
81

19
87

19
89

19
91

19
93

19
85

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

Pr
od

uc
tiv

ity
(K

) T
ra

ns
./S

ta
ff

 –
M

o.

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.32

Design Productivity Gap

• While designer productivity has grown at an
impressive rate over the past decades, the rate of
improvement has not kept pace with chip capacity

10,000

1,000

100

10

1

0.1

0.01

0.001

Logic transistors
per chip

(in millions)

100,000

10,000

1000

100

10

1

0.1

0.01

Productivity
(K) Trans./Staff-Mo.

19
81

19
8 3

19
8 5

19
8 7

19
8 9

19
9 1

19
9 3

19
9 5

19
9 7

19
9 9

20
0 1

20
0 3

20
0 5

20
0 7

20
0 9

IC capacity

productivity

Gap

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.33

Design Productivity Gap (cont.)

• 1981 leading edge chip required 100 designer months
• 10,000 transistors / 100 transistors/month

• 2002 leading edge chip requires 30,000 designer
months
• 150,000,000 / 5000 transistors/month

• Designer cost increase from $1M to $300M
10,000
1,000

100
10
1

0.1

0.01
0.001

Logic transistors
per chip

(in millions)

100,000
10,000
1000
100
10
1

0.1
0.01

Productivity
(K) Trans./Staff-Mo.

19
81

19
8 3

19
8 5

19
8 7

19
8 9

19
9 1

19
9 3

19
9 5

19
9 7

19
9 9

20
0 1

20
0 3

20
0 5

20
0 7

20
0 9

IC capacity

productivity

Gap

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.34

The Mythical Man-Month

• The situation is even worse than the productivity gap indicates
• In theory, adding designers to team reduces project completion time
• In reality, productivity per designer decreases due to complexities of team

management and communication
• In the software community, known as “the mythical man-month” (Brooks

1975)
• At some point, can actually lengthen project completion time! (“Too many

cooks”)

10 20 30 400

10000
20000
30000
40000
50000
60000

43

24

19
16 15 16

18

23

Team

Individual

Months until completion

Number of designers

• 1M transistors, 1
designer=5000
trans/month

• Each additional designer
reduces for 100
trans/month

• So 2 designers produce
4900 trans/month each

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.35

Co-Design Methodology

• Co-design
• Design of systems involving both hardware and

software components
• Starts with formal, abstract specification; series

of refinements maps to target architecture:
allocation, partitioning, scheduling,
communication synthesis

• Means to manage large-scale, complex
systems

R. Domer, D. Gajski, J. Zhu, “Specification and Design of
Embedded Systems,” it+ti magazine, Oldenbourg Verlag
(Germany), No. 3, June 1998.

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.36

Complex Systems

• SOC (System-On-a-Chip)
• Millions of gates on a chip

• Decreasing processing technologies (deep sub-
micron, 0.25 µm and below): decreasing geometry
size, increasing chip density

• Problems
• Electronic design automation (EDA) tools
• Time-to-market

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.37

Complex Systems (cont.)

• Abstraction
• Reduce the number of objects managed by a

design task, e.g., by grouping objects using
hierarchy

• Computer-aided design (CAD) example
• Logic level: transistors grouped into gates
• Register transfer level (RTL): gates grouped into

registers, ALUs, and other RTL components

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.38

Complex Systems (cont.)

• Abstraction
• Co-design example

• System level: processors (off-the-shelf or application-
specific), memories, application-specific integrated
circuits (ASICs), I/O interfaces, etc.

• Integration of intellectual property (IP) -
representations of products of the mind

• Reuse of formerly designed circuits as core cells

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.39

Generic Co-Design Methodology
Synthesis
• Specification
• Allocation
• Partitioning
• Scheduling

• Communication
synthesis

Implementation
• Software synthesis
• Hardware synthesis
• Interface synthesis

model

task
Analysis
&
Validation

Note: design
models may
be captured
in the same
language

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.40

System Specification

• Describes the functionality of the system
without specifying the implementation

• Describes non-functional properties such as
performance, power, cost, and other quality
metrics or design constraints

• May be executable to allow dynamic
verification

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.41

System Specification Example

shared sync

readwrite

sync

B0: top
behavior
• integer
variable

• boolean
variable

child
behavior

Graphical
representation:
• Hierarchy
• Concurrency
• Transitions

between
behaviors

Behaviors
• Sequential: B1, B2, B3
• Concurrent: B4, B5
• Atomic: B1
• Composite: B2

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.42

System Specification Example (cont.)

shared sync

readwrite

sync

Producer-
consumer
functionality
• B6 computes a
value

• B4 consumes the
value

• Synchronization
is needed: B4
waits until B6
produces the value

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.43

System Specification Example

• Atomic behaviors
B1()
{

stmt;
...

}

B3()
{

stmt;
...

}

B7()
{

stmt;
...

}

B6()
{

int local;
…
shared = local + 1;
signal(sync);

}

B4()
{

int local;
wait(sync);
local = shared - 1;
...

}

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.44

Allocation

• Selects the type and number of components
from a library and determines their
interconnection

• Implements functionality so as to
• Satisfy constraints
• Minimize objective cost function

• Result may be customization of a generic
target architecture

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.45

Allocation Example

Proc1 LMem1 LMem2ASIC1GMem1

IF1 IF2 IF3

system bus

Arbiter1

bus1 bus2 bus3

PE1 PE2

PE: Processing Element
LMem: Local Memory
GMem: Global Memory
IF: Interface

Target Architecture Model

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.46

Partitioning

• Defines the mapping between the set of
behaviors in the specification and the set of
allocated components in the architecture
• Satisfy constraints
• Minimize costs

• Not yet near implementation
• Multiple behaviors in a single PE (scheduling)
• Interactions between PEs (communication)

• Design model
• additional level of hierarchy
• functional equivalence with specification

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.47

Partitioning Example

System model after partitioning

shared sync B1_start B1_done B4_start B4_done

B1_start

B1_done

B4_start

B4_done

PE0 PE1

Top

B1_ctrl

B4_ctrl

controlling
behavior

Child (B1)
assigned to
different PE
than
parent (B0)

synchronization variables

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.48

Partitioning Example (cont.)
• Atomic behaviors
B1()
{

wait(B1_start);
…
signal(B1_done);

}

B3()
{

stmt;
...

}

B7()
{

stmt;
...

}

B6()
{

int local;
…
shared = local +

1;
signal(sync);

}

B4()
{

int local;
wait(B4_start);
wait(sync);
local = shared - 1;
…
signal(B4_done);

}

B1_ctrl()
{

signal(B1_start);
wait(B1_done);

}

B4_ctrl()
{

signal(B4_start);
wait(B4_done);

}

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.49

Scheduling

• Given a set of behaviors and optionally a set of
performance constraints, determines a total
order in time for invoking behaviors running on
the same PE

• Maintains the partial order imposed by
dependencies in the functionality

• Minimizes synchronization overhead between
PEs and context-switching overhead within
each PE

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.50

Scheduling

• Ordering information
• Known at compile time

• Static scheduling
• Higher inter-PE synchronization overhead if

inaccurate performance estimation, i.e., longer wait
times and lower CPU utilization

• Unknown until runtime (e.g., data-, event-
dependent)

• Dynamic scheduling
• Higher context-switching overhead (running task

blocked, new task scheduled)

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.51

Scheduling Example
shared sync B6_start B3_start

B6_start

sync

B3_start

System model after static scheduling

Scheduling
decision:
• Sequential
ordering of
behaviors
on PE0, PE1

• Synchronization
to maintain
partial order
across Pes

• Optimization - no
control behaviors

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.52

Scheduling Example (cont.)

• Atomic behaviors
B1()
{

…
signal(B6_start);

}

B3()
{

wait(B3_start);
...

}

B7()
{

stmt;
...

}

B6()
{

int local;
wait(B6_start);
…
shared = local + 1;
signal(sync);

}

B4()
{

int local;
wait(sync);
local = shared - 1;
…
signal(B3_start);

}

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.53

Communication Synthesis

• Implements the shared-variable accesses
between concurrent behaviors using an inter-
PE communication scheme
• Shared memory: read or write to a shared-

memory address
• Local PE memory: send or receive message-

passing calls
• Inserts interfaces to communication channels

(local or system buses)

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.54

Communication example

lbus0 lbus1 lbus2 sbus

IF0 IF1 IF2

B6

B7

B3

B1

B4

PE0 PE1

Shared_m
em

A
rbiter

System model after communication synthesis

Synthesis
decision:
• Put all
global
variables
into
Shared_mem

• New global
variables in Top

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.55

Communication Example (cont.)

• Atomic behaviors
B1()
{

…
signal

(*B6_start_addr);
}

B3()
{

wait(*B3_start_addr);
...

}

B7()
{

stmt;
...

}

B6()
{

int local;
wait (*B6_start_addr);
…
*shared_addr = local + 1;
signal(*sync_addr);

}

B4()
{

int local;
wait (*sync_addr);
local = *shared_addr - 1;
…
signal (*B3_start_addr);

}

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.56

Communication Example (cont.)

• Atomic behaviors

IF0()
{

stmt;
...

}

Shared_mem()
{

int shared;
bool sync;
bool B3_start;
bool B6_start;

}

Arbiter()
{

stmt;
...

}

IF1()
{

stmt;
...

}

IF2()
{

stmt;
...

}

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.57

Analysis and Validation

• Functional validation of design models at each
step using simulation or formal verification

• Analysis to estimate quality metrics and make
design decisions

• Tools
• Static analyzer - program, ASIC metrics
• Simulator - functional, cycle-based, discrete-

event
• Debugger - access to state of behaviors
• Profiler - dynamic execution information
• Visualizer - graphical displays of state, data

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.58

Backend

• Implementations
• Processor: compiler translates model into

machine code
• ASIC: high-level synthesis tool translates model

into netlist of RTL components
• Interface

• Special type of ASIC that links a PE with other
components

• Implements the behavior of a communication
channel

CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.59

Summary

• Embedded systems are everywhere
• Key challenge: optimization of design metrics

• Design metrics compete with one another
• A unified view of hardware and software is necessary

to improve productivity
• Key technologies

• Processor: general-purpose, application-specific, single-
purpose

• Design: compilation/synthesis, libraries/IP,
test/verification

