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CHAPTER 1 INTRODUCTION 
Embedded systems have become increasingly complex with the advent of the system-

on-a-chip (SOC) era. Prior to this period, the task of designing an embedded system 

consisted of integrating microprocessors with other hardware components on a circuit board. 

The functionality of the system needed to be partitioned to either the hardware components 

or the software running on the system. Typically the custom hardware components were 

simple enough that they could be developed using a hardware design language (HDL), such 

as VHDL or Verilog. As advances in process technology were made in the 1990s, it became 

clear that both a processor core and the hardware components of an embedded system would 

be able to fit onto a single chip [1]. However, this advancement also introduced several 

problems into the traditional method of system design. Software became more closely 

coupled with the hardware and needed to be considered an integral component during the 

design of the system. Another issue was that the complexity of SOC design had made it 

difficult for an HDL to manage. A typical SOC may consist of one or more microprocessors, 

dedicated hardware processing units, peripheral devices, on-chip memories, and the logic for 

a sophisticated communications network to link all of these components together. In order to 

address these issues, designers needed new design languages and tools that would help 

manage the complexity of SOC designs. 

1.1 Motivation 

Consumer electronics has been one of the most demanding markets that utilize 

embedded systems. The consumer electronics industry is so highly competitive that 

manufacturers strive to place these products on the market as fast as possible. At the same 

time, consumers demand high performance products that are compact, energy-efficient, and 

low-cost. 
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With time-to-market demands requiring manufacturers to produce complex embedded 

systems faster and cheaper, system-level design (SLD) has become an attractive alternative 

to traditional design approaches. System-level design languages (SLDLs) and tools allow 

designers to manage the complexity by using different levels of abstraction to define and 

model the system. With the support of Engineering Design Automation (EDA) tools, steps 

involved the design process have become automated. In order to save more time in the 

development process, SLDLs and EDA tools also focus on the ability to manage and reuse 

intellectual property (IP) components that have previously been implemented and tested. 

These features result in the ability to produce very complex systems in a faster and cheaper 

manner. 

Several SLDLs have been introduced in recent years, most notably SpecC [2] 

developed at the University of California, Irvine and SystemC developed by the Open 

SystemC Initiative (OSCI) [3]. In some aspects, these SLDLs share the same goals. Both 

support the ability to model a system at various levels of abstraction and support the reuse of 

IP. However, while SystemC claims the most industry support with a wide variety of 

SystemC-based tools available from major EDA vendors, it lacks a well-defined refinement 

methodology like that of SpecC. The SpecC refinement methodology leads designers from its 

highest level of abstraction down to its lowest level of abstraction. While each level of 

abstraction in SystemC is clearly defined, it is not clear what changes need to be made to 

convert a design from one level of abstraction to another. 

1.2 Thesis Statement 

In order to facilitate an SLD approach, SystemC needs a well-defined methodology 

for bringing a model defined at the highest level of abstraction down to the lowest level of 

abstraction. This thesis presents a top-down refinement methodology for systems modeled in 

SystemC. Since SystemC has gained widespread industry support, such a methodology 
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would make it easier for designers who use SystemC to refine their design and use the 

SystemC language as intended by a SLD approach. 

1.3 Approach 

In this thesis, an SLD refinement methodology is defined for SystemC. Since SpecC 

already has a well-defined refinement methodology for each of its supported abstraction 

levels, the SpecC methodology was used as a basis for the proposed SystemC methodology. 

For this reason, a strong understanding of both languages was necessary. In order to define 

the refinement rules for the proposed SystemC methodology, the similarities and differences 

between both languages needed to be considered. To demonstrate the application of the 

refinement rules for both languages, functionally equivalent SpecC and SystemC models of a 

digital camera were implemented. 

1.4 Contributions 

The following is a summary of the contributions of this research project: 

• Analysis of the similarities and differences of the SpecC and SystemC SLD 

languages and modeling capabilities. 

• A top-down refinement methodology for SystemC models. 

• Demonstration of the SystemC refinement methodology on the digital camera 

example. 

• SpecC and SystemC implementations of a digital camera as a case study. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows: Background material is 

presented in Chapter 2, where overviews of the language features of both SpecC and 

SystemC are presented. A comparison of the models of computation and a definition of a 

universal set of models of computation are presented in Chapter 3. The proposed SystemC 
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refinement methodology is presented in Chapter 4. The digital camera system which the case 

study was based on is presented in Chapter 5. Chapter 6 summarizes related work to SLD 

methodologies and refinement and is followed by a conclusion and recommendations for 

future work in Chapter 7. 
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CHAPTER 2 BACKGROUND 
A brief overview of the SpecC and SystemC modeling languages is presented in 

sections 2.1 and 2.2 respectively. 

2.1 SpecC Language Overview 

SpecC is an ANSI C-based SLDL developed at the University of California, Irvine. It 

was introduced in 1997 as a specification language to address the problem of an increasing 

gap in productivity due to the increasing chip complexity of SOC designs [4]. The codesign 

methodology for the SpecC language was introduced in 1998, providing the necessary steps 

to refine the model through each layer of abstraction [5]. This section presents an overview 

of the main components and features used to build a SpecC model. 

2.1.1 Behaviors 

Behaviors are the basic unit of functionality in a SpecC model. They represent the 

computation of the system. A typical behavior consists of ports, local variables, functions, 

and a main function. There are two types of behaviors: composite behaviors and leaf 

behaviors [6]. A composite behavior is a behavior that contains instances of child behaviors. 

A leaf behavior is a behavior that contains no instances of other behaviors.  

An example of a leaf behavior is shown in Figure 2.1. In this example, the first line 

defines the behavior A and the two ports of integer type associated with it. Ports allow for 

communication between behaviors using channels or interfaces. Behavior A has one input 

port, p1, and one output port, p2. It also has one private local variable, x, which can be 

accessed only from within the behavior itself. The main function defines the actual 

functionality of the behavior and is a public function because it must be called by a parent 

behavior in order to execute. The functionality of the behavior is to read the input data from 

port p1, increment it by the value of x, and send the result through output port p2. 
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Figure 2.1 SpecC leaf behavior code segment and block diagram 

Composite behaviors can have instances of child behaviors, which may or may not be 

leaf behaviors. This introduces a hierarchy that allows a composite behavior to control its 

child behaviors. In the main function of the composite behavior, the execution of a child 

behavior is initiated by making a function call to the child’s main function. There are three 

types of execution sequences supported by SpecC: sequential, parallel, and pipelined. The 

default execution sequence is sequential so that once one behavior finishes execution, the 

next behavior begins. SpecC also provides the ability to execute behaviors concurrently using 

the par statement or in a pipelined fashion using the pipe statement. Examples of the different 

execution types and how they are represented in block diagrams are shown in Figure 2.2. 

Composite behaviors also allow for functionality to be abstracted. For instance, a 

behavior that communicates with a composite behavior does not have direct knowledge of 

the composite behavior’s child behaviors. The composite behavior is seen as a black box 

from that perspective. Meanwhile the details of the computation are handled by the child 

behaviors, hidden at a lower level of abstraction. 

2.1.2 Channels and Interfaces 

Channels are used to represent the communication of the system. The variables and 

methods found in a channel represent the communication protocol of a communication bus. 

In some ways, a channel is the same as a behavior. Methods define the functionality and 

A
p1 p2

x

behavior a( in int p1, out int p2 ) 
{ 
 int x; 
 

void main( void ); 
{ 
 x = 1; 
 p2 = p1 + x; 
} 

}; 
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behavior of the communication in a system. The channel is accessed by calling these 

methods instead of assigning values to or attempting to read from the signals inside the 

channel. An interface defines the connection between a behavior and a channel. It serves as a 

prototype of the methods provided by a channel. All that a behavior needs is knowledge of 

the channel’s interface so the behavior knows what methods to call in order to access the 

channel. 

 

A
X

Y

Z

A
X

Y

Z

A
X

Y

Z

Sequential Parallel Pipelined

par {
   x.main();
   y.main();
   z.main();
}

pipe {
   x.main();
   y.main();
   z.main();
}

   x.main();
   y.main();
   z.main();

 
Figure 2.2 Behavior execution styles in SpecC 

An example depicting the use of a communication channel between two concurrent 

behaviors is shown in Figure 2.3. Note that behavior A is the composite behavior and 

behaviors X and Y are its child behaviors. The dashed line separating the behaviors indicates 

that the behaviors are executing concurrently, as depicted in Figure 2.2. The channel is noted 

as c1 and there are two interfaces, L and R. A code listing of this example is shown in Figure 
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2.4. This code listing demonstrates several important syntactical features of channels and 

busses. Earlier we mentioned that composite behaviors contain instances of child behaviors. 

Note that channel c1 and behaviors X and Y are instantiated in behavior A. When defining 

the behaviors, the port types were defined. If a port on a behavior is supposed to connect to a 

channel, an interface is specified as the port type in the behavior definition. When the 

channel c1 and child behaviors X and Y are instantiated in behavior A, the ports are bound 

using the variables or channels. Also, the behaviors X and Y are to execute concurrently, so 

the par statement is placed around the main function calls for behaviors X and Y. 

X
p1

p2

Y p4

p3

p_in p_outA

RL c1

 
Figure 2.3 Example of a message-passing communication channel 

2.1.3 Synchronization 

Synchronization in SpecC is done using the built-in event data type. Events can be 

instantiated inside behaviors or channels and bound to ports like any other data type. 

However, an event can only be manipulated as arguments for wait and notify statements. 

When a wait statement is called on an event by a behavior, the execution of that behavior is 

suspended until that event is notified by another behavior. When a behavior calls a notify 

statement on an event, all of the behaviors that are waiting on that event will resume 

execution. 
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Figure 2.4 SpecC code for message-passing communication channel example 

interface L { void write( int data_in ) }; 
interface R ( int read( void ) }; 
 
channel C implements L, R 
{ 
 int data; 
 bool valid; 
  
 void write( int v ) { 
  data = data_in; 
  valid = true; 
 } 
 
 int read( void ) { 
  while( valid == false ) {} 
  return( data ); 
 } 
}; 
 
behavior X ( in int p1, L p2 ) 
{ 
 void main ( void ) 
 {  
  if ( p1 > 5 ) 
   p2.write( p1 ); 
  else 
   p2.write( 0 ); 
 } 
}; 
 
behavior Y ( R p3, out int p4 ) 
{ 
 void main ( void ) 
 {  
  p4 = p3.read(); 
 } 
}; 
 
behavior A ( in int p_in, out int p_out ) 
{ 
 C c1; 
 X x( p_in, c1 ); 
 Y y( c1, p_out ); 
 
 void main ( void ) 
 { 
  par { x.main(); 
   y.main(); 
  } 
 } 
} 
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2.1.4 Timing 

In order to simulate time in models of computation which are concerned with timing, 

SpecC provides waitfor statements. All other statements in a SpecC program are executed in 

zero time, so waitfor statements allow for exact delays to occur in particular parts of the 

code. The waitfor statement accepts a single integer argument, which is the number of time 

units (nanoseconds) that a behavior is supposed to suspend execution. 

2.1.5 Summary 

The previous sections covered many of the basic components and features used to 

create a SpecC program. Although more details about the SpecC language can be found in 

[6][7][8], only the modeling components used in this thesis have been covered. 

2.2 SystemC Language Overview 

SystemC is a C++ library-based language developed by the OSCI Language Working 

Group [3]. Like SpecC, the language was introduced in response to the problem in that it was 

no longer sufficient for designers to use HDLs such as Verilog or VHDL for SOC designs. 

The SystemC language provides a number of specialized classes, types, and macros used for 

the various modeling components and features. In this section an overview of the modeling 

components used in SystemC designs is presented. 

2.2.1 Modules and Processes 

The basic building blocks of a SystemC design are modules and processes. Modules 

are like SpecC behaviors, in that they are used to partition the design of a complex system 

and can use hierarchy to hide some of the internal details of a module. Modules also use ports 

for communication and can have internal variables. Modules are defined using the 

SC_MODULE macro. 
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The functionality of a module is implemented using processes. Processes are basically 

member functions of a module that are executed concurrently. There are two different types 

of SystemC processes, method and thread. The main difference between the two types of 

processes is that a method process will always execute its code from start to finish without 

interruption while a thread process has the ability to suspend and resume its execution. 

Member functions are mapped to processes using SC_METHOD or SC_THREAD 

statements. Each module also has a constructor which is where mapping of member functions 

to processes takes place. Modules typically use the default constructor, SC_CTOR. If a 

module contains instances of other modules, then the ports of the child modules are mapped 

to signals in the constructor as well. 

The SystemC version of the SpecC leaf behavior originally shown in Figure 2.1 can 

be seen in Figure 2.5. The sc_in and sc_out types are used to define the input and output 

ports. The sc_int type is used to define the integer variable x. The line, sensitive << p1, is 

called to add the port p1 to the sensitivity list. This is done so that each time the value for p1 

changes, the member function func1 will be executed again to derive the new result and send 

it out of the module through the p2 port. 

 

 
Figure 2.5 SystemC version of the SpecC leaf behavior 

SC_MODULE( A ) 
{ 
 sc_in<int> p1; 
 sc_out<int> p2; 
 sc_int<8> x; 
 
 void main() { 
  x = 1; 
  p2 = p1 + x; 
 } 
 SC_CTOR( A ) { 
  SC_METHOD( main ); 
  sensitive << p1; 
 } 
} 
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2.2.2 Channels and Interfaces 

Like SpecC, SystemC supports the use of hierarchical channels and interfaces for 

modeling communication. All interfaces in a SystemC program are derived from the class 

sc_interface. Each interface is used to specify operations that are able to be performed over 

that particular channel. Channels are used to implement interfaces in much of the same way 

as SystemC. 

2.2.3 Synchronization 

Synchronization can be done through the use of events, supported in SystemC by the 

sc_event class. Events in SystemC are used to determine if and when the execution of a 

process should be triggered or resumed, depending on whether the process is a method or 

thread. An event object keeps track of all the processes that are sensitive to it, so when it is 

asserted it tells the scheduler which processes to trigger or resume execution. There are two 

ways a process may be sensitive to an event, static sensitivity or dynamic sensitivity. If an 

event is on the static sensitivity list, as shown in Figure 2.5, then the processes in that module 

will always be sensitive to that event. If the process is a thread, then the process may use the 

wait function to wait on an event. Dynamic sensitivity in SystemC is the same method in 

which sensitivity to events is handled in SpecC. It should be noted that when a SystemC 

process uses a wait statement, its static sensitivity list is ignored. 

Another SystemC class that is useful for synchronization is the sc_fifo channel. These 

are particularly useful in writing functional models where communication and 

synchronization can be simplified. Reads done on a sc_fifo channel are blocking, so 

execution of the particular process that makes the read call will halt until there is something 

written to the FIFO. Likewise, writes done on a sc_fifo channel will be blocked if the channel 

is full. When a sc_fifo channel is instantiated, the size may be specified as either finite or 
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dynamic in terms of the number of tokens, as seen in Figure 2.6. Due to the nature of FIFOs, 

where blocking is predictable, the execution of a model can be deterministic. 

 

 
Figure 2.6 FIFO instantiations of different sizes 

2.2.4 Timing 

The wait statement that is used for events may also be used for waiting a specified 

amount of time. Used in this form, the SystemC wait statement is similar to the waitfor 

statement in SpecC. The main difference is that the wait statement in SystemC can be 

instructed to wait in different units of magnitude, like nanoseconds or picoseconds. The wait 

statement may also be used to wait either for a specified amount of time or for an event to 

occur. This is useful in case an event the process is waiting for does not occur. After the 

specified amount of time has elapsed, the process will resume execution. 

2.2.5 Summary 

The previous sections covered many of the basic modeling components and features 

of SystemC. Although more in depth information about these and other SystemC features can 

be found in [9], only the elements used in this thesis have been covered. 

sc_fifo<int>  fifo1(“fifo1”);  // Dynamic FIFO 
sc_fifo<int>  fifo2(“fifo2”, 1); // FIFO of size 1 
sc_fifo<bool> fifo3(“fifo3”, 10); // FIFO of size 10 
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CHAPTER 3 MODELS OF COMPUTATION 
The primary goal of SLD is to make it easier for designers to manage highly complex 

systems. One essential aspect of a SLDL is the ability to support modeling of the system at 

multiple layers of abstraction. The problem with designing complex systems with traditional 

HDLs is that they often support only one layer of abstraction, so detailed design decisions 

must be made early on in the design process. In the SLD approach, designers are able to test 

functionality of their systems at each layer of abstraction before getting into intricate details 

of the final implementation. 

In a top-down SLD methodology, a designer begins by modeling the functional 

specification of a system. At this point the details of the system are highly abstracted. The 

designer then refines the model to gradually define more details about the system, each 

transformation producing a distinct model at a particular layer of abstraction. In SLDLs such 

as SpecC and SystemC, a model that is defined at any layer of abstraction may be simulated, 

verified, and debugged. Such a model is referred to as a model of computation. A model of 

computation is distinguished by how accurately it represents the target implementation of the 

system. 

The models of computation supported in SpecC and SystemC are described in 

sections 3.1 and 3.2 respectively. Then the accuracy of each model of computation is 

quantified using metrics presented in section 3.3. Lastly, a set of universal models of 

computation are presented in section 3.4. 

3.1 Models of Computation in SpecC 

In [7], the models of computation in the SpecC methodology are presented. The four 

models supported by SpecC are a specification model, an architecture model, a 

communication model, and an implementation model. The SpecC methodology also specifies 

three refinement tasks necessary to transform one model of computation to the next. These 
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three refinement tasks are architecture exploration, communication synthesis, and backend. 

The hierarchy of the models of computation and the refinement tasks for of the SpecC 

methodology are shown in Figure 3.1. 

 

Architecture exploration

Specification 
model

Communication synthesis

Architecture 
model

Backend

Communication 
model

Implementation 
model

Higher Abstraction
Less Accuracy

Lower Abstraction
More Accuracy

 
Figure 3.1 The SpecC design methodology 

 

Each model of computation represents a stage in the design process. As each 

refinement task is performed, a new model of computation is derived that reflects design 

decisions made at that stage in the methodology. In this top-down methodology, a design 

starts as an abstract definition of the system in terms of functionality that is transformed into 

a detailed implementation of the system. 
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3.1.1 Specification Model 

The specification model is the top-most model of computation in the SpecC 

methodology. Since this is the first model of the design process, the purpose of the 

specification model is to define how the system is supposed to behave. The overall 

functionality of the system is broken down into computational behaviors. The specification 

model does not attempt to define any implementation details at this point and has no notion 

of timing. Communication is only done directly between modules using events for 

synchronization. Therefore the specification model is only intended to reflect the 

functionality of the target system. 

3.1.2 Architecture Model 

The architecture model is the next model of computation in the SpecC methodology. 

This model is derived from the specification model after performing the architecture 

exploration refinement task. The architecture model defines the structure of the system in 

terms of system components (such as processors, busses, and memories). The purpose of the 

architecture exploration refinement task is to use these components as building blocks to 

determine the architecture of the system. Behaviors from the specification model are mapped 

to specific processing elements, which are used to represent standard or custom processors. 

The architecture model also introduces the notion of timing to the model, so the execution 

times for these processing elements are annotated in the form of estimated execution delays. 

The synchronization events between behaviors that execute on different processing elements 

are now separated into communication behaviors, called virtual busses. These virtual busses 

are highly abstract behaviors of the communication channels and their respective protocols. 

These abstracted communication channels consist of methods that encapsulate the protocols 

and details of the transactions so that they are separated from the processing elements. Any 

estimated delays associated with the communication channels are annotated in the 
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architecture model as well. Thus the architecture model represents the target architecture of 

the system in terms of hardware-software partitioning as well as representing an abstract 

form of communication between the components. 

3.1.3 Communication Model 

After performing the communication synthesis refinement task on the architecture 

model, the communication model is formed. The abstract communication behaviors in the 

virtual busses of the architecture model are transformed into implementations of the actual 

wires of a communication bus and the protocols are integrated into the processing elements. 

The interfaces to channels are changed to pins in order to connect to the wires of the 

transformed communication channels. The estimated timing delays associated with 

communication are replaced with cycle-accurate delays associated with the protocol. The 

purpose of the communication model is to define all of the communication aspects of the 

target system, but the architecture of the system remains unchanged from the architecture 

model. 

3.1.4 Implementation Model 

The final model in the SpecC methodology is the implementation model. This model 

represents the lowest layer of abstraction of the system, where all aspects are defined 

explicitly. The backend refinement task separates the communication model into hardware 

and software components. The processing elements of the communication model are replaced 

with cycle-accurate representations of the target processor, such as an instruction set 

simulator. The software portion of the model is compiled into assembly code to execute on 

the target processor. A high-level synthesis tool is used to synthesize the custom hardware 

and communication channels into a register-transfer level model of the hardware in the 

system. Using a cosimulation tool to simulate both the software and hardware aspects of the 
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system simultaneously, the implementation model provides a cycle-accurate representation of 

the system. 

3.2 Models of Computation in SystemC 

In [9], the five models of computation supported by SystemC are presented. These 

five models of computation are an untimed functional model, a timed functional model, a 

transaction-level model, a behavioral hardware model, and a register-transfer model. In terms 

of abstraction and accuracy, the hierarchy of the models of computation supported by 

SystemC can be seen in Figure 3.2. 
 

Untimed 
Functional model

Timed 
Functional model

Behavioral 
Hardware model

Register-transfer 
level model

Transaction-level 
model

Higher Abstraction
Less Accuracy

Lower Abstraction
More Accuracy

 
Figure 3.2 Models of computation in SystemC 
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3.2.1 Untimed Functional Model 

The untimed functional model is a functional specification of the target system. All of 

the functionality of the system is implemented in this model, but there is no reference to any 

architectural details of the system. As the name implies, the model has no notion of timing 

either. When the untimed functional model is simulated, only the functional results may be 

verified. Functionality may be broken down into modules if it assists in making the modeling 

process easier, but is unnecessary. Communication between modules is done implicitly as 

there are no communication links or busses being modeled in this layer of abstraction. This 

model of computation is also called an executable specification. 

3.2.2 Timed Functional Model 

The timed functional model in SystemC is functionally the same as the untimed 

functional model, but includes the notion of timing during simulation. Approximate timing 

constraints are annotated so that the computation delays associated with the target 

implementation can be estimated. No details regarding the communication between modules 

are defined at this level since it is still done implicitly. All other aspects in comparison with 

the untimed functional model remain the same. 

3.2.3 Transaction-level Model 

The transaction-level model defines the communication between modules by using 

function calls. This models accurate functionality of the communication protocol and isolates 

the communication details from the computational functionality. The transaction-level model 

has approximated timing annotations in both communication functions and computational 

modules to indicate a rough estimate of the timing characteristics of the system. In the 

transaction-level model, the modules represent computational components or processing 
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elements and the function calls related to communication represent the communication 

busses of the target implementation. 

3.2.4 Behavior Hardware Model 

The behavior hardware model has detailed implementations of the communication 

busses of the target system. The communication protocols of the target implementation are 

inserted into the processing elements. Instead of the abstract communication interfaces used 

in the transaction-level model, wires represent the communication busses and pins are added 

to the processing elements so they may be connected to the wires. The computational timing 

is approximate-timed, so the key difference between the transaction-level model and the 

behavior-hardware model is whether the communication aspects are abstract or accurate. 

3.2.5 Register-Transfer Level Model 

The register-transfer level model is the most accurate model supported by SystemC. 

All of the communication, computation, and architectural aspects of the target system are 

defined explicitly. Timing characteristics of both the computational and communication 

elements are clock-cycle accurate. At this layer of abstraction the SystemC code representing 

the hardware components is translated to a HDL that can be synthesized and the SystemC 

code representing software is translated into the desired software programming language. 

3.3 Quantifying Accuracy of Models of Computation 

In order to compare the models of computation supported by the SystemC language 

with the models of computation supported by the SpecC methodology, a set of independent 

metrics was used to determine the accuracy of a model of computation. Based on [9] and 

inspired by [10], the following metrics were used for determining the accuracy of each model 

of computation: 
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• Functional accuracy: A model is said to be functionally accurate if it reflects 

the functionality of the target implementation of the system. 

• Computational timing accuracy: The magnitude to which the model reflects 

the computational delays of the system. Computational delays typically refer 

to processing delays, memory accesses, and delays due to resource 

constraints. Using this metric, a model of computation can be cycle-accurate, 

approximate-timed, or untimed. 

• Communication timing accuracy: The magnitude to which the model 

reflects the communication delays of the system. Using this metric, a model of 

computation can be cycle-accurate, approximate-timed, or untimed. 

• Communication protocol accuracy: The magnitude to which the actual 

communication protocols of the target implementation is modeled. Using this 

metric, a model may be considered to be abstract if it reflects the functionality 

of the communications protocols. If the structure of the communication 

protocol is modeled in the same fashion as the target implementation, the 

model is considered to be exact in terms of communication protocol accuracy. 

• Structural accuracy: The magnitude to which the model reflects the true 

structure of the target implementation. The structural accuracy is said to be 

approximate if the partitioning of functionality into hardware and software is 

same as that of the target implementation. The structural accuracy is said to be 

exact if the model’s structure accurately reflects the internal structure of the 

components in the target implementation. 

• Pin accuracy: A model is said to be pin accurate if the interfaces between 

components are defined at the pin level. 

Using these metrics, the accuracy of a model of computation in terms of a range of 

criteria may be determined. In a top-down design methodology, the implementation details of 
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the system are defined as the refinement rules transform the model of computation from one 

layer of abstraction to the next. 

3.4 Universal Models of Computation 

As presented in sections 3.1 and 3.2, there are four different models of computation in 

the SpecC methodology and five different models of computation supported by SystemC. In 

order to simplify further discussion of the models of computation between both SpecC and 

SystemC, a universal set of models of computation were derived. This universal set of 

models of computation describes the system at the same levels of accuracy regardless of 

which SLDL the model is coded in. To determine these universal models of computation, 

each model of computation for both SpecC and SystemC was analyzed using the metrics 

defined in section 3.3. The results of these analyses are shown in Table 3.1.  

Table 3.1 Accuracy comparison of models of computation in SpecC and SystemC 
Accuracy   SpecC  SystemC 
Metrics   Spec Arch Comm Impl  UFM TFM TLM BHM RTLM 
Functional   Yes Yes Yes Yes  Yes Yes Yes Yes Yes 
Comp. Timing   No Approx Approx Cycle  No Approx Approx Approx Cycle 
Comm. Timing   No Approx Cycle Cycle  No Approx Approx Cycle Cycle 
Comm. Protocol   No Approx Exact Exact  No No Approx Exact Exact 
Structural   No Approx Approx Exact  No No Approx Approx Exact 
Pin   No No Yes Yes  No No No Yes Yes 

Based on these results, the equivalent models of computation between SpecC and 

SystemC can be identified. In most cases the equivalent models in both SpecC and SystemC 

are easy to determine. However, there is no equivalent model of computation in SpecC for 

the timed functional model in SystemC. This discrepancy is considered to be minor since the 

only refinement step between the untimed functional model and timed functional model is to 

annotate timing delays in the system. Therefore, the timed functional model is not included in 

the set of universal models of computation. The notion of timing will be introduced in the 

transaction-level model. The universal set of models of computation and their equivalent 

models in SpecC and SystemC are shown in Figure 3.3. 
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Figure 3.3 Universal models of computation 

For the remainder of this thesis, the names of the universal models of computation 

will be used as opposed to the language-specific models presented in sections 3.1 and 3.2.  In 

review, the general distinctions of the four models of computation are as follows. The 

functional model is purely representative of the functionality of the target system model, with 

no notion of timing or architecture. The transaction-level model reflects the target 

architecture of the system and the computational units and communication channels are 

approximate-timed. The communication model contains the same approximate-timed 

computation units of the architecture model, but also includes accurate implementations of 

the communication busses in terms of timing and protocol. The implementation model of the 

system is accurate in terms of all metrics and represents the lowest level of abstraction 

supported by a SLDL. 
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CHAPTER 4 SYSTEMC REFINEMENT METHODOLOGY 
This chapter provides a set of rules for refining SystemC models of computation in a 

top-down design methodology. These rules have been derived through the modeling and 

refinement of the digital camera example presented in Chapter 5. 

4.1 Developing a Functional Model 

The functional model defines the functionality or behavior of the system, without 

concern for the target architecture. Therefore, the functional model must only consider the 

functionality in terms of components, with no regard to whether those components are 

implemented in hardware or software. The objective is to capture the specification of the 

system in terms of design behavior with the least amount of design work. 

4.1.1 Guidelines for Functional Models 

The first step in developing a functional model is to determine how the functionality 

of the system should be partitioned into processes. The granularity of the processes can vary, 

but each process should be fairly independent. Since functionality of the system is 

represented by processes that run in leaf modules, the smallest indivisible units of 

functionality are leaf modules. The computational details of a module are specified in one or 

more processes. Behavioral hierarchy, where modules may contain instances of other 

modules, may be used in order to mask some of the details of the functionality into modules 

at lower levels. The processes should be placed into independent modules in an effort to 

maximize concurrency. Independent modules allow more flexibility when architectural 

considerations are made later on in the design methodology. 

Although the simulation of a functional model occurs in zero simulation time, the 

code inside of a process is executed in a sequential fashion. Recall from section 2.2.1 that 

there are two main types of processes: sc_thread and sc_method. A sc_method process will 
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execute from start to finish without halting its execution while a sc_thread process has the 

ability to halt its execution using wait statements or other forms of blocking. For functional 

models, all processes should be instantiated as sc_thread processes. 

However, the use of multiple thread processes in a single module with the intent that 

they will execute concurrently is discouraged. The concurrency of multiple thread processes 

instantiated inside a module should not be considered the same type of concurrency as that 

found in threaded software applications. This is due to the simulation scheduler, which does 

not function in the same way as an operating system scheduler. A context switch will only 

occur when the execution of the current process is halted, otherwise the current process will 

continue to execute indefinitely. For this reason it is usually safest to use only one process 

per module when developing a functional model. In general, move processes that are 

supposed to be independently concurrent into separate modules, as shown in Figure 4.1. 

 

A

x

y

z

X

Y

Z

x

y

z
 

Figure 4.1 Binding of concurrent processes to modules 

Due to the nondeterministic nature of how the simulator selects the next process to 

run, a common pitfall of using events to synchronize processes is to have the notifying 

process send out the notification before the process that waits for that notification has been 
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executed. For example, the module on the left in Figure 4.2 has three processes that are 

supposed to execute sequentially. If process x executes first and has no wait statements used 

to halt its execution, it will send out the event to notify process y before process y can 

execute the wait statement for that event. When process y finally executes, it will call a wait 

statement on that event. However, process x had already sent the notification, so the system 

becomes deadlocked. In this case, the intent is to have each process execute sequentially. 

Therefore it may be more helpful to merge the functionality of the processes into a single 

process in order to guarantee correct execution. This merging of processes into a single 

process is illustrated in Figure 4.2 

 

 
Figure 4.2 Merging of sequential processes into a single process 

All communication and synchronization between modules should be implemented 

using the sc_fifo primitive channel type. These primitive channels can be accessed using read 

and write methods which are blocking calls. When a read method is called, the execution of a 

process will be blocked if no data is available to be read. Once data has been written to the 

FIFO, the process may finish the pending read and resume execution. Similarly, if a process 

attempts to write to a FIFO that is full, its execution is halted until space is available in the 

FIFO for the process to complete the write operation. Using FIFOs for communication allows 

the simplification of a both synchronization and data exchange. Although the use of FIFOs 

may not accurately reflect the target implementation, the functional model is not concerned 
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with those details. FIFOs make the execution of a functional model deterministic and 

predictable due to the blocking nature of the read and write functions. In some cases, a FIFO 

channel may need to be initialized with a value before the simulation starts. For example, a 

process that must read from a FIFO channel before another process is able to write to it may 

cause the simulation to fail. Initial values of FIFOs may be specified by calling the write 

method to push an initial value onto the FIFO. 

4.1.2 Summary of Guidelines for Functional Models 

The following is a summary of the guidelines for developing functional models: 

• Divide functionality into individual processes 

• Use sc_thread processes, not sc_method processes 

• Separate concurrent processes into individual modules 

• Merge sequential processes into a single process to guarantee execution order 

• Use the sc_fifo primitive for all communication and synchronization between 

modules 

4.2 Deriving a Transaction-level Model 

The transaction-level model takes the executable specification of the functional model 

and separates the architectural and communication behavior of the system into isolated 

entities. The task of deriving a transaction-level model from a functional model consists of a 

set of refinement rules which are divided into two distinct phases. The architecture 

partitioning phase introduces the notion of timing and the mapping of behaviors to 

processing elements. The communication partitioning phase separates the behavior 

associated with communication from the behavior associated with computation. 
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4.2.1 Refinement Rules for Transaction-level Models 

The first step in transforming a functional model into a transaction-level model is to 

insert delays associated with the computation of the system. Annotating computation delays 

in a functional model is done by the insertion of wait statements into portions of the 

processes. The frequency at which timing annotations are inserted is determined by the 

designer. If a rough timing estimate of a portion of code is known, the timing may be 

annotated at the end of the block. If a more exact estimate is known, the designer may wish 

to annotate delays after each statement in a process. It does not matter to the simulator if the 

delays are annotated line by line in the code or as a single delay at the end of a block of code. 

However, being more specific may yield more accurate simulation results which is important 

when trying to make informed design decisions early on. 

The wait statement takes an argument of a SystemC data type, sc_time. When a 

variable of type sc_time is declared, the number of units and the unit magnitude need to be 

specified. Any positive number may be specified for the number of units and SystemC 

provides several different types of unit magnitude, which is an enumerated type called 

time_unit. All of the supported values and their meanings [9] are shown in Table 4.1. 

Table 4.1 Values and meanings of time_unit 

SC_FS Femtosecond 

SC_PS Picosecond 

SC_NS Nanosecond 

SC_US Microsecond 

SC_MS Millisecond 

SC_SEC Second 

When inserting delays using the wait function, the amount of delay may be declared 

as a sc_time variable and passed to the wait function or the number and time_unit may be 

passed directly. The equivalence of both methods is shown as an example in Figure 4.3. 
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After the insertion of computational delays into the model, the next step is to specify 

the architectural structure of the system. This is done by allocating modules intended to 

represent processing elements that will be used in the target implementation. Examples of 

processing elements include processors, microcontrollers, single-purpose processors, or 

custom ASICs. Once these processing elements have been allocated, the next step is to map 

the modules of the functional model to these processing elements. When mapping modules to 

processing elements, it is recommended that concurrent processes are mapped to separate 

processing elements because eventually the modules that are on the same processing element 

will be executed in a serial fashion. Once the modules have been mapped to their respective 

processing elements, care must be taken to ensure that they preserve the same execution 

sequence as they did in the functional model. This may involve inserting additional 

synchronization between processing elements. 
 

 
Figure 4.3 Examples of wait function calls 

The next step is to map any global variables of the functional model into either local 

memories of the processing elements that use them or into a shared memory. Finally, global 

channels are allocated to replace the instances of sc_fifo used in the functional model. This 

concludes the architecture partitioning phase of refinement for deriving a transaction-level 

model.  

An example illustrating the architecture partitioning phase of the transaction-level 

model refinement process is shown in Figure 4.4. As shown in the example, there are two 

functional modules, X and Y, which perform a computation before each passes a resulting 

value to module Z. Module Z is dependent upon both X and Y, while X and Y are not 

sc_time  comp_delay(100, SC_NS); 
. 
. 
. 
wait(comp_delay); // Both of these statements  
wait(100, SC NS); // are the same.
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dependent upon each other. When partitioning the modules onto processing elements, 

modules X and Y are mapped to separate processing elements in order to maintain 

concurrency. Since module Z is dependent on both X and Y, it could have been placed on 

either processing element. The variables v1 and v2 are placed into local memories of their 

respective processing elements. When module Y is finished executing, it uses 

synchronization to tell Z it has finished and it passes the computed value of v2 over the 

global channel. The synchronization is performed using a global sc_event called sync. 
 

 
Figure 4.4 The architecture partitioning phase of transaction-level model refinement 

The next step is to group channels between processing elements into one or more 

hierarchical channels. This step is called the communication partitioning phase of 

transaction-level model refinement. Hierarchical channels are used to form busses from the 

global channels defined during the architecture partitioning phase. The advantage of using a 

hierarchical channel is that the details of the communication protocol implementation are 

abstracted and the processing elements are connected through a single port. Access to the bus 

is allowed only through the interface, which is done in the form of function calls. The 

hierarchical channel forms an approximate representation of the bus that will be later refined 

into the target implementation. Timing delays for communication are also annotated in the 

functions of a hierarchical channel to model delays associated with transfers over the bus. 
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After busses have been formed using hierarchical channels and the interfaces to the 

channels have been defined, the ports on the modules need to be updated so they are able to 

connect to their respective interface. The processes also need to be updated, replacing the old 

port accesses with function calls through the interface. Based on the same example 

introduced in Figure 4.4, the transition from the architecture partitioning phase to the 

communication partitioning phase of the transaction-level model refinement is shown in 

Figure 4.5. 
 

 
Figure 4.5 The communication partitioning phase of transaction-level model refinement 

The global sync event and global channel for transmitting the value of v2 are now 

encapsulated by a hierarchical channel. The methods for accessing the hierarchical channel 

are defined within the interfaces and the processing elements no longer access the signals in 

the channel directly. The processing elements are now able to send data over the hierarchical 

channel without knowledge of how the communication protocol is able to communicate. The 

communication is now modeled using a simplified transaction-based approach. 

4.2.2 Summary of Refinement Rules for Transaction-level Models 

The following is a summary of the refinement rules for deriving transaction-level 

models from functional models. The refinement rules for the architecture partitioning phase 

are: 
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• Annotate delays of the computation and communication aspects of the system 

using wait statements 

• Allocate modules to represent processing elements of the target system 

• Map functional modules to designated processing elements 

• Replace sc_fifo instances with global channels that use variables for data 

transmission and the sc_event type for synchronization 

• Add any necessary synchronization to preserve the original execution 

sequence 

• Move global variables into local or shared memories 

The refinement rules for the communication partitioning phase of transaction-level 

model refinement are: 

• Group global channels into hierarchical channels to form busses 

• Define interfaces that provide member functions to access hierarchical 

channels and implement the communication protocol 

4.3 Deriving a Communication Model 

When refining the functional model to the transaction-level model, busses were 

formed using hierarchical channels. The advantage of hierarchical channels is that they allow 

the communication protocol to be abstracted, hidden from the processing elements. The 

process of deriving a communication model is focused on converting the abstracted 

implementation of the communication behavior into a pin-level implementation consisting of 

wires that make up the busses of the target implementation. Similar to transaction-level 

model refinement, the refinement rules are divided among two distinct phases that represent 

the process of deriving the communication model. These two phases are adapter synthesis 

and protocol insertion. 
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4.3.1 Refinement Rules for Communication Models 

The first step in communication model refinement is to analyze the current 

implementation of each hierarchical channel in order to determine the desired 

communication method of the final implementation. When deriving the transaction-level 

model, the hierarchical channels implied a certain protocol. At the adapter synthesis phase in 

the communication model refinement, the cycle-accurate implementation of the protocol 

must be either built from scratch or implemented based on an existing protocol specification. 

Next each bus must be defined at the pin-level. This is done using signals to represent 

the actual wires of the bus for the target system. The abstracted timing constraints associated 

with the communication delays will be replaced by actual clock cycles that are introduced in 

the implementation of the communication protocol used to implement functionality for bus 

transfers. 

The final step in the adapter synthesis phase is to define the adapters that will be used 

to connect the approximate-timed processing elements with hierarchical channel interfaces to 

the pin-level implementations of the busses. Adapters are modules that contain pin-level 

interfaces to access the wires of the bus and clock driven, cycle-accurate implementations of 

the interface functions that were previously defined for the transaction-level model. The 

purpose of the adapter is to allow the processing element to use the pin-level bus 

implementation through the high-level interface functions defined in the transaction-level 

model. The processing element has no knowledge of how the communication protocol is 

actually implemented because it continues to use an interface function calls first defined in 

the transaction-level model. The interface functions within the adapters are modified to 

implement the protocol by manipulating the wires and following the timing rules of the 

protocol specification. At this point, the system may be simulated to verify the correctness of 

the protocol. An example illustrating the insertion of adapters around a pin-level 

implementation of a bus is shown in Figure 4.6. 
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Figure 4.6 Result of the adapter synthesis phase of communication model refinement 

 The goal of the protocol insertion phase of communication model refinement is to 

merge the protocol contained in the interface functions of the adapters into their respective 

processing elements. The port definitions used to access the wires of the bus are moved from 

the adapter to the processing element. Next, the interface functions are inserted into their 

respective processing elements. Finally the function calls made by the processing element are 

changed to local function calls for the newly inserted interface functions. The processing 

elements receive a clock input, but the clock is only used for the communication protocol 

implementation. The computational portions of the processing elements remain approximate-

timed in their implementation. The previous example following the protocol insertion phase 

is shown in Figure 4.7. 
 

 
Figure 4.7 Result of the protocol insertion phase of communication model refinement 
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4.3.2 Summary of Refinement Rules for Communication Models 

The following is a summary of the refinement rules for deriving communication 

models from transaction-level models. The refinement rules for the adapter synthesis phase 

are: 

• Replace hierarchical channels with pin-level implementations using signals to 

represent wires 

• Create adapter modules that implement the interface functions of the 

deprecated hierarchical channels and connect to the signals of the busses using 

pin-level interfaces 

The refinement rules for the protocol insertion phase of communication model 

refinement are: 

• Merge pin-level interface definitions of the adapters into processing elements 

• Merge interface functions from the adapters into processing elements 

• Change the interface function calls in the processing element threads into 

local function calls 

4.4 Deriving an Implementation Model 

The implementation model is the lowest level of abstraction that SystemC supports. 

The implementation model is derived from the communication model, which is still 

approximate-timed in terms of computation and remains abstract in terms of internal 

structure of the computation units. The hardware components of an implementation model 

look very similar to HDL implementations. The refinement rules for determining 

implementation model are the most general due to the multitude of implementations that can 

be derived from a communication model. Also, the final result of implementation model 

refinement is the actual implementation of the system in terms of software and synthesizable 
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hardware. In order to simulate the model, cosimulation tools that support simultaneous 

simulation of hardware and software are needed. 

4.4.1 Refinement Rules for Implementation Models 

The communication model already contains cycle-accurate, pin-level 

implementations of the communication busses, so the purpose of the implementation model 

refinement is to derive cycle-accurate implementations of the processing elements that are 

targeted for hardware implementations. The first step is to identify distinct states that are 

contained in the code of a module’s one or more processes. The sc_thread processes are to be 

changed into sc_method processes, so they are no longer able to halt execution using wait 

statements. Thus a single sc_thread process may need to be split up into several sc_method 

processes in order to perform the same functionality. Once the number of sc_method 

processes has been determined, the sensitivity list needs to be updated to include all of the 

signals that a particular method should evaluate when they change. The next step is to replace 

all instances of variables and other abstract types into signals. The only exception to this case 

is if a variable is used in only one process, in which case it cannot be read from and written 

to by different processes at the same time. Signals feature semantics that handle simultaneous 

reads and writes while variables do not. All initial values of signals and variables should be 

defined in the module’s constructor. 

Once the low-level implementations of the hardware processing elements have been 

derived, the system is ready for export into languages used to define the implementation of a 

system. Hardware components are converted to HDLs such as VHDL or Verilog, which can 

be synthesized. Low-level hardware implementations follow many of the same conventions 

of HDLs and the conversion is typically straightforward. Processing elements that are used to 

run software are typically transformed into both a HDL representation of the microprocessor 

and the software that it executes. In most cases an IP model of the microprocessor will be 
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used and the software code is derived from the C-based SystemC implementation of the 

module. After the SystemC code has been exported, the communication model has then been 

refined into the target implementation of the system. 

4.4.2 Summary of Refinement Rules for Implementation Models 

The following is a summary of the refinement rules for deriving implementation 

models from communication models: 

• Replace abstracted processing elements that are targeted for hardware into 

low-level implementations 

• Export hardware components into HDL implementations 

• Export software components into the language supported by target 

microprocessor(s) 
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CHAPTER 5 CASE STUDY: A DIGITAL CAMERA 
In Chapter 4, a set of refinement rules for a top-down design methodology in 

SystemC was presented. In order to demonstrate the effectiveness of these refinement rules, a 

case study of a digital camera as a target system was performed. In this chapter an overview 

of the digital camera system is presented followed by some of the details on the 

implementations and refinements of the SystemC models. 

5.1 Digital Camera 

The design used in this case study is based on the digital camera example presented in 

detail by Vahid and Givargis in Chapter 7 of [11]. The functionality of the digital camera 

system can be divided into two main tasks. First, the digital camera must capture, process, 

and store images into an internal memory. This task is initiated when the user presses the 

shutter button to take a picture. The image is captured in a digital form by a charge-coupled 

device (CCD). The image is then compressed using the Huffman compression algorithm 

before being stored into the internal memory of the digital camera. Second, the digital camera 

must be able to upload the stored images to a personal computer. A command is sent from 

the personal computer to the digital camera which instructs the camera to upload an image 

through a serial connection.  

Based on these two tasks, an informal functional specification of the digital camera is 

shown in Figure 5.1 [11]. The functions associated with the task of image capture are shown 

on the left and the functions associated with serial transmission are shown on the right. After 

the image is captured into a digital form from the CDD, zero bias adjustment is performed to 

mathematically correct any errors associated with the image. The corrected image is then 

compressed, which consists of two steps: the application of the discrete cosine transform 

(DCT) and quantization. Finally the image is stored into the internal memory of the camera. 
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For the serial transmission task, the image is transferred one bit at a time through the serial 

connection. 
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Figure 5.1 Functional block diagram of a digital camera 

To obtain an executable functional specification, the informal functional specification 

shown in Figure 5.1 [11] is partitioned into five discrete modules: CCD, CCDPP, CODEC, 

UART, and CNTRL. These modules are separate executable parts of the system that could be 

modeled using the highest level of abstraction in a SLDL. 

The CCD module is used to simulate the actions that an actual CCD would perform. 

Most notably it simulates the capture of an image and the transmission of pixels from the 

CCD. The CCDPP module is responsible for performing the zero-bias adjustment on each 

pixel as they are being sent by the CCD module. The CODEC module applies the Huffman 

encoding algorithm to the image by performing the DCT and quantization functions. The 

CNTRL module serves as the controller of the system, instructing each module as to what 
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function to perform next. The UART models the serial transfer capability by sending the 

image byte by byte to an output file. A block diagram representing the executable model is 

shown in Figure 5.2 [11]. 
 

 
Figure 5.2 Block diagram of the executable model of the digital camera 

Based on this diagram, the execution flow of the digital camera becomes apparent. 

The CCD module captures and sends the pixels of the image to the CCDPP module first. The 

CCDPP module then processes the pixels before they are sent to the CNTRL module. The 

CNTRL module uploads the pixels to the CODEC module to be processed before they are 

sent back to the CNTRL module. The CNTRL module then sends the pixels to the UART 

module where they are sent to an output file. 

5.2 Software Prototype of the Digital Camera 

The purpose of the digital camera example in [11] was to demonstrate the usefulness 

of codesign for embedded systems, where experimenting with different implementations of a 

system can result in variations in performance, power consumption, design complexity, and 

cost of the final implementation. In addition to an informal specification of the system, a 
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software prototype was developed [12]. In this prototype, the implementation of the digital 

camera has been modified so that it operates on 16-bit images that are 64 x 64 pixels in size. 

Although this would result in an extremely low quality image, the prototype is only meant to 

demonstrate functionality and could be expanded to operate on images that are larger in size. 

In this section each module implemented in the software prototype is discussed. Each module 

has an initialize function which sets up any necessary conditions or variables prior to 

execution. Although these functions are not discussed in detail, they can be found in the 

reference code [12]. 

5.2.1 Prototype CCD Module 

The CCD module simulates the behavior of a real CCD. This is accomplished by two 

functions, CcdCapture and CcdPopPixel. When CcdCapture is called, the pixels of an image 

are read from an input file and loaded into memory. When a real CCD is instructed to capture 

an image, it would read the value of each pixel and load it into a local memory. When the 

capture is finished, CcdPopPixel is called to transfer each pixel to the CCDPP module, one 

byte at a time. A functional block diagram of the CCD module is shown in Figure 5.3. 
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Figure 5.3 Functional block diagram specification of the CCD module 
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5.2.2 Prototype CCDPP Module 

The CCDPP module is responsible for getting image data from the CCD and applying 

the zero-bias adjustments on each pixel. The image is then sent to the CNTRL module byte 

by byte. Two functions make up the CCDPP module: CcdppCapture and CcdppPopPixel. 

CcdppCapture calls the CcdCapture function first and then starts to collect each pixel from 

the CcdModule by calling the CcdPixelPop function. As each pixel is read from the CCD 

module, the zero-bias adjustment is applied and the pixel is stored. When CcdppPopPixel is 

called by the CNTRL module, each adjusted pixel is sent to the CNTRL module. The high-

level functionality of the CCDPP module is shown in Figure 5.4. 
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Figure 5.4 Functional block diagram specification of the CCDPP module 

5.2.3 Prototype CODEC Module 

The next module presented is the CODEC module. The CODEC module applies the 

DCT algorithm, the first half of the compression process, on 8 x 8 pixel blocks of the image. 

The CODEC module consists of three functions: CodecPushPixel, CodecDoFdct, and 

CodecPopPixel. CodecPushPixel collects the pixels from the CNTRL module until an 8 x 8 

block of pixels has been read. The CodecDoFdct function then applies the DCT algorithm to 
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the 8 x 8 block. Finally the data is sent back to the CNTRL module using the CodecPopPixel 

function. The high-level functionality of the CODEC module is shown in Figure 5.5. 
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Figure 5.5 Functional block diagram specification of the CODEC module 

5.2.4 Prototype UART Module 

The UART module is used to replicate the functionality of a serial connection. On a 

real digital camera, the UART would be used to download the image from the camera to a 

PC. This is handled by the UartSend procedure, which receives data from the CNTRL 

module and writes it to an output file for verification purposes. The high-level functionality 

of the UART module is shown in Figure 5.6. 
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Figure 5.6 Functional block diagram specification of the UART module 
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5.2.5 Prototype CNTRL Module 

The final module in the software prototype is the CNTRL module. This module 

controls all of the other modules functions by calling them in the correct sequence. The first 

function, CntrlCaptureImage, calls the CcdppCapture function to initiate the CCD capture 

and then collects the image byte by byte through the CcdppPopPixel function. The 

CntrlCompressImage sends the image in 8 x 8 pixel blocks to the CODEC module so that the 

FDCT algorithm is applied to the 8 x 8 block. When the block is returned to the CNTRL 

module, quantization is performed on the block before the next block is sent. Once all of the 

blocks have been compressed, the CntrlSendImage function is called to send the image to the 

UART module. The high-level functionality of the CNTRL module is shown in Figure 5.7. 
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Figure 5.7 Functional block diagram specification of the CNTRL module 

5.2.6 System-level Models of the Digital Camera 

The software prototype is an executable specification of the digital camera coded in 

C. In [11], Vahid and Givargis discuss four different prototype implementations of the digital 

camera to illustrate how decisions made during hardware-software codesign can lead to an 

optimal solution. Based on their nonfunctional constraints, none of the final designs was 

clearly the best choice. In the third implementation, the CCDPP and UART modules run on 
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independent custom processors while the CNTRL and CODEC modules run on a single 

processor core. One performance optimization for this implementation was the change of the 

code for the CODEC to use fixed-point arithmetic as opposed to expensive floating point 

operations in software. In the SpecC and SystemC implementations of this case study, the 

models and design decisions followed this version of the digital camera system. 

5.3 SpecC Models of the Digital Camera System 

In order to prove the effectiveness of the SystemC refinement rules presented in 

Chapter 4, the digital camera system was also modeled in SpecC to serve as a comparison. 

The functional model was implemented based on the software prototype described in section 

5.2 and the other models were derived using the refinement rules from the SpecC 

methodology [7]. Although the details regarding the creation and refinement of the SpecC 

models will not be discussed, the source code for the functional, transaction-level, and 

communication models are included in Appendix A for reference. 

5.4 Modeling and Refinement in SystemC 

In this section the details of the implementation and refinement of the models of 

computation supported by SystemC are discussed. The functional model was developed 

based on the software prototype described in section 5.2 and the transaction-level and 

communication models were derived using the refinement rules presented in Chapter 4. 

5.4.1 The Digital Camera System as a Functional Model in SystemC 

Inspired by the software prototype [12], a functional model of the digital camera 

system was developed. Much of the work in partitioning the functionality into blocks was 

based off of the division of functionality in the software prototype discussed in section 5.2. 

This model distributes the behavior of the digital camera into five separate modules: CCD, 

CCDPP, CNTRL, CODEC, and UART. The original functions of the software prototype for 
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the CCD, CCDPP, and UART modules were mapped directly to their respective processes. 

The three functions of the CODEC prototype were merged into a single process. The four 

functions of the CNTRL prototype were also merged into a single process. The code for the 

fdct process of the CODEC module was also converted from floating point to a fixed-point 

implementation of the DCT algorithm. A high-level representation of the functional model is 

shown in Figure 5.8. The modules are represented by rounded boxes while the processes are 

represented by the rectangles. Triggers for synchronization are represented by the arrows 

with dashed lines while transfers between modules involving data are represented by the 

arrows with the solid lines. 
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Figure 5.8 Functional model of the digital camera system 

The initialization functions used in the software prototype are now handled by the 

module constructors. An example of the use of SC_CTOR in place of an initialization 

function is shown in Figure 5.9. The UART module opens the output file in the constructor 

before instantiating the thread process which writes to that file. When the simulation is 

finished, each module calls a destructor to clean up any remnants of the module. In this case, 

a destructor is specified as ~uart() and is responsible for closing the output file at the end of 
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the simulation. Usually it is sufficient to use the default destructor for a module and in that 

case it does not need to be specified. 

 
Figure 5.9 SystemC code for a functional model of the UART module 

All of the synchronization and communication was done using the primitive channel, 

sc_fifo. As shown in Figure 5.9, the UART module has one input port that accepts 

characters. When using sc_fifo to transfer data, any supported data type can be specified and 

used. Each time the send process executes the read method it first checks to see if there are 

any characters waiting in the FIFO. If there is a character waiting, the character is read and 

the process continues executing the next line of code.  If there is no character waiting, then 

the process halts execution until a character has been written to the FIFO. In this case the 

 
SC_MODULE( Uart ) 
{ 
   // UART Ports 
   sc_fifo_in<char>  DataIn; 
    
   // UART Vars 
   FILE  *outputFileHandle; 
   char   data; 
 
   // UART Processes 
   void uartSend(void)  
   { 
      while(1) { 
         data = DataIn.read(); 
         fprintf(outputFileHandle, "%i\n", (int)data); 
      } 
   } 
 
   // Module Constructor 
   SC_CTOR( Uart ) 
   { 
      outputFileHandle = fopen("uart_out.txt", "w"); 
      SC_THREAD( uartSend ); 
   } 
 
   // Module Destructor 
   ~Uart(void) 
   { 
      fclose(outputFileHandle); 
   } 
}; 
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FIFO acts as both a synchronization signal and data transfer channel. For synchronization 

without data transfer, boolean data types were used. The code excerpt from the CCDPP 

module shown in Figure 5.10 demonstrates the use of boolean data types for synchronization. 

 
Figure 5.10 Capture process of the functional model CCDPP module 

The simulation is started by calling the statement sc_start(-1). In this case, the 

argument specifies the length of simulation time to be a value of -1, which indicates to the 

simulator that it should execute the model in zero simulation time. There are two possibilities 

for stopping the simulation. One option is to call sc_stop() when a termination condition has 

been reached. The other option for is to stall the simulation when finished. This condition 

could occur intentionally or unintentionally. Once the simulation has stalled, events stop 

 
SC_MODULE( ccdpp ) 
{ 
   // ports 
   sc_fifo_in<bool> startCcdppCapture, doneCcdCapture; 
   sc_fifo_in<char> ccdPixel; 
   sc_fifo_out<bool> doneCcdppCapture, startCcdCapture; 
   sc_fifo_out<char> ccdppPixel; 
... 
   void capture(void)  
   { 
      StartCcdppCapture.read(); 
      StartCcdCapture.write( true ); 
      DoneCcdCapture.read(); 
 
      for(row=0; row<ROW_SIZE; row++) { 
         for(col=0; col<COL_SIZE; col++) { 
            buffer[row][col] = CcdPixel.read(); 
         } 
 
         bias = CcdPixel.read(); 
         bias = ( bias + CcdPixel.read() ) / 2; 
         for(col=0; col<COL_SIZE; col++) { 
            buffer[row][col] -= bias; 
         } 
      } 
 
      DoneCcdppCapture.write( true ); 
      notify(StartPopEvt); 
   } 
... 
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happening and the simulator automatically stops because it assumes the system is either 

deadlocked or has finished executing. 

In the functional model of the digital camera, an exit condition was defined so the 

simulation could terminate normally. The CNTRL module is responsible for controlling the 

rest of the modules so it was a natural choice to place the exit condition in the CNTRL 

module. Notice that the send process in the UART module in Figure 5.9 is placed in an 

infinite loop. The UART module will continue to run infinitely throughout the simulation and 

will always be ready to receive more data. All of the modules except the CNTRL module 

have their final processes run in an infinite loop. They are all dependent on the CNTRL 

module to instruct them when to execute. After the image has been sent to the UART 

module, the CNTRL module has no other work to do. Calling sc_stop() at this point would 

stop the execution correctly. 

5.4.2 The Digital Camera System as a Transaction-level Model in SystemC 

The first step in refining the functional model of the digital camera into the 

transaction-level model is to convert it from the untimed domain to the timed domain. In 

order to add time delays to the functional model of the digital camera system, some 

estimation had to be done. The purpose of annotating delays is to make the functional model 

approximate-timed in terms of computation and communication time. Based on each piece of 

computation, a rough number of clock cycles were estimated and entered in a wait function 

call at the end of each annotated computation. In order to make this as simple as possible, the 

clock cycle time was defined as a constant value and each delay was computed as the number 

of estimated clock cycles multiplied by the clock cycle time, as shown in Figure 5.11. 

The inserted wait function calls after computations and communication reads and 

writes have been highlighted. For the transaction-level model, both the approximated 

computation and communication delays are specified. This process also calls the 
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sc_simulation_time function, which returns the current simulation time at the point in the 

code in which the function is called. This function is useful in determining how much time it 

took for a process to perform a task which allows for early evaluation of the performance of 

the system. 

 
Figure 5.11 Time-annotated capture process of the CCDPP module 

 
#define  clk_cycle  1 
. 
. 
. 
   void capture(void)  
   { 
      MainBus->ccdpp_ready(); 
 
      simTime = sc_simulation_time(); 
 
      CcdBus->start(); 
 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[col] = CcdBus->read(); 
         } 
          
         // Perform Zero Bias Adjustment 
         bias = CcdBus->read(); 
         bias = ( bias + CcdBus->read() ) / 2; 
         wait(12*CLK_CYCLE, SC_NS); 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[col] -= bias; 
            wait(4*CLK_CYCLE, SC_NS); 
            MainBus->write(row*COL_SIZE+col, buffer[col]); 
         } 
      } 
 
      MainBus->ccdpp_done(); 
       
      cout << "CCDPP\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
. 
. 
. 
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The next step was to allocate processing elements for the system. In order to 

determine the number of processing elements needed, the details of the third implementation 

of the digital camera example [11] were followed. In this implementation, the CCDPP and 

UART modules are implemented as custom processors, so each require their own processing 

elements. The CNTRL and CODEC modules are both software components executed on a 

microprocessor, so they will coexist on the same processing element. Finally, the CCD 

module is a device that is independent of the rest of the system, so it will be mapped to its 

own processing element.  

The only processing element with multiple modules is the CNTRL/CODEC 

processing element. These modules are dependent upon one another to function properly and 

since they share the same processing element they will be executed sequentially on the target 

system. Due to the sequential execution of these two modules, their processes can be merged 

to form a single process and eliminate unnecessary scheduling. The merging of the CNTRL 

and CODEC processes is shown in Figure 5.12. 

 

 
Figure 5.12 Merging of CNTRL and CODEC modules 

Since the image data is fairly large in size, a shared memory module was also added 

to the system. The CCDPP, CNTRL, and UART processing elements all have access to the 
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shared memory module. To prevent contention caused by two or more modules accessing the 

memory at the same time, some additional synchronization events were added to indicate if a 

particular module is busy accessing memory. Finally, data and address channels are created 

so that the CCDPP, CNTRL, and UART modules can access the shared memory. The digital 

camera model after the architecture partitioning phase of transaction-level model refinement 

is shown in Figure 5.13.  

 

st
ar

t

pi
xe

l

da
ta

ad
dr

 
Figure 5.13 Digital camera after the architecture partitioning phase 

Following the architecture partitioning phase of transaction-level model refinement, 

the next step was to apply the rules of the communication partitioning phase. In the digital 
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camera, two busses were formed from the existing global channels. The main bus connects 

the shared memory, CNTRL/CODEC, CCDPP, and UART modules. The data and address 

channels were combined with the synchronization channels of the CCDPP and UART. The 

CCD bus groups the global channels used between the CCD and CCDPP modules. The ports 

of each module were modified to connect to their respective interface and the port accesses 

inside the processes were changed to inline function calls. A portion of the code that 

implements the interface functions of the CCD bus is shown in Figure 5.14. 

 
Figure 5.14 CCD bus interface function definitions for the CCDPP module 

Note that the variables that are transferred over the channel are encapsulated within 

the interface definition as private variables. Thus, the communication between processing 

 
class CcdBus:  public sc_module,  
               public CcdToCcdBusIf, 
               public CcdppToCcdBusIf 
{ 
private: 
   char     pixel; 
   bool     valid, busy; 
   sc_event StartEvt, ValidEvt; 
. 
. 
. 
   // CcdppToCcdBusIf Interface Functions 
   void CcdBus::start() 
   { 
      do{ 
         wait( 1*CLK_CYCLE, SC_NS ); 
      }while(busy == true); 
      notify(StartEvt); 
      return; 
   } 
 
   char CcdBus::read()  
   { 
      if(!valid) 
         wait(ValidEvt); 
      valid = false; 
      return pixel; 
   } 
. 
. 
. 
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elements is simplified because accessing the channel is reduced to the matter of making a 

function call, without knowledge of the details regarding the implementation of the channel. 

The interfaces for the main bus were implemented in the same fashion. The transaction-level 

model of the digital camera following the communication partitioning phase is shown in 

Figure 5.15. 
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Figure 5.15 Transaction-level model of the digital camera 
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5.4.3 The Digital Camera System as a Communication Model in SystemC 

In the transaction-level model of the digital camera system, approximate models of 

the processing elements and communication busses were implemented. When applying the 

refinement rules to obtain the communication model, the first step was to replace 

communication channels with pin-level implementations of the bus in the form of wires and 

adapters to preserve the ability to use the interface functions. While the variables inside the 

busses were changed to wires, the actual protocol is implemented by the interface functions 

inside the adapters. As an example, a diagram of the converted CCD bus is shown in Figure 

5.16. 

 
Figure 5.16 CCD bus implemented with protocol adapters 

Since the interfaces were introduced in the transaction-level model, the CCD and 

CCDPP processing elements can access the newly refined communication channel without 

any significant changes. However the definitions of the interface functions contained within 

the adapter modules must be changed to reflect the protocol used to perform the 

communication correctly over the pin-level implementation of the bus. The interface 

functions implement the protocol by asserting and analyzing the data transferred on the 

wires. In the case of the CCD bus, a simple handshaking protocol was introduced to 

synchronize the data transfers. The modified code of the interface functions for the adapter 

that connects the CCDPP module to the CCD bus is shown in Figure 5.17. 
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Figure 5.17 Updated CCD bus interface functions for the CCDPP adapter 

The main bus that connects the shared memory module, CNTRL, UART, and CCDPP 

is refined in a similar fashion, although it is more complicated. The target implementation of 

the main bus is a shared data bus with designated control wires designed to allow the CNTRL 

module to instruct the CCDPP and UART modules. The implementation of the shared 

memory is moved into its own module and the rest of the channel is converted into wires. A 

 
class CcdppToCcdBusAdapter:  public sc_module, 
                             public CcdppToCcdBusIf 
{ 
private: 
   char  temp; 
 
public: 
   sc_in<bool>    ClockI; 
   sc_in<char>    DataI; 
   sc_in<bool>    ValidI; 
   sc_out<bool>   StartO; 
   sc_out<bool>   ReadyO; 
    
   void CcdppToCcdBusAdapter::start( void ) 
   { 
      StartO.write(TRUE); 
      wait( ClockI->posedge_event() ); 
   } 
 
   char CcdppToCcdBusAdapter::read( void ) 
   { 
      ReadyO.write( TRUE ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() != TRUE ); 
 
      ReadyO.write( FALSE ); 
      temp = DataI.read(); 
      wait( ClockI->posedge_event() ); 
 
      return temp; 
   } 
    
   SC_CTOR(CcdppToCcdBusAdapter) { 
      ReadyO.initialize( false ); 
   } 
}; 
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high-level diagram of the digital camera system after the hierarchical channels have been 

replaced with adapters and pin-level implementations of the busses is shown in Figure 5.18. 
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Figure 5.18 Digital camera after the adapter synthesis phase 

Next, the protocol insertion phase takes the protocols and function calls contained 

within the adapters and moves them into their respective processing elements. The pin-level 

interfaces defined by the adapters are moved into the processing elements. The interface 

functions used in the adapters are inserted into the processing elements. Finally the interface 

function calls are replaced by local function calls. Once this phase is completed, the model of 
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the digital camera system consists of abstracted computational units connected through actual 

ports and wires of busses in the target implementation of the system. The communication 

model of the digital camera system is shown in Figure 5.19. 
 

CNTRL/
CODEC

capture

push

quantize

send

fdct

pop

CCDPP

capture

pop

UART

send

CCD

capture

pop

MEMORY
image 
data

clock

 
Figure 5.19 Communication model of the digital camera system 

5.4.4 The Digital Camera System as an Implementation Model in SystemC 

The implementation of the digital camera goes beyond the scope of this case study. 

Although the goal of SLD is to develop implementations by deriving high-level models, the 

case study served as a practical approach to applying the refinement rules presented in 
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Chapter 4. However, given the SystemC source code of the digital camera in Appendix B, an 

implementation could be derived. 
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CHAPTER 6 RELATED WORK 
This chapter provides an overview of other research that addresses the development 

and use of SLDLs as well as SLD methodologies. 

The Ptolemy Project [13] consists of a research group at U.C. Berkeley that focuses 

on modeling, simulating, and designing embedded systems. The result of their research is the 

open source software design environment. Like SystemC, earlier generations of the tool took 

an object-oriented approach by modeling various components of the system in C++. 

Additional C++ classes were developed to cover many characteristics of embedded system 

design including communication strategies, simulation, hardware-software codesign, and 

parallel computing [14]. In order to be useful in modeling components with wildly different 

purposes, Ptolemy supported many different models of computation. The significant 

contribution made by the Ptolemy Project was the ability to simulate systems consisting of a 

mixture of behavioral, hardware, and software components simultaneously, paving the way 

for cosimulation of embedded systems. The current generation of the tool, Ptolemy II, moved 

from C++ to Java in order to take advantage of the inherent support of threading, web 

integration, and graphical user-interface capabilities [15]. A key development in Ptolemy II 

over previous generations of the tool is the inclusion of modeling support for embedded 

software, which has more constraints due to heavy interaction with the hardware. The open 

source nature of Ptolemy II has resulted in the development of a number of additional 

frameworks libraries to allow the modeling of more specialized systems such as wireless 

sensor networks [16] and image processing [17]. 

The use of finite state machines (FSMs) to represent embedded systems at a high-

level was addressed by the POLIS [18] system. In POLIS, each component of a system is 

modeled using specialized FSMs, called codesign finite state machines (CFSMs). A CFSM is 

considered to be globally asynchronous but locally synchronous FSM. The POLIS system 
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utilizes a top-down design methodology where the system is first written in Esterel [19], a 

high-level synchronous programming language that supports CFSMs. The functional 

implementation is then tested using the VIS [20] verification and synthesis system. Next, the 

architectural decisions are made and the design is partitioned into hardware and software 

components. POLIS uses tools such as Ptolemy for cosimulation at the high-level using 

CFSMs as well as the implementation-level model of the system. The key contribution by 

POLIS was the separation of functionality and architecture during the design process. This 

idea later served as a basis for the approach to a commercial SLD tool, Cadence Virtual 

Component Codesign (VCC). 

The Metropolis project represents the evolution of the POLIS tool into unified design 

environment and formal design methodology [21]. The issue that Metropolis attempts to 

address is that currently system-level designers must use a variety of different tools, which 

may use different file formats or languages, in order to take a design from a functional 

specification to a final implementation of the system. This can make debugging difficult, 

particularly if errors are injected during translation by the tools themselves. Like POLIS, 

modeling of components is done using an extension of the Java programming language. The 

Metropolis modeling library contains many of the same core elements found in SLDLs like 

SystemC and SpecC. Like SystemC, the Metropolis environment does not impose one 

particular refinement methodology. Densmore presents an overview of several different 

refinement methodologies [22] that may be applied to systems modeled in Metropolis, with 

the addition of application-specific methodologies planned in the future. 

A heterogeneous design methodology using SpecC, SystemC, and Cadence VCC was 

introduced by L. Cai et al. in [23]. In this approach, SpecC is used to model the system at the 

higher levels of abstraction while VCC is used for architectural exploration. At lower levels, 

the implementation model is derived from the SpecC and VCC models, with the software 

components modeled in C and the hardware components modeled in SystemC. 
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Unified Modeling Language (UML) has been applied in the software engineering 

field for years, but has been gaining acceptance in assisting in the design SOC systems as 

well. The OWL project [24] used UML as a tool to model the system at high levels of 

abstraction before modeling the system in SystemC. Their approach of using UML for 

defining the system requirements and documenting the specifications assisted in overcoming 

the lack of refinement methodology for SystemC. The recent interest in applying UML to 

SLD has brought forth the inception of UML 2, which features more modeling capabilities 

suitable for SLD. Riccobene et al. present a design methodology using UML 2 to develop 

structural and behavioral models at a high-level with translation to SystemC for modeling at 

lower levels [25]. The Systems Modeling Language (SysML) initiative is also working 

towards extending UML 2 to better support system-level modeling capabilities [26]. 

Work in the automation of some of the more difficult parts of SLD refinement has 

also produced some interesting results. Abdi, Shin, and Gajski have proposed a methodology 

and algorithms to assist in automating the process of communication refinement [27]. They 

also present a methodology in automating the refinement of transaction-level models [28]. 

Lyonnard et al. presents a design flow to connect heterogeneous processing components 

using automatically generated communication components [29]. Passerone, Rowson, and 

Sangiovanni-Vincentelli present an algorithm used to automatically generate interfaces for 

components that use incompatible protocols [30]. In [31], Baleani et al. proposes a 

reconfigurable architecture platform that uses the hardware-software codesign methodology 

from POLIS to generate implementations. 

Automatic software code generation from SLDLs has also been an active research 

topic. In [32], a methodology for generating embedded software and interfaces from 

SystemC models is proposed. The proposed methodology accomplishes this by redefining 

and overloading the SystemC class elements to generate new code that runs on a real-time 

operating system and is functionally equivalent. A similar approach is described in [33], but 
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the proposed methodology is designed to be more universal. The implementation of the 

methodology in [33] is in the form of an automation tool that is targeted for generating ANSI 

C code from SpecC models, but the concepts could be applied to SystemC as well. 

This work is differentiated from other work in that it takes a homogenous approach 

by using SystemC exclusively throughout the SLD process, from specification to 

implementation. SystemC possesses models of computation that allow for a SLD 

methodology. Although the SystemC models of computation are already known, a top-down 

refinement methodology for SystemC had not yet been presented. 
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

7.1 Concluding Remarks 

As the complexity of embedded systems has increased in recent years, the need for 

flexible SLDLs to manage designs at different layers of abstraction has become a necessity. 

SLDLs need to be able to model both the hardware and software aspects of an embedded 

system. Using SLDLs such as SystemC or SpecC, systems can be modeled at layers of 

abstraction varying from the functional specification to the target implementation. 

The modeling of an embedded system at all layers of abstraction supported by 

SystemC has been described and demonstrated with the development of a digital camera 

system. Guidelines for developing a functional specification and refinement rules for 

transforming the specification to the target implementation has also been presented. These 

guidelines and refinement rules were applied to the digital camera system to demonstrate the 

differences between the models of computation and explain the details of applying some of 

the steps in the refinement process. The digital camera system was refined and verified 

through each step in the design process, validating the effectiveness of the proposed top-

down design methodology. 

7.2 Recommendations for Future Work 

Capturing the functionality of the system in the initial functional specification is one 

of the most important steps in a top-down design methodology. After each refinement stage, 

more details about the target implementation are defined and the more difficult it becomes to 

make major changes to the system later in the design process. In order to make those design 

decisions, designers still need to have a working knowledge of how to accurately estimate 

timing delays in abstract models. One possibility for future research would be a method for 

quantifying useful approximate computation and communication delays for transaction level 
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models in SystemC. Other applicable research that could aid in the making of informed 

design decisions early on would be a method of generating and gathering performance 

analysis information from abstract SystemC models. 

Another issue that was acknowledged is that the current features of SystemC are 

tuned toward the ability to model and develop hardware aspects of the system but are limited 

in the ways software can be modeled at later layers of abstraction. The lack of ability to 

schedule tasks and emulate real-time operating systems needs to be addressed in order for 

SystemC to be considered a SLDL that supports true hardware-software codesign. Task 

scheduling is rumored to be part of an upcoming version of the SystemC language, SystemC 

3.0. The refinement rules presented in this thesis would likely need to be modified and added 

to when task scheduling and other new modeling features are added to SystemC. 

The process of converting an implementation-level SystemC or SpecC model into the 

system’s final implementation is vague. One area of future work lies in the translation of a 

system-level model into an actual implementation. Currently this process is done manually 

by the designer and is a tedious process, especially for larger designs. Automation of this 

process would greatly increase the efficiency of using SLDLs to design actual 

implementations. 

Finally, OSCI has been making significant changes to the transaction-level modeling 

capabilities through an add-on library to SystemC 2.1. The library is currently incomplete at 

the time of this writing, but the rules presented in this thesis for refining transaction-level 

models may need to be modified in order to accommodate these new features. 
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APPENDIX A DIGITAL CAMERA SYSTEM: SPECC 
MODELS 

This appendix contains the SpecC source code for the functional, transaction-level, 

and communication models of the digital camera system. Each model was compiled using the 

SpecC compiler 2.2.0 running on RedHat Linux. All model simulations were performed 

using the simulator included with SpecC compiler package. 

SpecC Functional Model 
//////////////////////////////////////////////////////////////////// 
// File: digcam.sc                                                // 
// Desc: SpecC Functional Model of the Digital Camera             // 
//////////////////////////////////////////////////////////////////// 
 
#include <stdio.h> 
#include "image.h" 
 
//////////////////////////////////////// 
// CCD Behaviors                      // 
// for Functional model               // 
//////////////////////////////////////// 
behavior CcdCapture( in event    StartCaptureEvt,  
                     out char    buffer[ROW_SIZE][COL_SIZE], 
                     out event   DoneCaptureEvt ) 
{ 
   int row, col; 
 
   void main(void)  
   { 
      wait(StartCaptureEvt); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col]; 
         } 
      } 
      notify(DoneCaptureEvt); 
   } 
}; 
 
behavior CcdPopPixel( in char    buffer[ROW_SIZE][COL_SIZE], 
                      in event   PixelReqEvt, 
                      out event  PixelSentEvt, 
                      out char   pixel ) 
{ 
   int row, col; 
 
   void main(void) { 
 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<(COL_SIZE+2); col++) 
         { 
            wait(PixelReqEvt); 
            pixel = buffer[row][col]; 
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            notify(PixelSentEvt); 
         } 
      } 
   } 
}; 
 
behavior Ccd(in event   StartCcdCaptureEvt, 
             in event   PixelReqEvt, 
             out event  DoneCcdCaptureEvt, 
             out event  PixelSentEvt, 
             out char   pixel ) 
{ 
   char buffer[ROW_SIZE][COL_SIZE]; 
  
   CcdCapture  CcdCaptureInst( StartCcdCaptureEvt, 
                               buffer, 
                               DoneCcdCaptureEvt ); 
 
   CcdPopPixel CcdPopPixelInst( buffer, 
                                PixelReqEvt, 
                                PixelSentEvt, 
                                pixel ); 
  
   void main(void) { 
      CcdCaptureInst.main(); 
      CcdPopPixelInst.main(); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCDPP behaviors                    // 
// for Functional model               // 
//////////////////////////////////////// 
behavior CcdppCapture( in event  StartCcdppCaptureEvt, 
                       in event  DoneCcdCaptureEvt, 
                       in event  CcdPixelSentEvt, 
                       in char   ccdPixel, 
                       out char  buffer[ROW_SIZE][COL_SIZE], 
                       out event StartCcdCaptureEvt, 
                       out event CcdPixelReqEvt, 
                       out event DoneCcdppCaptureEvt ) 
{ 
   int row, col; 
   char bias;  
   char tempRow[COL_SIZE]; 
  
   void main(void) 
   { 
      wait(StartCcdppCaptureEvt); 
      notify(StartCcdCaptureEvt); 
      wait(DoneCcdCaptureEvt); 
 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            notify(CcdPixelReqEvt); 
            wait(CcdPixelSentEvt); 
            tempRow[col] = ccdPixel; 
         } 
 
         notify(CcdPixelReqEvt); 
         wait(CcdPixelSentEvt); 
         bias = ccdPixel; 
         notify(CcdPixelReqEvt); 
         wait(CcdPixelSentEvt); 
         bias = (bias + ccdPixel) / 2; 
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         for(col=0; col<COL_SIZE; col++)  
         { 
            tempRow[col] -= bias; 
            buffer[row][col] = tempRow[col]; 
         } 
      } 
      notify(DoneCcdppCaptureEvt); 
   } 
}; 
 
behavior CcdppPopPixel( in event PixelReqEvt, 
                        in char  buffer[ROW_SIZE][COL_SIZE], 
                        out event   PixelSentEvt, 
                        out char    pixel ) 
{ 
   int row, col; 
 
   void main(void) 
   { 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            wait(PixelReqEvt); 
            pixel = buffer[row][col]; 
            notify(PixelSentEvt ); 
         } 
      } 
   } 
}; 
 
behavior Ccdpp( in event   StartCcdppCaptureEvt, 
                in event   CcdppPixelReqEvt, 
                out event  DoneCcdppCaptureEvt, 
                out event  CcdppPixelSentEvt, 
                out char   ccdppPixel, 
                in event   DoneCcdCaptureEvt, 
                in event   CcdPixelSentEvt, 
                in char    ccdPixel, 
                out event  StartCcdCaptureEvt, 
                out event  CcdPixelReqEvt ) 
{ 
   char buffer[ROW_SIZE][COL_SIZE]; 
 
   CcdppCapture   CcdppCaptureInst( StartCcdppCaptureEvt, 
                                    DoneCcdCaptureEvt, 
                                    CcdPixelSentEvt, 
                                    ccdPixel, 
                                    buffer, 
                                    StartCcdCaptureEvt, 
                                    CcdPixelReqEvt, 
                                    DoneCcdppCaptureEvt ); 
 
   CcdppPopPixel CcdppPopPixelInst( CcdppPixelReqEvt, 
                                     buffer, 
                                     CcdppPixelSentEvt, 
                                     ccdppPixel ); 
 
   void main(void) 
   { 
      CcdppCaptureInst.main(); 
      CcdppPopPixelInst.main();   
   } 
}; 
 
//////////////////////////////////////// 
// CODEC behaviors                    // 
// for Functional model               // 
//////////////////////////////////////// 
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const short COS_TABLE[64] = { 
            64,  62,  59,  53,  45,  35,  24,  12, 
            64,  53,  24, -12, -45, -62, -59, -35, 
            64,  35, -24, -62, -45,  12,  59,  53, 
            64,  12, -59, -35,  45,  53, -24, -62, 
            64, -12, -59,  35,  45, -53, -24,  62, 
            64, -35, -24,  62, -45, -12,  59, -53, 
            64, -53,  24,  12, -45,  62, -59,  35, 
            64, -62,  59, -53,  45, -35,  24, -12 
}; 
 
behavior CodecPushPixel( in short   pixelIn, 
                         in event   PixelInSentEvt, 
                         out event  PixelInRecvEvt, 
                         out short  buffer[8][8] ) 
{ 
   int i; 
   int idx; 
 
   void main(void) { 
      i = 0; 
      while(i < 128) { 
         for(idx=0; idx<64; idx++) 
         { 
            wait(PixelInSentEvt); 
            buffer[idx / 8][idx % 8] = pixelIn; 
            notify(PixelInRecvEvt); 
         } 
         ++i; 
      } 
   } 
};    
 
behavior CodecDoFdct( inout short   buffer[8][8], 
                      in event   StartFdctEvt, 
                      out event  DoneFdctEvt ) 
{ 
   int x, y; 
   int i; 
   short tempBuffer[8][8]; 
 
   // FDCT Functions 
   unsigned char C(int h) { 
      return h ? 64 : 5; 
   } 
 
   int F(int u, int v, short img[8][8]) { 
 
      long  s[8]; 
      long  r; 
      unsigned char  a; 
 
 for(a=0; a<8; a++) 
 { 
         s[a] = ((img[a][0] * COS_TABLE[v])    >> 6) + 
                ((img[a][1] * COS_TABLE[8+v])  >> 6) + 
                ((img[a][2] * COS_TABLE[16+v]) >> 6) + 
                ((img[a][3] * COS_TABLE[24+v]) >> 6) + 
                ((img[a][4] * COS_TABLE[32+v]) >> 6) + 
                ((img[a][5] * COS_TABLE[40+v]) >> 6) + 
                ((img[a][6] * COS_TABLE[48+v]) >> 6) + 
                ((img[a][7] * COS_TABLE[56+v]) >> 6); 
      } 
 
      r = 0; 
      for(a=0; a<8; a++) { 
         r += (s[a] * COS_TABLE[a * 8 + u]) >> 6; 
      } 
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      return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6); 
   } 
 
   // FDCT Behavior 
   void main(void) 
   { 
      for(i=0; i < 128; i++)  
      { 
         wait(StartFdctEvt); 
 
         for(x=0; x<8; x++) 
         { 
            for(y=0; y<8; y++)  
            { 
               tempBuffer[x][y] = F(x, y, buffer); 
            } 
         } 
         for(x=0; x<8; x++)  
         { 
            for(y=0; y<8; y++)  
            { 
               buffer[x][y] = tempBuffer[x][y]; 
            } 
         } 
 
         notify(DoneFdctEvt); 
      } 
   } 
}; 
   
behavior CodecPopPixel( in short    buffer[8][8], 
                        in event    PixelOutReqEvt, 
                        out short   pixelOut, 
                        out event   PixelOutSentEvt ) 
{ 
   int i; 
   int idx; 
  
   void main(void) { 
      i = 0; 
      while(i<128) 
      { 
         for(idx=0; idx<64; idx++) 
         { 
            wait(PixelOutReqEvt); 
            pixelOut = buffer[idx/8][idx%8]; 
            notify(PixelOutSentEvt); 
         } 
         ++i; 
      } 
   } 
}; 
 
behavior Codec( in short   pixelIn, 
                in event   PixelInSentEvt, 
                in event   StartFdctEvt, 
                in event   PixelOutReqEvt, 
                out short  pixelOut, 
                out event  PixelInRecvEvt, 
                out event  DoneFdctEvt, 
                out event  PixelOutSentEvt ) 
{ 
   short buffer[8][8]; 
 
   CodecPushPixel CodecPushPixelInst( pixelIn, 
                                      PixelInSentEvt, 
                                      PixelInRecvEvt, 
                                      Buffer ); 
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   CodecDoFdct CodecDoFdctInst( buffer, 
                                StartFdctEvt, 
                                DoneFdctEvt ); 
 
   CodecPopPixel  CodecPopPixelInst( buffer, 
                                     PixelOutReqEvt, 
                                     pixelOut, 
                                     PixelOutSentEvt ); 
 
   void main(void) { 
      par { 
         CodecPushPixelInst.main(); 
         CodecDoFdctInst.main(); 
         CodecPopPixelInst.main(); 
      } 
   } 
}; 
 
//////////////////////////////////////// 
// UART behaviors                     // 
// for Functional model               // 
//////////////////////////////////////// 
behavior UartInitialize( out FILE *outputFileHandle ) 
{ 
   void main(void) { 
      outputFileHandle = fopen("uart_out.txt", "w"); 
   } 
}; 
 
behavior UartSend( in FILE    *outputFileHandle, 
                   in char    data, 
                   in event   DataSentEvt, 
                   out event  DataRecvEvt ) { 
   int i; 
   void main(void) { 
      for(i=0; i < 16384; i++) 
      { 
         wait(DataSentEvt); 
         fprintf(outputFileHandle, "%i\n", (int)data); 
         notify(DataRecvEvt); 
      } 
   } 
}; 
 
behavior Uart( in char     data, 
               in event    DataSentEvt,  
               out event   DataRecvEvt ) { 
  
   FILE *outputFileHandle; 
  
   UartInitialize UartInitializeInst(outputFileHandle); 
 
   UartSend UartSendInst( outputFileHandle, 
                          data, 
                          DataSentEvt, 
                          DataRecvEvt); 
 
   void main(void) { 
      UartInitializeInst.main(); 
      UartSendInst.main(); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CNTRL behaviors                    // 
// for Functional model               // 
//////////////////////////////////////// 
const unsigned char QUANT_SHIFT_TABLE[64] = { 
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                    0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 1, 1, 1, 1, 
                    1, 1, 1, 1, 1, 1, 2, 2, 
                    2, 2, 2, 2, 2, 2, 2, 3, 
                    3, 3, 3, 3, 3, 3, 3, 4, 
                    4, 4, 4, 4, 4, 4, 5, 5, 
                    5, 5, 5, 5, 6, 6, 6, 6, 
                    6, 7, 7, 7, 7, 8, 8, 8 }; 
 
behavior CntrlCaptureImage( in event   DoneCaptureEvt, 
                            in event   CcdppPixelSentEvt, 
                            in char    ccdppPixel, 
                            out short  buffer[ROW_SIZE][COL_SIZE], 
                            out event  StartCaptureEvt, 
                            out event  CcdppPixelReqEvt ) { 
   void main(void) { 
      int i, j; 
 
      notify(StartCaptureEvt); 
      wait(DoneCaptureEvt); 
 
      for(i=0; i<ROW_SIZE; i++)  
      { 
         for(j=0; j<COL_SIZE; j++) 
         { 
            notify(CcdppPixelReqEvt); 
            wait(CcdppPixelSentEvt); 
            buffer[i][j] = ccdppPixel; 
         } 
      } 
   } 
}; 
 
behavior CntrlCompressImage( in event  CodecPixelPushRecvEvt, 
                             in event  CodecPixelPopSentEvt, 
                             in event  DoneFdctEvt, 
                             in short  codecPixelPop, 
                             inout short  buffer[ROW_SIZE][COL_SIZE], 
                             out event CodecPixelPushSentEvt, 
                             out event CodecPixelPopReqEvt, 
                             out event StartFdctEvt, 
                             out short codecPixelPush ) { 
 
   void main(void) {  
      int i, j, k, l; 
       
      // CNTRL Compress 
      for(i=0; i<NUM_ROW_BLOCKS; i++) 
      { 
         for(j=0; j<NUM_COL_BLOCKS; j++) 
         { 
            // Push the block and perform FDCT 
            for(k=0; k<8; k++)  
            { 
               for(l=0; l<8; l++)  
               { 
                  codecPixelPush = (char)buffer[i*8 + k][j*8 + l]; 
                  notify(CodecPixelPushSentEvt); 
                  wait(CodecPixelPushRecvEvt); 
               } 
            } 
            notify(StartFdctEvt); 
            wait(DoneFdctEvt); 
             
            // Pop the block and store it in buffer 
            for(k=0; k<8; k++)  
            { 
               for(l=0; l<8; l++)  
               { 
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                  notify(CodecPixelPopReqEvt); 
                  wait(CodecPixelPopSentEvt); 
                  buffer[i*8 + k][j*8 + l] = codecPixelPop; 
               } 
            } 
         } 
      } 
 
      // CNTRL Quantization  
      for(i=0; i<NUM_ROW_BLOCKS; i++) 
      { 
         for(j=0; j<NUM_COL_BLOCKS; j++) 
         { 
            // Quantize the block in place 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  buffer[i*8 + k][j*8 + l] >>= QUANT_SHIFT_TABLE[k*8 + l]; 
               } 
            } 
         } 
      } 
   } 
}; 
 
behavior CntrlSendImage( in event   UartPixelRecvEvt, 
                         in short   buffer[ROW_SIZE][COL_SIZE], 
                         out event  UartPixelSentEvt, 
                         out char   uartPixel )  
{ 
   short temp; 
   int i, j; 
  
   void main(void) { 
      for(i=0; i<ROW_SIZE; i++)  
      { 
    for(j=0; j<COL_SIZE; j++)  
         { 
            temp = buffer[i][j]; 
 
            notify(UartPixelSentEvt); 
            uartPixel = ((char*)&temp)[0];    /* send upper byte */ 
            wait(UartPixelRecvEvt); 
 
            notify(UartPixelSentEvt); 
            uartPixel = ((char*)&temp)[1];    /* send lower byte */ 
            wait(UartPixelRecvEvt); 
         } 
      } 
   } 
}; 
 
behavior Cntrl( in event   DoneCaptureEvt, 
                in event   CcdppPixelSentEvt, 
                in char    ccdppPixel, 
                out event  StartCaptureEvt, 
                out event  CcdppPixelReqEvt, 
                in event   CodecPixelPushRecvEvt, 
                in event   CodecPixelPopSentEvt, 
                in event   DoneFdctEvt, 
                in short   codecPixelPop, 
                out event  CodecPixelPushSentEvt, 
                out event  CodecPixelPopReqEvt, 
                out event  StartFdctEvt, 
                out short  codecPixelPush, 
                in event   UartPixelRecvEvt, 
                out event  UartPixelSentEvt, 
                out char   uartPixel )  
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{ 
  
   short buffer[ROW_SIZE][COL_SIZE]; 
  
   CntrlCaptureImage CntrlCaptureImageInst( DoneCaptureEvt, 
                                            CcdppPixelSentEvt, 
                                            ccdppPixel, 
                                            buffer, 
                                            StartCaptureEvt, 
                                            CcdppPixelReqEvt ); 
  
   CntrlCompressImage CntrlCompressImageInst( CodecPixelPushRecvEvt, 
                                              CodecPixelPopSentEvt, 
                                              DoneFdctEvt, 
                                              codecPixelPop, 
                                              buffer, 
                                              CodecPixelPushSentEvt, 
                                              CodecPixelPopReqEvt, 
                                              StartFdctEvt, 
                                              codecPixelPush ); 
   
   CntrlSendImage CntrlSendImageInst( UartPixelRecvEvt, 
                                      buffer, 
                                      UartPixelSentEvt, 
                                      uartPixel); 
  
   void main(void) { 
      CntrlCaptureImageInst.main(); 
      CntrlCompressImageInst.main(); 
      CntrlSendImageInst.main();   
   } 
}; 
 
 
//////////////////////////////////////// 
// Testbench                          // 
// for Functional model               // 
//////////////////////////////////////// 
behavior Main  
{ 
   event StartCcdCaptureEvt,  
         DoneCcdCaptureEvt, 
         CcdPixelReqEvt, 
         CcdPixelSentEvt, 
         StartCcdppCaptureEvt, 
         DoneCcdppCaptureEvt, 
         CcdppPixelReqEvt, 
         CcdppPixelSentEvt, 
         CodecPixelPushRecvEvt, 
         CodecPixelPushSentEvt, 
         CodecPixelPopReqEvt, 
         CodecPixelPopSentEvt, 
         StartFdctEvt, 
         DoneFdctEvt, 
         UartPixelSentEvt, 
         UartPixelRecvEvt; 
 
   char  ccdPixelOut, 
         ccdppPixelOut, 
         uartData; 
   
   short codecPixelPop, 
         codecPixelPush; 
 
   Ccd   CcdInst( StartCcdCaptureEvt, 
                  CcdPixelReqEvt, 
                  DoneCcdCaptureEvt, 
                  CcdPixelSentEvt, 
                  ccdPixelOut ); 
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   Ccdpp CcdppInst( StartCcdppCaptureEvt, 
                    CcdppPixelReqEvt, 
                    DoneCcdppCaptureEvt, 
                    CcdppPixelSentEvt, 
                    ccdppPixelOut, 
                    DoneCcdCaptureEvt, 
                    CcdPixelSentEvt, 
                    ccdPixelOut, 
                    StartCcdCaptureEvt, 
                    CcdPixelReqEvt ); 
  
   Codec CodecInst( codecPixelPush, 
                    CodecPixelPushSentEvt, 
                    StartFdctEvt, 
                    CodecPixelPopReqEvt, 
                    codecPixelPop, 
                    CodecPixelPushRecvEvt, 
                    DoneFdctEvt, 
                    CodecPixelPopSentEvt ); 
   
   Uart  UartInst( uartData, 
                   UartPixelSentEvt, 
                   UartPixelRecvEvt ); 
  
   Cntrl CntrlInst( DoneCcdppCaptureEvt, 
                    CcdppPixelSentEvt, 
                    ccdppPixelOut, 
                    StartCcdppCaptureEvt, 
                    CcdppPixelReqEvt, 
                    CodecPixelPushRecvEvt, 
                    CodecPixelPopSentEvt, 
                    DoneFdctEvt, 
                    codecPixelPop, 
                    CodecPixelPushSentEvt, 
                    CodecPixelPopReqEvt, 
                    StartFdctEvt, 
                    codecPixelPush, 
                    UartPixelRecvEvt, 
                    UartPixelSentEvt, 
                    uartData ); 
  
   int main(void) { 
      par {  
         CcdInst.main(); 
         CcdppInst.main(); 
         CodecInst.main(); 
         UartInst.main(); 
         CntrlInst.main(); 
      } 
 
      return 0; 
   } 
}; 

SpecC Transaction-level Model 
//////////////////////////////////////////////////////////////////// 
// File: digcam.sc                                                // 
// Desc: SpecC Transaction-level Model of the Digital Camera      // 
//////////////////////////////////////////////////////////////////// 
 
#include <stdio.h> 
#include "image.h" 
 
#define CLK_CYCLE 1 
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//////////////////////////////////////// 
// Interface Definitions              // 
// for Transaction-level model        // 
//////////////////////////////////////// 
interface CcdToCcdBusIf 
{ 
   void   ready(); 
   void   write(char); 
}; 
 
interface CcdppToCcdBusIf 
{ 
   void start(); 
   char read(); 
}; 
 
interface CntrlToMainBusIf 
{ 
   short  read(short); 
   void   write(short, short); 
   void   start_ccdpp(); 
   void   start_uart(); 
}; 
 
interface CcdppToMainBusIf 
{ 
   void   write(short, short); 
   void   ccdpp_ready(); 
   void   ccdpp_done(); 
}; 
 
interface UartToMainBusIf 
{ 
   short  read(short); 
   void   uart_ready(); 
   void   uart_done(); 
}; 
 
 
//////////////////////////////////////// 
// CCD BUS Channel                    // 
// for Transaction-level model        // 
//////////////////////////////////////// 
channel CcdBus() implements CcdToCcdBusIf, 
                            CcdppToCcdBusIf 
{ 
   char  pixel; 
   bool  valid = false; 
   bool  busy = true; 
   event StartEvt, ValidEvt; 
    
   // CcdToCcdBusIf Interface Functions 
   void ready() 
   { 
      busy = false; 
      wait(StartEvt); 
      busy = true;     
      return; 
   } 
 
   void write(char data) 
   { 
      do {waitfor(1);} 
      while(valid == true); 
      pixel = data; 
      valid = true; 
      notify(ValidEvt); 
   } 
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   // CcdppToCcdBusIf Interface Functions 
   void start() 
   { 
      do {waitfor(1);} 
      while(busy == true); 
      notify(StartEvt); 
      return; 
   } 
 
   char read()  
   { 
      if(!valid) 
         wait(ValidEvt); 
      valid = false; 
      return pixel; 
   } 
}; 
 
 
//////////////////////////////////////// 
// Main Bus and Shared Memory Module  // 
// for Transaction-level model        // 
//////////////////////////////////////// 
channel MainBus() implements CntrlToMainBusIf, 
                             CcdppToMainBusIf, 
                             UartToMainBusIf  
{ 
   bool  ccdppBusy, uartBusy; 
   short memory[ROW_SIZE*COL_SIZE]; 
   event StartCcdppEvt; 
   event CcdppDoneEvt; 
   event StartUartEvt; 
   event UartDoneEvt; 
 
   // Cntrl/Ccdpp/UartToMainBusIf Interface Functions 
   short read(short addr) 
   { 
      waitfor(2*CLK_CYCLE); 
      return memory[addr]; 
   } 
       
   void write(short addr, short data) 
   { 
      waitfor(2*CLK_CYCLE); 
      memory[addr] = data; 
   } 
 
   // CntrlToMainBusIf Interface Functions 
   void start_ccdpp() 
   { 
      if(ccdppBusy) 
         wait(CcdppDoneEvt); 
      notify(StartCcdppEvt); 
      wait(CcdppDoneEvt); 
      return; 
   } 
 
   void start_uart() 
   { 
      if(uartBusy) 
         wait(UartDoneEvt); 
      notify(StartUartEvt); 
      wait(UartDoneEvt); 
      return; 
   } 
 
   // CcdppToMainBusIf Interface Functions 
   void ccdpp_ready() 
   { 
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      ccdppBusy = false; 
      wait(StartCcdppEvt); 
      ccdppBusy = true; 
      return; 
   } 
 
   void ccdpp_done() 
   { 
      ccdppBusy = false; 
      notify(CcdppDoneEvt); 
      return; 
   } 
 
   // UartToMainBusIf Interface Functions 
   void uart_ready() 
   { 
      uartBusy = false; 
      wait(StartUartEvt); 
      uartBusy = true; 
      return; 
   } 
 
   void uart_done() 
   { 
      uartBusy = false; 
      notify(UartDoneEvt); 
      return; 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCD Module                         // 
// for Transaction-level model        // 
//////////////////////////////////////// 
behavior CcdCapture( CcdToCcdBusIf CcdBus0,  
                     out char buffer[ROW_SIZE][COL_SIZE+2] ) 
{ 
   int row, col; 
    
   void main(void) 
   { 
      CcdBus0.ready(); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            // IMAGE array is defined in image.h 
            buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col]; 
         } 
      } 
   } 
}; 
 
behavior CcdPopPixel( CcdToCcdBusIf CcdBus0, 
                      in char buffer[ROW_SIZE][COL_SIZE+2] ) 
{ 
   int row, col; 
    
   void main(void) 
   { 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            CcdBus0.write( buffer[row][col] ); 
         } 
      } 
   } 
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}; 
 
behavior Ccd( CcdToCcdBusIf CcdBus0 ) 
{ 
 char buffer[ROW_SIZE][COL_SIZE+2]; 
  
   CcdCapture  CcdCaptureInst( CcdBus0, 
                               buffer ); 
 
   CcdPopPixel CcdPopPixelInst( CcdBus0, 
                                buffer ); 
  
 void main(void) { 
  CcdCaptureInst.main(); 
  CcdPopPixelInst.main(); 
 } 
}; 
 
 
//////////////////////////////////////// 
// CCDPP module                       // 
// for Transaction-level model        // 
//////////////////////////////////////// 
behavior Ccdpp( CcdppToCcdBusIf    CcdBus0, 
                CcdppToMainBusIf   MainBus0 ) 
{ 
   int row, col; 
   char bias;  
   char tempRow[COL_SIZE]; 
    
   void main(void) 
   { 
      MainBus0.ccdpp_ready(); 
      CcdBus0.start(); 
       
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            tempRow[col] = CcdBus0.read(); 
   } 
 
   bias = CcdBus0.read(); 
   bias = (bias + CcdBus0.read()) / 2; 
   waitfor(12*CLK_CYCLE);    
   for(col=0; col<COL_SIZE; col++) { 
 
    tempRow[col] -= bias; 
    waitfor(4*CLK_CYCLE); 
            MainBus0.write(row*COL_SIZE+col, tempRow[col]); 
   } 
  } 
  MainBus0.ccdpp_done(); 
 } 
}; 
 
 
//////////////////////////////////////// 
// UART module                        // 
// for Transaction-level model        // 
//////////////////////////////////////// 
behavior UartInitialize( out FILE *outputFileHandle ) 
{ 
 void main(void) { 
  outputFileHandle = fopen("uart_out.txt", "w"); 
 } 
}; 
 
behavior UartSend( in FILE *outputFileHandle, 



 80

                   UartToMainBusIf  MainBus0 )  
{ 
   int i; 
   short data; 
    
   void main(void) { 
      MainBus0.uart_ready(); 
      for(i=0; i<(16384/2); i++) 
      { 
         data = MainBus0.read(i); 
 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]); 
         waitfor(2*CLK_CYCLE); 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]); 
         waitfor(2*CLK_CYCLE); 
      } 
       
      fclose(outputFileHandle); 
      MainBus0.uart_done(); 
   } 
}; 
 
behavior Uart( UartToMainBusIf   MainBus0 ) 
{ 
   FILE *outputFileHandle; 
  
 UartInitialize UartInitializeInst(outputFileHandle); 
 
 UartSend UartSendInst( outputFileHandle, 
                          MainBus0 ); 
 
 void main(void) { 
  UartInitializeInst.main(); 
  UartSendInst.main(); 
 } 
}; 
 
 
//////////////////////////////////////// 
// CNTRL/CODEC behaviors              // 
// for Transaction-level model        // 
//////////////////////////////////////// 
const short COS_TABLE[64] = { 
            64,  62,  59,  53,  45,  35,  24,  12, 
            64,  53,  24, -12, -45, -62, -59, -35, 
            64,  35, -24, -62, -45,  12,  59,  53, 
            64,  12, -59, -35,  45,  53, -24, -62, 
            64, -12, -59,  35,  45, -53, -24,  62, 
            64, -35, -24,  62, -45, -12,  59, -53, 
            64, -53,  24,  12, -45,  62, -59,  35, 
            64, -62,  59, -53,  45, -35,  24, -12 }; 
 
const unsigned char QUANT_SHIFT_TABLE[64] = { 
                    0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 1, 1, 1, 1, 
                    1, 1, 1, 1, 1, 1, 2, 2, 
                    2, 2, 2, 2, 2, 2, 2, 3, 
                    3, 3, 3, 3, 3, 3, 3, 4, 
                    4, 4, 4, 4, 4, 4, 5, 5, 
                    5, 5, 5, 5, 6, 6, 6, 6, 
                    6, 7, 7, 7, 7, 8, 8, 8 }; 
 
behavior Cntrl( CntrlToMainBusIf MainBus0 ) 
{ 
   // CNTRL Vars 
   short inBuffer[8][8], outBuffer[8][8]; 
   short temp; 
   short addr; 
   int i, j, k, l; 
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   // Local FDCT Functions 
   unsigned char C(int h) { 
      return h ? 64 : 5; 
   } 
 
   int F(int u, int v, short img[8][8]) { 
 
      long s[8]; 
      long r; 
      unsigned char a; 
 
      for(a=0; a<8; a++)  
      { 
         s[a] = ((img[a][0] * COS_TABLE[v])    >> 6) + 
                ((img[a][1] * COS_TABLE[8+v])  >> 6) + 
                ((img[a][2] * COS_TABLE[16+v]) >> 6) + 
                ((img[a][3] * COS_TABLE[24+v]) >> 6) + 
                ((img[a][4] * COS_TABLE[32+v]) >> 6) + 
                ((img[a][5] * COS_TABLE[40+v]) >> 6) + 
                ((img[a][6] * COS_TABLE[48+v]) >> 6) + 
                ((img[a][7] * COS_TABLE[56+v]) >> 6); 
      } 
 
      r = 0; 
      for(a=0; a<8; a++)  
      { 
         r += (s[a] * COS_TABLE[a * 8 + u]) >> 6; 
      } 
 
      return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6); 
   } 
 
   void main(void) 
   { 
      // CNTRL Capture 
      MainBus0.start_ccdpp(); 
 
      // CNTRL Compress 
      for(i=0; i<NUM_ROW_BLOCKS; i++) 
      { 
         for(j=0; j<NUM_COL_BLOCKS; j++)  
         { 
            // Push the block and perform FDCT 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  inBuffer[k][l] = (MainBus0.read( addr ) << 6); 
               } 
            } 
 
            // FDCT 
            for(k=0; k<8; k++)  
            { 
               for(l=0; l<8; l++)  
               { 
                  outBuffer[k][l] = F(k, l, inBuffer); 
                  waitfor(72*CLK_CYCLE); 
               } 
            } 
 
            // Quantize 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  outBuffer[k][l] >>= QUANT_SHIFT_TABLE[k * 8 + l]; 
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                  waitfor(4*CLK_CYCLE); 
               } 
            }           
 
            // Pop the block and store it in buffer 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  MainBus0.write( addr, outBuffer[k][l] ); 
                   
               } 
            } 
         } 
      } 
 
      // CNTRL Send Image 
      MainBus0.start_uart(); 
 
      return; 
   } 
}; 
 
//////////////////////////////////////// 
// Testbench                          // 
// for Transaction-level model        // 
//////////////////////////////////////// 
behavior Main { 
    
   CcdBus   CcdBus0; 
   MainBus  MainBus0; 
    
   Ccd   CcdInst( CcdBus0 ); 
    
   Ccdpp CcdppInst( CcdBus0, 
                    MainBus0 ); 
 
   Uart  UartInst( MainBus0 ); 
    
   Cntrl CntrlInst( MainBus0 ); 
    
   int main(void) { 
      par {  
   CcdInst.main(); 
   CcdppInst.main(); 
   UartInst.main(); 
   CntrlInst.main(); 
  } 
   
  return 0; 
 } 
}; 

SpecC Communication Model 
//////////////////////////////////////////////////////////////////// 
// File: digcam.sc                                                // 
// Desc: SpecC Communication Model of the Digital Camera          // 
//////////////////////////////////////////////////////////////////// 
 
#include <stdio.h> 
#include "image.h" 
 
#define CLK_CYCLE 1 
 
// States for Memory behavior 
#define IDLE   0 
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#define READ   1 
#define WRITE  2 
#define DONE   3 
 
//////////////////////////////////////// 
// Mem Module                         // 
// for Communication model            // 
//////////////////////////////////////// 
behavior Mem( in  signal bit[1]       ClockI, 
              in  signal bit[1]       ReqI, 
              in  signal bit[1]       RwI, 
              in  signal bit[15:0]    AddrI, 
              inout  signal bit[15:0] DataIO, 
              out signal bit[1]       ValidO ) 
{ 
   short memory[ROW_SIZE*COL_SIZE]; 
      
   char  nextState = IDLE; 
    
   void main(void) 
   { 
      ValidO = 0; 
      while(1) { 
         wait ClockI rising; 
          
         printf("%d %d\n", nextState, ReqI); fflush(stdout); 
          
         switch(nextState) 
         { 
         case IDLE: 
            ValidO = 0; 
            if((ReqI == 1) && (RwI == 1)) 
            { 
               nextState = READ; 
            } 
            else if((ReqI == 1) && (RwI == 1)) 
            { 
               nextState = WRITE; 
            } 
            break; 
         case READ: 
            DataIO = memory[AddrI]; 
            ValidO = 1; 
            nextState = DONE; 
            break; 
         case WRITE: 
            memory[AddrI] = DataIO; 
            ValidO = 1; 
            nextState = DONE; 
            break; 
         case DONE: 
            if(ReqI == 0) 
            { 
               ValidO = 0; 
               nextState = IDLE; 
            } 
            break; 
         } 
      } 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCD Module                         // 
// for Communication model            // 
//////////////////////////////////////// 
behavior CcdCapture( in  signal bit[1]  ClockI, 
                     in  signal bit[1]  StartI, 
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                     out char buffer[ROW_SIZE][COL_SIZE+2] ) 
{ 
   void ready() 
   { 
      do { 
         wait ClockI rising; 
      } while (StartI == 0); 
      return; 
   } 
    
   int row, col; 
    
   void main(void) 
   { 
      ready(); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            // IMAGE array is defined in image.h 
            buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col]; 
         } 
      } 
   } 
}; 
 
behavior CcdPopPixel( in  signal bit[1]  ClockI, 
                      in  signal bit[1]  ReadyI, 
                      out signal bit[7:0]  DataO, 
                      out signal bit[1]  ValidO, 
                      in char buffer[ROW_SIZE][COL_SIZE+2] ) 
{ 
   void write(char data) 
   { 
      DataO = data; 
      ValidO = 1; 
      do { 
         wait ClockI rising; 
      } while (ReadyI == 0); 
       
      ValidO = 0; 
   } 
    
   int row, col; 
    
   void main(void) 
   { 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            write( buffer[row][col] ); 
         } 
      } 
   } 
}; 
 
behavior Ccd( in  signal bit[1]  ClockI, 
              in  signal bit[1]  StartI, 
              in  signal bit[1]  ReadyI, 
              out signal bit[7:0]  DataO, 
              out signal bit[1]  ValidO ) 
{ 
 char buffer[ROW_SIZE][COL_SIZE+2]; 
 
    
  
   CcdCapture  CcdCaptureInst( ClockI, 
                               StartI, 
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                               buffer ); 
 
   CcdPopPixel CcdPopPixelInst( ClockI, 
                                ReadyI, 
                                DataO, 
                                ValidO, 
                                buffer ); 
  
 void main(void) { 
  CcdCaptureInst.main(); 
  CcdPopPixelInst.main(); 
 } 
}; 
 
 
//////////////////////////////////////// 
// CCDPP module                       // 
// for Communication model            // 
//////////////////////////////////////// 
behavior Ccdpp( in  signal bit[1]   ClockI, 
                in  signal bit[1]   CcdBusValidI, 
                in  signal bit[7:0] CcdBusDataI, 
                out signal bit[1]   CcdBusStartO, 
                out signal bit[1]   CcdBusReadyO, 
                 
                out signal bit[1]   MainBusReqO, 
                out signal bit[1]   MainBusRwO, 
                out signal bit[15:0]   MainBusAddrO, 
                inout signal bit[15:0] MainBusDataIO, 
                in  signal bit[1]   MainBusValidI, 
                in  signal bit[1]   MainBusStartCcdppI, 
                out signal bit[1]   MainBusCcdppBusyO ) 
{ 
   int row, col; 
   char bias;  
   char tempRow[COL_SIZE]; 
    
   // CCD Bus Interface Functions 
   void ccd_start( void ) 
   { 
      CcdBusStartO = 1; 
      wait ClockI rising; 
   } 
 
   char ccdbus_read( void ) 
   { 
      char temp; 
 
      CcdBusReadyO = 1; 
      do { 
         wait ClockI rising; 
      }while( CcdBusValidI == 0 ); 
 
      CcdBusReadyO = 0; 
      temp = CcdBusDataI; 
      wait ClockI rising; 
 
      return temp; 
   } 
    
   // MAIN Bus Interface Functions 
   void mainbus_write(short addr, short data) 
   { 
      MainBusReqO = 1; 
      MainBusRwO = 0; 
      MainBusAddrO = addr ; 
      MainBusDataIO = data ; 
      do { 
         wait ClockI rising; 



 86

      }while( MainBusValidI == 0 ); 
 
      MainBusReqO = 0; 
      wait ClockI rising; 
      return; 
   } 
    
   void ccdpp_ready() 
   { 
      MainBusCcdppBusyO = 0; 
      do { 
         wait ClockI rising; 
      }while( MainBusStartCcdppI == 0 ); 
 
      MainBusCcdppBusyO = 1; 
      return; 
   } 
 
   void ccdpp_done() 
   { 
      MainBusCcdppBusyO = 0; 
      wait ClockI rising; 
      return; 
   } 
    
   void main(void) 
   { 
      ccdpp_ready(); 
      ccd_start(); 
       
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            tempRow[col] = ccdbus_read(); 
   } 
 
   bias = ccdbus_read(); 
   bias = (bias + ccdbus_read()) / 2; 
   waitfor(12*CLK_CYCLE);    
   for(col=0; col<COL_SIZE; col++) { 
 
    tempRow[col] -= bias; 
    waitfor(4*CLK_CYCLE); 
            mainbus_write(row*COL_SIZE+col, tempRow[col]); 
   } 
  } 
  ccdpp_done(); 
 } 
}; 
 
 
//////////////////////////////////////// 
// UART module                        // 
// for Communication model            // 
//////////////////////////////////////// 
behavior UartInitialize( out FILE *outputFileHandle ) 
{ 
 void main(void) { 
  outputFileHandle = fopen("uart_out.txt", "w"); 
 } 
}; 
 
behavior UartSend( in FILE *outputFileHandle, 
                   in  signal bit[1]    ClockI, 
                   out signal bit[1]    ReqO, 
                   out signal bit[1]    RwO, 
                   out signal bit[15:0] AddrO, 
                   inout signal bit[15:0]  DataIO, 
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                   in  signal bit[1]    ValidI, 
                   in  signal bit[1]    StartUartI, 
                   out signal bit[1]    UartBusyO )  
{ 
   int i; 
   short data; 
    
   // MAIN Bus Interface Functions 
   short read(short addr) 
   { 
      short  temp; 
 
      ReqO = 1; 
      RwO = 1; 
      AddrO = addr; 
      do { 
         wait ClockI rising; 
      }while( ValidI == 0 );     
 
      temp = DataIO; 
      ReqO = 0; 
      wait ClockI rising; 
 
      return temp; 
   } 
 
   void uart_ready() 
   { 
      UartBusyO = 0; 
      do { 
         wait ClockI rising; 
      }while( StartUartI == 0 ); 
 
      UartBusyO = 1; 
      return; 
   } 
 
   void uart_done() 
   { 
      UartBusyO = 0; 
      wait ClockI rising; 
      return; 
   } 
    
   void main(void) { 
      uart_ready(); 
      for(i=0; i<(16384/2); i++) 
      { 
         data = read(i); 
 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]); 
         waitfor(2*CLK_CYCLE); 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]); 
         waitfor(2*CLK_CYCLE); 
      } 
       
      fclose(outputFileHandle); 
      uart_done(); 
   } 
}; 
 
behavior Uart( in  signal bit[1]    ClockI, 
               out signal bit[1]    ReqO, 
               out signal bit[1]    RwO, 
               out signal bit[15:0] AddrO, 
               inout signal bit[15:0]  DataIO, 
               in  signal bit[1]    ValidI, 
               in  signal bit[1]    StartUartI, 
               out signal bit[1]    UartBusyO ) 
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{ 
   FILE *outputFileHandle; 
  
 UartInitialize UartInitializeInst(outputFileHandle); 
 
 UartSend UartSendInst( outputFileHandle, 
                        ClockI, 
                          ReqO, 
                          RwO, 
                          AddrO, 
                          DataIO, 
                          ValidI, 
                          StartUartI, 
                          UartBusyO ); 
 
 void main(void) { 
  UartInitializeInst.main(); 
  UartSendInst.main(); 
 } 
}; 
 
 
//////////////////////////////////////// 
// CNTRL/CODEC behaviors              // 
// for Communication model            // 
//////////////////////////////////////// 
const short COS_TABLE[64] = { 
            64,  62,  59,  53,  45,  35,  24,  12, 
            64,  53,  24, -12, -45, -62, -59, -35, 
            64,  35, -24, -62, -45,  12,  59,  53, 
            64,  12, -59, -35,  45,  53, -24, -62, 
            64, -12, -59,  35,  45, -53, -24,  62, 
            64, -35, -24,  62, -45, -12,  59, -53, 
            64, -53,  24,  12, -45,  62, -59,  35, 
            64, -62,  59, -53,  45, -35,  24, -12 }; 
 
const unsigned char QUANT_SHIFT_TABLE[64] = { 
                    0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 1, 1, 1, 1, 
                    1, 1, 1, 1, 1, 1, 2, 2, 
                    2, 2, 2, 2, 2, 2, 2, 3, 
                    3, 3, 3, 3, 3, 3, 3, 4, 
                    4, 4, 4, 4, 4, 4, 5, 5, 
                    5, 5, 5, 5, 6, 6, 6, 6, 
                    6, 7, 7, 7, 7, 8, 8, 8 }; 
 
behavior Cntrl( in  signal bit[1]    ClockI, 
                out signal bit[1]    ReqO, 
                out signal bit[1]    RwO, 
                out signal bit[15:0] AddrO, 
                inout signal bit[15:0]  DataIO, 
                in  signal bit[1]    ValidI, 
                out signal bit[1]    StartCcdppO, 
                out signal bit[1]    StartUartO, 
                in  signal bit[1]    CcdppBusyI, 
                in  signal bit[1]    UartBusyI ) 
{ 
   // CNTRL Vars 
   short inBuffer[8][8], outBuffer[8][8]; 
   short temp; 
   short addr; 
   int i, j, k, l; 
 
   // Local FDCT Functions 
   unsigned char C(int h) { 
      return h ? 64 : 5; 
   } 
 
   int F(int u, int v, short img[8][8]) { 
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      long s[8]; 
      long r; 
      unsigned char a; 
 
      for(a=0; a<8; a++)  
      { 
         s[a] = ((img[a][0] * COS_TABLE[v])    >> 6) + 
                ((img[a][1] * COS_TABLE[8+v])  >> 6) + 
                ((img[a][2] * COS_TABLE[16+v]) >> 6) + 
                ((img[a][3] * COS_TABLE[24+v]) >> 6) + 
                ((img[a][4] * COS_TABLE[32+v]) >> 6) + 
                ((img[a][5] * COS_TABLE[40+v]) >> 6) + 
                ((img[a][6] * COS_TABLE[48+v]) >> 6) + 
                ((img[a][7] * COS_TABLE[56+v]) >> 6); 
      } 
 
      r = 0; 
      for(a=0; a<8; a++)  
      { 
         r += (s[a] * COS_TABLE[a * 8 + u]) >> 6; 
      } 
 
      return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6); 
   } 
    
   // MAIN Bus Interface Functions 
   short read(short address) 
   { 
      short temp; 
 
      ReqO = 1; 
      RwO = 1; 
      AddrO = address; 
      do { 
         wait ClockI rising; 
      }while( ValidI == 0 );     
 
      temp = DataIO; 
      ReqO = 0; 
      wait ClockI rising; 
 
      return temp; 
   } 
 
   void write(short address, short data) 
   { 
      ReqO = 1; 
      RwO = 0; 
      AddrO = address; 
      DataIO = data; 
      do { 
         wait ClockI rising; 
      }while( ValidI == 0 ); 
 
      ReqO = 0; 
      wait ClockI rising; 
      return; 
   } 
 
   void start_ccdpp() 
   { 
      do { 
         wait ClockI rising; 
      }while( CcdppBusyI == 1 ); 
 
      StartCcdppO = 1; 
 
      wait ClockI rising; 
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      StartCcdppO = 0; 
 
      do { 
         wait ClockI rising; 
      }while( CcdppBusyI == 1 ); 
 
      return; 
   } 
 
   void start_uart() 
   { 
      do { 
         wait ClockI rising; 
      }while( UartBusyI == 1 ); 
 
      StartUartO = 1; 
 
      wait ClockI rising; 
      StartUartO = 0; 
 
      do { 
         wait ClockI rising; 
      }while( UartBusyI == 1 ); 
 
      return; 
   } 
 
   void main(void) 
   { 
      // CNTRL Capture 
      start_ccdpp(); 
 
      // CNTRL Compress 
      for(i=0; i<NUM_ROW_BLOCKS; i++) { 
 
         for(j=0; j<NUM_COL_BLOCKS; j++) { 
 
            // Push the block and perform FDCT 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  inBuffer[k][l] = (read( addr ) << 6); 
               } 
            } 
 
            // FDCT 
            for(k=0; k<8; k++)  
            { 
               for(l=0; l<8; l++)  
               { 
                  outBuffer[k][l] = F(k, l, inBuffer); 
                  waitfor(72*CLK_CYCLE); 
               } 
            } 
 
            // Quantize 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  outBuffer[k][l] >>= QUANT_SHIFT_TABLE[k * 8 + l]; 
                  waitfor(4*CLK_CYCLE); 
               } 
            }           
 
            // Pop the block and store it in buffer 
            for(k=0; k<8; k++) 
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            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  write( addr, outBuffer[k][l] ); 
                   
               } 
            } 
         } 
      } 
 
      // CNTRL Send Image 
      start_uart(); 
 
      return; 
   } 
}; 
 
behavior ClockGen ( out signal bit[1]   ClockO ) 
{ 
   void main(void) 
   { 
      while(1) 
      { 
         ClockO = 0; 
         waitfor(1); 
         ClockO = 1; 
         waitfor(1); 
      } 
   } 
}; 
 
//////////////////////////////////////// 
// Testbench                          // 
// for Communication model            // 
//////////////////////////////////////// 
behavior Main { 
    
   signal bit[1]     Clock = 0; 
 
   signal bit[1]     CcdStart; 
   signal bit[1]     CcdReady; 
   signal bit[1]     CcdValid; 
   signal bit[7:0]   CcdData; 
 
   signal bit[1]     MainReq; 
   signal bit[1]     MainRw; 
   signal bit[15:0]  MainAddr; 
   signal bit[15:0]  MainData; 
   signal bit[1]     MainValid; 
   signal bit[1]     StartCcdpp; 
   signal bit[1]     CcdppBusy; 
   signal bit[1]     StartUart; 
   signal bit[1]     UartBusy; 
    
   ClockGen ClockGenInst( Clock ); 
    
   Mem   MemInst( Clock, 
                  MainReq, 
                  MainRw, 
                  MainAddr, 
                  MainData, 
                  MainValid ); 
    
   Ccd   CcdInst( Clock, 
                  CcdStart, 
                  CcdReady, 
                  CcdData, 
                  CcdValid ); 
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   Ccdpp CcdppInst( Clock, 
                    CcdValid, 
                    CcdData, 
                    CcdStart, 
                    CcdReady, 
                    MainReq, 
                    MainRw, 
                    MainAddr, 
                    MainData, 
                    MainValid, 
                    StartCcdpp, 
                    CcdppBusy ); 
 
   Uart  UartInst( Clock, 
                   MainReq, 
                   MainRw, 
                   MainAddr, 
                   MainData, 
                   MainValid, 
                   StartUart, 
                   UartBusy ); 
    
   Cntrl CntrlInst( Clock, 
                    MainReq, 
                    MainRw, 
                    MainAddr, 
                    MainData, 
                    MainValid, 
                    StartCcdpp, 
                    StartUart, 
                    CcdppBusy, 
                    UartBusy ); 
    
   int main(void) { 
      par {  
         ClockGenInst.main(); 
         MemInst.main(); 
         CcdInst.main(); 
         CcdppInst.main(); 
         UartInst.main(); 
         CntrlInst.main(); 
      } 
 
      return 0; 
   } 
}; 
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APPENDIX B DIGITAL CAMERA SYSTEM: SYSTEMC 
MODELS 

This appendix contains the SpecC source code for the functional, transaction-level, 

and communication models of the digital camera system. Each model was developed and 

compiled using Microsoft Visual C++ 6.0 with the SystemC 2.0.1 library. All model 

simulations were done using the reference simulator provided by OSCI. 

SystemC Functional Model 
//////////////////////////////////////////////////////////////////// 
// File: digcam.cpp                                               // 
// Desc: SystemC Functional Model of the Digital Camera           // 
//////////////////////////////////////////////////////////////////// 
#include "systemc.h" 
#include "image.h" 
 
//////////////////////////////////////// 
// CCD Module                         // 
// for Functional model               // 
//////////////////////////////////////// 
SC_MODULE( Ccd ) 
{ 
   // CCD Ports 
   sc_fifo_in<bool> StartCcdCapture; 
   sc_fifo_out<bool> DoneCcdCapture; 
   sc_fifo_out<char> Pixel; 
    
   // CCD Vars 
   char buffer[ROW_SIZE][COL_SIZE+2]; 
   int  row, col; 
    
   // CCD Events 
   sc_event   StartPopEvt; 
 
   // CCD Processes 
   void capture(void)  
   { 
      StartCcdCapture.read(); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col]; 
         } 
      } 
      DoneCcdCapture.write( true ); 
      notify(StartPopEvt); 
   } 
 
   void pop(void)  
   { 
      wait(StartPopEvt); 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            Pixel.write( buffer[row][col] ); 
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         } 
      } 
   } 
 
   // Module Constructor 
   SC_CTOR( Ccd ) { 
      SC_THREAD( capture ); 
      SC_THREAD( pop ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCDPP module                       // 
// for Functional model               // 
//////////////////////////////////////// 
SC_MODULE( Ccdpp ) 
{ 
   // CCDPP Ports 
   sc_fifo_in<bool>  StartCcdppCapture, DoneCcdCapture; 
   sc_fifo_in<char>  CcdPixel; 
   sc_fifo_out<bool> DoneCcdppCapture, StartCcdCapture; 
   sc_fifo_out<char> CcdppPixel; 
 
   // CCDPP Vars 
   char buffer[ROW_SIZE][COL_SIZE]; 
   int  row, col; 
   char bias; 
 
   // CCDPP Events 
   sc_event   StartPopEvt; 
    
   // CCDPP Processes 
   void capture(void)  
   { 
      StartCcdppCapture.read(); 
      StartCcdCapture.write( true ); 
      DoneCcdCapture.read(); 
 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[row][col] = CcdPixel.read(); 
         } 
 
         bias = CcdPixel.read(); 
         bias = ( bias + CcdPixel.read() ) / 2; 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[row][col] -= bias; 
         } 
      } 
 
      DoneCcdppCapture.write( true ); 
      notify(StartPopEvt); 
   } 
 
   void pop(void) 
   { 
      wait(StartPopEvt); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<COL_SIZE; col++)  
         { 
            CcdppPixel.write( buffer[row][col] ); 
         } 
      } 
   } 
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   // Module Constructor 
   SC_CTOR( Ccdpp ) { 
      SC_THREAD( capture ); 
      SC_THREAD( pop ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CODEC module                       // 
// for Functional model               // 
//////////////////////////////////////// 
const short COS_TABLE[64] = { 
            64,  62,  59,  53,  45,  35,  24,  12, 
            64,  53,  24, -12, -45, -62, -59, -35, 
            64,  35, -24, -62, -45,  12,  59,  53, 
            64,  12, -59, -35,  45,  53, -24, -62, 
            64, -12, -59,  35,  45, -53, -24,  62, 
            64, -35, -24,  62, -45, -12,  59, -53, 
            64, -53,  24,  12, -45,  62, -59,  35, 
            64, -62,  59, -53,  45, -35,  24, -12 
}; 
 
SC_MODULE( Codec ) 
{ 
   // CODEC Ports 
   sc_fifo_in<short>    PixelIn; 
   sc_fifo_out<short>   PixelOut; 
 
   // CODEC Vars 
   int   idx; 
   int   i; 
   short inBuffer[8][8], outBuffer[8][8]; 
 
   // FDCT Functions 
   unsigned char C(int h) { 
      return h ? 64 : 5; 
   } 
 
   int F(int u, int v, short img[8][8]) { 
 
      long  s[8]; 
      long  r; 
      unsigned char  a; 
 
      for(a=0; a<8; a++)  
      { 
         s[a] = ((img[a][0] * COS_TABLE[v])    >> 6) + 
                ((img[a][1] * COS_TABLE[8+v])  >> 6) + 
                ((img[a][2] * COS_TABLE[16+v]) >> 6) + 
                ((img[a][3] * COS_TABLE[24+v]) >> 6) + 
                ((img[a][4] * COS_TABLE[32+v]) >> 6) + 
                ((img[a][5] * COS_TABLE[40+v]) >> 6) + 
                ((img[a][6] * COS_TABLE[48+v]) >> 6) + 
                ((img[a][7] * COS_TABLE[56+v]) >> 6); 
      } 
 
      r = 0; 
      for(a=0; a<8; a++)  
      { 
         r += (s[a] * COS_TABLE[a * 8 + u]) >> 6; 
      } 
 
      return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6); 
   } 
 
   // CODEC Processes 
   void main(void) { 
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      int x, y; 
 
      i = 0; 
      while(i < 128) { 
         // CODEC Push Pixel 
         for(idx=0; idx<64; idx++) 
         { 
            inBuffer[idx / 8][idx % 8] = (PixelIn.read() << 6); 
         }          
 
         // CODEC Do FDCT 
         for(x=0; x<8; x++) { 
 
            for(y=0; y<8; y++) { 
               outBuffer[x][y] = F(x, y, inBuffer); 
            } 
         } 
 
         // CODEC Pop Pixel 
         for(idx=0; idx<64; idx++) 
         { 
            PixelOut.write( outBuffer[idx / 8][idx % 8] ); 
         } 
         ++i; 
      } 
   } 
 
   // Module Constructor 
   SC_CTOR( Codec ) { 
      SC_THREAD( main ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// UART module                        // 
// for Functional model               // 
//////////////////////////////////////// 
SC_MODULE( Uart ) 
{ 
   // UART Ports 
   sc_fifo_in<char>  DataIn; 
    
   // UART Vars 
   FILE  *outputFileHandle; 
   char   data; 
 
   // UART Processes 
   void uartSend(void)  
   { 
      while(1) { 
         data = DataIn.read(); 
         fprintf(outputFileHandle, "%i\n", (int)data); 
      } 
   } 
 
   // Module Constructor 
   SC_CTOR( Uart ) 
   { 
      outputFileHandle = fopen("uart_out.txt", "w"); 
      SC_THREAD( uartSend ); 
   } 
 
   // Module Destructor 
   ~Uart(void) 
   { 
      fclose(outputFileHandle); 
   } 
}; 
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//////////////////////////////////////// 
// CNTRL module                       // 
// for Functional model               // 
//////////////////////////////////////// 
const unsigned char QUANT_SHIFT_TABLE[64] = { 
                    0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 1, 1, 1, 1, 
                    1, 1, 1, 1, 1, 1, 2, 2, 
                    2, 2, 2, 2, 2, 2, 2, 3, 
                    3, 3, 3, 3, 3, 3, 3, 4, 
                    4, 4, 4, 4, 4, 4, 5, 5, 
                    5, 5, 5, 5, 6, 6, 6, 6, 
                    6, 7, 7, 7, 7, 8, 8, 8 }; 
SC_MODULE(Cntrl) { 
   // CNTRL Ports 
   sc_fifo_in<bool>  DoneCapture; 
   sc_fifo_in<char>  CcdppPixelPop; 
   sc_fifo_in<short> CodecPixelPop; 
 
   sc_fifo_out<bool> StartCapture; 
   sc_fifo_out<char> UartPixel; 
   sc_fifo_out<short>   CodecPixelPush; 
 
   // CNTRL Vars 
   short buffer[ROW_SIZE][COL_SIZE]; 
   short temp; 
   int i, j, k, l; 
 
   void main( void ) 
   { 
      // CNTRL Capture 
      StartCapture.write( true ); 
      DoneCapture.read(); 
      for(i=0; i<ROW_SIZE; i++) 
      { 
         for(j=0; j<COL_SIZE; j++) 
         { 
            buffer[i][j] = CcdppPixelPop.read(); 
         } 
      } 
 
      // CNTRL Compress 
      for(i=0; i<NUM_ROW_BLOCKS; i++) { 
 
         for(j=0; j<NUM_COL_BLOCKS; j++) { 
 
            // Push the block and perform FDCT 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  CodecPixelPush.write( (char)buffer[i*8 + k][j*8 + l] ); 
               } 
            } 
 
            // Pop the block and store it in buffer 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  buffer[i*8 + k][j*8 + l] = CodecPixelPop.read(); 
               } 
            } 
         } 
      } 
 
      // CNTRL Quantization  
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      for(i=0; i<NUM_ROW_BLOCKS; i++) 
      { 
         for(j=0; j<NUM_COL_BLOCKS; j++) 
         { 
            // Quantize the block in place 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  buffer[i*8 + k][j*8 + l] >>= QUANT_SHIFT_TABLE[k*8 + l]; 
               } 
            } 
         } 
      } 
 
      // CNTRL Send Image 
      for(i=0; i<ROW_SIZE; i++)  
      { 
         for(j=0; j<COL_SIZE; j++)  
         { 
            temp = buffer[i][j]; 
 
            UartPixel.write( ((char*)&temp)[0] );   // Send Upper Byte 
            UartPixel.write( ((char*)&temp)[1] );   // Send Lower Byte 
         } 
      } 
      return; 
   } 
 
 
   // Module Constructor 
   SC_CTOR( Cntrl ) { 
      SC_THREAD( main ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// Testbench                          // 
// for Functional model               // 
//////////////////////////////////////// 
int sc_main(int, char**) 
{ 
   // Module Instances 
   Ccd   CcdInst("Ccd"); 
   Ccdpp CcdppInst("Ccdpp"); 
   Codec CodecInst("Codec"); 
   Uart  UartInst("Uart"); 
   Cntrl CntrlInst("Cntrl"); 
 
   // Channel Instances 
   sc_fifo<bool> StartCcdCapture("StartCcdCapture", 1); 
   sc_fifo<bool> DoneCcdCapture("DoneCcdCapture", 1); 
   sc_fifo<char>  CcdPixel("CcdPixel", 1); 
   sc_fifo<bool>  StartCcdppCapture("StartCcdppCapture", 1); 
   sc_fifo<bool> DoneCcdppCapture("DoneCcdppCapture", 1); 
   sc_fifo<char> CcdppPixel("CcdppPixel", 1); 
   sc_fifo<short> CodecPixelPush("CodecPixelPush", 1); 
   sc_fifo<short> CodecPixelPop("CodecPixelPop", 1); 
   sc_fifo<char>  UartPixel("UartPixel", 1); 
 
    
   // CCD Port Bindings 
   CcdInst.StartCcdCapture( StartCcdCapture ); 
   CcdInst.DoneCcdCapture( DoneCcdCapture ); 
   CcdInst.Pixel( CcdPixel ); 
 
   // CCDPP Port Bindings 
   CcdppInst.StartCcdCapture( StartCcdCapture ); 
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   CcdppInst.DoneCcdCapture( DoneCcdCapture ); 
   CcdppInst.CcdPixel( CcdPixel ); 
   CcdppInst.StartCcdppCapture( StartCcdppCapture ); 
   CcdppInst.DoneCcdppCapture( DoneCcdppCapture ); 
   CcdppInst.CcdppPixel( CcdppPixel ); 
 
   // CODEC Port Bindings 
   CodecInst.PixelIn( CodecPixelPush ); 
   CodecInst.PixelOut( CodecPixelPop ); 
 
   // UART Port Bindings 
   UartInst.DataIn( UartPixel ); 
 
   // CNTRL Port Bindings 
   CntrlInst.StartCapture( StartCcdppCapture ); 
   CntrlInst.DoneCapture( DoneCcdppCapture ); 
   CntrlInst.CcdppPixelPop( CcdppPixel ); 
   CntrlInst.CodecPixelPush( CodecPixelPush ); 
   CntrlInst.CodecPixelPop( CodecPixelPop ); 
   CntrlInst.UartPixel( UartPixel ); 
 
   // Begin UNTIMED Simulation 
   sc_start(-1); 
 
   return 0; 
} 

SystemC Transaction-level Model 
//////////////////////////////////////////////////////////////////// 
// File: digcam.cpp                                               // 
// Desc: SystemC Transaction-level Model of the Digital Camera    // 
//////////////////////////////////////////////////////////////////// 
 
#include "systemc.h" 
#include "image.h" 
 
#define CLK_CYCLE 1 
 
//////////////////////////////////////// 
// Interface Definitions              // 
// for Transaction-level model        // 
//////////////////////////////////////// 
class CcdToCcdBusIf: virtual public sc_interface 
{ 
public: 
   virtual void   ready() = 0; 
   virtual void   write(char) = 0; 
}; 
 
class CcdppToCcdBusIf: virtual public sc_interface  
{ 
public: 
   virtual void   start() = 0; 
   virtual char   read() = 0; 
}; 
class CntrlToMainBusIf: virtual public sc_interface 
{ 
public: 
   virtual short  read(short) = 0; 
   virtual void   write(short, short) = 0; 
   virtual void   start_ccdpp() = 0; 
   virtual void   start_uart() = 0; 
}; 
 
class CcdppToMainBusIf: virtual public sc_interface 
{ 
public: 
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   virtual void   write(short, short) = 0; 
   virtual void   ccdpp_ready() = 0; 
   virtual void   ccdpp_done() = 0; 
}; 
 
class UartToMainBusIf: virtual public sc_interface 
{ 
public: 
   virtual short  read(short) = 0; 
   virtual void   uart_ready() = 0; 
   virtual void   uart_done() = 0; 
}; 
 
 
//////////////////////////////////////// 
// CCD BUS Channel                    // 
// for Transaction-level model        // 
//////////////////////////////////////// 
class CcdBus:  public sc_module, 
               public CcdToCcdBusIf, 
               public CcdppToCcdBusIf 
{ 
private: 
   char pixel; 
   bool valid, busy; 
   sc_event StartEvt, ValidEvt; 
 
public: 
   // CCD BUS Constructor 
   CcdBus(sc_module_name nm) : sc_module(nm), valid(FALSE), busy(TRUE) 
   { 
   } 
    
   // CcdToCcdBusIf Interface Functions 
   void CcdBus::ready() 
   { 
      busy = FALSE; 
      wait(StartEvt); 
      busy = TRUE; 
      return; 
   } 
 
   void CcdBus::write(char data) 
   { 
      do { 
         wait( 1*CLK_CYCLE, SC_NS ); 
      }while(valid == TRUE); 
      pixel = data; 
      valid = TRUE; 
      notify(ValidEvt); 
   } 
 
   // CcdppToCcdBusIf Interface Functions 
   void CcdBus::start() 
   { 
      do{ 
         wait( 1*CLK_CYCLE, SC_NS ); 
      }while(busy == TRUE); 
      notify(StartEvt); 
      return; 
   } 
 
   char CcdBus::read()  
   { 
      if(!valid) 
         wait(ValidEvt); 
      valid = FALSE; 
      return pixel; 
   } 
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}; 
 
 
//////////////////////////////////////// 
// Main Bus and Shared Memory Module  // 
// for Transaction-level model        // 
//////////////////////////////////////// 
class MainBus:  public sc_module, 
                public CntrlToMainBusIf, 
                public CcdppToMainBusIf, 
                public UartToMainBusIf  
{ 
private: 
   bool  ccdppBusy, uartBusy; 
   short memory[ROW_SIZE*COL_SIZE]; 
   sc_event StartCcdppEvt; 
   sc_event CcdppDoneEvt; 
   sc_event StartUartEvt; 
   sc_event UartDoneEvt; 
public: 
   // Channel Constructor 
   MainBus(sc_module_name nm) : sc_module(nm),  
                                ccdppBusy(FALSE), 
                                uartBusy(FALSE) 
   {} 
 
   // Cntrl/Ccdpp/UartToMainBusIf Interface Functions 
   short MainBus::read(short addr) 
   { 
      wait(2*CLK_CYCLE, SC_NS); 
      return memory[addr]; 
   } 
       
   void MainBus::write(short addr, short data) 
   { 
      wait(2*CLK_CYCLE, SC_NS); 
      memory[addr] = data; 
   } 
 
   // CntrlToMainBusIf Interface Functions 
   void MainBus::start_ccdpp() 
   { 
      if(ccdppBusy) 
         wait(CcdppDoneEvt); 
      notify(StartCcdppEvt); 
      wait(CcdppDoneEvt); 
      return; 
   } 
 
   void MainBus::start_uart() 
   { 
      if(uartBusy) 
         wait(UartDoneEvt); 
      notify(StartUartEvt); 
      wait(UartDoneEvt); 
      return; 
   } 
 
   // CcdppToMainBusIf Interface Functions 
   void MainBus::ccdpp_ready() 
   { 
      ccdppBusy = FALSE; 
      wait(StartCcdppEvt); 
      ccdppBusy = TRUE; 
      return; 
   } 
 
   void MainBus::ccdpp_done() 
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   { 
      ccdppBusy = FALSE; 
      notify(CcdppDoneEvt); 
      return; 
   } 
 
   // UartToMainBusIf Interface Functions 
   void MainBus::uart_ready() 
   { 
      uartBusy = FALSE; 
      wait(StartUartEvt); 
      uartBusy = TRUE; 
      return; 
   } 
 
   void MainBus::uart_done() 
   { 
      uartBusy = FALSE; 
      notify(UartDoneEvt); 
      return; 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCD Module                         // 
// for Transaction-level model        // 
//////////////////////////////////////// 
SC_MODULE( Ccd ) 
{ 
   // CCD Ports 
   sc_port<CcdToCcdBusIf>   CcdBus; 
   double   simTime; 
    
   // CCD Vars 
   char buffer[ROW_SIZE][COL_SIZE+2]; 
   int  row, col; 
  
   // CCD Events 
   sc_event StartPopEvt; 
 
   // CCD Processes 
   void capture(void)  
   { 
      CcdBus->ready(); 
      simTime = sc_simulation_time(); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            // IMAGE array is defined in image.h 
            buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col]; 
         } 
      } 
      notify(StartPopEvt); 
   } 
 
   void pop(void)  
   { 
      wait(StartPopEvt); 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            CcdBus->write( buffer[row][col] ); 
         } 
      } 
      cout << "CCD\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
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           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // Module Constructor 
   SC_CTOR( Ccd ) { 
      SC_THREAD( capture ); 
      SC_THREAD( pop ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCDPP module                       // 
// for Transaction-level model        // 
//////////////////////////////////////// 
SC_MODULE( Ccdpp ) 
{ 
   // CCDPP Ports 
   sc_port<CcdppToCcdBusIf>   CcdBus; 
   sc_port<CcdppToMainBusIf>  MainBus; 
 
   // CCDPP Vars 
   char buffer[COL_SIZE]; 
   int  row, col; 
   char bias; 
 
   double   simTime; 
 
   // CCDPP Events 
   sc_event StartPopEvt; 
  
   // CCDPP Processes 
   void capture(void)  
   { 
      MainBus->ccdpp_ready(); 
 
      simTime = sc_simulation_time(); 
 
      CcdBus->start(); 
 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[col] = CcdBus->read(); 
         } 
          
         // Perform Zero Bias Adjustment 
         bias = CcdBus->read(); 
         bias = ( bias + CcdBus->read() ) / 2; 
         wait(12*CLK_CYCLE, SC_NS); 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[col] -= bias; 
            wait(4*CLK_CYCLE, SC_NS); 
            MainBus->write(row*COL_SIZE+col, buffer[col]); 
         } 
      } 
 
      MainBus->ccdpp_done(); 
       
      cout << "CCDPP\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // Module Constructor 
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   SC_CTOR( Ccdpp ) { 
      SC_THREAD( capture ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// UART module                        // 
// for Transaction-level model        // 
//////////////////////////////////////// 
SC_MODULE( Uart ) 
{ 
   // UART Ports 
   sc_port<UartToMainBusIf> MainBus; 
  
   // UART Vars 
   FILE *outputFileHandle; 
   short data; 
   short i; 
 
   double simTime; 
 
   // UART Process 
   void send(void)  
   { 
      MainBus->uart_ready(); 
      simTime = sc_simulation_time(); 
      for(i=0; i<(16384/2); i++) 
      { 
         data = MainBus->read(i); 
 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]); 
         wait(2*CLK_CYCLE, SC_NS); 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]); 
         wait(2*CLK_CYCLE, SC_NS); 
      } 
      MainBus->uart_done(); 
      cout << "UART\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // UART Constructor 
   SC_CTOR( Uart ) 
   { 
      outputFileHandle = fopen("uart_out.txt", "w"); 
      SC_THREAD( send ); 
   } 
 
   // UART Destructor 
   ~Uart(void) 
   { 
      fclose(outputFileHandle); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CNTRL module                       // 
// for Transaction-level model        // 
//////////////////////////////////////// 
const short COS_TABLE[64] = { 
            64,  62,  59,  53,  45,  35,  24,  12, 
            64,  53,  24, -12, -45, -62, -59, -35, 
            64,  35, -24, -62, -45,  12,  59,  53, 
            64,  12, -59, -35,  45,  53, -24, -62, 
            64, -12, -59,  35,  45, -53, -24,  62, 
            64, -35, -24,  62, -45, -12,  59, -53, 
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            64, -53,  24,  12, -45,  62, -59,  35, 
            64, -62,  59, -53,  45, -35,  24, -12 
}; 
const unsigned char QUANT_SHIFT_TABLE[64] = { 
                    0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 1, 1, 1, 1, 
                    1, 1, 1, 1, 1, 1, 2, 2, 
                    2, 2, 2, 2, 2, 2, 2, 3, 
                    3, 3, 3, 3, 3, 3, 3, 4, 
                    4, 4, 4, 4, 4, 4, 5, 5, 
                    5, 5, 5, 5, 6, 6, 6, 6, 
                    6, 7, 7, 7, 7, 8, 8, 8 }; 
 
SC_MODULE(Cntrl) { 
   // CNTRL Ports 
   sc_port<CntrlToMainBusIf>   MainBus; 
 
   // CNTRL Vars 
   short inBuffer[8][8], outBuffer[8][8]; 
   short temp; 
   short addr; 
   int i, j, k, l; 
 
   double   simTime; 
 
   // Local FDCT Functions 
   unsigned char C(int h) { 
      return h ? 64 : 5; 
   } 
 
   int F(int u, int v, short img[8][8]) { 
 
      long s[8]; 
      long r; 
      unsigned char a; 
 
      for(a=0; a<8; a++)  
      { 
         s[a] = ((img[a][0] * COS_TABLE[v])    >> 6) + 
                ((img[a][1] * COS_TABLE[8+v])  >> 6) + 
                ((img[a][2] * COS_TABLE[16+v]) >> 6) + 
                ((img[a][3] * COS_TABLE[24+v]) >> 6) + 
                ((img[a][4] * COS_TABLE[32+v]) >> 6) + 
                ((img[a][5] * COS_TABLE[40+v]) >> 6) + 
                ((img[a][6] * COS_TABLE[48+v]) >> 6) + 
                ((img[a][7] * COS_TABLE[56+v]) >> 6); 
      } 
 
      r = 0; 
      for(a=0; a<8; a++)  
      { 
         r += (s[a] * COS_TABLE[a * 8 + u]) >> 6; 
      } 
 
      return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6); 
   } 
 
   // CNTRL Process 
   void main( void ) 
   { 
      simTime = sc_simulation_time(); 
 
      // CNTRL Capture 
      MainBus->start_ccdpp(); 
 
      // CNTRL Compress 
      for(i=0; i<NUM_ROW_BLOCKS; i++) { 
 
         for(j=0; j<NUM_COL_BLOCKS; j++) { 
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            // Push the block and perform FDCT 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  inBuffer[k][l] = (MainBus->read( addr ) << 6); 
               } 
            } 
 
            // FDCT 
            for(k=0; k<8; k++)  
            { 
               for(l=0; l<8; l++)  
               { 
                  outBuffer[k][l] = F(k, l, inBuffer); 
                  wait(72*CLK_CYCLE, SC_NS); 
               } 
            } 
 
            // Quantize 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  outBuffer[k][l] >>= QUANT_SHIFT_TABLE[k * 8 + l]; 
                  wait(4*CLK_CYCLE, SC_NS); 
               } 
            }           
 
            // Pop the block and store it in buffer 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  MainBus->write( addr, outBuffer[k][l] ); 
                   
               } 
            } 
         } 
      } 
 
      // CNTRL Send Image 
      MainBus->start_uart(); 
      cout << "CNTRL\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
      // Stop the simulation manually 
      sc_stop(); 
      return; 
   } 
 
   // CNTRL Constructor 
   SC_CTOR( Cntrl ) { 
      SC_THREAD( main ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// Testbench                          // 
// for Transaction-level model        // 
//////////////////////////////////////// 
int sc_main(int, char**) 
{ 
   // Module Instances 
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   Ccd   CcdInst("CcdInst"); 
   Ccdpp CcdppInst("CcdppInst"); 
   Uart  UartInst("UartInst"); 
   Cntrl CntrlInst("CntrlInst"); 
 
   // Channel Instances 
   CcdBus CcdBusInst("CcdBusInst"); 
   MainBus MainBusInst("MainBusInst"); 
 
   // Bind Channels to Modules via Interfaces 
   CcdInst.CcdBus( CcdBusInst ); 
   CcdppInst.CcdBus( CcdBusInst ); 
 
   CcdppInst.MainBus( MainBusInst ); 
   UartInst.MainBus( MainBusInst ); 
   CntrlInst.MainBus( MainBusInst ); 
 
   // Begin TIMED Simulation (Run for 100 milliseconds) 
   cout << "Simulation started at "  
        << sc_simulation_time()/1000 << " us" << endl; 
   sc_start(100, SC_MS); 
   cout << "Simulation stopped at " 
        << sc_simulation_time()/1000 << " us" << endl; 
   return 0; 
} 

SystemC Communication Model after Adapter Synthesis Phase 
//////////////////////////////////////////////////////////////////// 
// File: digcam.cpp                                               // 
// Desc: SystemC Communication Model of the Digital Camera        // 
//////////////////////////////////////////////////////////////////// 
 
#include "systemc.h" 
#include "image.h" 
 
#define CLK_CYCLE 1 
 
//////////////////////////////////////// 
// Interface Definitions              // 
// for Communication model            // 
//////////////////////////////////////// 
class CcdToCcdBusIf: virtual public sc_interface 
{ 
public: 
   virtual void   ready() = 0; 
   virtual void   write(char) = 0; 
}; 
 
class CcdppToCcdBusIf: virtual public sc_interface  
{ 
public: 
   virtual void   start() = 0; 
   virtual char   read() = 0; 
}; 
class CntrlToMainBusIf: virtual public sc_interface 
{ 
public: 
   virtual short  read(short) = 0; 
   virtual void   write(short, short) = 0; 
   virtual void   start_ccdpp() = 0; 
   virtual void   start_uart() = 0; 
}; 
 
class CcdppToMainBusIf: virtual public sc_interface 
{ 
public: 
   virtual void   write(short, short) = 0; 
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   virtual void   ccdpp_ready() = 0; 
   virtual void   ccdpp_done() = 0; 
}; 
 
class UartToMainBusIf: virtual public sc_interface 
{ 
public: 
   virtual short  read(short) = 0; 
   virtual void   uart_ready() = 0; 
   virtual void   uart_done() = 0; 
}; 
 
 
//////////////////////////////////////// 
// CCD BUS Adapters                   // 
// for Communication model            // 
//////////////////////////////////////// 
class CcdToCcdBusAdapter:  public sc_module, 
                           public CcdToCcdBusIf 
{ 
public: 
   sc_in<bool>    ClockI; 
   sc_in<bool>    StartI; 
   sc_in<bool>    ReadyI; 
   sc_out<char>   DataO; 
   sc_out<bool>   ValidO; 
 
   void CcdToCcdBusAdapter::ready( void ) 
   { 
      do { 
         wait( ClockI->posedge_event() ); 
      } while ( StartI.read() != TRUE ); 
   } 
 
   void CcdToCcdBusAdapter::write(char data) 
   { 
      DataO.write( data ); 
      ValidO.write( TRUE ); 
 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ReadyI.read() != TRUE ); 
 
      ValidO.write( FALSE ); 
   } 
    
   SC_CTOR(CcdToCcdBusAdapter) { 
      ValidO.initialize( false ); 
   } 
}; 
 
 
class CcdppToCcdBusAdapter:  public sc_module, 
                             public CcdppToCcdBusIf 
{ 
private: 
   char  temp; 
 
public: 
   sc_in<bool>    ClockI; 
   sc_in<char>    DataI; 
   sc_in<bool>    ValidI; 
   sc_out<bool>   StartO; 
   sc_out<bool>   ReadyO; 
    
   void CcdppToCcdBusAdapter::start( void ) 
   { 
      StartO.write(TRUE); 
      wait( ClockI->posedge_event() ); 
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   } 
 
   char CcdppToCcdBusAdapter::read( void ) 
   { 
      ReadyO.write( TRUE ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() != TRUE ); 
 
      ReadyO.write( FALSE ); 
      temp = DataI.read(); 
      wait( ClockI->posedge_event() ); 
 
      return temp; 
   } 
    
   SC_CTOR(CcdppToCcdBusAdapter) { 
      ReadyO.initialize( false ); 
   } 
}; 
 
 
class CcdppToMainBusAdapter:  public sc_module, 
                              public CcdppToMainBusIf 
{ 
public: 
   sc_in<bool>    ClockI; 
   sc_out<bool>   ReqO; 
   sc_out<bool>   RwO; 
   sc_out<short>  AddrO; 
   sc_inout<short>   DataIO; 
   sc_in<bool>    ValidI; 
   sc_in<bool>    StartCcdppI; 
   sc_out<bool>   CcdppBusyO; 
 
   void CcdppToMainBusAdapter::write(short addr, short data) 
   { 
      ReqO.write( TRUE ); 
      RwO.write( FALSE ); 
      AddrO.write( addr ); 
      DataIO.write( data ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() == FALSE ); 
 
      ReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
    
   void CcdppToMainBusAdapter::ccdpp_ready() 
   { 
      CcdppBusyO.write( FALSE ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( StartCcdppI.read() == FALSE ); 
 
      CcdppBusyO.write( TRUE ); 
      return; 
   } 
 
   void CcdppToMainBusAdapter::ccdpp_done() 
   { 
      CcdppBusyO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
    
   SC_CTOR(CcdppToMainBusAdapter) { 
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      CcdppBusyO.initialize( false ); 
   } 
}; 
 
 
class UartToMainBusAdapter:   public sc_module, 
                              public UartToMainBusIf 
{ 
private: 
   short  temp; 
 
public: 
   sc_in<bool>    ClockI; 
   sc_out<bool>   ReqO; 
   sc_out<bool>   RwO; 
   sc_out<short>  AddrO; 
   sc_inout<short>   DataIO; 
   sc_in<bool>    ValidI; 
   sc_in<bool>    StartUartI; 
   sc_out<bool>   UartBusyO; 
 
   short UartToMainBusAdapter::read(short addr) 
   { 
      ReqO.write( TRUE ); 
      RwO.write( TRUE ); 
      AddrO.write( addr ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() == FALSE );     
 
      temp = DataIO.read(); 
      ReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
 
      return temp; 
   } 
 
   void UartToMainBusAdapter::uart_ready() 
   { 
      UartBusyO.write( FALSE ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( StartUartI.read() == FALSE ); 
 
      UartBusyO.write( TRUE ); 
      return; 
   } 
 
   void UartToMainBusAdapter::uart_done() 
   { 
      UartBusyO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
    
   SC_CTOR(UartToMainBusAdapter) { 
      UartBusyO.initialize( FALSE ); 
   } 
}; 
 
 
class CntrlToMainBusAdapter:  public sc_module, 
                              public CntrlToMainBusIf 
{ 
private: 
   short  temp; 
 
public: 
   sc_in<bool>    ClockI; 
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   sc_out<bool>   ReqO; 
   sc_out<bool>   RwO; 
   sc_out<short>  AddrO; 
   sc_inout<short>   DataIO; 
   sc_in<bool>    ValidI; 
   sc_out<bool>   StartCcdppO; 
   sc_out<bool>   StartUartO; 
   sc_in<bool>    CcdppBusyI; 
   sc_in<bool>    UartBusyI; 
 
   short CntrlToMainBusAdapter::read(short addr) 
   { 
      ReqO.write( TRUE ); 
      RwO.write( TRUE ); 
      AddrO.write( addr ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() == FALSE );     
 
      temp = DataIO.read(); 
      ReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
 
      return temp; 
   } 
 
   void CntrlToMainBusAdapter::write(short addr, short data) 
   { 
      ReqO.write( TRUE ); 
      RwO.write( FALSE ); 
      AddrO.write( addr ); 
      DataIO.write( data ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() == FALSE ); 
 
      ReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
 
   void CntrlToMainBusAdapter::start_ccdpp() 
   { 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( CcdppBusyI.read() == TRUE ); 
 
      StartCcdppO.write( TRUE ); 
 
      wait( ClockI->posedge_event() ); 
      StartCcdppO.write( FALSE ); 
 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( CcdppBusyI.read() == TRUE ); 
 
      return; 
   } 
 
   void CntrlToMainBusAdapter::start_uart() 
   { 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( UartBusyI.read() == TRUE ); 
 
      StartUartO.write( TRUE ); 
 
      wait( ClockI->posedge_event() ); 
      StartUartO.write( FALSE ); 
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      do { 
         wait( ClockI->posedge_event() ); 
      }while( UartBusyI.read() == TRUE ); 
 
      return; 
   } 
    
   SC_CTOR(CntrlToMainBusAdapter) { 
      StartCcdppO.initialize( FALSE ); 
      StartUartO.initialize( FALSE ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// MEM Module                         // 
// for COMM model                     // 
//////////////////////////////////////// 
SC_MODULE( Mem ) 
{ 
   short memory[ROW_SIZE*COL_SIZE]; 
   enum  state{ IDLE, READ, WRITE, DONE }; 
    
   sc_signal<state>  NextState; 
 
   sc_in<bool>    ClockI; 
 
   sc_in<bool>    ReqI; 
   sc_in<bool>    RwI; 
   sc_in<short>   AddrI; 
   sc_inout<short>   DataIO; 
   sc_out<bool>   ValidO; 
 
   void main(void) 
   { 
 
      switch(NextState.read()) 
      { 
      case IDLE: 
         ValidO.write( FALSE ); 
         if((ReqI.read() == true) && (RwI.read() == true)) 
         { 
            NextState = READ; 
         } 
         else if((ReqI.read() == true) && (RwI.read() == false)) 
         { 
            NextState = WRITE; 
         } 
         break; 
      case READ: 
         DataIO.write( memory[AddrI.read()]  ); 
         ValidO.write( true ); 
         NextState = DONE; 
         break; 
      case WRITE: 
         memory[AddrI.read()] = DataIO.read(); 
         ValidO.write( true ); 
         NextState = DONE; 
         break; 
      case DONE: 
         if(ReqI.read() == false) 
         { 
            ValidO.write( FALSE ); 
            NextState = IDLE; 
         } 
         break; 
      } 
   } 
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   // Module Constructor 
   SC_CTOR( Mem ) { 
      SC_METHOD( main ); 
      sensitive << ClockI.pos(); 
 
      ValidO.initialize( FALSE ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCD Module                         // 
// for Communication model            // 
//////////////////////////////////////// 
SC_MODULE( Ccd ) 
{ 
   // CCD Ports 
   sc_port<CcdToCcdBusIf>   CcdBus; 
   double   simTime; 
    
   // CCD Vars 
   char buffer[ROW_SIZE][COL_SIZE+2]; 
   int  row, col; 
  
   // CCD Events 
   sc_event StartPopEvt; 
 
   // CCD Processes 
   void capture(void)  
   { 
      CcdBus->ready(); 
      simTime = sc_simulation_time(); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            // IMAGE array is defined in image.h 
            buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col]; 
         } 
      } 
      notify(StartPopEvt); 
   } 
 
   void pop(void)  
   { 
      wait(StartPopEvt); 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            CcdBus->write( buffer[row][col] ); 
         } 
      } 
      cout << "CCD\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // Module Constructor 
   SC_CTOR( Ccd ) { 
      SC_THREAD( capture ); 
      SC_THREAD( pop ); 
   } 
}; 
 
 
//////////////////////////////////////// 
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// CCDPP module                       // 
// for Communication model            // 
//////////////////////////////////////// 
SC_MODULE( Ccdpp ) 
{ 
   // CCDPP Ports 
   sc_port<CcdppToCcdBusIf>   CcdBus; 
   sc_port<CcdppToMainBusIf>  MainBus; 
 
   // CCDPP Vars 
   char buffer[COL_SIZE]; 
   int  row, col; 
   char bias; 
 
   double   simTime; 
 
   // CCDPP Events 
   sc_event StartPopEvt; 
  
   // CCDPP Processes 
   void capture(void)  
   { 
      MainBus->ccdpp_ready(); 
 
      simTime = sc_simulation_time(); 
 
      CcdBus->start(); 
 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[col] = CcdBus->read(); 
         } 
          
         // Perform Zero Bias Adjustment 
         bias = CcdBus->read(); 
         bias = ( bias + CcdBus->read() ) / 2; 
         wait(12*CLK_CYCLE, SC_NS); 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[col] -= bias; 
            wait(4*CLK_CYCLE, SC_NS); 
            MainBus->write(row*COL_SIZE+col, buffer[col]); 
         } 
      } 
 
      MainBus->ccdpp_done(); 
       
      cout << "CCDPP\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // Module Constructor 
   SC_CTOR( Ccdpp ) { 
      SC_THREAD( capture ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// UART module                        // 
// for Communication model            // 
//////////////////////////////////////// 
SC_MODULE( Uart ) 
{ 
   // UART Ports 
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   sc_port<UartToMainBusIf> MainBus; 
  
   // UART Vars 
   FILE *outputFileHandle; 
   short data; 
   short i; 
 
   double simTime; 
 
   // UART Process 
   void send(void)  
   { 
      MainBus->uart_ready(); 
      simTime = sc_simulation_time(); 
      for(i=0; i<(16384/2); i++) 
      { 
         data = MainBus->read(i); 
 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]); 
         wait(2*CLK_CYCLE, SC_NS); 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]); 
         wait(2*CLK_CYCLE, SC_NS); 
      } 
      MainBus->uart_done(); 
      cout << "UART\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // UART Constructor 
   SC_CTOR( Uart ) 
   { 
      outputFileHandle = fopen("uart_out.txt", "w"); 
      SC_THREAD( send ); 
   } 
 
   // UART Destructor 
   ~Uart(void) 
   { 
      fclose(outputFileHandle); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CNTRL module                       // 
// for Communication model            // 
//////////////////////////////////////// 
const short COS_TABLE[64] = { 
            64,  62,  59,  53,  45,  35,  24,  12, 
            64,  53,  24, -12, -45, -62, -59, -35, 
            64,  35, -24, -62, -45,  12,  59,  53, 
            64,  12, -59, -35,  45,  53, -24, -62, 
            64, -12, -59,  35,  45, -53, -24,  62, 
            64, -35, -24,  62, -45, -12,  59, -53, 
            64, -53,  24,  12, -45,  62, -59,  35, 
            64, -62,  59, -53,  45, -35,  24, -12 
}; 
const unsigned char QuantShiftTable[64] = { 
                    0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 1, 1, 1, 1, 
                    1, 1, 1, 1, 1, 1, 2, 2, 
                    2, 2, 2, 2, 2, 2, 2, 3, 
                    3, 3, 3, 3, 3, 3, 3, 4, 
                    4, 4, 4, 4, 4, 4, 5, 5, 
                    5, 5, 5, 5, 6, 6, 6, 6, 
                    6, 7, 7, 7, 7, 8, 8, 8 }; 
 



 116

SC_MODULE(Cntrl) { 
   // CNTRL Ports 
   sc_port<CntrlToMainBusIf>   MainBus; 
 
   // CNTRL Vars 
   short inBuffer[8][8], outBuffer[8][8]; 
   short temp; 
   short addr; 
   int i, j, k, l; 
 
   double   simTime; 
 
   // Local FDCT Functions 
   unsigned char C(int h) { 
      return h ? 64 : 5; 
   } 
 
   int F(int u, int v, short img[8][8]) { 
 
      long s[8]; 
      long r; 
      unsigned char a; 
 
      for(a=0; a<8; a++)  
      { 
         s[a] = ((img[a][0] * COS_TABLE[v])    >> 6) + 
                ((img[a][1] * COS_TABLE[8+v])  >> 6) + 
                ((img[a][2] * COS_TABLE[16+v]) >> 6) + 
                ((img[a][3] * COS_TABLE[24+v]) >> 6) + 
                ((img[a][4] * COS_TABLE[32+v]) >> 6) + 
                ((img[a][5] * COS_TABLE[40+v]) >> 6) + 
                ((img[a][6] * COS_TABLE[48+v]) >> 6) + 
                ((img[a][7] * COS_TABLE[56+v]) >> 6); 
      } 
 
      r = 0; 
      for(a=0; a<8; a++)  
      { 
         r += (s[a] * COS_TABLE[a * 8 + u]) >> 6; 
      } 
 
      return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6); 
   } 
 
   // CNTRL Process 
   void main( void ) 
   { 
      simTime = sc_simulation_time(); 
 
      // CNTRL Capture 
      MainBus->start_ccdpp(); 
 
      // CNTRL Compress 
      for(i=0; i<NUM_ROW_BLOCKS; i++) { 
 
         for(j=0; j<NUM_COL_BLOCKS; j++) { 
 
            // Push the block and perform FDCT 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  inBuffer[k][l] = (MainBus->read( addr ) << 6); 
               } 
            } 
 
            // FDCT 
            for(k=0; k<8; k++)  
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            { 
               for(l=0; l<8; l++)  
               { 
                  outBuffer[k][l] = F(k, l, inBuffer); 
                  wait(72*CLK_CYCLE, SC_NS); 
               } 
            } 
 
            // Quantize 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  outBuffer[k][l] >>= QuantShiftTable[k * 8 + l]; 
                  wait(4*CLK_CYCLE, SC_NS); 
               } 
            }           
 
            // Pop the block and store it in buffer 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  MainBus->write( addr, outBuffer[k][l] ); 
               } 
            } 
         } 
      } 
 
      // CNTRL Send Image 
      MainBus->start_uart(); 
      cout << "CNTRL\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
      // Stop the simulation manually 
      sc_stop(); 
      return; 
   } 
 
   // CNTRL Constructor 
   SC_CTOR( Cntrl ) { 
      SC_THREAD( main ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// Testbench                          // 
// for Communication model            // 
//////////////////////////////////////// 
int sc_main(int, char**) 
{ 
   // Signal Instances 
   sc_clock Clock("Clock", 1, SC_NS); 
   sc_signal<bool>   CcdStart; 
   sc_signal<bool>   CcdReady; 
   sc_signal<bool>   CcdValid; 
   sc_signal<char>   CcdData; 
 
   sc_signal<bool>   MainReq; 
   sc_signal<bool>   MainRw; 
   sc_signal<short>  MainAddr; 
   sc_signal<short>  MainData; 
   sc_signal<bool>   MainValid; 
 
   sc_signal<bool>   StartCcdpp; 
   sc_signal<bool>   CcdppBusy; 
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   sc_signal<bool>   StartUart; 
   sc_signal<bool>   UartBusy; 
    
   // Module Instances 
   Ccd   CcdInst("Ccd"); 
   Ccdpp CcdppInst("Ccdpp"); 
   Uart  UartInst("Uart"); 
   Cntrl CntrlInst("Cntrl"); 
   Mem   MemInst("Mem"); 
 
   // Channel Instances 
   CcdToCcdBusAdapter CcdToCcdBusAdapterInst("CcdToCcdBusAdapter"); 
   CcdppToCcdBusAdapter CcdppToCcdBusAdapterInst("CcdppToCcdBusAdapter"); 
   CcdppToMainBusAdapter CcdppToMainBusAdapterInst("CcdppToMainBusAdapter"); 
   UartToMainBusAdapter UartToMainBusAdapterInst("UartToMainBusAdapter"); 
   CntrlToMainBusAdapter CntrlToMainBusAdapterInst("CntrlToMainBusAdapter"); 
 
   // Bind Channels to Modules via Interfaces 
   CcdInst.CcdBus( CcdToCcdBusAdapterInst ); 
   CcdppInst.CcdBus( CcdppToCcdBusAdapterInst ); 
 
   CcdppInst.MainBus( CcdppToMainBusAdapterInst ); 
   UartInst.MainBus( UartToMainBusAdapterInst ); 
   CntrlInst.MainBus( CntrlToMainBusAdapterInst ); 
 
   // Bind Signals to CCD Adapter Modules 
   CcdToCcdBusAdapterInst.ClockI( Clock ); 
   CcdToCcdBusAdapterInst.StartI( CcdStart ); 
   CcdToCcdBusAdapterInst.ReadyI( CcdReady ); 
   CcdToCcdBusAdapterInst.ValidO( CcdValid ); 
   CcdToCcdBusAdapterInst.DataO( CcdData ); 
 
   CcdppToCcdBusAdapterInst.ClockI( Clock ); 
   CcdppToCcdBusAdapterInst.StartO( CcdStart ); 
   CcdppToCcdBusAdapterInst.ReadyO( CcdReady ); 
   CcdppToCcdBusAdapterInst.ValidI( CcdValid ); 
   CcdppToCcdBusAdapterInst.DataI( CcdData ); 
 
   CcdppToMainBusAdapterInst.ClockI( Clock ); 
   CcdppToMainBusAdapterInst.ReqO( MainReq ); 
   CcdppToMainBusAdapterInst.RwO( MainRw ); 
   CcdppToMainBusAdapterInst.AddrO( MainAddr ); 
   CcdppToMainBusAdapterInst.DataIO( MainData ); 
   CcdppToMainBusAdapterInst.ValidI( MainValid ); 
   CcdppToMainBusAdapterInst.StartCcdppI( StartCcdpp ); 
   CcdppToMainBusAdapterInst.CcdppBusyO( CcdppBusy ); 
 
   UartToMainBusAdapterInst.ClockI( Clock ); 
   UartToMainBusAdapterInst.ReqO( MainReq ); 
   UartToMainBusAdapterInst.RwO( MainRw ); 
   UartToMainBusAdapterInst.AddrO( MainAddr ); 
   UartToMainBusAdapterInst.DataIO( MainData ); 
   UartToMainBusAdapterInst.ValidI( MainValid ); 
   UartToMainBusAdapterInst.StartUartI( StartUart ); 
   UartToMainBusAdapterInst.UartBusyO( UartBusy ); 
 
   CntrlToMainBusAdapterInst.ClockI( Clock ); 
   CntrlToMainBusAdapterInst.ReqO( MainReq ); 
   CntrlToMainBusAdapterInst.RwO( MainRw ); 
   CntrlToMainBusAdapterInst.AddrO( MainAddr ); 
   CntrlToMainBusAdapterInst.DataIO( MainData ); 
   CntrlToMainBusAdapterInst.ValidI( MainValid ); 
   CntrlToMainBusAdapterInst.StartCcdppO( StartCcdpp ); 
   CntrlToMainBusAdapterInst.StartUartO( StartUart ); 
   CntrlToMainBusAdapterInst.CcdppBusyI( CcdppBusy ); 
   CntrlToMainBusAdapterInst.UartBusyI( UartBusy ); 
 
   MemInst.ClockI( Clock ); 
   MemInst.ReqI( MainReq ); 
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   MemInst.RwI( MainRw ); 
   MemInst.AddrI( MainAddr ); 
   MemInst.DataIO( MainData ); 
   MemInst.ValidO( MainValid ); 
 
   // Begin TIMED Simulation (Run for 100 milliseconds) 
   cout << "Simulation started at "  
        << sc_simulation_time()/1000 << " us" << endl; 
   sc_start(100, SC_MS); 
   cout << "Simulation stopped at " 
        << sc_simulation_time()/1000 << " us" << endl; 
 
   return 0; 
} 

SystemC Communication Model after Protocol Insertion 
//////////////////////////////////////////////////////////////////// 
// File: digcam.cpp                                               // 
// Desc: SystemC Communication Model of the Digital Camera        // 
//////////////////////////////////////////////////////////////////// 
 
#include "systemc.h" 
#include "image.h" 
 
#define CLK_CYCLE 1 
 
//////////////////////////////////////// 
// MEM Module                         // 
// for Communication model            // 
//////////////////////////////////////// 
SC_MODULE( Mem ) 
{ 
   short memory[ROW_SIZE*COL_SIZE]; 
   enum  state{ IDLE, READ, WRITE, DONE }; 
    
   sc_signal<state>  NextState; 
 
   sc_in<bool>    ClockI; 
 
   sc_in<bool>    ReqI; 
   sc_in<bool>    RwI; 
   sc_in<short>   AddrI; 
   sc_inout<short>   DataIO; 
   sc_out<bool>   ValidO; 
 
   void main(void) 
   { 
 
      switch(NextState.read()) 
      { 
      case IDLE: 
         ValidO.write( FALSE ); 
         if((ReqI.read() == true) && (RwI.read() == true)) 
         { 
            NextState = READ; 
         } 
         else if((ReqI.read() == true) && (RwI.read() == false)) 
         { 
            NextState = WRITE; 
         } 
         break; 
      case READ: 
         DataIO.write( memory[AddrI.read()]  ); 
         ValidO.write( true ); 
         NextState = DONE; 
         break; 
      case WRITE: 
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         memory[AddrI.read()] = DataIO.read(); 
         ValidO.write( true ); 
         NextState = DONE; 
         break; 
      case DONE: 
         if(ReqI.read() == false) 
         { 
            ValidO.write( FALSE ); 
            NextState = IDLE; 
         } 
         break; 
      } 
   } 
   
   // Module Constructor 
   SC_CTOR( Mem ) { 
      SC_METHOD( main ); 
      sensitive << ClockI.pos(); 
 
      ValidO.initialize( FALSE ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCD Module                         // 
// for Communication model            // 
//////////////////////////////////////// 
SC_MODULE( Ccd ) 
{ 
   // CCD Ports 
   sc_in<bool>    ClockI; 
   sc_in<bool>    StartI; 
   sc_in<bool>    ReadyI; 
   sc_out<char>   DataO; 
   sc_out<bool>   ValidO; 
  
   // CCD Vars 
   double   simTime; 
   char buffer[ROW_SIZE][COL_SIZE+2]; 
   int  row, col; 
  
   // CCD Events 
   sc_event StartPopEvt; 
 
   // CCD Bus Interface Functions 
   void ready( void ) 
   { 
      do { 
         wait( ClockI->posedge_event() ); 
      } while ( StartI.read() != TRUE ); 
   } 
 
   void write(char data) 
   { 
      DataO.write( data ); 
      ValidO.write( TRUE ); 
 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ReadyI.read() != TRUE ); 
 
      ValidO.write( FALSE ); 
   } 
 
   // CCD Processes 
   void capture(void)  
   { 
      ready(); 
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      simTime = sc_simulation_time(); 
      for(row=0; row<ROW_SIZE; row++)  
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            // IMAGE array is defined in image.h 
            buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col]; 
         } 
      } 
      notify(StartPopEvt); 
   } 
 
   void pop(void)  
   { 
      wait(StartPopEvt); 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<(COL_SIZE+2); col++)  
         { 
            write( buffer[row][col] ); 
         } 
      } 
      cout << "CCD\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // Module Constructor 
   SC_CTOR( Ccd ) { 
      ValidO.initialize( false ); 
      SC_THREAD( capture ); 
      SC_THREAD( pop ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CCDPP module                       // 
// for Communication model            // 
//////////////////////////////////////// 
SC_MODULE( Ccdpp ) 
{ 
   // CCDPP Ports 
   sc_in<bool>    ClockI; 
   sc_in<char>    CcdBusDataI; 
   sc_in<bool>    CcdBusValidI; 
   sc_out<bool>   CcdBusStartO; 
   sc_out<bool>   CcdBusReadyO; 
 
   sc_out<bool>   MainBusReqO; 
   sc_out<bool>   MainBusRwO; 
   sc_out<short>  MainBusAddrO; 
   sc_inout<short>   MainBusDataIO; 
   sc_in<bool>    MainBusValidI; 
   sc_in<bool>    MainBusStartCcdppI; 
   sc_out<bool>   MainBusCcdppBusyO; 
 
   // CCDPP Vars 
   char buffer[COL_SIZE]; 
   int  row, col; 
   char bias; 
 
   double   simTime; 
 
   // CCDPP Events 
   sc_event StartPopEvt; 
 
   // CCD Bus Interface Functions 
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   void ccd_start( void ) 
   { 
      CcdBusStartO.write(TRUE); 
      wait( ClockI->posedge_event() ); 
   } 
 
   char ccdbus_read( void ) 
   { 
      char temp; 
 
      CcdBusReadyO.write( TRUE ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( CcdBusValidI.read() != TRUE ); 
 
      CcdBusReadyO.write( FALSE ); 
      temp = CcdBusDataI.read(); 
      wait( ClockI->posedge_event() ); 
 
      return temp; 
   } 
 
   // MAIN Bus Interface Functions 
   void mainbus_write(short addr, short data) 
   { 
      MainBusReqO.write( TRUE ); 
      MainBusRwO.write( FALSE ); 
      MainBusAddrO.write( addr ); 
      MainBusDataIO.write( data ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( MainBusValidI.read() == FALSE ); 
 
      MainBusReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
    
   void ccdpp_ready() 
   { 
      MainBusCcdppBusyO.write( FALSE ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( MainBusStartCcdppI.read() == FALSE ); 
 
      MainBusCcdppBusyO.write( TRUE ); 
      return; 
   } 
 
   void ccdpp_done() 
   { 
      MainBusCcdppBusyO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
  
   // CCDPP Processes 
   void capture(void)  
   { 
      ccdpp_ready(); 
 
      simTime = sc_simulation_time(); 
 
      ccd_start(); 
 
      for(row=0; row<ROW_SIZE; row++) 
      { 
         for(col=0; col<COL_SIZE; col++) 
         { 
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            buffer[col] = ccdbus_read(); 
         } 
          
         // Perform Zero Bias Adjustment 
         bias = ccdbus_read(); 
         bias = ( bias + ccdbus_read() ) / 2; 
         wait(12*CLK_CYCLE, SC_NS); 
         for(col=0; col<COL_SIZE; col++) 
         { 
            buffer[col] -= bias; 
            wait(4*CLK_CYCLE, SC_NS); 
            mainbus_write(row*COL_SIZE+col, buffer[col]); 
         } 
      } 
 
      ccdpp_done(); 
       
      cout << "CCDPP\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // Module Constructor 
   SC_CTOR( Ccdpp ) { 
      CcdBusReadyO.initialize( FALSE ); 
      MainBusCcdppBusyO.initialize( FALSE ); 
 
      SC_THREAD( capture ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// UART module                        // 
// for Communication model            // 
//////////////////////////////////////// 
SC_MODULE( Uart ) 
{ 
   // UART Ports 
   sc_in<bool>    ClockI; 
   sc_out<bool>   ReqO; 
   sc_out<bool>   RwO; 
   sc_out<short>  AddrO; 
   sc_inout<short>   DataIO; 
   sc_in<bool>    ValidI; 
   sc_in<bool>    StartUartI; 
   sc_out<bool>   UartBusyO; 
  
   // UART Vars 
   FILE *outputFileHandle; 
   short data; 
   short i; 
 
   double simTime; 
 
   // MAIN Bus Interface Functions 
   short read(short addr) 
   { 
      short  temp; 
 
      ReqO.write( TRUE ); 
      RwO.write( TRUE ); 
      AddrO.write( addr ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() == FALSE );     
 
      temp = DataIO.read(); 
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      ReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
 
      return temp; 
   } 
 
   void uart_ready() 
   { 
      UartBusyO.write( FALSE ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( StartUartI.read() == FALSE ); 
 
      UartBusyO.write( TRUE ); 
      return; 
   } 
 
   void uart_done() 
   { 
      UartBusyO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
 
   // UART Process 
   void send(void)  
   { 
      uart_ready(); 
      simTime = sc_simulation_time(); 
      for(i=0; i<(16384/2); i++) 
      { 
         data = read(i); 
 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]); 
         wait(2*CLK_CYCLE, SC_NS); 
         fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]); 
         wait(2*CLK_CYCLE, SC_NS); 
      } 
      uart_done(); 
      cout << "UART\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
   } 
 
   // UART Constructor 
   SC_CTOR( Uart ) 
   { 
      UartBusyO.initialize( FALSE ); 
      outputFileHandle = fopen("uart_out.txt", "w"); 
      SC_THREAD( send ); 
   } 
 
   // UART Destructor 
   ~Uart(void) 
   { 
      fclose(outputFileHandle); 
   } 
}; 
 
 
//////////////////////////////////////// 
// CNTRL module                       // 
// for Communication model            // 
//////////////////////////////////////// 
const short COS_TABLE[64] = { 
            64,  62,  59,  53,  45,  35,  24,  12, 
            64,  53,  24, -12, -45, -62, -59, -35, 
            64,  35, -24, -62, -45,  12,  59,  53, 
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            64,  12, -59, -35,  45,  53, -24, -62, 
            64, -12, -59,  35,  45, -53, -24,  62, 
            64, -35, -24,  62, -45, -12,  59, -53, 
            64, -53,  24,  12, -45,  62, -59,  35, 
            64, -62,  59, -53,  45, -35,  24, -12 
}; 
const unsigned char QuantShiftTable[64] = { 
                    0, 0, 0, 0, 0, 0, 0, 0, 
                    0, 0, 0, 0, 1, 1, 1, 1, 
                    1, 1, 1, 1, 1, 1, 2, 2, 
                    2, 2, 2, 2, 2, 2, 2, 3, 
                    3, 3, 3, 3, 3, 3, 3, 4, 
                    4, 4, 4, 4, 4, 4, 5, 5, 
                    5, 5, 5, 5, 6, 6, 6, 6, 
                    6, 7, 7, 7, 7, 8, 8, 8 }; 
 
SC_MODULE(Cntrl) { 
   // CNTRL Ports 
   sc_in<bool>    ClockI; 
   sc_out<bool>   ReqO; 
   sc_out<bool>   RwO; 
   sc_out<short>  AddrO; 
   sc_inout<short>   DataIO; 
   sc_in<bool>    ValidI; 
   sc_out<bool>   StartCcdppO; 
   sc_out<bool>   StartUartO; 
   sc_in<bool>    CcdppBusyI; 
   sc_in<bool>    UartBusyI; 
 
   // CNTRL Vars 
   short inBuffer[8][8], outBuffer[8][8]; 
   short temp; 
   short addr; 
   int i, j, k, l; 
 
   double   simTime; 
 
   // Local FDCT Functions 
   unsigned char C(int h) { 
      return h ? 64 : 5; 
   } 
 
   int F(int u, int v, short img[8][8]) { 
 
      long s[8]; 
      long r; 
      unsigned char a; 
 
      for(a=0; a<8; a++)  
      { 
         s[a] = ((img[a][0] * COS_TABLE[v])    >> 6) + 
                ((img[a][1] * COS_TABLE[8+v])  >> 6) + 
                ((img[a][2] * COS_TABLE[16+v]) >> 6) + 
                ((img[a][3] * COS_TABLE[24+v]) >> 6) + 
                ((img[a][4] * COS_TABLE[32+v]) >> 6) + 
                ((img[a][5] * COS_TABLE[40+v]) >> 6) + 
                ((img[a][6] * COS_TABLE[48+v]) >> 6) + 
                ((img[a][7] * COS_TABLE[56+v]) >> 6); 
      } 
 
      r = 0; 
      for(a=0; a<8; a++)  
      { 
         r += (s[a] * COS_TABLE[a * 8 + u]) >> 6; 
      } 
 
      return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6); 
   } 
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   // MAIN Bus Interface Functions 
   short read(short addr) 
   { 
      short temp; 
 
      ReqO.write( TRUE ); 
      RwO.write( TRUE ); 
      AddrO.write( addr ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() == FALSE );     
 
      temp = DataIO.read(); 
      ReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
 
      return temp; 
   } 
 
   void write(short addr, short data) 
   { 
      ReqO.write( TRUE ); 
      RwO.write( FALSE ); 
      AddrO.write( addr ); 
      DataIO.write( data ); 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( ValidI.read() == FALSE ); 
 
      ReqO.write( FALSE ); 
      wait( ClockI->posedge_event() ); 
      return; 
   } 
 
   void start_ccdpp() 
   { 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( CcdppBusyI.read() == TRUE ); 
 
      StartCcdppO.write( TRUE ); 
 
      wait( ClockI->posedge_event() ); 
      StartCcdppO.write( FALSE ); 
 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( CcdppBusyI.read() == TRUE ); 
 
      return; 
   } 
 
   void start_uart() 
   { 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( UartBusyI.read() == TRUE ); 
 
      StartUartO.write( TRUE ); 
 
      wait( ClockI->posedge_event() ); 
      StartUartO.write( FALSE ); 
 
      do { 
         wait( ClockI->posedge_event() ); 
      }while( UartBusyI.read() == TRUE ); 
 
      return; 
   } 
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   // CNTRL Process 
   void main( void ) 
   { 
      simTime = sc_simulation_time(); 
 
      // CNTRL Capture 
      start_ccdpp(); 
 
      // CNTRL Compress 
      for(i=0; i<NUM_ROW_BLOCKS; i++) { 
 
         for(j=0; j<NUM_COL_BLOCKS; j++) { 
 
            // Push the block and perform FDCT 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  inBuffer[k][l] = (read( addr ) << 6); 
               } 
            } 
 
            // FDCT 
            for(k=0; k<8; k++)  
            { 
               for(l=0; l<8; l++)  
               { 
                  outBuffer[k][l] = F(k, l, inBuffer); 
                  wait(72*CLK_CYCLE, SC_NS); 
               } 
            } 
 
            // Quantize 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  outBuffer[k][l] >>= QuantShiftTable[k * 8 + l]; 
                  wait(4*CLK_CYCLE, SC_NS); 
               } 
            }           
 
            // Pop the block and store it in buffer 
            for(k=0; k<8; k++) 
            { 
               for(l=0; l<8; l++) 
               { 
                  addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l); 
                  write( addr, outBuffer[k][l] ); 
               } 
            } 
         } 
      } 
 
      // CNTRL Send Image 
      start_uart(); 
      cout << "CNTRL\tdone at "  
           << (sc_simulation_time()/1000) << " us\t" 
           << "execution time = "  
           << (sc_simulation_time() - simTime)/1000 << " us" << endl; 
      // Stop the simulation manually 
      sc_stop(); 
      return; 
   } 
 
   // CNTRL Constructor 
   SC_CTOR( Cntrl ) { 
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      StartCcdppO.initialize( FALSE ); 
      StartUartO.initialize( FALSE ); 
      SC_THREAD( main ); 
   } 
}; 
 
 
//////////////////////////////////////// 
// Testbench                          // 
// for Communication model            // 
//////////////////////////////////////// 
int sc_main(int, char**) 
{ 
   // Signal Instances 
   sc_clock Clock("Clock", 1, SC_NS); 
 
   sc_signal<bool>   CcdStart; 
   sc_signal<bool>   CcdReady; 
   sc_signal<bool>   CcdValid; 
   sc_signal<char>   CcdData; 
 
   sc_signal<bool>   MainReq; 
   sc_signal<bool>   MainRw; 
   sc_signal<short>  MainAddr; 
   sc_signal<short>  MainData; 
   sc_signal<bool>   MainValid; 
   sc_signal<bool>   StartCcdpp; 
   sc_signal<bool>   CcdppBusy; 
   sc_signal<bool>   StartUart; 
   sc_signal<bool>   UartBusy; 
    
   // Module Instances 
   Mem   MemInst("Mem"); 
   Ccd   CcdInst("Ccd"); 
   Ccdpp CcdppInst("Ccdpp"); 
   Uart  UartInst("Uart"); 
   Cntrl CntrlInst("Cntrl"); 
 
   // Bind Bus Signals to Modules 
   MemInst.ClockI( Clock ); 
   MemInst.ReqI( MainReq ); 
   MemInst.RwI( MainRw ); 
   MemInst.AddrI( MainAddr ); 
   MemInst.DataIO( MainData ); 
   MemInst.ValidO( MainValid ); 
 
   CcdInst.ClockI( Clock ); 
   CcdInst.StartI( CcdStart ); 
   CcdInst.ReadyI( CcdReady ); 
   CcdInst.DataO( CcdData ); 
   CcdInst.ValidO( CcdValid ); 
 
   CcdppInst.ClockI( Clock ); 
   CcdppInst.CcdBusStartO( CcdStart ); 
   CcdppInst.CcdBusReadyO( CcdReady ); 
   CcdppInst.CcdBusDataI( CcdData ); 
   CcdppInst.CcdBusValidI( CcdValid ); 
   CcdppInst.MainBusReqO( MainReq ); 
   CcdppInst.MainBusRwO( MainRw ); 
   CcdppInst.MainBusAddrO( MainAddr ); 
   CcdppInst.MainBusDataIO( MainData ); 
   CcdppInst.MainBusValidI( MainValid ); 
   CcdppInst.MainBusStartCcdppI( StartCcdpp ); 
   CcdppInst.MainBusCcdppBusyO( CcdppBusy ); 
    
   UartInst.ClockI( Clock ); 
   UartInst.ReqO( MainReq ); 
   UartInst.RwO( MainRw ); 
   UartInst.AddrO( MainAddr ); 
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   UartInst.DataIO( MainData ); 
   UartInst.ValidI( MainValid ); 
   UartInst.StartUartI( StartUart ); 
   UartInst.UartBusyO( UartBusy ); 
 
   CntrlInst.ClockI( Clock ); 
   CntrlInst.ReqO( MainReq ); 
   CntrlInst.RwO( MainRw ); 
   CntrlInst.AddrO( MainAddr ); 
   CntrlInst.DataIO( MainData ); 
   CntrlInst.ValidI( MainValid ); 
   CntrlInst.StartCcdppO( StartCcdpp ); 
   CntrlInst.StartUartO( StartUart ); 
   CntrlInst.CcdppBusyI( CcdppBusy ); 
   CntrlInst.UartBusyI( UartBusy ); 
 
   // Begin TIMED Simulation (Run for 100 milliseconds) 
   cout << "Simulation started at "  
        << sc_simulation_time()/1000 << " us" << endl; 
   sc_start(100, SC_MS); 
   cout << "Simulation stopped at " 
        << sc_simulation_time()/1000 << " us" << endl; 
 
   return 0; 
} 
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APPENDIX C INPUT IMAGE ARRAY 
//////////////////////////////////////////////////////////////////// 
// File: image.h                                                  // 
// Desc: Array of input image data used by the CCD module.        // 
// NOTE: The file is the same for all SpecC and SystemC models.   // 
//////////////////////////////////////////////////////////////////// 
 
#define ROW_SIZE  64 
#define COL_SIZE  128 
#define NUM_ROW_BLOCKS  (ROW_SIZE / 8) 
#define NUM_COL_BLOCKS  (COL_SIZE / 8) 
 
const char IMAGE[ROW_SIZE * (COL_SIZE+2)] = { 
           86,   92,  -63,   -5,  -98,   19,  -87,  -47,   45,  -17,  
           54, -114, -114,  -60, -106, -108,  -52,  -39,  -92,   67,  
           -8,  115,   65,  -26,   91,   33,  114,   99,  121,  -56,  
. 
. 
.  
File not listed in its entirety. 
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