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Digital System v. Embedded System

• Digital System: may provide service 
• as a self-contained unit (e.g., desktop PC)
• as part of a larger system (e.g., digital control 

system for manufacturing plant)
• Embedded System: 

• part of a larger unit
• provides dedicated service to that unit

G. De Micheli and R. Gupta, “Hardware/Software Co-Design,”
Proceedings of the  IEEE, 85(3), March 1997,  pp. 349-365
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Embedded Systems Overview

• Computing systems are everywhere
• Most of us think of “desktop” computers

• PC’s
• Laptops
• Mainframes
• Servers

• But there’s another type of computing system
• Far more common...

F. Vahid and T. Givargis, Embedded System Design: A Unified 
Hardware/Software Introduction, John Wiley & Sons, 2002. 
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Embedded Systems Overview (cont.)

• Embedded computing systems
• Computing systems embedded 

within electronic devices
• Hard to define. Nearly any computing 

system other than a desktop 
computer

• Billions of units produced yearly, 
versus millions of desktop units

• Perhaps 100s per household and per 
automobile

Computers are in here...

and here...

and even here...

Lots more of these, 
though they cost a lot 

less each.



CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.5



CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.6

A “Short List” of Embedded Systems

And the list goes on and on

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems
Battery chargers
Camcorders
Cell phones
Cell-phone base stations
Cordless phones
Cruise control
Curbside check-in systems
Digital cameras
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Factory control
Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Modems
MPEG decoders
Network cards
Network switches/routers
On-board navigation
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones
Scanners
Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones
Washers and dryers
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Examples of Embedded Systems

• PC having dedicated software programs and 
appropriate interfaces to a manufacturing 
assembly line

• Microprocessor dedicated to a control function 
in a computer, e.g., keyboard/mouse input 
control
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Outline

• Embedded systems overview
• Design challenge – optimizing design metrics
• Technologies

• Processor technologies
• Design technologies

• Generic codesign methodology
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Some Application Domains

• CONSUMER PRODUCTS
• Appliances, Games, A/V, 

Intelligent home devices
• TRANSPORTATION

• Autos, Trains, Ships, 
Aircrafts

• PLANT CONTROL
• Manufacturing, Chemical, 

Power Generation
• NETWORKS

• Telecommunication, 
Defense

• Local
• e.g., appliance

• Locally distributed
• e.g., aircraft 

control over a 
LAN

• Geographically 
distributed
• e.g., telephone 

network
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Parts of an Embedded System

HARDWIRED UNIT
• Application-specific logic
• Timers
• A/D and D/A conversion
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Parts of an Embedded System (cont.)

• Actuators - mechanical components (e.g., 
valve)

• Sensors - input data (e.g., accelerometer for 
airbag control)

• Data conversion, storage, processing
• Decision-making

• Range of implementation options
• Single-chip implementation: system on a chip
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Functions and Design Criteria

• Monitoring and control functions for the overall 
system (e.g., vehicle control)

• Information-processing functions (e.g., 
telecommunication system -- data 
compression, routing, etc.)

• Criteria: performance, reliability, availability, 
safety, usability, etc.
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Some Common Characteristics

• Single-functioned
• Executes a single program, repeatedly

• Tightly-constrained
• Low cost, low power, small, fast, etc.

• Reactive and real-time
• Continually reacts to changes in the system’s 

environment
• Must compute certain results in real-time 

without delay
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An Embedded System Example

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

• Single-functioned -- always a digital camera
• Tightly-constrained -- Low cost, low power, small, fast
• Reactive and real-time -- only to a small extent

• Digital Camera
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Design Challenge – Optimization

• Obvious design goal:
• Construct an implementation with desired 

functionality
• Key design challenge:

• Simultaneously optimize numerous design 
metrics

• Design metric
• A measurable feature of a system’s 

implementation
• Optimizing design metrics is a key challenge
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Design Challenge – Optimization (cont.)

• Common metrics
• Unit cost: the monetary cost of manufacturing each 

copy of the system, excluding NRE cost
• NRE cost (Non-Recurring Engineering 

cost): The one-time monetary cost of designing the 
system

• Size: the physical space required by the system
• Performance: the execution time or throughput of 

the system
• Power: the amount of power consumed by the 

system
• Flexibility: the ability to change the functionality of 

the system without incurring heavy NRE cost
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Design Challenge – Optimization (cont.)

• Common metrics (continued)
• Time-to-prototype: the time needed to build a 

working version of the system

• Time-to-market: the time required to develop a 
system to the point that it can be released and sold to 
customers

• Maintainability: the ability to modify the system 
after its initial release

• Correctness, safety, many more
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Design Metric Competition

• Expertise with both 
software and hardware
is needed to optimize 
design metrics
• Not just a hardware or 

software expert, as is 
common

• A designer must be 
comfortable with 
various technologies

SizePerformance

Power

NRE cost

Microcontroller

CCD preprocessor Pixel coprocessorA2D D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

Hardware

Software
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Time-to Market

• Time required to develop 
a product to the point it 
can be sold to 
customers

• Market window
• Period during which the 

product would have 
highest sales

• Average time-to-market 
constraint is about 8 
months

• Delays can be costly
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Delayed Market Entry
• Simplified revenue 

model
• Product life = 2W, peak 

at W
• Time of market entry 

defines a triangle, 
representing market 
penetration

• Triangle area equals 
revenue

• Loss 
• The difference between 

the on-time and 
delayed triangle areas

On-time      Delayed
entry           entry

Peak revenue

Peak revenue from 
delayed entry

Market 
rise Market 

fall
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NRE and Unit Cost Metrics

• Costs:
• Unit cost: the monetary cost of manufacturing each copy of the 

system, excluding NRE cost
• NRE cost (Non-Recurring Engineering cost): the one-time 

monetary cost of designing the system
• total cost = NRE cost  +    unit cost * # of units
• per-product cost  = total cost  /   # of units   

=  (NRE cost / # of units)  + unit cost

• Example
– NRE=$2000, unit=$100
– For 10 units

– total cost = $2000 + 10*$100 = $3000
– per-product cost = $2000/10 + $100 = $300

Amortizing NRE cost over the units results in an 
additional $200 per unit
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NRE and unit cost metrics
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• Compare technologies by costs -- best depends on 
quantity
• Technology A:  NRE=$2,000,   unit=$100
• Technology B:  NRE=$30,000,  unit=$30
• Technology C:  NRE=$100,000, unit=$2

• But, must also consider time-to-market
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The Performance Design Metric

• Widely-used measure of system, widely-abused
• Clock frequency, instructions per second – not good measures
• Digital camera example – a user cares about how fast it processes 

images, not clock speed or instructions per second
• Latency (response time)

• Time between task start and end
• e.g., Camera’s A and B process images in 0.25 seconds

• Throughput
• Tasks per second, e.g. Camera A processes 4 images per second
• Throughput can be more than latency seems to imply due to 

concurrency, e.g. Camera B may process 8 images per second (by 
capturing a new image while previous image is being stored).

• Speedup of B over S = B’s performance / A’s 
performance
• Throughput speedup = 8/4 = 2
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Three Key Technologies

• Technology
• A manner of accomplishing a task, especially 

using technical processes, methods, or 
knowledge

• Three key technologies for embedded systems
• Processor technology (CprE 581, 583, 681)
• IC technology (EE 501, 507, 511)
• Design technology (CprE 588)
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Processor Technology

• The architecture of the computation engine used to 
implement a system’s desired functionality

• Processor does not have to be programmable
• “Processor” not equal to general-purpose processor

Application-specific

Registers

Custom
ALU

DatapathController

Program memory

Assembly code 
for:

total = 0
for i =1 to …

Control logic 
and State 
register

Data
memory

IR PC

Single-purpose (“hardware”)

DatapathController

Control
logic

State 
register

Data
memory

index

total

+

IR PC

Register
file

General
ALU

DatapathController

Program 
memory

Assembly code 
for:

total = 0
for i =1 to …

Control 
logic and 

State register

Data
memory

General-purpose (“software”)
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Processor Technology (cont.)

• Processors vary in their customization for the 
problem at hand

total = 0
for i = 1 to N  loop

total += M[i]
end loop

General-purpose 
processor

Single-purpose 
processor

Application-specific 
processor

Desired 
functionality
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General-Purpose Processors

• Programmable device used in a 
variety of applications
• Also known as “microprocessor”

• Features
• Program memory
• General datapath with large 

register file and general ALU
• User benefits

• Low time-to-market and NRE 
costs

• High flexibility
• “Intel/AMD” the most well-known, 

but there are hundreds of others

IR PC

Register
file

General
ALU

DatapathController

Program 
memory

Assembly code 
for:

total = 0
for i =1 to …

Control 
logic and 

State 
register

Data
memory
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Application-Specific Processors

• Programmable processor optimized 
for a particular class of applications 
having common characteristics
• Compromise between general-

purpose and single-purpose 
processors

• Features
• Program memory
• Optimized datapath
• Special functional units

• Benefits
• Some flexibility, good performance, 

size and power

IR PC

Registers

Custom
ALU

DatapathController

Program 
memory

Assembly code 
for:

total = 0
for i =1 to …

Control 
logic and 

State 
register

Data
memory
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Independence of Processor Technologies

• Basic tradeoff
• General vs. custom
• With respect to processor technology or IC technology
• The two technologies are independent

General-
purpose

processor
ASIP

Single-
purpose

processor

Semi-customPLD Full-custom

General,
providing improved:

Customized, 
providing improved:

Power efficiency
Performance

Size
Cost (high volume)

Flexibility
Maintainability

NRE cost
Time- to-prototype

Time-to-market
Cost (low volume)
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Design Technology

• The manner in which we convert our concept of 
desired system functionality into an 
implementation

Libraries/IP: Incorporates pre-
designed implementation from 
lower abstraction level into 
higher level.

System
specification

Behavioral
specification

RT
specification

Logic
specification

To final implementation

Compilation/Synthesis:
Automates exploration and 
insertion of implementation 
details for lower level.

Test/Verification: Ensures correct 
functionality at each level, thus 
reducing costly iterations 
between levels.

Compilation/
Synthesis

Libraries/
IP

Test/
Verification

System
synthesis

Behavior
synthesis

RT
synthesis

Logic
synthesis

Hw/Sw/
OS

Cores

RT
components

Gates/
Cells

Model simulat./
checkers

Hw-Sw
cosimulators

HDL simulators

Gate
simulators
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Design Productivity Exponential Increase

• Exponential increase over the past few 
decades
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Design Productivity Gap

• While designer productivity has grown at an 
impressive rate over the past decades, the rate of 
improvement has not kept pace with chip capacity
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Design Productivity Gap (cont.)

• 1981 leading edge chip required 100 designer months
• 10,000 transistors  /  100 transistors/month

• 2002 leading edge chip requires 30,000 designer 
months
• 150,000,000  /  5000 transistors/month

• Designer cost increase from $1M to $300M
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The Mythical Man-Month

• The situation is even worse than the productivity gap indicates
• In theory, adding designers to team reduces project completion time
• In reality, productivity per designer decreases due to complexities of team 

management and communication 
• In the software community, known as “the mythical man-month” (Brooks 

1975)
• At some point, can actually lengthen project completion time! (“Too many 

cooks”)
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43

24

19
16 15 16
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23

Team

Individual

Months until completion

Number of designers

• 1M transistors, 1 
designer=5000 
trans/month

• Each additional designer 
reduces for 100 
trans/month

• So 2 designers produce 
4900 trans/month each
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Co-Design Methodology

• Co-design
• Design of systems involving both hardware and 

software components
• Starts with formal, abstract specification; series 

of refinements maps to target architecture: 
allocation, partitioning, scheduling, 
communication synthesis

• Means to manage large-scale, complex 
systems

R. Domer, D. Gajski, J. Zhu, “Specification and Design of 
Embedded Systems,” it+ti magazine, Oldenbourg Verlag
(Germany), No. 3, June 1998.
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Complex Systems

• SOC (System-On-a-Chip)
• Millions of gates on a chip

• Decreasing processing technologies (deep sub-
micron, 0.25 µm and below): decreasing geometry 
size, increasing chip density

• Problems
• Electronic design automation (EDA) tools
• Time-to-market
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Complex Systems (cont.)

• Abstraction
• Reduce the number of objects managed by a 

design task, e.g., by grouping objects using 
hierarchy

• Computer-aided design (CAD) example
• Logic level: transistors grouped into gates
• Register transfer level (RTL): gates grouped into 

registers, ALUs, and other RTL components
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Complex Systems (cont.)

• Abstraction
• Co-design example

• System level: processors (off-the-shelf or application-
specific), memories, application-specific integrated 
circuits (ASICs), I/O interfaces, etc.

• Integration of intellectual property (IP) -
representations of products of the mind

• Reuse of formerly designed circuits as core cells
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Generic Co-Design Methodology
Synthesis
• Specification
• Allocation
• Partitioning
• Scheduling

• Communication
synthesis

Implementation
• Software synthesis
• Hardware synthesis
• Interface synthesis

model

task
Analysis 
& 
Validation

Note: design
models may
be captured
in the same
language
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System Specification

• Describes the functionality of the system 
without specifying the implementation

• Describes non-functional properties such as 
performance, power, cost, and other quality 
metrics or design constraints

• May be executable to allow dynamic 
verification
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System Specification Example

shared sync

readwrite

sync

B0: top 
behavior
• integer
variable

• boolean
variable

child 
behavior

Graphical
representation:
• Hierarchy
• Concurrency
• Transitions 

between
behaviors

Behaviors
• Sequential: B1, B2, B3
• Concurrent: B4, B5
• Atomic: B1
• Composite: B2
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System Specification Example (cont.)

shared sync

readwrite

sync

Producer-
consumer
functionality
• B6 computes a
value

• B4 consumes the
value

• Synchronization
is needed: B4
waits until B6
produces the value
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System Specification Example

• Atomic behaviors
B1( )
{

stmt;
...

}

B3( )
{

stmt;
...

}

B7( )
{

stmt;
...

}

B6( )
{

int local;
…
shared = local + 1;
signal(sync);

}

B4( )
{

int local;
wait(sync);
local = shared - 1;
...

}
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Allocation

• Selects the type and number of components 
from a library and determines their 
interconnection

• Implements functionality so as to
• Satisfy constraints
• Minimize objective cost function

• Result may be customization of a generic 
target architecture
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Allocation Example

Proc1 LMem1 LMem2ASIC1GMem1

IF1 IF2 IF3

system bus

Arbiter1

bus1 bus2 bus3

PE1 PE2

PE: Processing Element
LMem: Local Memory
GMem: Global Memory
IF: Interface

Target Architecture Model
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Partitioning

• Defines the mapping between the set of 
behaviors in the specification and the set of 
allocated components in the architecture
• Satisfy constraints
• Minimize costs

• Not yet near implementation
• Multiple behaviors in a single PE (scheduling)
• Interactions between PEs (communication) 

• Design model
• additional level of hierarchy
• functional equivalence with specification
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Partitioning Example

System model after partitioning

shared       sync         B1_start      B1_done     B4_start    B4_done 

B1_start

B1_done

B4_start

B4_done

PE0 PE1

Top

B1_ctrl

B4_ctrl

controlling
behavior

Child (B1)
assigned to
different PE
than
parent (B0)

synchronization variables
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Partitioning Example (cont.)
• Atomic behaviors
B1( )
{

wait(B1_start);
…
signal(B1_done);

}

B3( )
{

stmt;
...

}

B7( )
{

stmt;
...

}

B6( )
{

int local;
…
shared = local + 

1;
signal(sync);

}

B4( )
{

int local;
wait(B4_start);
wait(sync);
local = shared - 1;
…
signal(B4_done);

}

B1_ctrl( )
{

signal(B1_start);
wait(B1_done);

}

B4_ctrl( )
{

signal(B4_start);
wait(B4_done);

}
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Scheduling

• Given a set of behaviors and optionally a set of 
performance constraints, determines a total 
order in time for invoking behaviors running on 
the same PE

• Maintains the partial order imposed by 
dependencies in the functionality

• Minimizes synchronization overhead between 
PEs and context-switching overhead within 
each PE
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Scheduling

• Ordering information
• Known at compile time

• Static scheduling
• Higher inter-PE synchronization overhead if 

inaccurate performance estimation, i.e., longer wait 
times and lower CPU utilization

• Unknown until runtime (e.g., data-, event-
dependent)

• Dynamic scheduling
• Higher context-switching overhead (running task 

blocked, new task scheduled)
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Scheduling Example
shared       sync               B6_start        B3_start

B6_start

sync

B3_start

System model after static scheduling

Scheduling
decision:
• Sequential
ordering of
behaviors
on PE0, PE1

• Synchronization
to maintain
partial order
across Pes

• Optimization - no
control behaviors
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Scheduling Example (cont.)

• Atomic behaviors
B1( )
{

…
signal(B6_start);

}

B3( )
{

wait(B3_start);
...

}

B7( )
{

stmt;
...

}

B6( )
{

int local;
wait(B6_start);
…
shared = local + 1;
signal(sync);

}

B4( )
{

int local;
wait(sync);
local = shared - 1;
…
signal(B3_start);

}
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Communication Synthesis

• Implements the shared-variable accesses 
between concurrent behaviors using an inter-
PE communication scheme
• Shared memory: read or write to a shared-

memory address
• Local PE memory: send or receive message-

passing calls
• Inserts interfaces to communication channels 

(local or system buses)
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Communication example

lbus0           lbus1         lbus2        sbus

IF0 IF1 IF2

B6

B7

B3

B1

B4

PE0 PE1

Shared_m
em

A
rbiter

System model after communication synthesis

Synthesis
decision:
• Put all 
global
variables
into
Shared_mem

• New global
variables in Top



CprE 588 – Embedded Computer SystemsJan 13-15, 2009 Lect-01.55

Communication Example (cont.)

• Atomic behaviors
B1( )
{

…
signal 

(*B6_start_addr);
}

B3( )
{

wait(*B3_start_addr);
...

}

B7( )
{

stmt;
...

}

B6( )
{

int local;
wait (*B6_start_addr);
…
*shared_addr = local + 1;
signal(*sync_addr);

}

B4( )
{

int local;
wait (*sync_addr);
local = *shared_addr - 1;
…
signal (*B3_start_addr);

}
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Communication Example (cont.)

• Atomic behaviors

IF0( )
{

stmt;
...

}

Shared_mem( )
{

int shared;
bool sync;
bool B3_start;
bool B6_start;

}

Arbiter( )
{

stmt;
...

}

IF1( )
{

stmt;
...

}

IF2( )
{

stmt;
...

}
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Analysis and Validation

• Functional validation of design models at each 
step using simulation or formal verification

• Analysis to estimate quality metrics and make 
design decisions

• Tools
• Static analyzer - program, ASIC metrics
• Simulator - functional, cycle-based, discrete-

event
• Debugger - access to state of behaviors
• Profiler - dynamic execution information
• Visualizer - graphical displays of state, data
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Backend

• Implementations
• Processor: compiler translates model into 

machine code
• ASIC: high-level synthesis tool translates model 

into netlist of RTL components
• Interface

• Special type of ASIC that links a PE with other 
components

• Implements the behavior of a communication 
channel
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Summary

• Embedded systems are everywhere
• Key challenge: optimization of design metrics

• Design metrics compete with one another
• A unified view of hardware and software is necessary 

to improve productivity
• Key technologies

• Processor: general-purpose, application-specific, single-
purpose

• Design: compilation/synthesis, libraries/IP, 
test/verification


