
System-level design refinement using SystemC

by

Robert Dale Walstrom

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Diane T. Rover, Major Professor

Ricky Kendall
Akhilesh Tyagi

Iowa State University

Ames, Iowa

2005

Copyright © Robert Dale Walstrom, 2005. All rights reserved.

 ii

Graduate College
Iowa State University

This is to certify that the master’s thesis of

Robert Dale Walstrom

has met the thesis requirements of Iowa State University

Major Professor

For the Major Program

 iii

TABLE OF CONTENTS
LIST OF FIGURES v

LIST OF TABLES vi

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Statement 2
1.3 Approach 3
1.4 Contributions 3
1.5 Thesis Organization 3

CHAPTER 2 BACKGROUND 5
2.1 SpecC Language Overview 5

2.1.1 Behaviors 5
2.1.2 Channels and Interfaces 6
2.1.3 Synchronization 8
2.1.4 Timing 10
2.1.5 Summary 10

2.2 SystemC Language Overview 10
2.2.1 Modules and Processes 10
2.2.2 Channels and Interfaces 12
2.2.3 Synchronization 12
2.2.4 Timing 13
2.2.5 Summary 13

CHAPTER 3 MODELS OF COMPUTATION 14
3.1 Models of Computation in SpecC 14

3.1.1 Specification Model 16
3.1.2 Architecture Model 16
3.1.3 Communication Model 17
3.1.4 Implementation Model 17

3.2 Models of Computation in SystemC 18
3.2.1 Untimed Functional Model 19
3.2.2 Timed Functional Model 19
3.2.3 Transaction-level Model 19
3.2.4 Behavior Hardware Model 20
3.2.5 Register-Transfer Level Model 20

3.3 Quantifying Accuracy of Models of Computation 20
3.4 Universal Models of Computation 22

CHAPTER 4 SYSTEMC REFINEMENT METHODOLOGY 24
4.1 Developing a Functional Model 24

4.1.1 Guidelines for Functional Models 24
4.1.2 Summary of Guidelines for Functional Models 27

4.2 Deriving a Transaction-level Model 27
4.2.1 Refinement Rules for Transaction-level Models 28
4.2.2 Summary of Refinement Rules for Transaction-level Models 31

4.3 Deriving a Communication Model 32

 iv

4.3.1 Refinement Rules for Communication Models 33
4.3.2 Summary of Refinement Rules for Communication Models 35

4.4 Deriving an Implementation Model 35
4.4.1 Refinement Rules for Implementation Models 36
4.4.2 Summary of Refinement Rules for Implementation Models 37

CHAPTER 5 CASE STUDY: A DIGITAL CAMERA 38
5.1 Digital Camera 38
5.2 Software Prototype of the Digital Camera 40

5.2.1 Prototype CCD Module 41
5.2.2 Prototype CCDPP Module 42
5.2.3 Prototype CODEC Module 42
5.2.4 Prototype UART Module 43
5.2.5 Prototype CNTRL Module 44
5.2.6 System-level Models of the Digital Camera 44

5.3 SpecC Models of the Digital Camera System 45
5.4 Modeling and Refinement in SystemC 45

5.4.1 The Digital Camera System as a Functional Model in SystemC 45
5.4.2 The Digital Camera System as a Transaction-level Model in SystemC 49
5.4.3 The Digital Camera System as a Communication Model in SystemC 55
5.4.4 The Digital Camera System as an Implementation Model in SystemC 58

CHAPTER 6 RELATED WORK 60

CHAPTER 7 CONCLUSION AND FUTURE WORK 64
7.1 Concluding Remarks 64
7.2 Recommendations for Future Work 64

APPENDIX A DIGITAL CAMERA SYSTEM: SPECC MODELS 66

APPENDIX B DIGITAL CAMERA SYSTEM: SYSTEMC MODELS 93

APPENDIX C INPUT IMAGE ARRAY 130

BIBLIOGRAPHY 131

 v

LIST OF FIGURES
Figure 2.1 SpecC leaf behavior code segment and block diagram 6
Figure 2.2 Behavior execution styles in SpecC 7
Figure 2.3 Example of a message-passing communication channel 8
Figure 2.4 SpecC code for message-passing communication channel example 9
Figure 2.5 SystemC version of the SpecC leaf behavior 11
Figure 2.6 FIFO instantiations of different sizes 13
Figure 3.1 The SpecC design methodology 15
Figure 3.2 Models of computation in SystemC 18
Figure 3.3 Universal models of computation 23
Figure 4.1 Binding of concurrent processes to modules 25
Figure 4.2 Merging of sequential processes into a single process 26
Figure 4.3 Examples of wait function calls 29
Figure 4.4 The architecture partitioning phase of transaction-level model refinement 30
Figure 4.5 The communication partitioning phase of transaction-level model refinement 31
Figure 4.6 Result of the adapter synthesis phase of communication model refinement 34
Figure 4.7 Result of the protocol insertion phase of communication model refinement 34
Figure 5.1 Functional block diagram of a digital camera 39
Figure 5.2 Block diagram of the executable model of the digital camera 40
Figure 5.3 Functional block diagram specification of the CCD module 41
Figure 5.4 Functional block diagram specification of the CCDPP module 42
Figure 5.5 Functional block diagram specification of the CODEC module 43
Figure 5.6 Functional block diagram specification of the UART module 43
Figure 5.7 Functional block diagram specification of the CNTRL module 44
Figure 5.8 Functional model of the digital camera system 46
Figure 5.9 SystemC code for a functional model of the UART module 47
Figure 5.10 Capture process of the functional model CCDPP module 48
Figure 5.11 Time-annotated capture process of the CCDPP module 50
Figure 5.12 Merging of CNTRL and CODEC modules 51
Figure 5.13 Digital camera after the architecture partitioning phase 52
Figure 5.14 CCD bus interface function definitions for the CCDPP module 53
Figure 5.15 Transaction-level model of the digital camera 54
Figure 5.16 CCD bus implemented with protocol adapters 55
Figure 5.17 Updated CCD bus interface functions for the CCDPP adapter 56
Figure 5.18 Digital camera after the adapter synthesis phase 57
Figure 5.19 Communication model of the digital camera system 58

 vi

LIST OF TABLES
Table 3.1 Accuracy comparison of models of computation in SpecC and SystemC 22
Table 4.1 Values and meanings of time_unit 28

 1

CHAPTER 1 INTRODUCTION
Embedded systems have become increasingly complex with the advent of the system-

on-a-chip (SOC) era. Prior to this period, the task of designing an embedded system

consisted of integrating microprocessors with other hardware components on a circuit board.

The functionality of the system needed to be partitioned to either the hardware components

or the software running on the system. Typically the custom hardware components were

simple enough that they could be developed using a hardware design language (HDL), such

as VHDL or Verilog. As advances in process technology were made in the 1990s, it became

clear that both a processor core and the hardware components of an embedded system would

be able to fit onto a single chip [1]. However, this advancement also introduced several

problems into the traditional method of system design. Software became more closely

coupled with the hardware and needed to be considered an integral component during the

design of the system. Another issue was that the complexity of SOC design had made it

difficult for an HDL to manage. A typical SOC may consist of one or more microprocessors,

dedicated hardware processing units, peripheral devices, on-chip memories, and the logic for

a sophisticated communications network to link all of these components together. In order to

address these issues, designers needed new design languages and tools that would help

manage the complexity of SOC designs.

1.1 Motivation

Consumer electronics has been one of the most demanding markets that utilize

embedded systems. The consumer electronics industry is so highly competitive that

manufacturers strive to place these products on the market as fast as possible. At the same

time, consumers demand high performance products that are compact, energy-efficient, and

low-cost.

 2

With time-to-market demands requiring manufacturers to produce complex embedded

systems faster and cheaper, system-level design (SLD) has become an attractive alternative

to traditional design approaches. System-level design languages (SLDLs) and tools allow

designers to manage the complexity by using different levels of abstraction to define and

model the system. With the support of Engineering Design Automation (EDA) tools, steps

involved the design process have become automated. In order to save more time in the

development process, SLDLs and EDA tools also focus on the ability to manage and reuse

intellectual property (IP) components that have previously been implemented and tested.

These features result in the ability to produce very complex systems in a faster and cheaper

manner.

Several SLDLs have been introduced in recent years, most notably SpecC [2]

developed at the University of California, Irvine and SystemC developed by the Open

SystemC Initiative (OSCI) [3]. In some aspects, these SLDLs share the same goals. Both

support the ability to model a system at various levels of abstraction and support the reuse of

IP. However, while SystemC claims the most industry support with a wide variety of

SystemC-based tools available from major EDA vendors, it lacks a well-defined refinement

methodology like that of SpecC. The SpecC refinement methodology leads designers from its

highest level of abstraction down to its lowest level of abstraction. While each level of

abstraction in SystemC is clearly defined, it is not clear what changes need to be made to

convert a design from one level of abstraction to another.

1.2 Thesis Statement

In order to facilitate an SLD approach, SystemC needs a well-defined methodology

for bringing a model defined at the highest level of abstraction down to the lowest level of

abstraction. This thesis presents a top-down refinement methodology for systems modeled in

SystemC. Since SystemC has gained widespread industry support, such a methodology

 3

would make it easier for designers who use SystemC to refine their design and use the

SystemC language as intended by a SLD approach.

1.3 Approach

In this thesis, an SLD refinement methodology is defined for SystemC. Since SpecC

already has a well-defined refinement methodology for each of its supported abstraction

levels, the SpecC methodology was used as a basis for the proposed SystemC methodology.

For this reason, a strong understanding of both languages was necessary. In order to define

the refinement rules for the proposed SystemC methodology, the similarities and differences

between both languages needed to be considered. To demonstrate the application of the

refinement rules for both languages, functionally equivalent SpecC and SystemC models of a

digital camera were implemented.

1.4 Contributions

The following is a summary of the contributions of this research project:

• Analysis of the similarities and differences of the SpecC and SystemC SLD

languages and modeling capabilities.

• A top-down refinement methodology for SystemC models.

• Demonstration of the SystemC refinement methodology on the digital camera

example.

• SpecC and SystemC implementations of a digital camera as a case study.

1.5 Thesis Organization

The remainder of this thesis is organized as follows: Background material is

presented in Chapter 2, where overviews of the language features of both SpecC and

SystemC are presented. A comparison of the models of computation and a definition of a

universal set of models of computation are presented in Chapter 3. The proposed SystemC

 4

refinement methodology is presented in Chapter 4. The digital camera system which the case

study was based on is presented in Chapter 5. Chapter 6 summarizes related work to SLD

methodologies and refinement and is followed by a conclusion and recommendations for

future work in Chapter 7.

 5

CHAPTER 2 BACKGROUND
A brief overview of the SpecC and SystemC modeling languages is presented in

sections 2.1 and 2.2 respectively.

2.1 SpecC Language Overview

SpecC is an ANSI C-based SLDL developed at the University of California, Irvine. It

was introduced in 1997 as a specification language to address the problem of an increasing

gap in productivity due to the increasing chip complexity of SOC designs [4]. The codesign

methodology for the SpecC language was introduced in 1998, providing the necessary steps

to refine the model through each layer of abstraction [5]. This section presents an overview

of the main components and features used to build a SpecC model.

2.1.1 Behaviors

Behaviors are the basic unit of functionality in a SpecC model. They represent the

computation of the system. A typical behavior consists of ports, local variables, functions,

and a main function. There are two types of behaviors: composite behaviors and leaf

behaviors [6]. A composite behavior is a behavior that contains instances of child behaviors.

A leaf behavior is a behavior that contains no instances of other behaviors.

An example of a leaf behavior is shown in Figure 2.1. In this example, the first line

defines the behavior A and the two ports of integer type associated with it. Ports allow for

communication between behaviors using channels or interfaces. Behavior A has one input

port, p1, and one output port, p2. It also has one private local variable, x, which can be

accessed only from within the behavior itself. The main function defines the actual

functionality of the behavior and is a public function because it must be called by a parent

behavior in order to execute. The functionality of the behavior is to read the input data from

port p1, increment it by the value of x, and send the result through output port p2.

 6

Figure 2.1 SpecC leaf behavior code segment and block diagram

Composite behaviors can have instances of child behaviors, which may or may not be

leaf behaviors. This introduces a hierarchy that allows a composite behavior to control its

child behaviors. In the main function of the composite behavior, the execution of a child

behavior is initiated by making a function call to the child’s main function. There are three

types of execution sequences supported by SpecC: sequential, parallel, and pipelined. The

default execution sequence is sequential so that once one behavior finishes execution, the

next behavior begins. SpecC also provides the ability to execute behaviors concurrently using

the par statement or in a pipelined fashion using the pipe statement. Examples of the different

execution types and how they are represented in block diagrams are shown in Figure 2.2.

Composite behaviors also allow for functionality to be abstracted. For instance, a

behavior that communicates with a composite behavior does not have direct knowledge of

the composite behavior’s child behaviors. The composite behavior is seen as a black box

from that perspective. Meanwhile the details of the computation are handled by the child

behaviors, hidden at a lower level of abstraction.

2.1.2 Channels and Interfaces

Channels are used to represent the communication of the system. The variables and

methods found in a channel represent the communication protocol of a communication bus.

In some ways, a channel is the same as a behavior. Methods define the functionality and

A
p1 p2

x

behavior a(in int p1, out int p2)
{
 int x;

void main(void);
{
 x = 1;
 p2 = p1 + x;
}

};

 7

behavior of the communication in a system. The channel is accessed by calling these

methods instead of assigning values to or attempting to read from the signals inside the

channel. An interface defines the connection between a behavior and a channel. It serves as a

prototype of the methods provided by a channel. All that a behavior needs is knowledge of

the channel’s interface so the behavior knows what methods to call in order to access the

channel.

A
X

Y

Z

A
X

Y

Z

A
X

Y

Z

Sequential Parallel Pipelined

par {
 x.main();
 y.main();
 z.main();
}

pipe {
 x.main();
 y.main();
 z.main();
}

 x.main();
 y.main();
 z.main();

Figure 2.2 Behavior execution styles in SpecC

An example depicting the use of a communication channel between two concurrent

behaviors is shown in Figure 2.3. Note that behavior A is the composite behavior and

behaviors X and Y are its child behaviors. The dashed line separating the behaviors indicates

that the behaviors are executing concurrently, as depicted in Figure 2.2. The channel is noted

as c1 and there are two interfaces, L and R. A code listing of this example is shown in Figure

 8

2.4. This code listing demonstrates several important syntactical features of channels and

busses. Earlier we mentioned that composite behaviors contain instances of child behaviors.

Note that channel c1 and behaviors X and Y are instantiated in behavior A. When defining

the behaviors, the port types were defined. If a port on a behavior is supposed to connect to a

channel, an interface is specified as the port type in the behavior definition. When the

channel c1 and child behaviors X and Y are instantiated in behavior A, the ports are bound

using the variables or channels. Also, the behaviors X and Y are to execute concurrently, so

the par statement is placed around the main function calls for behaviors X and Y.

X
p1

p2

Y p4

p3

p_in p_outA

RL c1

Figure 2.3 Example of a message-passing communication channel

2.1.3 Synchronization

Synchronization in SpecC is done using the built-in event data type. Events can be

instantiated inside behaviors or channels and bound to ports like any other data type.

However, an event can only be manipulated as arguments for wait and notify statements.

When a wait statement is called on an event by a behavior, the execution of that behavior is

suspended until that event is notified by another behavior. When a behavior calls a notify

statement on an event, all of the behaviors that are waiting on that event will resume

execution.

 9

Figure 2.4 SpecC code for message-passing communication channel example

interface L { void write(int data_in) };
interface R (int read(void) };

channel C implements L, R
{
 int data;
 bool valid;

 void write(int v) {
 data = data_in;
 valid = true;
 }

 int read(void) {
 while(valid == false) {}
 return(data);
 }
};

behavior X (in int p1, L p2)
{
 void main (void)
 {
 if (p1 > 5)
 p2.write(p1);
 else
 p2.write(0);
 }
};

behavior Y (R p3, out int p4)
{
 void main (void)
 {
 p4 = p3.read();
 }
};

behavior A (in int p_in, out int p_out)
{
 C c1;
 X x(p_in, c1);
 Y y(c1, p_out);

 void main (void)
 {
 par { x.main();
 y.main();
 }
 }
}

 10

2.1.4 Timing

In order to simulate time in models of computation which are concerned with timing,

SpecC provides waitfor statements. All other statements in a SpecC program are executed in

zero time, so waitfor statements allow for exact delays to occur in particular parts of the

code. The waitfor statement accepts a single integer argument, which is the number of time

units (nanoseconds) that a behavior is supposed to suspend execution.

2.1.5 Summary

The previous sections covered many of the basic components and features used to

create a SpecC program. Although more details about the SpecC language can be found in

[6][7][8], only the modeling components used in this thesis have been covered.

2.2 SystemC Language Overview

SystemC is a C++ library-based language developed by the OSCI Language Working

Group [3]. Like SpecC, the language was introduced in response to the problem in that it was

no longer sufficient for designers to use HDLs such as Verilog or VHDL for SOC designs.

The SystemC language provides a number of specialized classes, types, and macros used for

the various modeling components and features. In this section an overview of the modeling

components used in SystemC designs is presented.

2.2.1 Modules and Processes

The basic building blocks of a SystemC design are modules and processes. Modules

are like SpecC behaviors, in that they are used to partition the design of a complex system

and can use hierarchy to hide some of the internal details of a module. Modules also use ports

for communication and can have internal variables. Modules are defined using the

SC_MODULE macro.

 11

The functionality of a module is implemented using processes. Processes are basically

member functions of a module that are executed concurrently. There are two different types

of SystemC processes, method and thread. The main difference between the two types of

processes is that a method process will always execute its code from start to finish without

interruption while a thread process has the ability to suspend and resume its execution.

Member functions are mapped to processes using SC_METHOD or SC_THREAD

statements. Each module also has a constructor which is where mapping of member functions

to processes takes place. Modules typically use the default constructor, SC_CTOR. If a

module contains instances of other modules, then the ports of the child modules are mapped

to signals in the constructor as well.

The SystemC version of the SpecC leaf behavior originally shown in Figure 2.1 can

be seen in Figure 2.5. The sc_in and sc_out types are used to define the input and output

ports. The sc_int type is used to define the integer variable x. The line, sensitive << p1, is

called to add the port p1 to the sensitivity list. This is done so that each time the value for p1

changes, the member function func1 will be executed again to derive the new result and send

it out of the module through the p2 port.

Figure 2.5 SystemC version of the SpecC leaf behavior

SC_MODULE(A)
{
 sc_in<int> p1;
 sc_out<int> p2;
 sc_int<8> x;

 void main() {
 x = 1;
 p2 = p1 + x;
 }
 SC_CTOR(A) {
 SC_METHOD(main);
 sensitive << p1;
 }
}

 12

2.2.2 Channels and Interfaces

Like SpecC, SystemC supports the use of hierarchical channels and interfaces for

modeling communication. All interfaces in a SystemC program are derived from the class

sc_interface. Each interface is used to specify operations that are able to be performed over

that particular channel. Channels are used to implement interfaces in much of the same way

as SystemC.

2.2.3 Synchronization

Synchronization can be done through the use of events, supported in SystemC by the

sc_event class. Events in SystemC are used to determine if and when the execution of a

process should be triggered or resumed, depending on whether the process is a method or

thread. An event object keeps track of all the processes that are sensitive to it, so when it is

asserted it tells the scheduler which processes to trigger or resume execution. There are two

ways a process may be sensitive to an event, static sensitivity or dynamic sensitivity. If an

event is on the static sensitivity list, as shown in Figure 2.5, then the processes in that module

will always be sensitive to that event. If the process is a thread, then the process may use the

wait function to wait on an event. Dynamic sensitivity in SystemC is the same method in

which sensitivity to events is handled in SpecC. It should be noted that when a SystemC

process uses a wait statement, its static sensitivity list is ignored.

Another SystemC class that is useful for synchronization is the sc_fifo channel. These

are particularly useful in writing functional models where communication and

synchronization can be simplified. Reads done on a sc_fifo channel are blocking, so

execution of the particular process that makes the read call will halt until there is something

written to the FIFO. Likewise, writes done on a sc_fifo channel will be blocked if the channel

is full. When a sc_fifo channel is instantiated, the size may be specified as either finite or

 13

dynamic in terms of the number of tokens, as seen in Figure 2.6. Due to the nature of FIFOs,

where blocking is predictable, the execution of a model can be deterministic.

Figure 2.6 FIFO instantiations of different sizes

2.2.4 Timing

The wait statement that is used for events may also be used for waiting a specified

amount of time. Used in this form, the SystemC wait statement is similar to the waitfor

statement in SpecC. The main difference is that the wait statement in SystemC can be

instructed to wait in different units of magnitude, like nanoseconds or picoseconds. The wait

statement may also be used to wait either for a specified amount of time or for an event to

occur. This is useful in case an event the process is waiting for does not occur. After the

specified amount of time has elapsed, the process will resume execution.

2.2.5 Summary

The previous sections covered many of the basic modeling components and features

of SystemC. Although more in depth information about these and other SystemC features can

be found in [9], only the elements used in this thesis have been covered.

sc_fifo<int> fifo1(“fifo1”); // Dynamic FIFO
sc_fifo<int> fifo2(“fifo2”, 1); // FIFO of size 1
sc_fifo<bool> fifo3(“fifo3”, 10); // FIFO of size 10

 14

CHAPTER 3 MODELS OF COMPUTATION
The primary goal of SLD is to make it easier for designers to manage highly complex

systems. One essential aspect of a SLDL is the ability to support modeling of the system at

multiple layers of abstraction. The problem with designing complex systems with traditional

HDLs is that they often support only one layer of abstraction, so detailed design decisions

must be made early on in the design process. In the SLD approach, designers are able to test

functionality of their systems at each layer of abstraction before getting into intricate details

of the final implementation.

In a top-down SLD methodology, a designer begins by modeling the functional

specification of a system. At this point the details of the system are highly abstracted. The

designer then refines the model to gradually define more details about the system, each

transformation producing a distinct model at a particular layer of abstraction. In SLDLs such

as SpecC and SystemC, a model that is defined at any layer of abstraction may be simulated,

verified, and debugged. Such a model is referred to as a model of computation. A model of

computation is distinguished by how accurately it represents the target implementation of the

system.

The models of computation supported in SpecC and SystemC are described in

sections 3.1 and 3.2 respectively. Then the accuracy of each model of computation is

quantified using metrics presented in section 3.3. Lastly, a set of universal models of

computation are presented in section 3.4.

3.1 Models of Computation in SpecC

In [7], the models of computation in the SpecC methodology are presented. The four

models supported by SpecC are a specification model, an architecture model, a

communication model, and an implementation model. The SpecC methodology also specifies

three refinement tasks necessary to transform one model of computation to the next. These

 15

three refinement tasks are architecture exploration, communication synthesis, and backend.

The hierarchy of the models of computation and the refinement tasks for of the SpecC

methodology are shown in Figure 3.1.

Architecture exploration

Specification
model

Communication synthesis

Architecture
model

Backend

Communication
model

Implementation
model

Higher Abstraction
Less Accuracy

Lower Abstraction
More Accuracy

Figure 3.1 The SpecC design methodology

Each model of computation represents a stage in the design process. As each

refinement task is performed, a new model of computation is derived that reflects design

decisions made at that stage in the methodology. In this top-down methodology, a design

starts as an abstract definition of the system in terms of functionality that is transformed into

a detailed implementation of the system.

 16

3.1.1 Specification Model

The specification model is the top-most model of computation in the SpecC

methodology. Since this is the first model of the design process, the purpose of the

specification model is to define how the system is supposed to behave. The overall

functionality of the system is broken down into computational behaviors. The specification

model does not attempt to define any implementation details at this point and has no notion

of timing. Communication is only done directly between modules using events for

synchronization. Therefore the specification model is only intended to reflect the

functionality of the target system.

3.1.2 Architecture Model

The architecture model is the next model of computation in the SpecC methodology.

This model is derived from the specification model after performing the architecture

exploration refinement task. The architecture model defines the structure of the system in

terms of system components (such as processors, busses, and memories). The purpose of the

architecture exploration refinement task is to use these components as building blocks to

determine the architecture of the system. Behaviors from the specification model are mapped

to specific processing elements, which are used to represent standard or custom processors.

The architecture model also introduces the notion of timing to the model, so the execution

times for these processing elements are annotated in the form of estimated execution delays.

The synchronization events between behaviors that execute on different processing elements

are now separated into communication behaviors, called virtual busses. These virtual busses

are highly abstract behaviors of the communication channels and their respective protocols.

These abstracted communication channels consist of methods that encapsulate the protocols

and details of the transactions so that they are separated from the processing elements. Any

estimated delays associated with the communication channels are annotated in the

 17

architecture model as well. Thus the architecture model represents the target architecture of

the system in terms of hardware-software partitioning as well as representing an abstract

form of communication between the components.

3.1.3 Communication Model

After performing the communication synthesis refinement task on the architecture

model, the communication model is formed. The abstract communication behaviors in the

virtual busses of the architecture model are transformed into implementations of the actual

wires of a communication bus and the protocols are integrated into the processing elements.

The interfaces to channels are changed to pins in order to connect to the wires of the

transformed communication channels. The estimated timing delays associated with

communication are replaced with cycle-accurate delays associated with the protocol. The

purpose of the communication model is to define all of the communication aspects of the

target system, but the architecture of the system remains unchanged from the architecture

model.

3.1.4 Implementation Model

The final model in the SpecC methodology is the implementation model. This model

represents the lowest layer of abstraction of the system, where all aspects are defined

explicitly. The backend refinement task separates the communication model into hardware

and software components. The processing elements of the communication model are replaced

with cycle-accurate representations of the target processor, such as an instruction set

simulator. The software portion of the model is compiled into assembly code to execute on

the target processor. A high-level synthesis tool is used to synthesize the custom hardware

and communication channels into a register-transfer level model of the hardware in the

system. Using a cosimulation tool to simulate both the software and hardware aspects of the

 18

system simultaneously, the implementation model provides a cycle-accurate representation of

the system.

3.2 Models of Computation in SystemC

In [9], the five models of computation supported by SystemC are presented. These

five models of computation are an untimed functional model, a timed functional model, a

transaction-level model, a behavioral hardware model, and a register-transfer model. In terms

of abstraction and accuracy, the hierarchy of the models of computation supported by

SystemC can be seen in Figure 3.2.

Untimed
Functional model

Timed
Functional model

Behavioral
Hardware model

Register-transfer
level model

Transaction-level
model

Higher Abstraction
Less Accuracy

Lower Abstraction
More Accuracy

Figure 3.2 Models of computation in SystemC

 19

3.2.1 Untimed Functional Model

The untimed functional model is a functional specification of the target system. All of

the functionality of the system is implemented in this model, but there is no reference to any

architectural details of the system. As the name implies, the model has no notion of timing

either. When the untimed functional model is simulated, only the functional results may be

verified. Functionality may be broken down into modules if it assists in making the modeling

process easier, but is unnecessary. Communication between modules is done implicitly as

there are no communication links or busses being modeled in this layer of abstraction. This

model of computation is also called an executable specification.

3.2.2 Timed Functional Model

The timed functional model in SystemC is functionally the same as the untimed

functional model, but includes the notion of timing during simulation. Approximate timing

constraints are annotated so that the computation delays associated with the target

implementation can be estimated. No details regarding the communication between modules

are defined at this level since it is still done implicitly. All other aspects in comparison with

the untimed functional model remain the same.

3.2.3 Transaction-level Model

The transaction-level model defines the communication between modules by using

function calls. This models accurate functionality of the communication protocol and isolates

the communication details from the computational functionality. The transaction-level model

has approximated timing annotations in both communication functions and computational

modules to indicate a rough estimate of the timing characteristics of the system. In the

transaction-level model, the modules represent computational components or processing

 20

elements and the function calls related to communication represent the communication

busses of the target implementation.

3.2.4 Behavior Hardware Model

The behavior hardware model has detailed implementations of the communication

busses of the target system. The communication protocols of the target implementation are

inserted into the processing elements. Instead of the abstract communication interfaces used

in the transaction-level model, wires represent the communication busses and pins are added

to the processing elements so they may be connected to the wires. The computational timing

is approximate-timed, so the key difference between the transaction-level model and the

behavior-hardware model is whether the communication aspects are abstract or accurate.

3.2.5 Register-Transfer Level Model

The register-transfer level model is the most accurate model supported by SystemC.

All of the communication, computation, and architectural aspects of the target system are

defined explicitly. Timing characteristics of both the computational and communication

elements are clock-cycle accurate. At this layer of abstraction the SystemC code representing

the hardware components is translated to a HDL that can be synthesized and the SystemC

code representing software is translated into the desired software programming language.

3.3 Quantifying Accuracy of Models of Computation

In order to compare the models of computation supported by the SystemC language

with the models of computation supported by the SpecC methodology, a set of independent

metrics was used to determine the accuracy of a model of computation. Based on [9] and

inspired by [10], the following metrics were used for determining the accuracy of each model

of computation:

 21

• Functional accuracy: A model is said to be functionally accurate if it reflects

the functionality of the target implementation of the system.

• Computational timing accuracy: The magnitude to which the model reflects

the computational delays of the system. Computational delays typically refer

to processing delays, memory accesses, and delays due to resource

constraints. Using this metric, a model of computation can be cycle-accurate,

approximate-timed, or untimed.

• Communication timing accuracy: The magnitude to which the model

reflects the communication delays of the system. Using this metric, a model of

computation can be cycle-accurate, approximate-timed, or untimed.

• Communication protocol accuracy: The magnitude to which the actual

communication protocols of the target implementation is modeled. Using this

metric, a model may be considered to be abstract if it reflects the functionality

of the communications protocols. If the structure of the communication

protocol is modeled in the same fashion as the target implementation, the

model is considered to be exact in terms of communication protocol accuracy.

• Structural accuracy: The magnitude to which the model reflects the true

structure of the target implementation. The structural accuracy is said to be

approximate if the partitioning of functionality into hardware and software is

same as that of the target implementation. The structural accuracy is said to be

exact if the model’s structure accurately reflects the internal structure of the

components in the target implementation.

• Pin accuracy: A model is said to be pin accurate if the interfaces between

components are defined at the pin level.

Using these metrics, the accuracy of a model of computation in terms of a range of

criteria may be determined. In a top-down design methodology, the implementation details of

 22

the system are defined as the refinement rules transform the model of computation from one

layer of abstraction to the next.

3.4 Universal Models of Computation

As presented in sections 3.1 and 3.2, there are four different models of computation in

the SpecC methodology and five different models of computation supported by SystemC. In

order to simplify further discussion of the models of computation between both SpecC and

SystemC, a universal set of models of computation were derived. This universal set of

models of computation describes the system at the same levels of accuracy regardless of

which SLDL the model is coded in. To determine these universal models of computation,

each model of computation for both SpecC and SystemC was analyzed using the metrics

defined in section 3.3. The results of these analyses are shown in Table 3.1.

Table 3.1 Accuracy comparison of models of computation in SpecC and SystemC
Accuracy SpecC SystemC
Metrics Spec Arch Comm Impl UFM TFM TLM BHM RTLM
Functional Yes Yes Yes Yes Yes Yes Yes Yes Yes
Comp. Timing No Approx Approx Cycle No Approx Approx Approx Cycle
Comm. Timing No Approx Cycle Cycle No Approx Approx Cycle Cycle
Comm. Protocol No Approx Exact Exact No No Approx Exact Exact
Structural No Approx Approx Exact No No Approx Approx Exact
Pin No No Yes Yes No No No Yes Yes

Based on these results, the equivalent models of computation between SpecC and

SystemC can be identified. In most cases the equivalent models in both SpecC and SystemC

are easy to determine. However, there is no equivalent model of computation in SpecC for

the timed functional model in SystemC. This discrepancy is considered to be minor since the

only refinement step between the untimed functional model and timed functional model is to

annotate timing delays in the system. Therefore, the timed functional model is not included in

the set of universal models of computation. The notion of timing will be introduced in the

transaction-level model. The universal set of models of computation and their equivalent

models in SpecC and SystemC are shown in Figure 3.3.

 23

Functional
model

Transaction-level
model

Communication
model

Implementation
model

Higher Abstraction
Less Accuracy

Lower Abstraction
More Accuracy

Untimed
Functional model

Transaction-level
model

Behavioral
Hardware model

Register-transfer
level model

Specification
model

Architecture
model

Communication
model

Implementation
model

Timed Functional
model

SpecC Models of
Computation

SystemC Models of
Computation

Universal Models of
Computation

=

=

=

=

=

=

=

=

Figure 3.3 Universal models of computation

For the remainder of this thesis, the names of the universal models of computation

will be used as opposed to the language-specific models presented in sections 3.1 and 3.2. In

review, the general distinctions of the four models of computation are as follows. The

functional model is purely representative of the functionality of the target system model, with

no notion of timing or architecture. The transaction-level model reflects the target

architecture of the system and the computational units and communication channels are

approximate-timed. The communication model contains the same approximate-timed

computation units of the architecture model, but also includes accurate implementations of

the communication busses in terms of timing and protocol. The implementation model of the

system is accurate in terms of all metrics and represents the lowest level of abstraction

supported by a SLDL.

 24

CHAPTER 4 SYSTEMC REFINEMENT METHODOLOGY
This chapter provides a set of rules for refining SystemC models of computation in a

top-down design methodology. These rules have been derived through the modeling and

refinement of the digital camera example presented in Chapter 5.

4.1 Developing a Functional Model

The functional model defines the functionality or behavior of the system, without

concern for the target architecture. Therefore, the functional model must only consider the

functionality in terms of components, with no regard to whether those components are

implemented in hardware or software. The objective is to capture the specification of the

system in terms of design behavior with the least amount of design work.

4.1.1 Guidelines for Functional Models

The first step in developing a functional model is to determine how the functionality

of the system should be partitioned into processes. The granularity of the processes can vary,

but each process should be fairly independent. Since functionality of the system is

represented by processes that run in leaf modules, the smallest indivisible units of

functionality are leaf modules. The computational details of a module are specified in one or

more processes. Behavioral hierarchy, where modules may contain instances of other

modules, may be used in order to mask some of the details of the functionality into modules

at lower levels. The processes should be placed into independent modules in an effort to

maximize concurrency. Independent modules allow more flexibility when architectural

considerations are made later on in the design methodology.

Although the simulation of a functional model occurs in zero simulation time, the

code inside of a process is executed in a sequential fashion. Recall from section 2.2.1 that

there are two main types of processes: sc_thread and sc_method. A sc_method process will

 25

execute from start to finish without halting its execution while a sc_thread process has the

ability to halt its execution using wait statements or other forms of blocking. For functional

models, all processes should be instantiated as sc_thread processes.

However, the use of multiple thread processes in a single module with the intent that

they will execute concurrently is discouraged. The concurrency of multiple thread processes

instantiated inside a module should not be considered the same type of concurrency as that

found in threaded software applications. This is due to the simulation scheduler, which does

not function in the same way as an operating system scheduler. A context switch will only

occur when the execution of the current process is halted, otherwise the current process will

continue to execute indefinitely. For this reason it is usually safest to use only one process

per module when developing a functional model. In general, move processes that are

supposed to be independently concurrent into separate modules, as shown in Figure 4.1.

A

x

y

z

X

Y

Z

x

y

z

Figure 4.1 Binding of concurrent processes to modules

Due to the nondeterministic nature of how the simulator selects the next process to

run, a common pitfall of using events to synchronize processes is to have the notifying

process send out the notification before the process that waits for that notification has been

 26

executed. For example, the module on the left in Figure 4.2 has three processes that are

supposed to execute sequentially. If process x executes first and has no wait statements used

to halt its execution, it will send out the event to notify process y before process y can

execute the wait statement for that event. When process y finally executes, it will call a wait

statement on that event. However, process x had already sent the notification, so the system

becomes deadlocked. In this case, the intent is to have each process execute sequentially.

Therefore it may be more helpful to merge the functionality of the processes into a single

process in order to guarantee correct execution. This merging of processes into a single

process is illustrated in Figure 4.2

Figure 4.2 Merging of sequential processes into a single process

All communication and synchronization between modules should be implemented

using the sc_fifo primitive channel type. These primitive channels can be accessed using read

and write methods which are blocking calls. When a read method is called, the execution of a

process will be blocked if no data is available to be read. Once data has been written to the

FIFO, the process may finish the pending read and resume execution. Similarly, if a process

attempts to write to a FIFO that is full, its execution is halted until space is available in the

FIFO for the process to complete the write operation. Using FIFOs for communication allows

the simplification of a both synchronization and data exchange. Although the use of FIFOs

may not accurately reflect the target implementation, the functional model is not concerned

 27

with those details. FIFOs make the execution of a functional model deterministic and

predictable due to the blocking nature of the read and write functions. In some cases, a FIFO

channel may need to be initialized with a value before the simulation starts. For example, a

process that must read from a FIFO channel before another process is able to write to it may

cause the simulation to fail. Initial values of FIFOs may be specified by calling the write

method to push an initial value onto the FIFO.

4.1.2 Summary of Guidelines for Functional Models

The following is a summary of the guidelines for developing functional models:

• Divide functionality into individual processes

• Use sc_thread processes, not sc_method processes

• Separate concurrent processes into individual modules

• Merge sequential processes into a single process to guarantee execution order

• Use the sc_fifo primitive for all communication and synchronization between

modules

4.2 Deriving a Transaction-level Model

The transaction-level model takes the executable specification of the functional model

and separates the architectural and communication behavior of the system into isolated

entities. The task of deriving a transaction-level model from a functional model consists of a

set of refinement rules which are divided into two distinct phases. The architecture

partitioning phase introduces the notion of timing and the mapping of behaviors to

processing elements. The communication partitioning phase separates the behavior

associated with communication from the behavior associated with computation.

 28

4.2.1 Refinement Rules for Transaction-level Models

The first step in transforming a functional model into a transaction-level model is to

insert delays associated with the computation of the system. Annotating computation delays

in a functional model is done by the insertion of wait statements into portions of the

processes. The frequency at which timing annotations are inserted is determined by the

designer. If a rough timing estimate of a portion of code is known, the timing may be

annotated at the end of the block. If a more exact estimate is known, the designer may wish

to annotate delays after each statement in a process. It does not matter to the simulator if the

delays are annotated line by line in the code or as a single delay at the end of a block of code.

However, being more specific may yield more accurate simulation results which is important

when trying to make informed design decisions early on.

The wait statement takes an argument of a SystemC data type, sc_time. When a

variable of type sc_time is declared, the number of units and the unit magnitude need to be

specified. Any positive number may be specified for the number of units and SystemC

provides several different types of unit magnitude, which is an enumerated type called

time_unit. All of the supported values and their meanings [9] are shown in Table 4.1.

Table 4.1 Values and meanings of time_unit

SC_FS Femtosecond

SC_PS Picosecond

SC_NS Nanosecond

SC_US Microsecond

SC_MS Millisecond

SC_SEC Second

When inserting delays using the wait function, the amount of delay may be declared

as a sc_time variable and passed to the wait function or the number and time_unit may be

passed directly. The equivalence of both methods is shown as an example in Figure 4.3.

 29

After the insertion of computational delays into the model, the next step is to specify

the architectural structure of the system. This is done by allocating modules intended to

represent processing elements that will be used in the target implementation. Examples of

processing elements include processors, microcontrollers, single-purpose processors, or

custom ASICs. Once these processing elements have been allocated, the next step is to map

the modules of the functional model to these processing elements. When mapping modules to

processing elements, it is recommended that concurrent processes are mapped to separate

processing elements because eventually the modules that are on the same processing element

will be executed in a serial fashion. Once the modules have been mapped to their respective

processing elements, care must be taken to ensure that they preserve the same execution

sequence as they did in the functional model. This may involve inserting additional

synchronization between processing elements.

Figure 4.3 Examples of wait function calls

The next step is to map any global variables of the functional model into either local

memories of the processing elements that use them or into a shared memory. Finally, global

channels are allocated to replace the instances of sc_fifo used in the functional model. This

concludes the architecture partitioning phase of refinement for deriving a transaction-level

model.

An example illustrating the architecture partitioning phase of the transaction-level

model refinement process is shown in Figure 4.4. As shown in the example, there are two

functional modules, X and Y, which perform a computation before each passes a resulting

value to module Z. Module Z is dependent upon both X and Y, while X and Y are not

sc_time comp_delay(100, SC_NS);
.
.
.
wait(comp_delay); // Both of these statements
wait(100, SC NS); // are the same.

 30

dependent upon each other. When partitioning the modules onto processing elements,

modules X and Y are mapped to separate processing elements in order to maintain

concurrency. Since module Z is dependent on both X and Y, it could have been placed on

either processing element. The variables v1 and v2 are placed into local memories of their

respective processing elements. When module Y is finished executing, it uses

synchronization to tell Z it has finished and it passes the computed value of v2 over the

global channel. The synchronization is performed using a global sc_event called sync.

Figure 4.4 The architecture partitioning phase of transaction-level model refinement

The next step is to group channels between processing elements into one or more

hierarchical channels. This step is called the communication partitioning phase of

transaction-level model refinement. Hierarchical channels are used to form busses from the

global channels defined during the architecture partitioning phase. The advantage of using a

hierarchical channel is that the details of the communication protocol implementation are

abstracted and the processing elements are connected through a single port. Access to the bus

is allowed only through the interface, which is done in the form of function calls. The

hierarchical channel forms an approximate representation of the bus that will be later refined

into the target implementation. Timing delays for communication are also annotated in the

functions of a hierarchical channel to model delays associated with transfers over the bus.

 31

After busses have been formed using hierarchical channels and the interfaces to the

channels have been defined, the ports on the modules need to be updated so they are able to

connect to their respective interface. The processes also need to be updated, replacing the old

port accesses with function calls through the interface. Based on the same example

introduced in Figure 4.4, the transition from the architecture partitioning phase to the

communication partitioning phase of the transaction-level model refinement is shown in

Figure 4.5.

Figure 4.5 The communication partitioning phase of transaction-level model refinement

The global sync event and global channel for transmitting the value of v2 are now

encapsulated by a hierarchical channel. The methods for accessing the hierarchical channel

are defined within the interfaces and the processing elements no longer access the signals in

the channel directly. The processing elements are now able to send data over the hierarchical

channel without knowledge of how the communication protocol is able to communicate. The

communication is now modeled using a simplified transaction-based approach.

4.2.2 Summary of Refinement Rules for Transaction-level Models

The following is a summary of the refinement rules for deriving transaction-level

models from functional models. The refinement rules for the architecture partitioning phase

are:

 32

• Annotate delays of the computation and communication aspects of the system

using wait statements

• Allocate modules to represent processing elements of the target system

• Map functional modules to designated processing elements

• Replace sc_fifo instances with global channels that use variables for data

transmission and the sc_event type for synchronization

• Add any necessary synchronization to preserve the original execution

sequence

• Move global variables into local or shared memories

The refinement rules for the communication partitioning phase of transaction-level

model refinement are:

• Group global channels into hierarchical channels to form busses

• Define interfaces that provide member functions to access hierarchical

channels and implement the communication protocol

4.3 Deriving a Communication Model

When refining the functional model to the transaction-level model, busses were

formed using hierarchical channels. The advantage of hierarchical channels is that they allow

the communication protocol to be abstracted, hidden from the processing elements. The

process of deriving a communication model is focused on converting the abstracted

implementation of the communication behavior into a pin-level implementation consisting of

wires that make up the busses of the target implementation. Similar to transaction-level

model refinement, the refinement rules are divided among two distinct phases that represent

the process of deriving the communication model. These two phases are adapter synthesis

and protocol insertion.

 33

4.3.1 Refinement Rules for Communication Models

The first step in communication model refinement is to analyze the current

implementation of each hierarchical channel in order to determine the desired

communication method of the final implementation. When deriving the transaction-level

model, the hierarchical channels implied a certain protocol. At the adapter synthesis phase in

the communication model refinement, the cycle-accurate implementation of the protocol

must be either built from scratch or implemented based on an existing protocol specification.

Next each bus must be defined at the pin-level. This is done using signals to represent

the actual wires of the bus for the target system. The abstracted timing constraints associated

with the communication delays will be replaced by actual clock cycles that are introduced in

the implementation of the communication protocol used to implement functionality for bus

transfers.

The final step in the adapter synthesis phase is to define the adapters that will be used

to connect the approximate-timed processing elements with hierarchical channel interfaces to

the pin-level implementations of the busses. Adapters are modules that contain pin-level

interfaces to access the wires of the bus and clock driven, cycle-accurate implementations of

the interface functions that were previously defined for the transaction-level model. The

purpose of the adapter is to allow the processing element to use the pin-level bus

implementation through the high-level interface functions defined in the transaction-level

model. The processing element has no knowledge of how the communication protocol is

actually implemented because it continues to use an interface function calls first defined in

the transaction-level model. The interface functions within the adapters are modified to

implement the protocol by manipulating the wires and following the timing rules of the

protocol specification. At this point, the system may be simulated to verify the correctness of

the protocol. An example illustrating the insertion of adapters around a pin-level

implementation of a bus is shown in Figure 4.6.

 34

X
x

Z
z

PE1

Y
y

PE2

Adapter
sync

v2
Adapter

Clock

Figure 4.6 Result of the adapter synthesis phase of communication model refinement

 The goal of the protocol insertion phase of communication model refinement is to

merge the protocol contained in the interface functions of the adapters into their respective

processing elements. The port definitions used to access the wires of the bus are moved from

the adapter to the processing element. Next, the interface functions are inserted into their

respective processing elements. Finally the function calls made by the processing element are

changed to local function calls for the newly inserted interface functions. The processing

elements receive a clock input, but the clock is only used for the communication protocol

implementation. The computational portions of the processing elements remain approximate-

timed in their implementation. The previous example following the protocol insertion phase

is shown in Figure 4.7.

Figure 4.7 Result of the protocol insertion phase of communication model refinement

 35

4.3.2 Summary of Refinement Rules for Communication Models

The following is a summary of the refinement rules for deriving communication

models from transaction-level models. The refinement rules for the adapter synthesis phase

are:

• Replace hierarchical channels with pin-level implementations using signals to

represent wires

• Create adapter modules that implement the interface functions of the

deprecated hierarchical channels and connect to the signals of the busses using

pin-level interfaces

The refinement rules for the protocol insertion phase of communication model

refinement are:

• Merge pin-level interface definitions of the adapters into processing elements

• Merge interface functions from the adapters into processing elements

• Change the interface function calls in the processing element threads into

local function calls

4.4 Deriving an Implementation Model

The implementation model is the lowest level of abstraction that SystemC supports.

The implementation model is derived from the communication model, which is still

approximate-timed in terms of computation and remains abstract in terms of internal

structure of the computation units. The hardware components of an implementation model

look very similar to HDL implementations. The refinement rules for determining

implementation model are the most general due to the multitude of implementations that can

be derived from a communication model. Also, the final result of implementation model

refinement is the actual implementation of the system in terms of software and synthesizable

 36

hardware. In order to simulate the model, cosimulation tools that support simultaneous

simulation of hardware and software are needed.

4.4.1 Refinement Rules for Implementation Models

The communication model already contains cycle-accurate, pin-level

implementations of the communication busses, so the purpose of the implementation model

refinement is to derive cycle-accurate implementations of the processing elements that are

targeted for hardware implementations. The first step is to identify distinct states that are

contained in the code of a module’s one or more processes. The sc_thread processes are to be

changed into sc_method processes, so they are no longer able to halt execution using wait

statements. Thus a single sc_thread process may need to be split up into several sc_method

processes in order to perform the same functionality. Once the number of sc_method

processes has been determined, the sensitivity list needs to be updated to include all of the

signals that a particular method should evaluate when they change. The next step is to replace

all instances of variables and other abstract types into signals. The only exception to this case

is if a variable is used in only one process, in which case it cannot be read from and written

to by different processes at the same time. Signals feature semantics that handle simultaneous

reads and writes while variables do not. All initial values of signals and variables should be

defined in the module’s constructor.

Once the low-level implementations of the hardware processing elements have been

derived, the system is ready for export into languages used to define the implementation of a

system. Hardware components are converted to HDLs such as VHDL or Verilog, which can

be synthesized. Low-level hardware implementations follow many of the same conventions

of HDLs and the conversion is typically straightforward. Processing elements that are used to

run software are typically transformed into both a HDL representation of the microprocessor

and the software that it executes. In most cases an IP model of the microprocessor will be

 37

used and the software code is derived from the C-based SystemC implementation of the

module. After the SystemC code has been exported, the communication model has then been

refined into the target implementation of the system.

4.4.2 Summary of Refinement Rules for Implementation Models

The following is a summary of the refinement rules for deriving implementation

models from communication models:

• Replace abstracted processing elements that are targeted for hardware into

low-level implementations

• Export hardware components into HDL implementations

• Export software components into the language supported by target

microprocessor(s)

 38

CHAPTER 5 CASE STUDY: A DIGITAL CAMERA
In Chapter 4, a set of refinement rules for a top-down design methodology in

SystemC was presented. In order to demonstrate the effectiveness of these refinement rules, a

case study of a digital camera as a target system was performed. In this chapter an overview

of the digital camera system is presented followed by some of the details on the

implementations and refinements of the SystemC models.

5.1 Digital Camera

The design used in this case study is based on the digital camera example presented in

detail by Vahid and Givargis in Chapter 7 of [11]. The functionality of the digital camera

system can be divided into two main tasks. First, the digital camera must capture, process,

and store images into an internal memory. This task is initiated when the user presses the

shutter button to take a picture. The image is captured in a digital form by a charge-coupled

device (CCD). The image is then compressed using the Huffman compression algorithm

before being stored into the internal memory of the digital camera. Second, the digital camera

must be able to upload the stored images to a personal computer. A command is sent from

the personal computer to the digital camera which instructs the camera to upload an image

through a serial connection.

Based on these two tasks, an informal functional specification of the digital camera is

shown in Figure 5.1 [11]. The functions associated with the task of image capture are shown

on the left and the functions associated with serial transmission are shown on the right. After

the image is captured into a digital form from the CDD, zero bias adjustment is performed to

mathematically correct any errors associated with the image. The corrected image is then

compressed, which consists of two steps: the application of the discrete cosine transform

(DCT) and quantization. Finally the image is stored into the internal memory of the camera.

 39

For the serial transmission task, the image is transferred one bit at a time through the serial

connection.

Zero-bias adjust

DCT

Quantize

Store in memory

Transmit serially
More
8x8

blocks?

Done?

no

yes

yes no

CCD input

Serial output

Figure 5.1 Functional block diagram of a digital camera

To obtain an executable functional specification, the informal functional specification

shown in Figure 5.1 [11] is partitioned into five discrete modules: CCD, CCDPP, CODEC,

UART, and CNTRL. These modules are separate executable parts of the system that could be

modeled using the highest level of abstraction in a SLDL.

The CCD module is used to simulate the actions that an actual CCD would perform.

Most notably it simulates the capture of an image and the transmission of pixels from the

CCD. The CCDPP module is responsible for performing the zero-bias adjustment on each

pixel as they are being sent by the CCD module. The CODEC module applies the Huffman

encoding algorithm to the image by performing the DCT and quantization functions. The

CNTRL module serves as the controller of the system, instructing each module as to what

 40

function to perform next. The UART models the serial transfer capability by sending the

image byte by byte to an output file. A block diagram representing the executable model is

shown in Figure 5.2 [11].

Figure 5.2 Block diagram of the executable model of the digital camera

Based on this diagram, the execution flow of the digital camera becomes apparent.

The CCD module captures and sends the pixels of the image to the CCDPP module first. The

CCDPP module then processes the pixels before they are sent to the CNTRL module. The

CNTRL module uploads the pixels to the CODEC module to be processed before they are

sent back to the CNTRL module. The CNTRL module then sends the pixels to the UART

module where they are sent to an output file.

5.2 Software Prototype of the Digital Camera

The purpose of the digital camera example in [11] was to demonstrate the usefulness

of codesign for embedded systems, where experimenting with different implementations of a

system can result in variations in performance, power consumption, design complexity, and

cost of the final implementation. In addition to an informal specification of the system, a

 41

software prototype was developed [12]. In this prototype, the implementation of the digital

camera has been modified so that it operates on 16-bit images that are 64 x 64 pixels in size.

Although this would result in an extremely low quality image, the prototype is only meant to

demonstrate functionality and could be expanded to operate on images that are larger in size.

In this section each module implemented in the software prototype is discussed. Each module

has an initialize function which sets up any necessary conditions or variables prior to

execution. Although these functions are not discussed in detail, they can be found in the

reference code [12].

5.2.1 Prototype CCD Module

The CCD module simulates the behavior of a real CCD. This is accomplished by two

functions, CcdCapture and CcdPopPixel. When CcdCapture is called, the pixels of an image

are read from an input file and loaded into memory. When a real CCD is instructed to capture

an image, it would read the value of each pixel and load it into a local memory. When the

capture is finished, CcdPopPixel is called to transfer each pixel to the CCDPP module, one

byte at a time. A functional block diagram of the CCD module is shown in Figure 5.3.

CcdCapture

CcdPopPixel

yes
Input file

Pixel output Done?

no

Figure 5.3 Functional block diagram specification of the CCD module

 42

5.2.2 Prototype CCDPP Module

The CCDPP module is responsible for getting image data from the CCD and applying

the zero-bias adjustments on each pixel. The image is then sent to the CNTRL module byte

by byte. Two functions make up the CCDPP module: CcdppCapture and CcdppPopPixel.

CcdppCapture calls the CcdCapture function first and then starts to collect each pixel from

the CcdModule by calling the CcdPixelPop function. As each pixel is read from the CCD

module, the zero-bias adjustment is applied and the pixel is stored. When CcdppPopPixel is

called by the CNTRL module, each adjusted pixel is sent to the CNTRL module. The high-

level functionality of the CCDPP module is shown in Figure 5.4.

CcdppCapture

CcdppPopPixel

no

Pixel input

Pixel output

More
Pixels?

yes

More
Pixels?

yes

Figure 5.4 Functional block diagram specification of the CCDPP module

5.2.3 Prototype CODEC Module

The next module presented is the CODEC module. The CODEC module applies the

DCT algorithm, the first half of the compression process, on 8 x 8 pixel blocks of the image.

The CODEC module consists of three functions: CodecPushPixel, CodecDoFdct, and

CodecPopPixel. CodecPushPixel collects the pixels from the CNTRL module until an 8 x 8

block of pixels has been read. The CodecDoFdct function then applies the DCT algorithm to

 43

the 8 x 8 block. Finally the data is sent back to the CNTRL module using the CodecPopPixel

function. The high-level functionality of the CODEC module is shown in Figure 5.5.

CodecPushPixel

CodecDoFdct

Pixel input

Pixel output

yes

CodecPopPixel

no

More
Pixels?

More
Pixels?

yes

More
8 x 8

Blocks?

yes

no

Figure 5.5 Functional block diagram specification of the CODEC module

5.2.4 Prototype UART Module

The UART module is used to replicate the functionality of a serial connection. On a

real digital camera, the UART would be used to download the image from the camera to a

PC. This is handled by the UartSend procedure, which receives data from the CNTRL

module and writes it to an output file for verification purposes. The high-level functionality

of the UART module is shown in Figure 5.6.

UartSendPixel input Output file

Figure 5.6 Functional block diagram specification of the UART module

 44

5.2.5 Prototype CNTRL Module

The final module in the software prototype is the CNTRL module. This module

controls all of the other modules functions by calling them in the correct sequence. The first

function, CntrlCaptureImage, calls the CcdppCapture function to initiate the CCD capture

and then collects the image byte by byte through the CcdppPopPixel function. The

CntrlCompressImage sends the image in 8 x 8 pixel blocks to the CODEC module so that the

FDCT algorithm is applied to the 8 x 8 block. When the block is returned to the CNTRL

module, quantization is performed on the block before the next block is sent. Once all of the

blocks have been compressed, the CntrlSendImage function is called to send the image to the

UART module. The high-level functionality of the CNTRL module is shown in Figure 5.7.

CntrlCaptureImage

CntrlCompressImage

Capture

Pixel outputCntrlSendImage

Codec

Figure 5.7 Functional block diagram specification of the CNTRL module

5.2.6 System-level Models of the Digital Camera

The software prototype is an executable specification of the digital camera coded in

C. In [11], Vahid and Givargis discuss four different prototype implementations of the digital

camera to illustrate how decisions made during hardware-software codesign can lead to an

optimal solution. Based on their nonfunctional constraints, none of the final designs was

clearly the best choice. In the third implementation, the CCDPP and UART modules run on

 45

independent custom processors while the CNTRL and CODEC modules run on a single

processor core. One performance optimization for this implementation was the change of the

code for the CODEC to use fixed-point arithmetic as opposed to expensive floating point

operations in software. In the SpecC and SystemC implementations of this case study, the

models and design decisions followed this version of the digital camera system.

5.3 SpecC Models of the Digital Camera System

In order to prove the effectiveness of the SystemC refinement rules presented in

Chapter 4, the digital camera system was also modeled in SpecC to serve as a comparison.

The functional model was implemented based on the software prototype described in section

5.2 and the other models were derived using the refinement rules from the SpecC

methodology [7]. Although the details regarding the creation and refinement of the SpecC

models will not be discussed, the source code for the functional, transaction-level, and

communication models are included in Appendix A for reference.

5.4 Modeling and Refinement in SystemC

In this section the details of the implementation and refinement of the models of

computation supported by SystemC are discussed. The functional model was developed

based on the software prototype described in section 5.2 and the transaction-level and

communication models were derived using the refinement rules presented in Chapter 4.

5.4.1 The Digital Camera System as a Functional Model in SystemC

Inspired by the software prototype [12], a functional model of the digital camera

system was developed. Much of the work in partitioning the functionality into blocks was

based off of the division of functionality in the software prototype discussed in section 5.2.

This model distributes the behavior of the digital camera into five separate modules: CCD,

CCDPP, CNTRL, CODEC, and UART. The original functions of the software prototype for

 46

the CCD, CCDPP, and UART modules were mapped directly to their respective processes.

The three functions of the CODEC prototype were merged into a single process. The four

functions of the CNTRL prototype were also merged into a single process. The code for the

fdct process of the CODEC module was also converted from floating point to a fixed-point

implementation of the DCT algorithm. A high-level representation of the functional model is

shown in Figure 5.8. The modules are represented by rounded boxes while the processes are

represented by the rectangles. Triggers for synchronization are represented by the arrows

with dashed lines while transfers between modules involving data are represented by the

arrows with the solid lines.

CCD

capture

pop

CCDPP

capture

pop

Start

CNTRL

capture

compress

quantize

send

Start

Pixel

CODEC

push
Pixel

Pixel

UART

send

Pixel

Done Done

fdct

pop
Pixel

Figure 5.8 Functional model of the digital camera system

The initialization functions used in the software prototype are now handled by the

module constructors. An example of the use of SC_CTOR in place of an initialization

function is shown in Figure 5.9. The UART module opens the output file in the constructor

before instantiating the thread process which writes to that file. When the simulation is

finished, each module calls a destructor to clean up any remnants of the module. In this case,

a destructor is specified as ~uart() and is responsible for closing the output file at the end of

 47

the simulation. Usually it is sufficient to use the default destructor for a module and in that

case it does not need to be specified.

Figure 5.9 SystemC code for a functional model of the UART module

All of the synchronization and communication was done using the primitive channel,

sc_fifo. As shown in Figure 5.9, the UART module has one input port that accepts

characters. When using sc_fifo to transfer data, any supported data type can be specified and

used. Each time the send process executes the read method it first checks to see if there are

any characters waiting in the FIFO. If there is a character waiting, the character is read and

the process continues executing the next line of code. If there is no character waiting, then

the process halts execution until a character has been written to the FIFO. In this case the

SC_MODULE(Uart)
{
 // UART Ports
 sc_fifo_in<char> DataIn;

 // UART Vars
 FILE *outputFileHandle;
 char data;

 // UART Processes
 void uartSend(void)
 {
 while(1) {
 data = DataIn.read();
 fprintf(outputFileHandle, "%i\n", (int)data);
 }
 }

 // Module Constructor
 SC_CTOR(Uart)
 {
 outputFileHandle = fopen("uart_out.txt", "w");
 SC_THREAD(uartSend);
 }

 // Module Destructor
 ~Uart(void)
 {
 fclose(outputFileHandle);
 }
};

 48

FIFO acts as both a synchronization signal and data transfer channel. For synchronization

without data transfer, boolean data types were used. The code excerpt from the CCDPP

module shown in Figure 5.10 demonstrates the use of boolean data types for synchronization.

Figure 5.10 Capture process of the functional model CCDPP module

The simulation is started by calling the statement sc_start(-1). In this case, the

argument specifies the length of simulation time to be a value of -1, which indicates to the

simulator that it should execute the model in zero simulation time. There are two possibilities

for stopping the simulation. One option is to call sc_stop() when a termination condition has

been reached. The other option for is to stall the simulation when finished. This condition

could occur intentionally or unintentionally. Once the simulation has stalled, events stop

SC_MODULE(ccdpp)
{
 // ports
 sc_fifo_in<bool> startCcdppCapture, doneCcdCapture;
 sc_fifo_in<char> ccdPixel;
 sc_fifo_out<bool> doneCcdppCapture, startCcdCapture;
 sc_fifo_out<char> ccdppPixel;
...
 void capture(void)
 {
 StartCcdppCapture.read();
 StartCcdCapture.write(true);
 DoneCcdCapture.read();

 for(row=0; row<ROW_SIZE; row++) {
 for(col=0; col<COL_SIZE; col++) {
 buffer[row][col] = CcdPixel.read();
 }

 bias = CcdPixel.read();
 bias = (bias + CcdPixel.read()) / 2;
 for(col=0; col<COL_SIZE; col++) {
 buffer[row][col] -= bias;
 }
 }

 DoneCcdppCapture.write(true);
 notify(StartPopEvt);
 }
...

 49

happening and the simulator automatically stops because it assumes the system is either

deadlocked or has finished executing.

In the functional model of the digital camera, an exit condition was defined so the

simulation could terminate normally. The CNTRL module is responsible for controlling the

rest of the modules so it was a natural choice to place the exit condition in the CNTRL

module. Notice that the send process in the UART module in Figure 5.9 is placed in an

infinite loop. The UART module will continue to run infinitely throughout the simulation and

will always be ready to receive more data. All of the modules except the CNTRL module

have their final processes run in an infinite loop. They are all dependent on the CNTRL

module to instruct them when to execute. After the image has been sent to the UART

module, the CNTRL module has no other work to do. Calling sc_stop() at this point would

stop the execution correctly.

5.4.2 The Digital Camera System as a Transaction-level Model in SystemC

The first step in refining the functional model of the digital camera into the

transaction-level model is to convert it from the untimed domain to the timed domain. In

order to add time delays to the functional model of the digital camera system, some

estimation had to be done. The purpose of annotating delays is to make the functional model

approximate-timed in terms of computation and communication time. Based on each piece of

computation, a rough number of clock cycles were estimated and entered in a wait function

call at the end of each annotated computation. In order to make this as simple as possible, the

clock cycle time was defined as a constant value and each delay was computed as the number

of estimated clock cycles multiplied by the clock cycle time, as shown in Figure 5.11.

The inserted wait function calls after computations and communication reads and

writes have been highlighted. For the transaction-level model, both the approximated

computation and communication delays are specified. This process also calls the

 50

sc_simulation_time function, which returns the current simulation time at the point in the

code in which the function is called. This function is useful in determining how much time it

took for a process to perform a task which allows for early evaluation of the performance of

the system.

Figure 5.11 Time-annotated capture process of the CCDPP module

#define clk_cycle 1
.
.
.
 void capture(void)
 {
 MainBus->ccdpp_ready();

 simTime = sc_simulation_time();

 CcdBus->start();

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[col] = CcdBus->read();
 }

 // Perform Zero Bias Adjustment
 bias = CcdBus->read();
 bias = (bias + CcdBus->read()) / 2;
 wait(12*CLK_CYCLE, SC_NS);
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[col] -= bias;
 wait(4*CLK_CYCLE, SC_NS);
 MainBus->write(row*COL_SIZE+col, buffer[col]);
 }
 }

 MainBus->ccdpp_done();

 cout << "CCDPP\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }
.
.
.

 51

The next step was to allocate processing elements for the system. In order to

determine the number of processing elements needed, the details of the third implementation

of the digital camera example [11] were followed. In this implementation, the CCDPP and

UART modules are implemented as custom processors, so each require their own processing

elements. The CNTRL and CODEC modules are both software components executed on a

microprocessor, so they will coexist on the same processing element. Finally, the CCD

module is a device that is independent of the rest of the system, so it will be mapped to its

own processing element.

The only processing element with multiple modules is the CNTRL/CODEC

processing element. These modules are dependent upon one another to function properly and

since they share the same processing element they will be executed sequentially on the target

system. Due to the sequential execution of these two modules, their processes can be merged

to form a single process and eliminate unnecessary scheduling. The merging of the CNTRL

and CODEC processes is shown in Figure 5.12.

Figure 5.12 Merging of CNTRL and CODEC modules

Since the image data is fairly large in size, a shared memory module was also added

to the system. The CCDPP, CNTRL, and UART processing elements all have access to the

 52

shared memory module. To prevent contention caused by two or more modules accessing the

memory at the same time, some additional synchronization events were added to indicate if a

particular module is busy accessing memory. Finally, data and address channels are created

so that the CCDPP, CNTRL, and UART modules can access the shared memory. The digital

camera model after the architecture partitioning phase of transaction-level model refinement

is shown in Figure 5.13.

st
ar

t

pi
xe

l

da
ta

ad
dr

Figure 5.13 Digital camera after the architecture partitioning phase

Following the architecture partitioning phase of transaction-level model refinement,

the next step was to apply the rules of the communication partitioning phase. In the digital

 53

camera, two busses were formed from the existing global channels. The main bus connects

the shared memory, CNTRL/CODEC, CCDPP, and UART modules. The data and address

channels were combined with the synchronization channels of the CCDPP and UART. The

CCD bus groups the global channels used between the CCD and CCDPP modules. The ports

of each module were modified to connect to their respective interface and the port accesses

inside the processes were changed to inline function calls. A portion of the code that

implements the interface functions of the CCD bus is shown in Figure 5.14.

Figure 5.14 CCD bus interface function definitions for the CCDPP module

Note that the variables that are transferred over the channel are encapsulated within

the interface definition as private variables. Thus, the communication between processing

class CcdBus: public sc_module,
 public CcdToCcdBusIf,
 public CcdppToCcdBusIf
{
private:
 char pixel;
 bool valid, busy;
 sc_event StartEvt, ValidEvt;
.
.
.
 // CcdppToCcdBusIf Interface Functions
 void CcdBus::start()
 {
 do{
 wait(1*CLK_CYCLE, SC_NS);
 }while(busy == true);
 notify(StartEvt);
 return;
 }

 char CcdBus::read()
 {
 if(!valid)
 wait(ValidEvt);
 valid = false;
 return pixel;
 }
.
.
.

 54

elements is simplified because accessing the channel is reduced to the matter of making a

function call, without knowledge of the details regarding the implementation of the channel.

The interfaces for the main bus were implemented in the same fashion. The transaction-level

model of the digital camera following the communication partitioning phase is shown in

Figure 5.15.

CNTRL/
CODEC

capture

push

quantize

send

fdct

pop

CCDPP

capture

pop

UART

send
ccdppStart

ccdppDone

CCD

capture

pop

uartStart

uartDone

MEMORY
image
data

data

addr

pixel

start

Figure 5.15 Transaction-level model of the digital camera

 55

5.4.3 The Digital Camera System as a Communication Model in SystemC

In the transaction-level model of the digital camera system, approximate models of

the processing elements and communication busses were implemented. When applying the

refinement rules to obtain the communication model, the first step was to replace

communication channels with pin-level implementations of the bus in the form of wires and

adapters to preserve the ability to use the interface functions. While the variables inside the

busses were changed to wires, the actual protocol is implemented by the interface functions

inside the adapters. As an example, a diagram of the converted CCD bus is shown in Figure

5.16.

Figure 5.16 CCD bus implemented with protocol adapters

Since the interfaces were introduced in the transaction-level model, the CCD and

CCDPP processing elements can access the newly refined communication channel without

any significant changes. However the definitions of the interface functions contained within

the adapter modules must be changed to reflect the protocol used to perform the

communication correctly over the pin-level implementation of the bus. The interface

functions implement the protocol by asserting and analyzing the data transferred on the

wires. In the case of the CCD bus, a simple handshaking protocol was introduced to

synchronize the data transfers. The modified code of the interface functions for the adapter

that connects the CCDPP module to the CCD bus is shown in Figure 5.17.

 56

Figure 5.17 Updated CCD bus interface functions for the CCDPP adapter

The main bus that connects the shared memory module, CNTRL, UART, and CCDPP

is refined in a similar fashion, although it is more complicated. The target implementation of

the main bus is a shared data bus with designated control wires designed to allow the CNTRL

module to instruct the CCDPP and UART modules. The implementation of the shared

memory is moved into its own module and the rest of the channel is converted into wires. A

class CcdppToCcdBusAdapter: public sc_module,
 public CcdppToCcdBusIf
{
private:
 char temp;

public:
 sc_in<bool> ClockI;
 sc_in<char> DataI;
 sc_in<bool> ValidI;
 sc_out<bool> StartO;
 sc_out<bool> ReadyO;

 void CcdppToCcdBusAdapter::start(void)
 {
 StartO.write(TRUE);
 wait(ClockI->posedge_event());
 }

 char CcdppToCcdBusAdapter::read(void)
 {
 ReadyO.write(TRUE);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() != TRUE);

 ReadyO.write(FALSE);
 temp = DataI.read();
 wait(ClockI->posedge_event());

 return temp;
 }

 SC_CTOR(CcdppToCcdBusAdapter) {
 ReadyO.initialize(false);
 }
};

 57

high-level diagram of the digital camera system after the hierarchical channels have been

replaced with adapters and pin-level implementations of the busses is shown in Figure 5.18.

CNTRL/
CODEC

capture

push

quantize

send

fdct

pop

CCDPP

capture

pop

UART

send

CCD

capture

pop

MEMORY
image
data

clock

Figure 5.18 Digital camera after the adapter synthesis phase

Next, the protocol insertion phase takes the protocols and function calls contained

within the adapters and moves them into their respective processing elements. The pin-level

interfaces defined by the adapters are moved into the processing elements. The interface

functions used in the adapters are inserted into the processing elements. Finally the interface

function calls are replaced by local function calls. Once this phase is completed, the model of

 58

the digital camera system consists of abstracted computational units connected through actual

ports and wires of busses in the target implementation of the system. The communication

model of the digital camera system is shown in Figure 5.19.

CNTRL/
CODEC

capture

push

quantize

send

fdct

pop

CCDPP

capture

pop

UART

send

CCD

capture

pop

MEMORY
image
data

clock

Figure 5.19 Communication model of the digital camera system

5.4.4 The Digital Camera System as an Implementation Model in SystemC

The implementation of the digital camera goes beyond the scope of this case study.

Although the goal of SLD is to develop implementations by deriving high-level models, the

case study served as a practical approach to applying the refinement rules presented in

 59

Chapter 4. However, given the SystemC source code of the digital camera in Appendix B, an

implementation could be derived.

 60

CHAPTER 6 RELATED WORK
This chapter provides an overview of other research that addresses the development

and use of SLDLs as well as SLD methodologies.

The Ptolemy Project [13] consists of a research group at U.C. Berkeley that focuses

on modeling, simulating, and designing embedded systems. The result of their research is the

open source software design environment. Like SystemC, earlier generations of the tool took

an object-oriented approach by modeling various components of the system in C++.

Additional C++ classes were developed to cover many characteristics of embedded system

design including communication strategies, simulation, hardware-software codesign, and

parallel computing [14]. In order to be useful in modeling components with wildly different

purposes, Ptolemy supported many different models of computation. The significant

contribution made by the Ptolemy Project was the ability to simulate systems consisting of a

mixture of behavioral, hardware, and software components simultaneously, paving the way

for cosimulation of embedded systems. The current generation of the tool, Ptolemy II, moved

from C++ to Java in order to take advantage of the inherent support of threading, web

integration, and graphical user-interface capabilities [15]. A key development in Ptolemy II

over previous generations of the tool is the inclusion of modeling support for embedded

software, which has more constraints due to heavy interaction with the hardware. The open

source nature of Ptolemy II has resulted in the development of a number of additional

frameworks libraries to allow the modeling of more specialized systems such as wireless

sensor networks [16] and image processing [17].

The use of finite state machines (FSMs) to represent embedded systems at a high-

level was addressed by the POLIS [18] system. In POLIS, each component of a system is

modeled using specialized FSMs, called codesign finite state machines (CFSMs). A CFSM is

considered to be globally asynchronous but locally synchronous FSM. The POLIS system

 61

utilizes a top-down design methodology where the system is first written in Esterel [19], a

high-level synchronous programming language that supports CFSMs. The functional

implementation is then tested using the VIS [20] verification and synthesis system. Next, the

architectural decisions are made and the design is partitioned into hardware and software

components. POLIS uses tools such as Ptolemy for cosimulation at the high-level using

CFSMs as well as the implementation-level model of the system. The key contribution by

POLIS was the separation of functionality and architecture during the design process. This

idea later served as a basis for the approach to a commercial SLD tool, Cadence Virtual

Component Codesign (VCC).

The Metropolis project represents the evolution of the POLIS tool into unified design

environment and formal design methodology [21]. The issue that Metropolis attempts to

address is that currently system-level designers must use a variety of different tools, which

may use different file formats or languages, in order to take a design from a functional

specification to a final implementation of the system. This can make debugging difficult,

particularly if errors are injected during translation by the tools themselves. Like POLIS,

modeling of components is done using an extension of the Java programming language. The

Metropolis modeling library contains many of the same core elements found in SLDLs like

SystemC and SpecC. Like SystemC, the Metropolis environment does not impose one

particular refinement methodology. Densmore presents an overview of several different

refinement methodologies [22] that may be applied to systems modeled in Metropolis, with

the addition of application-specific methodologies planned in the future.

A heterogeneous design methodology using SpecC, SystemC, and Cadence VCC was

introduced by L. Cai et al. in [23]. In this approach, SpecC is used to model the system at the

higher levels of abstraction while VCC is used for architectural exploration. At lower levels,

the implementation model is derived from the SpecC and VCC models, with the software

components modeled in C and the hardware components modeled in SystemC.

 62

Unified Modeling Language (UML) has been applied in the software engineering

field for years, but has been gaining acceptance in assisting in the design SOC systems as

well. The OWL project [24] used UML as a tool to model the system at high levels of

abstraction before modeling the system in SystemC. Their approach of using UML for

defining the system requirements and documenting the specifications assisted in overcoming

the lack of refinement methodology for SystemC. The recent interest in applying UML to

SLD has brought forth the inception of UML 2, which features more modeling capabilities

suitable for SLD. Riccobene et al. present a design methodology using UML 2 to develop

structural and behavioral models at a high-level with translation to SystemC for modeling at

lower levels [25]. The Systems Modeling Language (SysML) initiative is also working

towards extending UML 2 to better support system-level modeling capabilities [26].

Work in the automation of some of the more difficult parts of SLD refinement has

also produced some interesting results. Abdi, Shin, and Gajski have proposed a methodology

and algorithms to assist in automating the process of communication refinement [27]. They

also present a methodology in automating the refinement of transaction-level models [28].

Lyonnard et al. presents a design flow to connect heterogeneous processing components

using automatically generated communication components [29]. Passerone, Rowson, and

Sangiovanni-Vincentelli present an algorithm used to automatically generate interfaces for

components that use incompatible protocols [30]. In [31], Baleani et al. proposes a

reconfigurable architecture platform that uses the hardware-software codesign methodology

from POLIS to generate implementations.

Automatic software code generation from SLDLs has also been an active research

topic. In [32], a methodology for generating embedded software and interfaces from

SystemC models is proposed. The proposed methodology accomplishes this by redefining

and overloading the SystemC class elements to generate new code that runs on a real-time

operating system and is functionally equivalent. A similar approach is described in [33], but

 63

the proposed methodology is designed to be more universal. The implementation of the

methodology in [33] is in the form of an automation tool that is targeted for generating ANSI

C code from SpecC models, but the concepts could be applied to SystemC as well.

This work is differentiated from other work in that it takes a homogenous approach

by using SystemC exclusively throughout the SLD process, from specification to

implementation. SystemC possesses models of computation that allow for a SLD

methodology. Although the SystemC models of computation are already known, a top-down

refinement methodology for SystemC had not yet been presented.

 64

CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1 Concluding Remarks

As the complexity of embedded systems has increased in recent years, the need for

flexible SLDLs to manage designs at different layers of abstraction has become a necessity.

SLDLs need to be able to model both the hardware and software aspects of an embedded

system. Using SLDLs such as SystemC or SpecC, systems can be modeled at layers of

abstraction varying from the functional specification to the target implementation.

The modeling of an embedded system at all layers of abstraction supported by

SystemC has been described and demonstrated with the development of a digital camera

system. Guidelines for developing a functional specification and refinement rules for

transforming the specification to the target implementation has also been presented. These

guidelines and refinement rules were applied to the digital camera system to demonstrate the

differences between the models of computation and explain the details of applying some of

the steps in the refinement process. The digital camera system was refined and verified

through each step in the design process, validating the effectiveness of the proposed top-

down design methodology.

7.2 Recommendations for Future Work

Capturing the functionality of the system in the initial functional specification is one

of the most important steps in a top-down design methodology. After each refinement stage,

more details about the target implementation are defined and the more difficult it becomes to

make major changes to the system later in the design process. In order to make those design

decisions, designers still need to have a working knowledge of how to accurately estimate

timing delays in abstract models. One possibility for future research would be a method for

quantifying useful approximate computation and communication delays for transaction level

 65

models in SystemC. Other applicable research that could aid in the making of informed

design decisions early on would be a method of generating and gathering performance

analysis information from abstract SystemC models.

Another issue that was acknowledged is that the current features of SystemC are

tuned toward the ability to model and develop hardware aspects of the system but are limited

in the ways software can be modeled at later layers of abstraction. The lack of ability to

schedule tasks and emulate real-time operating systems needs to be addressed in order for

SystemC to be considered a SLDL that supports true hardware-software codesign. Task

scheduling is rumored to be part of an upcoming version of the SystemC language, SystemC

3.0. The refinement rules presented in this thesis would likely need to be modified and added

to when task scheduling and other new modeling features are added to SystemC.

The process of converting an implementation-level SystemC or SpecC model into the

system’s final implementation is vague. One area of future work lies in the translation of a

system-level model into an actual implementation. Currently this process is done manually

by the designer and is a tedious process, especially for larger designs. Automation of this

process would greatly increase the efficiency of using SLDLs to design actual

implementations.

Finally, OSCI has been making significant changes to the transaction-level modeling

capabilities through an add-on library to SystemC 2.1. The library is currently incomplete at

the time of this writing, but the rules presented in this thesis for refining transaction-level

models may need to be modified in order to accommodate these new features.

 66

APPENDIX A DIGITAL CAMERA SYSTEM: SPECC
MODELS

This appendix contains the SpecC source code for the functional, transaction-level,

and communication models of the digital camera system. Each model was compiled using the

SpecC compiler 2.2.0 running on RedHat Linux. All model simulations were performed

using the simulator included with SpecC compiler package.

SpecC Functional Model
//
// File: digcam.sc //
// Desc: SpecC Functional Model of the Digital Camera //
//

#include <stdio.h>
#include "image.h"

//
// CCD Behaviors //
// for Functional model //
//
behavior CcdCapture(in event StartCaptureEvt,
 out char buffer[ROW_SIZE][COL_SIZE],
 out event DoneCaptureEvt)
{
 int row, col;

 void main(void)
 {
 wait(StartCaptureEvt);
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col];
 }
 }
 notify(DoneCaptureEvt);
 }
};

behavior CcdPopPixel(in char buffer[ROW_SIZE][COL_SIZE],
 in event PixelReqEvt,
 out event PixelSentEvt,
 out char pixel)
{
 int row, col;

 void main(void) {

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 wait(PixelReqEvt);
 pixel = buffer[row][col];

 67

 notify(PixelSentEvt);
 }
 }
 }
};

behavior Ccd(in event StartCcdCaptureEvt,
 in event PixelReqEvt,
 out event DoneCcdCaptureEvt,
 out event PixelSentEvt,
 out char pixel)
{
 char buffer[ROW_SIZE][COL_SIZE];

 CcdCapture CcdCaptureInst(StartCcdCaptureEvt,
 buffer,
 DoneCcdCaptureEvt);

 CcdPopPixel CcdPopPixelInst(buffer,
 PixelReqEvt,
 PixelSentEvt,
 pixel);

 void main(void) {
 CcdCaptureInst.main();
 CcdPopPixelInst.main();
 }
};

//
// CCDPP behaviors //
// for Functional model //
//
behavior CcdppCapture(in event StartCcdppCaptureEvt,
 in event DoneCcdCaptureEvt,
 in event CcdPixelSentEvt,
 in char ccdPixel,
 out char buffer[ROW_SIZE][COL_SIZE],
 out event StartCcdCaptureEvt,
 out event CcdPixelReqEvt,
 out event DoneCcdppCaptureEvt)
{
 int row, col;
 char bias;
 char tempRow[COL_SIZE];

 void main(void)
 {
 wait(StartCcdppCaptureEvt);
 notify(StartCcdCaptureEvt);
 wait(DoneCcdCaptureEvt);

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 notify(CcdPixelReqEvt);
 wait(CcdPixelSentEvt);
 tempRow[col] = ccdPixel;
 }

 notify(CcdPixelReqEvt);
 wait(CcdPixelSentEvt);
 bias = ccdPixel;
 notify(CcdPixelReqEvt);
 wait(CcdPixelSentEvt);
 bias = (bias + ccdPixel) / 2;

 68

 for(col=0; col<COL_SIZE; col++)
 {
 tempRow[col] -= bias;
 buffer[row][col] = tempRow[col];
 }
 }
 notify(DoneCcdppCaptureEvt);
 }
};

behavior CcdppPopPixel(in event PixelReqEvt,
 in char buffer[ROW_SIZE][COL_SIZE],
 out event PixelSentEvt,
 out char pixel)
{
 int row, col;

 void main(void)
 {
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 wait(PixelReqEvt);
 pixel = buffer[row][col];
 notify(PixelSentEvt);
 }
 }
 }
};

behavior Ccdpp(in event StartCcdppCaptureEvt,
 in event CcdppPixelReqEvt,
 out event DoneCcdppCaptureEvt,
 out event CcdppPixelSentEvt,
 out char ccdppPixel,
 in event DoneCcdCaptureEvt,
 in event CcdPixelSentEvt,
 in char ccdPixel,
 out event StartCcdCaptureEvt,
 out event CcdPixelReqEvt)
{
 char buffer[ROW_SIZE][COL_SIZE];

 CcdppCapture CcdppCaptureInst(StartCcdppCaptureEvt,
 DoneCcdCaptureEvt,
 CcdPixelSentEvt,
 ccdPixel,
 buffer,
 StartCcdCaptureEvt,
 CcdPixelReqEvt,
 DoneCcdppCaptureEvt);

 CcdppPopPixel CcdppPopPixelInst(CcdppPixelReqEvt,
 buffer,
 CcdppPixelSentEvt,
 ccdppPixel);

 void main(void)
 {
 CcdppCaptureInst.main();
 CcdppPopPixelInst.main();
 }
};

//
// CODEC behaviors //
// for Functional model //
//

 69

const short COS_TABLE[64] = {
 64, 62, 59, 53, 45, 35, 24, 12,
 64, 53, 24, -12, -45, -62, -59, -35,
 64, 35, -24, -62, -45, 12, 59, 53,
 64, 12, -59, -35, 45, 53, -24, -62,
 64, -12, -59, 35, 45, -53, -24, 62,
 64, -35, -24, 62, -45, -12, 59, -53,
 64, -53, 24, 12, -45, 62, -59, 35,
 64, -62, 59, -53, 45, -35, 24, -12
};

behavior CodecPushPixel(in short pixelIn,
 in event PixelInSentEvt,
 out event PixelInRecvEvt,
 out short buffer[8][8])
{
 int i;
 int idx;

 void main(void) {
 i = 0;
 while(i < 128) {
 for(idx=0; idx<64; idx++)
 {
 wait(PixelInSentEvt);
 buffer[idx / 8][idx % 8] = pixelIn;
 notify(PixelInRecvEvt);
 }
 ++i;
 }
 }
};

behavior CodecDoFdct(inout short buffer[8][8],
 in event StartFdctEvt,
 out event DoneFdctEvt)
{
 int x, y;
 int i;
 short tempBuffer[8][8];

 // FDCT Functions
 unsigned char C(int h) {
 return h ? 64 : 5;
 }

 int F(int u, int v, short img[8][8]) {

 long s[8];
 long r;
 unsigned char a;

 for(a=0; a<8; a++)
 {
 s[a] = ((img[a][0] * COS_TABLE[v]) >> 6) +
 ((img[a][1] * COS_TABLE[8+v]) >> 6) +
 ((img[a][2] * COS_TABLE[16+v]) >> 6) +
 ((img[a][3] * COS_TABLE[24+v]) >> 6) +
 ((img[a][4] * COS_TABLE[32+v]) >> 6) +
 ((img[a][5] * COS_TABLE[40+v]) >> 6) +
 ((img[a][6] * COS_TABLE[48+v]) >> 6) +
 ((img[a][7] * COS_TABLE[56+v]) >> 6);
 }

 r = 0;
 for(a=0; a<8; a++) {
 r += (s[a] * COS_TABLE[a * 8 + u]) >> 6;
 }

 70

 return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6);
 }

 // FDCT Behavior
 void main(void)
 {
 for(i=0; i < 128; i++)
 {
 wait(StartFdctEvt);

 for(x=0; x<8; x++)
 {
 for(y=0; y<8; y++)
 {
 tempBuffer[x][y] = F(x, y, buffer);
 }
 }
 for(x=0; x<8; x++)
 {
 for(y=0; y<8; y++)
 {
 buffer[x][y] = tempBuffer[x][y];
 }
 }

 notify(DoneFdctEvt);
 }
 }
};

behavior CodecPopPixel(in short buffer[8][8],
 in event PixelOutReqEvt,
 out short pixelOut,
 out event PixelOutSentEvt)
{
 int i;
 int idx;

 void main(void) {
 i = 0;
 while(i<128)
 {
 for(idx=0; idx<64; idx++)
 {
 wait(PixelOutReqEvt);
 pixelOut = buffer[idx/8][idx%8];
 notify(PixelOutSentEvt);
 }
 ++i;
 }
 }
};

behavior Codec(in short pixelIn,
 in event PixelInSentEvt,
 in event StartFdctEvt,
 in event PixelOutReqEvt,
 out short pixelOut,
 out event PixelInRecvEvt,
 out event DoneFdctEvt,
 out event PixelOutSentEvt)
{
 short buffer[8][8];

 CodecPushPixel CodecPushPixelInst(pixelIn,
 PixelInSentEvt,
 PixelInRecvEvt,
 Buffer);

 71

 CodecDoFdct CodecDoFdctInst(buffer,
 StartFdctEvt,
 DoneFdctEvt);

 CodecPopPixel CodecPopPixelInst(buffer,
 PixelOutReqEvt,
 pixelOut,
 PixelOutSentEvt);

 void main(void) {
 par {
 CodecPushPixelInst.main();
 CodecDoFdctInst.main();
 CodecPopPixelInst.main();
 }
 }
};

//
// UART behaviors //
// for Functional model //
//
behavior UartInitialize(out FILE *outputFileHandle)
{
 void main(void) {
 outputFileHandle = fopen("uart_out.txt", "w");
 }
};

behavior UartSend(in FILE *outputFileHandle,
 in char data,
 in event DataSentEvt,
 out event DataRecvEvt) {
 int i;
 void main(void) {
 for(i=0; i < 16384; i++)
 {
 wait(DataSentEvt);
 fprintf(outputFileHandle, "%i\n", (int)data);
 notify(DataRecvEvt);
 }
 }
};

behavior Uart(in char data,
 in event DataSentEvt,
 out event DataRecvEvt) {

 FILE *outputFileHandle;

 UartInitialize UartInitializeInst(outputFileHandle);

 UartSend UartSendInst(outputFileHandle,
 data,
 DataSentEvt,
 DataRecvEvt);

 void main(void) {
 UartInitializeInst.main();
 UartSendInst.main();
 }
};

//
// CNTRL behaviors //
// for Functional model //
//
const unsigned char QUANT_SHIFT_TABLE[64] = {

 72

 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 3,
 3, 3, 3, 3, 3, 3, 3, 4,
 4, 4, 4, 4, 4, 4, 5, 5,
 5, 5, 5, 5, 6, 6, 6, 6,
 6, 7, 7, 7, 7, 8, 8, 8 };

behavior CntrlCaptureImage(in event DoneCaptureEvt,
 in event CcdppPixelSentEvt,
 in char ccdppPixel,
 out short buffer[ROW_SIZE][COL_SIZE],
 out event StartCaptureEvt,
 out event CcdppPixelReqEvt) {
 void main(void) {
 int i, j;

 notify(StartCaptureEvt);
 wait(DoneCaptureEvt);

 for(i=0; i<ROW_SIZE; i++)
 {
 for(j=0; j<COL_SIZE; j++)
 {
 notify(CcdppPixelReqEvt);
 wait(CcdppPixelSentEvt);
 buffer[i][j] = ccdppPixel;
 }
 }
 }
};

behavior CntrlCompressImage(in event CodecPixelPushRecvEvt,
 in event CodecPixelPopSentEvt,
 in event DoneFdctEvt,
 in short codecPixelPop,
 inout short buffer[ROW_SIZE][COL_SIZE],
 out event CodecPixelPushSentEvt,
 out event CodecPixelPopReqEvt,
 out event StartFdctEvt,
 out short codecPixelPush) {

 void main(void) {
 int i, j, k, l;

 // CNTRL Compress
 for(i=0; i<NUM_ROW_BLOCKS; i++)
 {
 for(j=0; j<NUM_COL_BLOCKS; j++)
 {
 // Push the block and perform FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 codecPixelPush = (char)buffer[i*8 + k][j*8 + l];
 notify(CodecPixelPushSentEvt);
 wait(CodecPixelPushRecvEvt);
 }
 }
 notify(StartFdctEvt);
 wait(DoneFdctEvt);

 // Pop the block and store it in buffer
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {

 73

 notify(CodecPixelPopReqEvt);
 wait(CodecPixelPopSentEvt);
 buffer[i*8 + k][j*8 + l] = codecPixelPop;
 }
 }
 }
 }

 // CNTRL Quantization
 for(i=0; i<NUM_ROW_BLOCKS; i++)
 {
 for(j=0; j<NUM_COL_BLOCKS; j++)
 {
 // Quantize the block in place
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 buffer[i*8 + k][j*8 + l] >>= QUANT_SHIFT_TABLE[k*8 + l];
 }
 }
 }
 }
 }
};

behavior CntrlSendImage(in event UartPixelRecvEvt,
 in short buffer[ROW_SIZE][COL_SIZE],
 out event UartPixelSentEvt,
 out char uartPixel)
{
 short temp;
 int i, j;

 void main(void) {
 for(i=0; i<ROW_SIZE; i++)
 {
 for(j=0; j<COL_SIZE; j++)
 {
 temp = buffer[i][j];

 notify(UartPixelSentEvt);
 uartPixel = ((char*)&temp)[0]; /* send upper byte */
 wait(UartPixelRecvEvt);

 notify(UartPixelSentEvt);
 uartPixel = ((char*)&temp)[1]; /* send lower byte */
 wait(UartPixelRecvEvt);
 }
 }
 }
};

behavior Cntrl(in event DoneCaptureEvt,
 in event CcdppPixelSentEvt,
 in char ccdppPixel,
 out event StartCaptureEvt,
 out event CcdppPixelReqEvt,
 in event CodecPixelPushRecvEvt,
 in event CodecPixelPopSentEvt,
 in event DoneFdctEvt,
 in short codecPixelPop,
 out event CodecPixelPushSentEvt,
 out event CodecPixelPopReqEvt,
 out event StartFdctEvt,
 out short codecPixelPush,
 in event UartPixelRecvEvt,
 out event UartPixelSentEvt,
 out char uartPixel)

 74

{

 short buffer[ROW_SIZE][COL_SIZE];

 CntrlCaptureImage CntrlCaptureImageInst(DoneCaptureEvt,
 CcdppPixelSentEvt,
 ccdppPixel,
 buffer,
 StartCaptureEvt,
 CcdppPixelReqEvt);

 CntrlCompressImage CntrlCompressImageInst(CodecPixelPushRecvEvt,
 CodecPixelPopSentEvt,
 DoneFdctEvt,
 codecPixelPop,
 buffer,
 CodecPixelPushSentEvt,
 CodecPixelPopReqEvt,
 StartFdctEvt,
 codecPixelPush);

 CntrlSendImage CntrlSendImageInst(UartPixelRecvEvt,
 buffer,
 UartPixelSentEvt,
 uartPixel);

 void main(void) {
 CntrlCaptureImageInst.main();
 CntrlCompressImageInst.main();
 CntrlSendImageInst.main();
 }
};

//
// Testbench //
// for Functional model //
//
behavior Main
{
 event StartCcdCaptureEvt,
 DoneCcdCaptureEvt,
 CcdPixelReqEvt,
 CcdPixelSentEvt,
 StartCcdppCaptureEvt,
 DoneCcdppCaptureEvt,
 CcdppPixelReqEvt,
 CcdppPixelSentEvt,
 CodecPixelPushRecvEvt,
 CodecPixelPushSentEvt,
 CodecPixelPopReqEvt,
 CodecPixelPopSentEvt,
 StartFdctEvt,
 DoneFdctEvt,
 UartPixelSentEvt,
 UartPixelRecvEvt;

 char ccdPixelOut,
 ccdppPixelOut,
 uartData;

 short codecPixelPop,
 codecPixelPush;

 Ccd CcdInst(StartCcdCaptureEvt,
 CcdPixelReqEvt,
 DoneCcdCaptureEvt,
 CcdPixelSentEvt,
 ccdPixelOut);

 75

 Ccdpp CcdppInst(StartCcdppCaptureEvt,
 CcdppPixelReqEvt,
 DoneCcdppCaptureEvt,
 CcdppPixelSentEvt,
 ccdppPixelOut,
 DoneCcdCaptureEvt,
 CcdPixelSentEvt,
 ccdPixelOut,
 StartCcdCaptureEvt,
 CcdPixelReqEvt);

 Codec CodecInst(codecPixelPush,
 CodecPixelPushSentEvt,
 StartFdctEvt,
 CodecPixelPopReqEvt,
 codecPixelPop,
 CodecPixelPushRecvEvt,
 DoneFdctEvt,
 CodecPixelPopSentEvt);

 Uart UartInst(uartData,
 UartPixelSentEvt,
 UartPixelRecvEvt);

 Cntrl CntrlInst(DoneCcdppCaptureEvt,
 CcdppPixelSentEvt,
 ccdppPixelOut,
 StartCcdppCaptureEvt,
 CcdppPixelReqEvt,
 CodecPixelPushRecvEvt,
 CodecPixelPopSentEvt,
 DoneFdctEvt,
 codecPixelPop,
 CodecPixelPushSentEvt,
 CodecPixelPopReqEvt,
 StartFdctEvt,
 codecPixelPush,
 UartPixelRecvEvt,
 UartPixelSentEvt,
 uartData);

 int main(void) {
 par {
 CcdInst.main();
 CcdppInst.main();
 CodecInst.main();
 UartInst.main();
 CntrlInst.main();
 }

 return 0;
 }
};

SpecC Transaction-level Model
//
// File: digcam.sc //
// Desc: SpecC Transaction-level Model of the Digital Camera //
//

#include <stdio.h>
#include "image.h"

#define CLK_CYCLE 1

 76

//
// Interface Definitions //
// for Transaction-level model //
//
interface CcdToCcdBusIf
{
 void ready();
 void write(char);
};

interface CcdppToCcdBusIf
{
 void start();
 char read();
};

interface CntrlToMainBusIf
{
 short read(short);
 void write(short, short);
 void start_ccdpp();
 void start_uart();
};

interface CcdppToMainBusIf
{
 void write(short, short);
 void ccdpp_ready();
 void ccdpp_done();
};

interface UartToMainBusIf
{
 short read(short);
 void uart_ready();
 void uart_done();
};

//
// CCD BUS Channel //
// for Transaction-level model //
//
channel CcdBus() implements CcdToCcdBusIf,
 CcdppToCcdBusIf
{
 char pixel;
 bool valid = false;
 bool busy = true;
 event StartEvt, ValidEvt;

 // CcdToCcdBusIf Interface Functions
 void ready()
 {
 busy = false;
 wait(StartEvt);
 busy = true;
 return;
 }

 void write(char data)
 {
 do {waitfor(1);}
 while(valid == true);
 pixel = data;
 valid = true;
 notify(ValidEvt);
 }

 77

 // CcdppToCcdBusIf Interface Functions
 void start()
 {
 do {waitfor(1);}
 while(busy == true);
 notify(StartEvt);
 return;
 }

 char read()
 {
 if(!valid)
 wait(ValidEvt);
 valid = false;
 return pixel;
 }
};

//
// Main Bus and Shared Memory Module //
// for Transaction-level model //
//
channel MainBus() implements CntrlToMainBusIf,
 CcdppToMainBusIf,
 UartToMainBusIf
{
 bool ccdppBusy, uartBusy;
 short memory[ROW_SIZE*COL_SIZE];
 event StartCcdppEvt;
 event CcdppDoneEvt;
 event StartUartEvt;
 event UartDoneEvt;

 // Cntrl/Ccdpp/UartToMainBusIf Interface Functions
 short read(short addr)
 {
 waitfor(2*CLK_CYCLE);
 return memory[addr];
 }

 void write(short addr, short data)
 {
 waitfor(2*CLK_CYCLE);
 memory[addr] = data;
 }

 // CntrlToMainBusIf Interface Functions
 void start_ccdpp()
 {
 if(ccdppBusy)
 wait(CcdppDoneEvt);
 notify(StartCcdppEvt);
 wait(CcdppDoneEvt);
 return;
 }

 void start_uart()
 {
 if(uartBusy)
 wait(UartDoneEvt);
 notify(StartUartEvt);
 wait(UartDoneEvt);
 return;
 }

 // CcdppToMainBusIf Interface Functions
 void ccdpp_ready()
 {

 78

 ccdppBusy = false;
 wait(StartCcdppEvt);
 ccdppBusy = true;
 return;
 }

 void ccdpp_done()
 {
 ccdppBusy = false;
 notify(CcdppDoneEvt);
 return;
 }

 // UartToMainBusIf Interface Functions
 void uart_ready()
 {
 uartBusy = false;
 wait(StartUartEvt);
 uartBusy = true;
 return;
 }

 void uart_done()
 {
 uartBusy = false;
 notify(UartDoneEvt);
 return;
 }
};

//
// CCD Module //
// for Transaction-level model //
//
behavior CcdCapture(CcdToCcdBusIf CcdBus0,
 out char buffer[ROW_SIZE][COL_SIZE+2])
{
 int row, col;

 void main(void)
 {
 CcdBus0.ready();
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 // IMAGE array is defined in image.h
 buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col];
 }
 }
 }
};

behavior CcdPopPixel(CcdToCcdBusIf CcdBus0,
 in char buffer[ROW_SIZE][COL_SIZE+2])
{
 int row, col;

 void main(void)
 {
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 CcdBus0.write(buffer[row][col]);
 }
 }
 }

 79

};

behavior Ccd(CcdToCcdBusIf CcdBus0)
{
 char buffer[ROW_SIZE][COL_SIZE+2];

 CcdCapture CcdCaptureInst(CcdBus0,
 buffer);

 CcdPopPixel CcdPopPixelInst(CcdBus0,
 buffer);

 void main(void) {
 CcdCaptureInst.main();
 CcdPopPixelInst.main();
 }
};

//
// CCDPP module //
// for Transaction-level model //
//
behavior Ccdpp(CcdppToCcdBusIf CcdBus0,
 CcdppToMainBusIf MainBus0)
{
 int row, col;
 char bias;
 char tempRow[COL_SIZE];

 void main(void)
 {
 MainBus0.ccdpp_ready();
 CcdBus0.start();

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 tempRow[col] = CcdBus0.read();
 }

 bias = CcdBus0.read();
 bias = (bias + CcdBus0.read()) / 2;
 waitfor(12*CLK_CYCLE);
 for(col=0; col<COL_SIZE; col++) {

 tempRow[col] -= bias;
 waitfor(4*CLK_CYCLE);
 MainBus0.write(row*COL_SIZE+col, tempRow[col]);
 }
 }
 MainBus0.ccdpp_done();
 }
};

//
// UART module //
// for Transaction-level model //
//
behavior UartInitialize(out FILE *outputFileHandle)
{
 void main(void) {
 outputFileHandle = fopen("uart_out.txt", "w");
 }
};

behavior UartSend(in FILE *outputFileHandle,

 80

 UartToMainBusIf MainBus0)
{
 int i;
 short data;

 void main(void) {
 MainBus0.uart_ready();
 for(i=0; i<(16384/2); i++)
 {
 data = MainBus0.read(i);

 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]);
 waitfor(2*CLK_CYCLE);
 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]);
 waitfor(2*CLK_CYCLE);
 }

 fclose(outputFileHandle);
 MainBus0.uart_done();
 }
};

behavior Uart(UartToMainBusIf MainBus0)
{
 FILE *outputFileHandle;

 UartInitialize UartInitializeInst(outputFileHandle);

 UartSend UartSendInst(outputFileHandle,
 MainBus0);

 void main(void) {
 UartInitializeInst.main();
 UartSendInst.main();
 }
};

//
// CNTRL/CODEC behaviors //
// for Transaction-level model //
//
const short COS_TABLE[64] = {
 64, 62, 59, 53, 45, 35, 24, 12,
 64, 53, 24, -12, -45, -62, -59, -35,
 64, 35, -24, -62, -45, 12, 59, 53,
 64, 12, -59, -35, 45, 53, -24, -62,
 64, -12, -59, 35, 45, -53, -24, 62,
 64, -35, -24, 62, -45, -12, 59, -53,
 64, -53, 24, 12, -45, 62, -59, 35,
 64, -62, 59, -53, 45, -35, 24, -12 };

const unsigned char QUANT_SHIFT_TABLE[64] = {
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 3,
 3, 3, 3, 3, 3, 3, 3, 4,
 4, 4, 4, 4, 4, 4, 5, 5,
 5, 5, 5, 5, 6, 6, 6, 6,
 6, 7, 7, 7, 7, 8, 8, 8 };

behavior Cntrl(CntrlToMainBusIf MainBus0)
{
 // CNTRL Vars
 short inBuffer[8][8], outBuffer[8][8];
 short temp;
 short addr;
 int i, j, k, l;

 81

 // Local FDCT Functions
 unsigned char C(int h) {
 return h ? 64 : 5;
 }

 int F(int u, int v, short img[8][8]) {

 long s[8];
 long r;
 unsigned char a;

 for(a=0; a<8; a++)
 {
 s[a] = ((img[a][0] * COS_TABLE[v]) >> 6) +
 ((img[a][1] * COS_TABLE[8+v]) >> 6) +
 ((img[a][2] * COS_TABLE[16+v]) >> 6) +
 ((img[a][3] * COS_TABLE[24+v]) >> 6) +
 ((img[a][4] * COS_TABLE[32+v]) >> 6) +
 ((img[a][5] * COS_TABLE[40+v]) >> 6) +
 ((img[a][6] * COS_TABLE[48+v]) >> 6) +
 ((img[a][7] * COS_TABLE[56+v]) >> 6);
 }

 r = 0;
 for(a=0; a<8; a++)
 {
 r += (s[a] * COS_TABLE[a * 8 + u]) >> 6;
 }

 return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6);
 }

 void main(void)
 {
 // CNTRL Capture
 MainBus0.start_ccdpp();

 // CNTRL Compress
 for(i=0; i<NUM_ROW_BLOCKS; i++)
 {
 for(j=0; j<NUM_COL_BLOCKS; j++)
 {
 // Push the block and perform FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 inBuffer[k][l] = (MainBus0.read(addr) << 6);
 }
 }

 // FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] = F(k, l, inBuffer);
 waitfor(72*CLK_CYCLE);
 }
 }

 // Quantize
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] >>= QUANT_SHIFT_TABLE[k * 8 + l];

 82

 waitfor(4*CLK_CYCLE);
 }
 }

 // Pop the block and store it in buffer
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 MainBus0.write(addr, outBuffer[k][l]);

 }
 }
 }
 }

 // CNTRL Send Image
 MainBus0.start_uart();

 return;
 }
};

//
// Testbench //
// for Transaction-level model //
//
behavior Main {

 CcdBus CcdBus0;
 MainBus MainBus0;

 Ccd CcdInst(CcdBus0);

 Ccdpp CcdppInst(CcdBus0,
 MainBus0);

 Uart UartInst(MainBus0);

 Cntrl CntrlInst(MainBus0);

 int main(void) {
 par {
 CcdInst.main();
 CcdppInst.main();
 UartInst.main();
 CntrlInst.main();
 }

 return 0;
 }
};

SpecC Communication Model
//
// File: digcam.sc //
// Desc: SpecC Communication Model of the Digital Camera //
//

#include <stdio.h>
#include "image.h"

#define CLK_CYCLE 1

// States for Memory behavior
#define IDLE 0

 83

#define READ 1
#define WRITE 2
#define DONE 3

//
// Mem Module //
// for Communication model //
//
behavior Mem(in signal bit[1] ClockI,
 in signal bit[1] ReqI,
 in signal bit[1] RwI,
 in signal bit[15:0] AddrI,
 inout signal bit[15:0] DataIO,
 out signal bit[1] ValidO)
{
 short memory[ROW_SIZE*COL_SIZE];

 char nextState = IDLE;

 void main(void)
 {
 ValidO = 0;
 while(1) {
 wait ClockI rising;

 printf("%d %d\n", nextState, ReqI); fflush(stdout);

 switch(nextState)
 {
 case IDLE:
 ValidO = 0;
 if((ReqI == 1) && (RwI == 1))
 {
 nextState = READ;
 }
 else if((ReqI == 1) && (RwI == 1))
 {
 nextState = WRITE;
 }
 break;
 case READ:
 DataIO = memory[AddrI];
 ValidO = 1;
 nextState = DONE;
 break;
 case WRITE:
 memory[AddrI] = DataIO;
 ValidO = 1;
 nextState = DONE;
 break;
 case DONE:
 if(ReqI == 0)
 {
 ValidO = 0;
 nextState = IDLE;
 }
 break;
 }
 }
 }
};

//
// CCD Module //
// for Communication model //
//
behavior CcdCapture(in signal bit[1] ClockI,
 in signal bit[1] StartI,

 84

 out char buffer[ROW_SIZE][COL_SIZE+2])
{
 void ready()
 {
 do {
 wait ClockI rising;
 } while (StartI == 0);
 return;
 }

 int row, col;

 void main(void)
 {
 ready();
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 // IMAGE array is defined in image.h
 buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col];
 }
 }
 }
};

behavior CcdPopPixel(in signal bit[1] ClockI,
 in signal bit[1] ReadyI,
 out signal bit[7:0] DataO,
 out signal bit[1] ValidO,
 in char buffer[ROW_SIZE][COL_SIZE+2])
{
 void write(char data)
 {
 DataO = data;
 ValidO = 1;
 do {
 wait ClockI rising;
 } while (ReadyI == 0);

 ValidO = 0;
 }

 int row, col;

 void main(void)
 {
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 write(buffer[row][col]);
 }
 }
 }
};

behavior Ccd(in signal bit[1] ClockI,
 in signal bit[1] StartI,
 in signal bit[1] ReadyI,
 out signal bit[7:0] DataO,
 out signal bit[1] ValidO)
{
 char buffer[ROW_SIZE][COL_SIZE+2];

 CcdCapture CcdCaptureInst(ClockI,
 StartI,

 85

 buffer);

 CcdPopPixel CcdPopPixelInst(ClockI,
 ReadyI,
 DataO,
 ValidO,
 buffer);

 void main(void) {
 CcdCaptureInst.main();
 CcdPopPixelInst.main();
 }
};

//
// CCDPP module //
// for Communication model //
//
behavior Ccdpp(in signal bit[1] ClockI,
 in signal bit[1] CcdBusValidI,
 in signal bit[7:0] CcdBusDataI,
 out signal bit[1] CcdBusStartO,
 out signal bit[1] CcdBusReadyO,

 out signal bit[1] MainBusReqO,
 out signal bit[1] MainBusRwO,
 out signal bit[15:0] MainBusAddrO,
 inout signal bit[15:0] MainBusDataIO,
 in signal bit[1] MainBusValidI,
 in signal bit[1] MainBusStartCcdppI,
 out signal bit[1] MainBusCcdppBusyO)
{
 int row, col;
 char bias;
 char tempRow[COL_SIZE];

 // CCD Bus Interface Functions
 void ccd_start(void)
 {
 CcdBusStartO = 1;
 wait ClockI rising;
 }

 char ccdbus_read(void)
 {
 char temp;

 CcdBusReadyO = 1;
 do {
 wait ClockI rising;
 }while(CcdBusValidI == 0);

 CcdBusReadyO = 0;
 temp = CcdBusDataI;
 wait ClockI rising;

 return temp;
 }

 // MAIN Bus Interface Functions
 void mainbus_write(short addr, short data)
 {
 MainBusReqO = 1;
 MainBusRwO = 0;
 MainBusAddrO = addr ;
 MainBusDataIO = data ;
 do {
 wait ClockI rising;

 86

 }while(MainBusValidI == 0);

 MainBusReqO = 0;
 wait ClockI rising;
 return;
 }

 void ccdpp_ready()
 {
 MainBusCcdppBusyO = 0;
 do {
 wait ClockI rising;
 }while(MainBusStartCcdppI == 0);

 MainBusCcdppBusyO = 1;
 return;
 }

 void ccdpp_done()
 {
 MainBusCcdppBusyO = 0;
 wait ClockI rising;
 return;
 }

 void main(void)
 {
 ccdpp_ready();
 ccd_start();

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 tempRow[col] = ccdbus_read();
 }

 bias = ccdbus_read();
 bias = (bias + ccdbus_read()) / 2;
 waitfor(12*CLK_CYCLE);
 for(col=0; col<COL_SIZE; col++) {

 tempRow[col] -= bias;
 waitfor(4*CLK_CYCLE);
 mainbus_write(row*COL_SIZE+col, tempRow[col]);
 }
 }
 ccdpp_done();
 }
};

//
// UART module //
// for Communication model //
//
behavior UartInitialize(out FILE *outputFileHandle)
{
 void main(void) {
 outputFileHandle = fopen("uart_out.txt", "w");
 }
};

behavior UartSend(in FILE *outputFileHandle,
 in signal bit[1] ClockI,
 out signal bit[1] ReqO,
 out signal bit[1] RwO,
 out signal bit[15:0] AddrO,
 inout signal bit[15:0] DataIO,

 87

 in signal bit[1] ValidI,
 in signal bit[1] StartUartI,
 out signal bit[1] UartBusyO)
{
 int i;
 short data;

 // MAIN Bus Interface Functions
 short read(short addr)
 {
 short temp;

 ReqO = 1;
 RwO = 1;
 AddrO = addr;
 do {
 wait ClockI rising;
 }while(ValidI == 0);

 temp = DataIO;
 ReqO = 0;
 wait ClockI rising;

 return temp;
 }

 void uart_ready()
 {
 UartBusyO = 0;
 do {
 wait ClockI rising;
 }while(StartUartI == 0);

 UartBusyO = 1;
 return;
 }

 void uart_done()
 {
 UartBusyO = 0;
 wait ClockI rising;
 return;
 }

 void main(void) {
 uart_ready();
 for(i=0; i<(16384/2); i++)
 {
 data = read(i);

 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]);
 waitfor(2*CLK_CYCLE);
 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]);
 waitfor(2*CLK_CYCLE);
 }

 fclose(outputFileHandle);
 uart_done();
 }
};

behavior Uart(in signal bit[1] ClockI,
 out signal bit[1] ReqO,
 out signal bit[1] RwO,
 out signal bit[15:0] AddrO,
 inout signal bit[15:0] DataIO,
 in signal bit[1] ValidI,
 in signal bit[1] StartUartI,
 out signal bit[1] UartBusyO)

 88

{
 FILE *outputFileHandle;

 UartInitialize UartInitializeInst(outputFileHandle);

 UartSend UartSendInst(outputFileHandle,
 ClockI,
 ReqO,
 RwO,
 AddrO,
 DataIO,
 ValidI,
 StartUartI,
 UartBusyO);

 void main(void) {
 UartInitializeInst.main();
 UartSendInst.main();
 }
};

//
// CNTRL/CODEC behaviors //
// for Communication model //
//
const short COS_TABLE[64] = {
 64, 62, 59, 53, 45, 35, 24, 12,
 64, 53, 24, -12, -45, -62, -59, -35,
 64, 35, -24, -62, -45, 12, 59, 53,
 64, 12, -59, -35, 45, 53, -24, -62,
 64, -12, -59, 35, 45, -53, -24, 62,
 64, -35, -24, 62, -45, -12, 59, -53,
 64, -53, 24, 12, -45, 62, -59, 35,
 64, -62, 59, -53, 45, -35, 24, -12 };

const unsigned char QUANT_SHIFT_TABLE[64] = {
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 3,
 3, 3, 3, 3, 3, 3, 3, 4,
 4, 4, 4, 4, 4, 4, 5, 5,
 5, 5, 5, 5, 6, 6, 6, 6,
 6, 7, 7, 7, 7, 8, 8, 8 };

behavior Cntrl(in signal bit[1] ClockI,
 out signal bit[1] ReqO,
 out signal bit[1] RwO,
 out signal bit[15:0] AddrO,
 inout signal bit[15:0] DataIO,
 in signal bit[1] ValidI,
 out signal bit[1] StartCcdppO,
 out signal bit[1] StartUartO,
 in signal bit[1] CcdppBusyI,
 in signal bit[1] UartBusyI)
{
 // CNTRL Vars
 short inBuffer[8][8], outBuffer[8][8];
 short temp;
 short addr;
 int i, j, k, l;

 // Local FDCT Functions
 unsigned char C(int h) {
 return h ? 64 : 5;
 }

 int F(int u, int v, short img[8][8]) {

 89

 long s[8];
 long r;
 unsigned char a;

 for(a=0; a<8; a++)
 {
 s[a] = ((img[a][0] * COS_TABLE[v]) >> 6) +
 ((img[a][1] * COS_TABLE[8+v]) >> 6) +
 ((img[a][2] * COS_TABLE[16+v]) >> 6) +
 ((img[a][3] * COS_TABLE[24+v]) >> 6) +
 ((img[a][4] * COS_TABLE[32+v]) >> 6) +
 ((img[a][5] * COS_TABLE[40+v]) >> 6) +
 ((img[a][6] * COS_TABLE[48+v]) >> 6) +
 ((img[a][7] * COS_TABLE[56+v]) >> 6);
 }

 r = 0;
 for(a=0; a<8; a++)
 {
 r += (s[a] * COS_TABLE[a * 8 + u]) >> 6;
 }

 return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6);
 }

 // MAIN Bus Interface Functions
 short read(short address)
 {
 short temp;

 ReqO = 1;
 RwO = 1;
 AddrO = address;
 do {
 wait ClockI rising;
 }while(ValidI == 0);

 temp = DataIO;
 ReqO = 0;
 wait ClockI rising;

 return temp;
 }

 void write(short address, short data)
 {
 ReqO = 1;
 RwO = 0;
 AddrO = address;
 DataIO = data;
 do {
 wait ClockI rising;
 }while(ValidI == 0);

 ReqO = 0;
 wait ClockI rising;
 return;
 }

 void start_ccdpp()
 {
 do {
 wait ClockI rising;
 }while(CcdppBusyI == 1);

 StartCcdppO = 1;

 wait ClockI rising;

 90

 StartCcdppO = 0;

 do {
 wait ClockI rising;
 }while(CcdppBusyI == 1);

 return;
 }

 void start_uart()
 {
 do {
 wait ClockI rising;
 }while(UartBusyI == 1);

 StartUartO = 1;

 wait ClockI rising;
 StartUartO = 0;

 do {
 wait ClockI rising;
 }while(UartBusyI == 1);

 return;
 }

 void main(void)
 {
 // CNTRL Capture
 start_ccdpp();

 // CNTRL Compress
 for(i=0; i<NUM_ROW_BLOCKS; i++) {

 for(j=0; j<NUM_COL_BLOCKS; j++) {

 // Push the block and perform FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 inBuffer[k][l] = (read(addr) << 6);
 }
 }

 // FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] = F(k, l, inBuffer);
 waitfor(72*CLK_CYCLE);
 }
 }

 // Quantize
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] >>= QUANT_SHIFT_TABLE[k * 8 + l];
 waitfor(4*CLK_CYCLE);
 }
 }

 // Pop the block and store it in buffer
 for(k=0; k<8; k++)

 91

 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 write(addr, outBuffer[k][l]);

 }
 }
 }
 }

 // CNTRL Send Image
 start_uart();

 return;
 }
};

behavior ClockGen (out signal bit[1] ClockO)
{
 void main(void)
 {
 while(1)
 {
 ClockO = 0;
 waitfor(1);
 ClockO = 1;
 waitfor(1);
 }
 }
};

//
// Testbench //
// for Communication model //
//
behavior Main {

 signal bit[1] Clock = 0;

 signal bit[1] CcdStart;
 signal bit[1] CcdReady;
 signal bit[1] CcdValid;
 signal bit[7:0] CcdData;

 signal bit[1] MainReq;
 signal bit[1] MainRw;
 signal bit[15:0] MainAddr;
 signal bit[15:0] MainData;
 signal bit[1] MainValid;
 signal bit[1] StartCcdpp;
 signal bit[1] CcdppBusy;
 signal bit[1] StartUart;
 signal bit[1] UartBusy;

 ClockGen ClockGenInst(Clock);

 Mem MemInst(Clock,
 MainReq,
 MainRw,
 MainAddr,
 MainData,
 MainValid);

 Ccd CcdInst(Clock,
 CcdStart,
 CcdReady,
 CcdData,
 CcdValid);

 92

 Ccdpp CcdppInst(Clock,
 CcdValid,
 CcdData,
 CcdStart,
 CcdReady,
 MainReq,
 MainRw,
 MainAddr,
 MainData,
 MainValid,
 StartCcdpp,
 CcdppBusy);

 Uart UartInst(Clock,
 MainReq,
 MainRw,
 MainAddr,
 MainData,
 MainValid,
 StartUart,
 UartBusy);

 Cntrl CntrlInst(Clock,
 MainReq,
 MainRw,
 MainAddr,
 MainData,
 MainValid,
 StartCcdpp,
 StartUart,
 CcdppBusy,
 UartBusy);

 int main(void) {
 par {
 ClockGenInst.main();
 MemInst.main();
 CcdInst.main();
 CcdppInst.main();
 UartInst.main();
 CntrlInst.main();
 }

 return 0;
 }
};

 93

APPENDIX B DIGITAL CAMERA SYSTEM: SYSTEMC
MODELS

This appendix contains the SpecC source code for the functional, transaction-level,

and communication models of the digital camera system. Each model was developed and

compiled using Microsoft Visual C++ 6.0 with the SystemC 2.0.1 library. All model

simulations were done using the reference simulator provided by OSCI.

SystemC Functional Model
//
// File: digcam.cpp //
// Desc: SystemC Functional Model of the Digital Camera //
//
#include "systemc.h"
#include "image.h"

//
// CCD Module //
// for Functional model //
//
SC_MODULE(Ccd)
{
 // CCD Ports
 sc_fifo_in<bool> StartCcdCapture;
 sc_fifo_out<bool> DoneCcdCapture;
 sc_fifo_out<char> Pixel;

 // CCD Vars
 char buffer[ROW_SIZE][COL_SIZE+2];
 int row, col;

 // CCD Events
 sc_event StartPopEvt;

 // CCD Processes
 void capture(void)
 {
 StartCcdCapture.read();
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col];
 }
 }
 DoneCcdCapture.write(true);
 notify(StartPopEvt);
 }

 void pop(void)
 {
 wait(StartPopEvt);
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 Pixel.write(buffer[row][col]);

 94

 }
 }
 }

 // Module Constructor
 SC_CTOR(Ccd) {
 SC_THREAD(capture);
 SC_THREAD(pop);
 }
};

//
// CCDPP module //
// for Functional model //
//
SC_MODULE(Ccdpp)
{
 // CCDPP Ports
 sc_fifo_in<bool> StartCcdppCapture, DoneCcdCapture;
 sc_fifo_in<char> CcdPixel;
 sc_fifo_out<bool> DoneCcdppCapture, StartCcdCapture;
 sc_fifo_out<char> CcdppPixel;

 // CCDPP Vars
 char buffer[ROW_SIZE][COL_SIZE];
 int row, col;
 char bias;

 // CCDPP Events
 sc_event StartPopEvt;

 // CCDPP Processes
 void capture(void)
 {
 StartCcdppCapture.read();
 StartCcdCapture.write(true);
 DoneCcdCapture.read();

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[row][col] = CcdPixel.read();
 }

 bias = CcdPixel.read();
 bias = (bias + CcdPixel.read()) / 2;
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[row][col] -= bias;
 }
 }

 DoneCcdppCapture.write(true);
 notify(StartPopEvt);
 }

 void pop(void)
 {
 wait(StartPopEvt);
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 CcdppPixel.write(buffer[row][col]);
 }
 }
 }

 95

 // Module Constructor
 SC_CTOR(Ccdpp) {
 SC_THREAD(capture);
 SC_THREAD(pop);
 }
};

//
// CODEC module //
// for Functional model //
//
const short COS_TABLE[64] = {
 64, 62, 59, 53, 45, 35, 24, 12,
 64, 53, 24, -12, -45, -62, -59, -35,
 64, 35, -24, -62, -45, 12, 59, 53,
 64, 12, -59, -35, 45, 53, -24, -62,
 64, -12, -59, 35, 45, -53, -24, 62,
 64, -35, -24, 62, -45, -12, 59, -53,
 64, -53, 24, 12, -45, 62, -59, 35,
 64, -62, 59, -53, 45, -35, 24, -12
};

SC_MODULE(Codec)
{
 // CODEC Ports
 sc_fifo_in<short> PixelIn;
 sc_fifo_out<short> PixelOut;

 // CODEC Vars
 int idx;
 int i;
 short inBuffer[8][8], outBuffer[8][8];

 // FDCT Functions
 unsigned char C(int h) {
 return h ? 64 : 5;
 }

 int F(int u, int v, short img[8][8]) {

 long s[8];
 long r;
 unsigned char a;

 for(a=0; a<8; a++)
 {
 s[a] = ((img[a][0] * COS_TABLE[v]) >> 6) +
 ((img[a][1] * COS_TABLE[8+v]) >> 6) +
 ((img[a][2] * COS_TABLE[16+v]) >> 6) +
 ((img[a][3] * COS_TABLE[24+v]) >> 6) +
 ((img[a][4] * COS_TABLE[32+v]) >> 6) +
 ((img[a][5] * COS_TABLE[40+v]) >> 6) +
 ((img[a][6] * COS_TABLE[48+v]) >> 6) +
 ((img[a][7] * COS_TABLE[56+v]) >> 6);
 }

 r = 0;
 for(a=0; a<8; a++)
 {
 r += (s[a] * COS_TABLE[a * 8 + u]) >> 6;
 }

 return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6);
 }

 // CODEC Processes
 void main(void) {

 96

 int x, y;

 i = 0;
 while(i < 128) {
 // CODEC Push Pixel
 for(idx=0; idx<64; idx++)
 {
 inBuffer[idx / 8][idx % 8] = (PixelIn.read() << 6);
 }

 // CODEC Do FDCT
 for(x=0; x<8; x++) {

 for(y=0; y<8; y++) {
 outBuffer[x][y] = F(x, y, inBuffer);
 }
 }

 // CODEC Pop Pixel
 for(idx=0; idx<64; idx++)
 {
 PixelOut.write(outBuffer[idx / 8][idx % 8]);
 }
 ++i;
 }
 }

 // Module Constructor
 SC_CTOR(Codec) {
 SC_THREAD(main);
 }
};

//
// UART module //
// for Functional model //
//
SC_MODULE(Uart)
{
 // UART Ports
 sc_fifo_in<char> DataIn;

 // UART Vars
 FILE *outputFileHandle;
 char data;

 // UART Processes
 void uartSend(void)
 {
 while(1) {
 data = DataIn.read();
 fprintf(outputFileHandle, "%i\n", (int)data);
 }
 }

 // Module Constructor
 SC_CTOR(Uart)
 {
 outputFileHandle = fopen("uart_out.txt", "w");
 SC_THREAD(uartSend);
 }

 // Module Destructor
 ~Uart(void)
 {
 fclose(outputFileHandle);
 }
};

 97

//
// CNTRL module //
// for Functional model //
//
const unsigned char QUANT_SHIFT_TABLE[64] = {
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 3,
 3, 3, 3, 3, 3, 3, 3, 4,
 4, 4, 4, 4, 4, 4, 5, 5,
 5, 5, 5, 5, 6, 6, 6, 6,
 6, 7, 7, 7, 7, 8, 8, 8 };
SC_MODULE(Cntrl) {
 // CNTRL Ports
 sc_fifo_in<bool> DoneCapture;
 sc_fifo_in<char> CcdppPixelPop;
 sc_fifo_in<short> CodecPixelPop;

 sc_fifo_out<bool> StartCapture;
 sc_fifo_out<char> UartPixel;
 sc_fifo_out<short> CodecPixelPush;

 // CNTRL Vars
 short buffer[ROW_SIZE][COL_SIZE];
 short temp;
 int i, j, k, l;

 void main(void)
 {
 // CNTRL Capture
 StartCapture.write(true);
 DoneCapture.read();
 for(i=0; i<ROW_SIZE; i++)
 {
 for(j=0; j<COL_SIZE; j++)
 {
 buffer[i][j] = CcdppPixelPop.read();
 }
 }

 // CNTRL Compress
 for(i=0; i<NUM_ROW_BLOCKS; i++) {

 for(j=0; j<NUM_COL_BLOCKS; j++) {

 // Push the block and perform FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 CodecPixelPush.write((char)buffer[i*8 + k][j*8 + l]);
 }
 }

 // Pop the block and store it in buffer
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 buffer[i*8 + k][j*8 + l] = CodecPixelPop.read();
 }
 }
 }
 }

 // CNTRL Quantization

 98

 for(i=0; i<NUM_ROW_BLOCKS; i++)
 {
 for(j=0; j<NUM_COL_BLOCKS; j++)
 {
 // Quantize the block in place
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 buffer[i*8 + k][j*8 + l] >>= QUANT_SHIFT_TABLE[k*8 + l];
 }
 }
 }
 }

 // CNTRL Send Image
 for(i=0; i<ROW_SIZE; i++)
 {
 for(j=0; j<COL_SIZE; j++)
 {
 temp = buffer[i][j];

 UartPixel.write(((char*)&temp)[0]); // Send Upper Byte
 UartPixel.write(((char*)&temp)[1]); // Send Lower Byte
 }
 }
 return;
 }

 // Module Constructor
 SC_CTOR(Cntrl) {
 SC_THREAD(main);
 }
};

//
// Testbench //
// for Functional model //
//
int sc_main(int, char**)
{
 // Module Instances
 Ccd CcdInst("Ccd");
 Ccdpp CcdppInst("Ccdpp");
 Codec CodecInst("Codec");
 Uart UartInst("Uart");
 Cntrl CntrlInst("Cntrl");

 // Channel Instances
 sc_fifo<bool> StartCcdCapture("StartCcdCapture", 1);
 sc_fifo<bool> DoneCcdCapture("DoneCcdCapture", 1);
 sc_fifo<char> CcdPixel("CcdPixel", 1);
 sc_fifo<bool> StartCcdppCapture("StartCcdppCapture", 1);
 sc_fifo<bool> DoneCcdppCapture("DoneCcdppCapture", 1);
 sc_fifo<char> CcdppPixel("CcdppPixel", 1);
 sc_fifo<short> CodecPixelPush("CodecPixelPush", 1);
 sc_fifo<short> CodecPixelPop("CodecPixelPop", 1);
 sc_fifo<char> UartPixel("UartPixel", 1);

 // CCD Port Bindings
 CcdInst.StartCcdCapture(StartCcdCapture);
 CcdInst.DoneCcdCapture(DoneCcdCapture);
 CcdInst.Pixel(CcdPixel);

 // CCDPP Port Bindings
 CcdppInst.StartCcdCapture(StartCcdCapture);

 99

 CcdppInst.DoneCcdCapture(DoneCcdCapture);
 CcdppInst.CcdPixel(CcdPixel);
 CcdppInst.StartCcdppCapture(StartCcdppCapture);
 CcdppInst.DoneCcdppCapture(DoneCcdppCapture);
 CcdppInst.CcdppPixel(CcdppPixel);

 // CODEC Port Bindings
 CodecInst.PixelIn(CodecPixelPush);
 CodecInst.PixelOut(CodecPixelPop);

 // UART Port Bindings
 UartInst.DataIn(UartPixel);

 // CNTRL Port Bindings
 CntrlInst.StartCapture(StartCcdppCapture);
 CntrlInst.DoneCapture(DoneCcdppCapture);
 CntrlInst.CcdppPixelPop(CcdppPixel);
 CntrlInst.CodecPixelPush(CodecPixelPush);
 CntrlInst.CodecPixelPop(CodecPixelPop);
 CntrlInst.UartPixel(UartPixel);

 // Begin UNTIMED Simulation
 sc_start(-1);

 return 0;
}

SystemC Transaction-level Model
//
// File: digcam.cpp //
// Desc: SystemC Transaction-level Model of the Digital Camera //
//

#include "systemc.h"
#include "image.h"

#define CLK_CYCLE 1

//
// Interface Definitions //
// for Transaction-level model //
//
class CcdToCcdBusIf: virtual public sc_interface
{
public:
 virtual void ready() = 0;
 virtual void write(char) = 0;
};

class CcdppToCcdBusIf: virtual public sc_interface
{
public:
 virtual void start() = 0;
 virtual char read() = 0;
};
class CntrlToMainBusIf: virtual public sc_interface
{
public:
 virtual short read(short) = 0;
 virtual void write(short, short) = 0;
 virtual void start_ccdpp() = 0;
 virtual void start_uart() = 0;
};

class CcdppToMainBusIf: virtual public sc_interface
{
public:

 100

 virtual void write(short, short) = 0;
 virtual void ccdpp_ready() = 0;
 virtual void ccdpp_done() = 0;
};

class UartToMainBusIf: virtual public sc_interface
{
public:
 virtual short read(short) = 0;
 virtual void uart_ready() = 0;
 virtual void uart_done() = 0;
};

//
// CCD BUS Channel //
// for Transaction-level model //
//
class CcdBus: public sc_module,
 public CcdToCcdBusIf,
 public CcdppToCcdBusIf
{
private:
 char pixel;
 bool valid, busy;
 sc_event StartEvt, ValidEvt;

public:
 // CCD BUS Constructor
 CcdBus(sc_module_name nm) : sc_module(nm), valid(FALSE), busy(TRUE)
 {
 }

 // CcdToCcdBusIf Interface Functions
 void CcdBus::ready()
 {
 busy = FALSE;
 wait(StartEvt);
 busy = TRUE;
 return;
 }

 void CcdBus::write(char data)
 {
 do {
 wait(1*CLK_CYCLE, SC_NS);
 }while(valid == TRUE);
 pixel = data;
 valid = TRUE;
 notify(ValidEvt);
 }

 // CcdppToCcdBusIf Interface Functions
 void CcdBus::start()
 {
 do{
 wait(1*CLK_CYCLE, SC_NS);
 }while(busy == TRUE);
 notify(StartEvt);
 return;
 }

 char CcdBus::read()
 {
 if(!valid)
 wait(ValidEvt);
 valid = FALSE;
 return pixel;
 }

 101

};

//
// Main Bus and Shared Memory Module //
// for Transaction-level model //
//
class MainBus: public sc_module,
 public CntrlToMainBusIf,
 public CcdppToMainBusIf,
 public UartToMainBusIf
{
private:
 bool ccdppBusy, uartBusy;
 short memory[ROW_SIZE*COL_SIZE];
 sc_event StartCcdppEvt;
 sc_event CcdppDoneEvt;
 sc_event StartUartEvt;
 sc_event UartDoneEvt;
public:
 // Channel Constructor
 MainBus(sc_module_name nm) : sc_module(nm),
 ccdppBusy(FALSE),
 uartBusy(FALSE)
 {}

 // Cntrl/Ccdpp/UartToMainBusIf Interface Functions
 short MainBus::read(short addr)
 {
 wait(2*CLK_CYCLE, SC_NS);
 return memory[addr];
 }

 void MainBus::write(short addr, short data)
 {
 wait(2*CLK_CYCLE, SC_NS);
 memory[addr] = data;
 }

 // CntrlToMainBusIf Interface Functions
 void MainBus::start_ccdpp()
 {
 if(ccdppBusy)
 wait(CcdppDoneEvt);
 notify(StartCcdppEvt);
 wait(CcdppDoneEvt);
 return;
 }

 void MainBus::start_uart()
 {
 if(uartBusy)
 wait(UartDoneEvt);
 notify(StartUartEvt);
 wait(UartDoneEvt);
 return;
 }

 // CcdppToMainBusIf Interface Functions
 void MainBus::ccdpp_ready()
 {
 ccdppBusy = FALSE;
 wait(StartCcdppEvt);
 ccdppBusy = TRUE;
 return;
 }

 void MainBus::ccdpp_done()

 102

 {
 ccdppBusy = FALSE;
 notify(CcdppDoneEvt);
 return;
 }

 // UartToMainBusIf Interface Functions
 void MainBus::uart_ready()
 {
 uartBusy = FALSE;
 wait(StartUartEvt);
 uartBusy = TRUE;
 return;
 }

 void MainBus::uart_done()
 {
 uartBusy = FALSE;
 notify(UartDoneEvt);
 return;
 }
};

//
// CCD Module //
// for Transaction-level model //
//
SC_MODULE(Ccd)
{
 // CCD Ports
 sc_port<CcdToCcdBusIf> CcdBus;
 double simTime;

 // CCD Vars
 char buffer[ROW_SIZE][COL_SIZE+2];
 int row, col;

 // CCD Events
 sc_event StartPopEvt;

 // CCD Processes
 void capture(void)
 {
 CcdBus->ready();
 simTime = sc_simulation_time();
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 // IMAGE array is defined in image.h
 buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col];
 }
 }
 notify(StartPopEvt);
 }

 void pop(void)
 {
 wait(StartPopEvt);
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 CcdBus->write(buffer[row][col]);
 }
 }
 cout << "CCD\tdone at "
 << (sc_simulation_time()/1000) << " us\t"

 103

 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // Module Constructor
 SC_CTOR(Ccd) {
 SC_THREAD(capture);
 SC_THREAD(pop);
 }
};

//
// CCDPP module //
// for Transaction-level model //
//
SC_MODULE(Ccdpp)
{
 // CCDPP Ports
 sc_port<CcdppToCcdBusIf> CcdBus;
 sc_port<CcdppToMainBusIf> MainBus;

 // CCDPP Vars
 char buffer[COL_SIZE];
 int row, col;
 char bias;

 double simTime;

 // CCDPP Events
 sc_event StartPopEvt;

 // CCDPP Processes
 void capture(void)
 {
 MainBus->ccdpp_ready();

 simTime = sc_simulation_time();

 CcdBus->start();

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[col] = CcdBus->read();
 }

 // Perform Zero Bias Adjustment
 bias = CcdBus->read();
 bias = (bias + CcdBus->read()) / 2;
 wait(12*CLK_CYCLE, SC_NS);
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[col] -= bias;
 wait(4*CLK_CYCLE, SC_NS);
 MainBus->write(row*COL_SIZE+col, buffer[col]);
 }
 }

 MainBus->ccdpp_done();

 cout << "CCDPP\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // Module Constructor

 104

 SC_CTOR(Ccdpp) {
 SC_THREAD(capture);
 }
};

//
// UART module //
// for Transaction-level model //
//
SC_MODULE(Uart)
{
 // UART Ports
 sc_port<UartToMainBusIf> MainBus;

 // UART Vars
 FILE *outputFileHandle;
 short data;
 short i;

 double simTime;

 // UART Process
 void send(void)
 {
 MainBus->uart_ready();
 simTime = sc_simulation_time();
 for(i=0; i<(16384/2); i++)
 {
 data = MainBus->read(i);

 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]);
 wait(2*CLK_CYCLE, SC_NS);
 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]);
 wait(2*CLK_CYCLE, SC_NS);
 }
 MainBus->uart_done();
 cout << "UART\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // UART Constructor
 SC_CTOR(Uart)
 {
 outputFileHandle = fopen("uart_out.txt", "w");
 SC_THREAD(send);
 }

 // UART Destructor
 ~Uart(void)
 {
 fclose(outputFileHandle);
 }
};

//
// CNTRL module //
// for Transaction-level model //
//
const short COS_TABLE[64] = {
 64, 62, 59, 53, 45, 35, 24, 12,
 64, 53, 24, -12, -45, -62, -59, -35,
 64, 35, -24, -62, -45, 12, 59, 53,
 64, 12, -59, -35, 45, 53, -24, -62,
 64, -12, -59, 35, 45, -53, -24, 62,
 64, -35, -24, 62, -45, -12, 59, -53,

 105

 64, -53, 24, 12, -45, 62, -59, 35,
 64, -62, 59, -53, 45, -35, 24, -12
};
const unsigned char QUANT_SHIFT_TABLE[64] = {
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 3,
 3, 3, 3, 3, 3, 3, 3, 4,
 4, 4, 4, 4, 4, 4, 5, 5,
 5, 5, 5, 5, 6, 6, 6, 6,
 6, 7, 7, 7, 7, 8, 8, 8 };

SC_MODULE(Cntrl) {
 // CNTRL Ports
 sc_port<CntrlToMainBusIf> MainBus;

 // CNTRL Vars
 short inBuffer[8][8], outBuffer[8][8];
 short temp;
 short addr;
 int i, j, k, l;

 double simTime;

 // Local FDCT Functions
 unsigned char C(int h) {
 return h ? 64 : 5;
 }

 int F(int u, int v, short img[8][8]) {

 long s[8];
 long r;
 unsigned char a;

 for(a=0; a<8; a++)
 {
 s[a] = ((img[a][0] * COS_TABLE[v]) >> 6) +
 ((img[a][1] * COS_TABLE[8+v]) >> 6) +
 ((img[a][2] * COS_TABLE[16+v]) >> 6) +
 ((img[a][3] * COS_TABLE[24+v]) >> 6) +
 ((img[a][4] * COS_TABLE[32+v]) >> 6) +
 ((img[a][5] * COS_TABLE[40+v]) >> 6) +
 ((img[a][6] * COS_TABLE[48+v]) >> 6) +
 ((img[a][7] * COS_TABLE[56+v]) >> 6);
 }

 r = 0;
 for(a=0; a<8; a++)
 {
 r += (s[a] * COS_TABLE[a * 8 + u]) >> 6;
 }

 return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6);
 }

 // CNTRL Process
 void main(void)
 {
 simTime = sc_simulation_time();

 // CNTRL Capture
 MainBus->start_ccdpp();

 // CNTRL Compress
 for(i=0; i<NUM_ROW_BLOCKS; i++) {

 for(j=0; j<NUM_COL_BLOCKS; j++) {

 106

 // Push the block and perform FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 inBuffer[k][l] = (MainBus->read(addr) << 6);
 }
 }

 // FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] = F(k, l, inBuffer);
 wait(72*CLK_CYCLE, SC_NS);
 }
 }

 // Quantize
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] >>= QUANT_SHIFT_TABLE[k * 8 + l];
 wait(4*CLK_CYCLE, SC_NS);
 }
 }

 // Pop the block and store it in buffer
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 MainBus->write(addr, outBuffer[k][l]);

 }
 }
 }
 }

 // CNTRL Send Image
 MainBus->start_uart();
 cout << "CNTRL\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 // Stop the simulation manually
 sc_stop();
 return;
 }

 // CNTRL Constructor
 SC_CTOR(Cntrl) {
 SC_THREAD(main);
 }
};

//
// Testbench //
// for Transaction-level model //
//
int sc_main(int, char**)
{
 // Module Instances

 107

 Ccd CcdInst("CcdInst");
 Ccdpp CcdppInst("CcdppInst");
 Uart UartInst("UartInst");
 Cntrl CntrlInst("CntrlInst");

 // Channel Instances
 CcdBus CcdBusInst("CcdBusInst");
 MainBus MainBusInst("MainBusInst");

 // Bind Channels to Modules via Interfaces
 CcdInst.CcdBus(CcdBusInst);
 CcdppInst.CcdBus(CcdBusInst);

 CcdppInst.MainBus(MainBusInst);
 UartInst.MainBus(MainBusInst);
 CntrlInst.MainBus(MainBusInst);

 // Begin TIMED Simulation (Run for 100 milliseconds)
 cout << "Simulation started at "
 << sc_simulation_time()/1000 << " us" << endl;
 sc_start(100, SC_MS);
 cout << "Simulation stopped at "
 << sc_simulation_time()/1000 << " us" << endl;
 return 0;
}

SystemC Communication Model after Adapter Synthesis Phase
//
// File: digcam.cpp //
// Desc: SystemC Communication Model of the Digital Camera //
//

#include "systemc.h"
#include "image.h"

#define CLK_CYCLE 1

//
// Interface Definitions //
// for Communication model //
//
class CcdToCcdBusIf: virtual public sc_interface
{
public:
 virtual void ready() = 0;
 virtual void write(char) = 0;
};

class CcdppToCcdBusIf: virtual public sc_interface
{
public:
 virtual void start() = 0;
 virtual char read() = 0;
};
class CntrlToMainBusIf: virtual public sc_interface
{
public:
 virtual short read(short) = 0;
 virtual void write(short, short) = 0;
 virtual void start_ccdpp() = 0;
 virtual void start_uart() = 0;
};

class CcdppToMainBusIf: virtual public sc_interface
{
public:
 virtual void write(short, short) = 0;

 108

 virtual void ccdpp_ready() = 0;
 virtual void ccdpp_done() = 0;
};

class UartToMainBusIf: virtual public sc_interface
{
public:
 virtual short read(short) = 0;
 virtual void uart_ready() = 0;
 virtual void uart_done() = 0;
};

//
// CCD BUS Adapters //
// for Communication model //
//
class CcdToCcdBusAdapter: public sc_module,
 public CcdToCcdBusIf
{
public:
 sc_in<bool> ClockI;
 sc_in<bool> StartI;
 sc_in<bool> ReadyI;
 sc_out<char> DataO;
 sc_out<bool> ValidO;

 void CcdToCcdBusAdapter::ready(void)
 {
 do {
 wait(ClockI->posedge_event());
 } while (StartI.read() != TRUE);
 }

 void CcdToCcdBusAdapter::write(char data)
 {
 DataO.write(data);
 ValidO.write(TRUE);

 do {
 wait(ClockI->posedge_event());
 }while(ReadyI.read() != TRUE);

 ValidO.write(FALSE);
 }

 SC_CTOR(CcdToCcdBusAdapter) {
 ValidO.initialize(false);
 }
};

class CcdppToCcdBusAdapter: public sc_module,
 public CcdppToCcdBusIf
{
private:
 char temp;

public:
 sc_in<bool> ClockI;
 sc_in<char> DataI;
 sc_in<bool> ValidI;
 sc_out<bool> StartO;
 sc_out<bool> ReadyO;

 void CcdppToCcdBusAdapter::start(void)
 {
 StartO.write(TRUE);
 wait(ClockI->posedge_event());

 109

 }

 char CcdppToCcdBusAdapter::read(void)
 {
 ReadyO.write(TRUE);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() != TRUE);

 ReadyO.write(FALSE);
 temp = DataI.read();
 wait(ClockI->posedge_event());

 return temp;
 }

 SC_CTOR(CcdppToCcdBusAdapter) {
 ReadyO.initialize(false);
 }
};

class CcdppToMainBusAdapter: public sc_module,
 public CcdppToMainBusIf
{
public:
 sc_in<bool> ClockI;
 sc_out<bool> ReqO;
 sc_out<bool> RwO;
 sc_out<short> AddrO;
 sc_inout<short> DataIO;
 sc_in<bool> ValidI;
 sc_in<bool> StartCcdppI;
 sc_out<bool> CcdppBusyO;

 void CcdppToMainBusAdapter::write(short addr, short data)
 {
 ReqO.write(TRUE);
 RwO.write(FALSE);
 AddrO.write(addr);
 DataIO.write(data);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() == FALSE);

 ReqO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 void CcdppToMainBusAdapter::ccdpp_ready()
 {
 CcdppBusyO.write(FALSE);
 do {
 wait(ClockI->posedge_event());
 }while(StartCcdppI.read() == FALSE);

 CcdppBusyO.write(TRUE);
 return;
 }

 void CcdppToMainBusAdapter::ccdpp_done()
 {
 CcdppBusyO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 SC_CTOR(CcdppToMainBusAdapter) {

 110

 CcdppBusyO.initialize(false);
 }
};

class UartToMainBusAdapter: public sc_module,
 public UartToMainBusIf
{
private:
 short temp;

public:
 sc_in<bool> ClockI;
 sc_out<bool> ReqO;
 sc_out<bool> RwO;
 sc_out<short> AddrO;
 sc_inout<short> DataIO;
 sc_in<bool> ValidI;
 sc_in<bool> StartUartI;
 sc_out<bool> UartBusyO;

 short UartToMainBusAdapter::read(short addr)
 {
 ReqO.write(TRUE);
 RwO.write(TRUE);
 AddrO.write(addr);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() == FALSE);

 temp = DataIO.read();
 ReqO.write(FALSE);
 wait(ClockI->posedge_event());

 return temp;
 }

 void UartToMainBusAdapter::uart_ready()
 {
 UartBusyO.write(FALSE);
 do {
 wait(ClockI->posedge_event());
 }while(StartUartI.read() == FALSE);

 UartBusyO.write(TRUE);
 return;
 }

 void UartToMainBusAdapter::uart_done()
 {
 UartBusyO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 SC_CTOR(UartToMainBusAdapter) {
 UartBusyO.initialize(FALSE);
 }
};

class CntrlToMainBusAdapter: public sc_module,
 public CntrlToMainBusIf
{
private:
 short temp;

public:
 sc_in<bool> ClockI;

 111

 sc_out<bool> ReqO;
 sc_out<bool> RwO;
 sc_out<short> AddrO;
 sc_inout<short> DataIO;
 sc_in<bool> ValidI;
 sc_out<bool> StartCcdppO;
 sc_out<bool> StartUartO;
 sc_in<bool> CcdppBusyI;
 sc_in<bool> UartBusyI;

 short CntrlToMainBusAdapter::read(short addr)
 {
 ReqO.write(TRUE);
 RwO.write(TRUE);
 AddrO.write(addr);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() == FALSE);

 temp = DataIO.read();
 ReqO.write(FALSE);
 wait(ClockI->posedge_event());

 return temp;
 }

 void CntrlToMainBusAdapter::write(short addr, short data)
 {
 ReqO.write(TRUE);
 RwO.write(FALSE);
 AddrO.write(addr);
 DataIO.write(data);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() == FALSE);

 ReqO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 void CntrlToMainBusAdapter::start_ccdpp()
 {
 do {
 wait(ClockI->posedge_event());
 }while(CcdppBusyI.read() == TRUE);

 StartCcdppO.write(TRUE);

 wait(ClockI->posedge_event());
 StartCcdppO.write(FALSE);

 do {
 wait(ClockI->posedge_event());
 }while(CcdppBusyI.read() == TRUE);

 return;
 }

 void CntrlToMainBusAdapter::start_uart()
 {
 do {
 wait(ClockI->posedge_event());
 }while(UartBusyI.read() == TRUE);

 StartUartO.write(TRUE);

 wait(ClockI->posedge_event());
 StartUartO.write(FALSE);

 112

 do {
 wait(ClockI->posedge_event());
 }while(UartBusyI.read() == TRUE);

 return;
 }

 SC_CTOR(CntrlToMainBusAdapter) {
 StartCcdppO.initialize(FALSE);
 StartUartO.initialize(FALSE);
 }
};

//
// MEM Module //
// for COMM model //
//
SC_MODULE(Mem)
{
 short memory[ROW_SIZE*COL_SIZE];
 enum state{ IDLE, READ, WRITE, DONE };

 sc_signal<state> NextState;

 sc_in<bool> ClockI;

 sc_in<bool> ReqI;
 sc_in<bool> RwI;
 sc_in<short> AddrI;
 sc_inout<short> DataIO;
 sc_out<bool> ValidO;

 void main(void)
 {

 switch(NextState.read())
 {
 case IDLE:
 ValidO.write(FALSE);
 if((ReqI.read() == true) && (RwI.read() == true))
 {
 NextState = READ;
 }
 else if((ReqI.read() == true) && (RwI.read() == false))
 {
 NextState = WRITE;
 }
 break;
 case READ:
 DataIO.write(memory[AddrI.read()]);
 ValidO.write(true);
 NextState = DONE;
 break;
 case WRITE:
 memory[AddrI.read()] = DataIO.read();
 ValidO.write(true);
 NextState = DONE;
 break;
 case DONE:
 if(ReqI.read() == false)
 {
 ValidO.write(FALSE);
 NextState = IDLE;
 }
 break;
 }
 }

 113

 // Module Constructor
 SC_CTOR(Mem) {
 SC_METHOD(main);
 sensitive << ClockI.pos();

 ValidO.initialize(FALSE);
 }
};

//
// CCD Module //
// for Communication model //
//
SC_MODULE(Ccd)
{
 // CCD Ports
 sc_port<CcdToCcdBusIf> CcdBus;
 double simTime;

 // CCD Vars
 char buffer[ROW_SIZE][COL_SIZE+2];
 int row, col;

 // CCD Events
 sc_event StartPopEvt;

 // CCD Processes
 void capture(void)
 {
 CcdBus->ready();
 simTime = sc_simulation_time();
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 // IMAGE array is defined in image.h
 buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col];
 }
 }
 notify(StartPopEvt);
 }

 void pop(void)
 {
 wait(StartPopEvt);
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 CcdBus->write(buffer[row][col]);
 }
 }
 cout << "CCD\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // Module Constructor
 SC_CTOR(Ccd) {
 SC_THREAD(capture);
 SC_THREAD(pop);
 }
};

//

 114

// CCDPP module //
// for Communication model //
//
SC_MODULE(Ccdpp)
{
 // CCDPP Ports
 sc_port<CcdppToCcdBusIf> CcdBus;
 sc_port<CcdppToMainBusIf> MainBus;

 // CCDPP Vars
 char buffer[COL_SIZE];
 int row, col;
 char bias;

 double simTime;

 // CCDPP Events
 sc_event StartPopEvt;

 // CCDPP Processes
 void capture(void)
 {
 MainBus->ccdpp_ready();

 simTime = sc_simulation_time();

 CcdBus->start();

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[col] = CcdBus->read();
 }

 // Perform Zero Bias Adjustment
 bias = CcdBus->read();
 bias = (bias + CcdBus->read()) / 2;
 wait(12*CLK_CYCLE, SC_NS);
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[col] -= bias;
 wait(4*CLK_CYCLE, SC_NS);
 MainBus->write(row*COL_SIZE+col, buffer[col]);
 }
 }

 MainBus->ccdpp_done();

 cout << "CCDPP\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // Module Constructor
 SC_CTOR(Ccdpp) {
 SC_THREAD(capture);
 }
};

//
// UART module //
// for Communication model //
//
SC_MODULE(Uart)
{
 // UART Ports

 115

 sc_port<UartToMainBusIf> MainBus;

 // UART Vars
 FILE *outputFileHandle;
 short data;
 short i;

 double simTime;

 // UART Process
 void send(void)
 {
 MainBus->uart_ready();
 simTime = sc_simulation_time();
 for(i=0; i<(16384/2); i++)
 {
 data = MainBus->read(i);

 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]);
 wait(2*CLK_CYCLE, SC_NS);
 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]);
 wait(2*CLK_CYCLE, SC_NS);
 }
 MainBus->uart_done();
 cout << "UART\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // UART Constructor
 SC_CTOR(Uart)
 {
 outputFileHandle = fopen("uart_out.txt", "w");
 SC_THREAD(send);
 }

 // UART Destructor
 ~Uart(void)
 {
 fclose(outputFileHandle);
 }
};

//
// CNTRL module //
// for Communication model //
//
const short COS_TABLE[64] = {
 64, 62, 59, 53, 45, 35, 24, 12,
 64, 53, 24, -12, -45, -62, -59, -35,
 64, 35, -24, -62, -45, 12, 59, 53,
 64, 12, -59, -35, 45, 53, -24, -62,
 64, -12, -59, 35, 45, -53, -24, 62,
 64, -35, -24, 62, -45, -12, 59, -53,
 64, -53, 24, 12, -45, 62, -59, 35,
 64, -62, 59, -53, 45, -35, 24, -12
};
const unsigned char QuantShiftTable[64] = {
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 3,
 3, 3, 3, 3, 3, 3, 3, 4,
 4, 4, 4, 4, 4, 4, 5, 5,
 5, 5, 5, 5, 6, 6, 6, 6,
 6, 7, 7, 7, 7, 8, 8, 8 };

 116

SC_MODULE(Cntrl) {
 // CNTRL Ports
 sc_port<CntrlToMainBusIf> MainBus;

 // CNTRL Vars
 short inBuffer[8][8], outBuffer[8][8];
 short temp;
 short addr;
 int i, j, k, l;

 double simTime;

 // Local FDCT Functions
 unsigned char C(int h) {
 return h ? 64 : 5;
 }

 int F(int u, int v, short img[8][8]) {

 long s[8];
 long r;
 unsigned char a;

 for(a=0; a<8; a++)
 {
 s[a] = ((img[a][0] * COS_TABLE[v]) >> 6) +
 ((img[a][1] * COS_TABLE[8+v]) >> 6) +
 ((img[a][2] * COS_TABLE[16+v]) >> 6) +
 ((img[a][3] * COS_TABLE[24+v]) >> 6) +
 ((img[a][4] * COS_TABLE[32+v]) >> 6) +
 ((img[a][5] * COS_TABLE[40+v]) >> 6) +
 ((img[a][6] * COS_TABLE[48+v]) >> 6) +
 ((img[a][7] * COS_TABLE[56+v]) >> 6);
 }

 r = 0;
 for(a=0; a<8; a++)
 {
 r += (s[a] * COS_TABLE[a * 8 + u]) >> 6;
 }

 return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6);
 }

 // CNTRL Process
 void main(void)
 {
 simTime = sc_simulation_time();

 // CNTRL Capture
 MainBus->start_ccdpp();

 // CNTRL Compress
 for(i=0; i<NUM_ROW_BLOCKS; i++) {

 for(j=0; j<NUM_COL_BLOCKS; j++) {

 // Push the block and perform FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 inBuffer[k][l] = (MainBus->read(addr) << 6);
 }
 }

 // FDCT
 for(k=0; k<8; k++)

 117

 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] = F(k, l, inBuffer);
 wait(72*CLK_CYCLE, SC_NS);
 }
 }

 // Quantize
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] >>= QuantShiftTable[k * 8 + l];
 wait(4*CLK_CYCLE, SC_NS);
 }
 }

 // Pop the block and store it in buffer
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 MainBus->write(addr, outBuffer[k][l]);
 }
 }
 }
 }

 // CNTRL Send Image
 MainBus->start_uart();
 cout << "CNTRL\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 // Stop the simulation manually
 sc_stop();
 return;
 }

 // CNTRL Constructor
 SC_CTOR(Cntrl) {
 SC_THREAD(main);
 }
};

//
// Testbench //
// for Communication model //
//
int sc_main(int, char**)
{
 // Signal Instances
 sc_clock Clock("Clock", 1, SC_NS);
 sc_signal<bool> CcdStart;
 sc_signal<bool> CcdReady;
 sc_signal<bool> CcdValid;
 sc_signal<char> CcdData;

 sc_signal<bool> MainReq;
 sc_signal<bool> MainRw;
 sc_signal<short> MainAddr;
 sc_signal<short> MainData;
 sc_signal<bool> MainValid;

 sc_signal<bool> StartCcdpp;
 sc_signal<bool> CcdppBusy;

 118

 sc_signal<bool> StartUart;
 sc_signal<bool> UartBusy;

 // Module Instances
 Ccd CcdInst("Ccd");
 Ccdpp CcdppInst("Ccdpp");
 Uart UartInst("Uart");
 Cntrl CntrlInst("Cntrl");
 Mem MemInst("Mem");

 // Channel Instances
 CcdToCcdBusAdapter CcdToCcdBusAdapterInst("CcdToCcdBusAdapter");
 CcdppToCcdBusAdapter CcdppToCcdBusAdapterInst("CcdppToCcdBusAdapter");
 CcdppToMainBusAdapter CcdppToMainBusAdapterInst("CcdppToMainBusAdapter");
 UartToMainBusAdapter UartToMainBusAdapterInst("UartToMainBusAdapter");
 CntrlToMainBusAdapter CntrlToMainBusAdapterInst("CntrlToMainBusAdapter");

 // Bind Channels to Modules via Interfaces
 CcdInst.CcdBus(CcdToCcdBusAdapterInst);
 CcdppInst.CcdBus(CcdppToCcdBusAdapterInst);

 CcdppInst.MainBus(CcdppToMainBusAdapterInst);
 UartInst.MainBus(UartToMainBusAdapterInst);
 CntrlInst.MainBus(CntrlToMainBusAdapterInst);

 // Bind Signals to CCD Adapter Modules
 CcdToCcdBusAdapterInst.ClockI(Clock);
 CcdToCcdBusAdapterInst.StartI(CcdStart);
 CcdToCcdBusAdapterInst.ReadyI(CcdReady);
 CcdToCcdBusAdapterInst.ValidO(CcdValid);
 CcdToCcdBusAdapterInst.DataO(CcdData);

 CcdppToCcdBusAdapterInst.ClockI(Clock);
 CcdppToCcdBusAdapterInst.StartO(CcdStart);
 CcdppToCcdBusAdapterInst.ReadyO(CcdReady);
 CcdppToCcdBusAdapterInst.ValidI(CcdValid);
 CcdppToCcdBusAdapterInst.DataI(CcdData);

 CcdppToMainBusAdapterInst.ClockI(Clock);
 CcdppToMainBusAdapterInst.ReqO(MainReq);
 CcdppToMainBusAdapterInst.RwO(MainRw);
 CcdppToMainBusAdapterInst.AddrO(MainAddr);
 CcdppToMainBusAdapterInst.DataIO(MainData);
 CcdppToMainBusAdapterInst.ValidI(MainValid);
 CcdppToMainBusAdapterInst.StartCcdppI(StartCcdpp);
 CcdppToMainBusAdapterInst.CcdppBusyO(CcdppBusy);

 UartToMainBusAdapterInst.ClockI(Clock);
 UartToMainBusAdapterInst.ReqO(MainReq);
 UartToMainBusAdapterInst.RwO(MainRw);
 UartToMainBusAdapterInst.AddrO(MainAddr);
 UartToMainBusAdapterInst.DataIO(MainData);
 UartToMainBusAdapterInst.ValidI(MainValid);
 UartToMainBusAdapterInst.StartUartI(StartUart);
 UartToMainBusAdapterInst.UartBusyO(UartBusy);

 CntrlToMainBusAdapterInst.ClockI(Clock);
 CntrlToMainBusAdapterInst.ReqO(MainReq);
 CntrlToMainBusAdapterInst.RwO(MainRw);
 CntrlToMainBusAdapterInst.AddrO(MainAddr);
 CntrlToMainBusAdapterInst.DataIO(MainData);
 CntrlToMainBusAdapterInst.ValidI(MainValid);
 CntrlToMainBusAdapterInst.StartCcdppO(StartCcdpp);
 CntrlToMainBusAdapterInst.StartUartO(StartUart);
 CntrlToMainBusAdapterInst.CcdppBusyI(CcdppBusy);
 CntrlToMainBusAdapterInst.UartBusyI(UartBusy);

 MemInst.ClockI(Clock);
 MemInst.ReqI(MainReq);

 119

 MemInst.RwI(MainRw);
 MemInst.AddrI(MainAddr);
 MemInst.DataIO(MainData);
 MemInst.ValidO(MainValid);

 // Begin TIMED Simulation (Run for 100 milliseconds)
 cout << "Simulation started at "
 << sc_simulation_time()/1000 << " us" << endl;
 sc_start(100, SC_MS);
 cout << "Simulation stopped at "
 << sc_simulation_time()/1000 << " us" << endl;

 return 0;
}

SystemC Communication Model after Protocol Insertion
//
// File: digcam.cpp //
// Desc: SystemC Communication Model of the Digital Camera //
//

#include "systemc.h"
#include "image.h"

#define CLK_CYCLE 1

//
// MEM Module //
// for Communication model //
//
SC_MODULE(Mem)
{
 short memory[ROW_SIZE*COL_SIZE];
 enum state{ IDLE, READ, WRITE, DONE };

 sc_signal<state> NextState;

 sc_in<bool> ClockI;

 sc_in<bool> ReqI;
 sc_in<bool> RwI;
 sc_in<short> AddrI;
 sc_inout<short> DataIO;
 sc_out<bool> ValidO;

 void main(void)
 {

 switch(NextState.read())
 {
 case IDLE:
 ValidO.write(FALSE);
 if((ReqI.read() == true) && (RwI.read() == true))
 {
 NextState = READ;
 }
 else if((ReqI.read() == true) && (RwI.read() == false))
 {
 NextState = WRITE;
 }
 break;
 case READ:
 DataIO.write(memory[AddrI.read()]);
 ValidO.write(true);
 NextState = DONE;
 break;
 case WRITE:

 120

 memory[AddrI.read()] = DataIO.read();
 ValidO.write(true);
 NextState = DONE;
 break;
 case DONE:
 if(ReqI.read() == false)
 {
 ValidO.write(FALSE);
 NextState = IDLE;
 }
 break;
 }
 }

 // Module Constructor
 SC_CTOR(Mem) {
 SC_METHOD(main);
 sensitive << ClockI.pos();

 ValidO.initialize(FALSE);
 }
};

//
// CCD Module //
// for Communication model //
//
SC_MODULE(Ccd)
{
 // CCD Ports
 sc_in<bool> ClockI;
 sc_in<bool> StartI;
 sc_in<bool> ReadyI;
 sc_out<char> DataO;
 sc_out<bool> ValidO;

 // CCD Vars
 double simTime;
 char buffer[ROW_SIZE][COL_SIZE+2];
 int row, col;

 // CCD Events
 sc_event StartPopEvt;

 // CCD Bus Interface Functions
 void ready(void)
 {
 do {
 wait(ClockI->posedge_event());
 } while (StartI.read() != TRUE);
 }

 void write(char data)
 {
 DataO.write(data);
 ValidO.write(TRUE);

 do {
 wait(ClockI->posedge_event());
 }while(ReadyI.read() != TRUE);

 ValidO.write(FALSE);
 }

 // CCD Processes
 void capture(void)
 {
 ready();

 121

 simTime = sc_simulation_time();
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 // IMAGE array is defined in image.h
 buffer[row][col] = IMAGE[row*(COL_SIZE+2) + col];
 }
 }
 notify(StartPopEvt);
 }

 void pop(void)
 {
 wait(StartPopEvt);
 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<(COL_SIZE+2); col++)
 {
 write(buffer[row][col]);
 }
 }
 cout << "CCD\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // Module Constructor
 SC_CTOR(Ccd) {
 ValidO.initialize(false);
 SC_THREAD(capture);
 SC_THREAD(pop);
 }
};

//
// CCDPP module //
// for Communication model //
//
SC_MODULE(Ccdpp)
{
 // CCDPP Ports
 sc_in<bool> ClockI;
 sc_in<char> CcdBusDataI;
 sc_in<bool> CcdBusValidI;
 sc_out<bool> CcdBusStartO;
 sc_out<bool> CcdBusReadyO;

 sc_out<bool> MainBusReqO;
 sc_out<bool> MainBusRwO;
 sc_out<short> MainBusAddrO;
 sc_inout<short> MainBusDataIO;
 sc_in<bool> MainBusValidI;
 sc_in<bool> MainBusStartCcdppI;
 sc_out<bool> MainBusCcdppBusyO;

 // CCDPP Vars
 char buffer[COL_SIZE];
 int row, col;
 char bias;

 double simTime;

 // CCDPP Events
 sc_event StartPopEvt;

 // CCD Bus Interface Functions

 122

 void ccd_start(void)
 {
 CcdBusStartO.write(TRUE);
 wait(ClockI->posedge_event());
 }

 char ccdbus_read(void)
 {
 char temp;

 CcdBusReadyO.write(TRUE);
 do {
 wait(ClockI->posedge_event());
 }while(CcdBusValidI.read() != TRUE);

 CcdBusReadyO.write(FALSE);
 temp = CcdBusDataI.read();
 wait(ClockI->posedge_event());

 return temp;
 }

 // MAIN Bus Interface Functions
 void mainbus_write(short addr, short data)
 {
 MainBusReqO.write(TRUE);
 MainBusRwO.write(FALSE);
 MainBusAddrO.write(addr);
 MainBusDataIO.write(data);
 do {
 wait(ClockI->posedge_event());
 }while(MainBusValidI.read() == FALSE);

 MainBusReqO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 void ccdpp_ready()
 {
 MainBusCcdppBusyO.write(FALSE);
 do {
 wait(ClockI->posedge_event());
 }while(MainBusStartCcdppI.read() == FALSE);

 MainBusCcdppBusyO.write(TRUE);
 return;
 }

 void ccdpp_done()
 {
 MainBusCcdppBusyO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 // CCDPP Processes
 void capture(void)
 {
 ccdpp_ready();

 simTime = sc_simulation_time();

 ccd_start();

 for(row=0; row<ROW_SIZE; row++)
 {
 for(col=0; col<COL_SIZE; col++)
 {

 123

 buffer[col] = ccdbus_read();
 }

 // Perform Zero Bias Adjustment
 bias = ccdbus_read();
 bias = (bias + ccdbus_read()) / 2;
 wait(12*CLK_CYCLE, SC_NS);
 for(col=0; col<COL_SIZE; col++)
 {
 buffer[col] -= bias;
 wait(4*CLK_CYCLE, SC_NS);
 mainbus_write(row*COL_SIZE+col, buffer[col]);
 }
 }

 ccdpp_done();

 cout << "CCDPP\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // Module Constructor
 SC_CTOR(Ccdpp) {
 CcdBusReadyO.initialize(FALSE);
 MainBusCcdppBusyO.initialize(FALSE);

 SC_THREAD(capture);
 }
};

//
// UART module //
// for Communication model //
//
SC_MODULE(Uart)
{
 // UART Ports
 sc_in<bool> ClockI;
 sc_out<bool> ReqO;
 sc_out<bool> RwO;
 sc_out<short> AddrO;
 sc_inout<short> DataIO;
 sc_in<bool> ValidI;
 sc_in<bool> StartUartI;
 sc_out<bool> UartBusyO;

 // UART Vars
 FILE *outputFileHandle;
 short data;
 short i;

 double simTime;

 // MAIN Bus Interface Functions
 short read(short addr)
 {
 short temp;

 ReqO.write(TRUE);
 RwO.write(TRUE);
 AddrO.write(addr);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() == FALSE);

 temp = DataIO.read();

 124

 ReqO.write(FALSE);
 wait(ClockI->posedge_event());

 return temp;
 }

 void uart_ready()
 {
 UartBusyO.write(FALSE);
 do {
 wait(ClockI->posedge_event());
 }while(StartUartI.read() == FALSE);

 UartBusyO.write(TRUE);
 return;
 }

 void uart_done()
 {
 UartBusyO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 // UART Process
 void send(void)
 {
 uart_ready();
 simTime = sc_simulation_time();
 for(i=0; i<(16384/2); i++)
 {
 data = read(i);

 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[0]);
 wait(2*CLK_CYCLE, SC_NS);
 fprintf(outputFileHandle, "%i\n", (int)((char*)&data)[1]);
 wait(2*CLK_CYCLE, SC_NS);
 }
 uart_done();
 cout << "UART\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 }

 // UART Constructor
 SC_CTOR(Uart)
 {
 UartBusyO.initialize(FALSE);
 outputFileHandle = fopen("uart_out.txt", "w");
 SC_THREAD(send);
 }

 // UART Destructor
 ~Uart(void)
 {
 fclose(outputFileHandle);
 }
};

//
// CNTRL module //
// for Communication model //
//
const short COS_TABLE[64] = {
 64, 62, 59, 53, 45, 35, 24, 12,
 64, 53, 24, -12, -45, -62, -59, -35,
 64, 35, -24, -62, -45, 12, 59, 53,

 125

 64, 12, -59, -35, 45, 53, -24, -62,
 64, -12, -59, 35, 45, -53, -24, 62,
 64, -35, -24, 62, -45, -12, 59, -53,
 64, -53, 24, 12, -45, 62, -59, 35,
 64, -62, 59, -53, 45, -35, 24, -12
};
const unsigned char QuantShiftTable[64] = {
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 3,
 3, 3, 3, 3, 3, 3, 3, 4,
 4, 4, 4, 4, 4, 4, 5, 5,
 5, 5, 5, 5, 6, 6, 6, 6,
 6, 7, 7, 7, 7, 8, 8, 8 };

SC_MODULE(Cntrl) {
 // CNTRL Ports
 sc_in<bool> ClockI;
 sc_out<bool> ReqO;
 sc_out<bool> RwO;
 sc_out<short> AddrO;
 sc_inout<short> DataIO;
 sc_in<bool> ValidI;
 sc_out<bool> StartCcdppO;
 sc_out<bool> StartUartO;
 sc_in<bool> CcdppBusyI;
 sc_in<bool> UartBusyI;

 // CNTRL Vars
 short inBuffer[8][8], outBuffer[8][8];
 short temp;
 short addr;
 int i, j, k, l;

 double simTime;

 // Local FDCT Functions
 unsigned char C(int h) {
 return h ? 64 : 5;
 }

 int F(int u, int v, short img[8][8]) {

 long s[8];
 long r;
 unsigned char a;

 for(a=0; a<8; a++)
 {
 s[a] = ((img[a][0] * COS_TABLE[v]) >> 6) +
 ((img[a][1] * COS_TABLE[8+v]) >> 6) +
 ((img[a][2] * COS_TABLE[16+v]) >> 6) +
 ((img[a][3] * COS_TABLE[24+v]) >> 6) +
 ((img[a][4] * COS_TABLE[32+v]) >> 6) +
 ((img[a][5] * COS_TABLE[40+v]) >> 6) +
 ((img[a][6] * COS_TABLE[48+v]) >> 6) +
 ((img[a][7] * COS_TABLE[56+v]) >> 6);
 }

 r = 0;
 for(a=0; a<8; a++)
 {
 r += (s[a] * COS_TABLE[a * 8 + u]) >> 6;
 }

 return (short)((((((r * 16) >> 6) * C(u)) >> 6) * C(v)) >> 6);
 }

 126

 // MAIN Bus Interface Functions
 short read(short addr)
 {
 short temp;

 ReqO.write(TRUE);
 RwO.write(TRUE);
 AddrO.write(addr);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() == FALSE);

 temp = DataIO.read();
 ReqO.write(FALSE);
 wait(ClockI->posedge_event());

 return temp;
 }

 void write(short addr, short data)
 {
 ReqO.write(TRUE);
 RwO.write(FALSE);
 AddrO.write(addr);
 DataIO.write(data);
 do {
 wait(ClockI->posedge_event());
 }while(ValidI.read() == FALSE);

 ReqO.write(FALSE);
 wait(ClockI->posedge_event());
 return;
 }

 void start_ccdpp()
 {
 do {
 wait(ClockI->posedge_event());
 }while(CcdppBusyI.read() == TRUE);

 StartCcdppO.write(TRUE);

 wait(ClockI->posedge_event());
 StartCcdppO.write(FALSE);

 do {
 wait(ClockI->posedge_event());
 }while(CcdppBusyI.read() == TRUE);

 return;
 }

 void start_uart()
 {
 do {
 wait(ClockI->posedge_event());
 }while(UartBusyI.read() == TRUE);

 StartUartO.write(TRUE);

 wait(ClockI->posedge_event());
 StartUartO.write(FALSE);

 do {
 wait(ClockI->posedge_event());
 }while(UartBusyI.read() == TRUE);

 return;
 }

 127

 // CNTRL Process
 void main(void)
 {
 simTime = sc_simulation_time();

 // CNTRL Capture
 start_ccdpp();

 // CNTRL Compress
 for(i=0; i<NUM_ROW_BLOCKS; i++) {

 for(j=0; j<NUM_COL_BLOCKS; j++) {

 // Push the block and perform FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 inBuffer[k][l] = (read(addr) << 6);
 }
 }

 // FDCT
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] = F(k, l, inBuffer);
 wait(72*CLK_CYCLE, SC_NS);
 }
 }

 // Quantize
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 outBuffer[k][l] >>= QuantShiftTable[k * 8 + l];
 wait(4*CLK_CYCLE, SC_NS);
 }
 }

 // Pop the block and store it in buffer
 for(k=0; k<8; k++)
 {
 for(l=0; l<8; l++)
 {
 addr = (COL_SIZE * (i * 8 + k)) + (j * 8 + l);
 write(addr, outBuffer[k][l]);
 }
 }
 }
 }

 // CNTRL Send Image
 start_uart();
 cout << "CNTRL\tdone at "
 << (sc_simulation_time()/1000) << " us\t"
 << "execution time = "
 << (sc_simulation_time() - simTime)/1000 << " us" << endl;
 // Stop the simulation manually
 sc_stop();
 return;
 }

 // CNTRL Constructor
 SC_CTOR(Cntrl) {

 128

 StartCcdppO.initialize(FALSE);
 StartUartO.initialize(FALSE);
 SC_THREAD(main);
 }
};

//
// Testbench //
// for Communication model //
//
int sc_main(int, char**)
{
 // Signal Instances
 sc_clock Clock("Clock", 1, SC_NS);

 sc_signal<bool> CcdStart;
 sc_signal<bool> CcdReady;
 sc_signal<bool> CcdValid;
 sc_signal<char> CcdData;

 sc_signal<bool> MainReq;
 sc_signal<bool> MainRw;
 sc_signal<short> MainAddr;
 sc_signal<short> MainData;
 sc_signal<bool> MainValid;
 sc_signal<bool> StartCcdpp;
 sc_signal<bool> CcdppBusy;
 sc_signal<bool> StartUart;
 sc_signal<bool> UartBusy;

 // Module Instances
 Mem MemInst("Mem");
 Ccd CcdInst("Ccd");
 Ccdpp CcdppInst("Ccdpp");
 Uart UartInst("Uart");
 Cntrl CntrlInst("Cntrl");

 // Bind Bus Signals to Modules
 MemInst.ClockI(Clock);
 MemInst.ReqI(MainReq);
 MemInst.RwI(MainRw);
 MemInst.AddrI(MainAddr);
 MemInst.DataIO(MainData);
 MemInst.ValidO(MainValid);

 CcdInst.ClockI(Clock);
 CcdInst.StartI(CcdStart);
 CcdInst.ReadyI(CcdReady);
 CcdInst.DataO(CcdData);
 CcdInst.ValidO(CcdValid);

 CcdppInst.ClockI(Clock);
 CcdppInst.CcdBusStartO(CcdStart);
 CcdppInst.CcdBusReadyO(CcdReady);
 CcdppInst.CcdBusDataI(CcdData);
 CcdppInst.CcdBusValidI(CcdValid);
 CcdppInst.MainBusReqO(MainReq);
 CcdppInst.MainBusRwO(MainRw);
 CcdppInst.MainBusAddrO(MainAddr);
 CcdppInst.MainBusDataIO(MainData);
 CcdppInst.MainBusValidI(MainValid);
 CcdppInst.MainBusStartCcdppI(StartCcdpp);
 CcdppInst.MainBusCcdppBusyO(CcdppBusy);

 UartInst.ClockI(Clock);
 UartInst.ReqO(MainReq);
 UartInst.RwO(MainRw);
 UartInst.AddrO(MainAddr);

 129

 UartInst.DataIO(MainData);
 UartInst.ValidI(MainValid);
 UartInst.StartUartI(StartUart);
 UartInst.UartBusyO(UartBusy);

 CntrlInst.ClockI(Clock);
 CntrlInst.ReqO(MainReq);
 CntrlInst.RwO(MainRw);
 CntrlInst.AddrO(MainAddr);
 CntrlInst.DataIO(MainData);
 CntrlInst.ValidI(MainValid);
 CntrlInst.StartCcdppO(StartCcdpp);
 CntrlInst.StartUartO(StartUart);
 CntrlInst.CcdppBusyI(CcdppBusy);
 CntrlInst.UartBusyI(UartBusy);

 // Begin TIMED Simulation (Run for 100 milliseconds)
 cout << "Simulation started at "
 << sc_simulation_time()/1000 << " us" << endl;
 sc_start(100, SC_MS);
 cout << "Simulation stopped at "
 << sc_simulation_time()/1000 << " us" << endl;

 return 0;
}

 130

APPENDIX C INPUT IMAGE ARRAY
//
// File: image.h //
// Desc: Array of input image data used by the CCD module. //
// NOTE: The file is the same for all SpecC and SystemC models. //
//

#define ROW_SIZE 64
#define COL_SIZE 128
#define NUM_ROW_BLOCKS (ROW_SIZE / 8)
#define NUM_COL_BLOCKS (COL_SIZE / 8)

const char IMAGE[ROW_SIZE * (COL_SIZE+2)] = {
 86, 92, -63, -5, -98, 19, -87, -47, 45, -17,
 54, -114, -114, -60, -106, -108, -52, -39, -92, 67,
 -8, 115, 65, -26, 91, 33, 114, 99, 121, -56,
.
.
.
File not listed in its entirety.

 131

BIBLIOGRAPHY
[1] W. Wolf, “A Decade of Hardware/Software Codesign,” IEEE Computer, vol. 36, no.

4, Apr. 2003, pp. 38-43.

[2] SpecC Technology Open Consortium (STOC), Date Retrieved: July 20 2005;

http://www.specc.org.

[3] Open SystemC Initiative (OSCI), Date Retrieved: July 20 2005;

http://www.systemc.org.

[4] D. Gajski, J. Zhu, and R. Dömer, The SpecC+ Language, tech. report ICS-97-15,

Dept. Information and Computer Science, Univ. of California, Irvine, 1997.

[5] D. Gajski, G. Aggarwal, E. Chang, R. Dömer, T. Ishii, J. Kleinsmith, and J. Zhu,

Methodology for Co-design of Embedded Systems, tech. report ICS-98-07, Dept.

Information and Computer Science, Univ. of California, Irvine, 1998.

[6] R. Dömer, System-level Modeling and Design with the SpecC Language, doctoral

dissertation, Dept. Computer Science, Univ. of Dortmund, 2000.

[7] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, Spec C: Specification

Language and Methodology, Kluwer Academic Publishers, 2000.

[8] A. Gerstlauer, SpecC Modeling Guidelines, tech. report CECS-02-16, Center for

Embedded Computer Systems, Univ. of California, Irvine, 2002.

[9] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC, Kluwer

Academic Publishers, 2002.

[10] L. Cai, S. Verma, and D. Gajski, Comparison of SpecC and SystemC Languages for

System Design, tech. report CECS-03-11, Center for Embedded Computer Systems,

Univ. of California, Irvine, 2003.

[11] F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware/Software

Introduction, John Wiley & Sons, 2002.

 132

[12] F. Vahid and T. Givargis, “DIGCAM Example source files”, Date Retrieved: July 20

2005; http://www.cs.ucr.edu/content/esd/digcam/DIGCAM/.

[13] C. Hylands, E.A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, and H.

Zheng, Overview of the Ptolemy Project, tech. memo UCB/ERL M03/25, Dept. of

Elec. Eng. and Comp. Science, Univ. California, Berkeley, 2003.

[14] J. T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt, “Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems,” Int. Journal of Computer

Simulation, vol. 4, no. 155, Apr. 1994, pp. 155-182.

[15] C. Hylands, E.A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, and H. Zheng,

Ptolemy II: Heterogeneous Concurrent Modeling and Design in Java, tech. memo

UCB ERL M02/23, Dept. of Electrical Eng. and Computer Science, Univ. California,

Berkeley, 2002.

[16] P. Baldwin, S. Kohli, E.A. Lee, X. Liu, and Y. Zhao, “Modeling of Sensor Nets in

Ptolemy II,” Proc. 3rd Int’l. Symp. Information Processing in Sensor Networks

(IPSN’04), ACM Press, 2004, pp. 359-368.

[17] J. Yeh, Image and Video Processing Libraries in Ptolemy II, master’s thesis, Dept. of

Electrical Eng. and Computer Science, Univ. California, Berkeley, 2003.

[18] POLIS: A Framework for Hardware-Software Co-Design of Embedded Systems,

Date Retrieved: July 20 2005; http://www-cad.eecs.berkeley.edu/~polis/.

[19] G. Berry, The Esterel v5 Language Primer, ver. 5.91, Centre de Mathématiques

Appliquées, Ecole des Mines and INRIA, Sophia-Antipolis, 2000.

[20] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.

Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S.

Sarwary, T.R. Shiple, G. Swamy, and T. Villa, “VIS: A System for Verification and

Synthesis,” Proc. 8th Int’l Conf. on Computer Aided Verification (CAV’96), Springer

Verlag, 1996, pp. 428-432.

 133

[21] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-

Vincentelli, “Metropolis: An Integrated Electronic System Design Environment,”

IEEE Computer, vol. 36, no. 4, pp. 45-52.

[22] D. Densmore, Metropolis Architecture Refinement Styles and Methodology, tech.

report UCB ERL M04/36, Dept. of Electrical Eng. And Computer Science, Univ.

California, Berkeley, 2004.

[23] L. Cai, D. Gajski, P. Kritzinger, and M. Olivares, “Top-Down System Level Design

Methodology Using SpecC, VCC, and SystemC,” Proc. Conf. On Design,

Automation and Test in Europe (DATE’02), IEEE Computer Society, 2002, pp. 1137.

[24] T. Moore, Y. Vanderperren, G. Sonck, P. Van Oostende, and W. Dehaene, “A Design

Methodology for the Development of a Complex System-On-Chip Using UML and

Executable System Models,” 5th Forum on Specification and Design Languages

(FSL’02), 2002.

[25] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, “A SoC Design Methdology

Involving a UML 2.0 Profile for SystemC,” Proc. Conf. on Design, Automation and

Test in Europe (DATE’05), IEEE Computer Society, vol. 2, no. 2, 2005, pp. 704-709.

[26] Y. Vanderperren and W. Dehaene, “UML 2 and SysML: an Approach to Deal with

Complexity in SoC/NoC Design,” Proc. Conf. on Design, Automation and Test in

Europe (DATE’05), IEEE Computer Society, vol. 2, no. 2, 2005, pp. 716-717.

[27] S. Abdi, D. Shin, and D. Gajski, “Automatic Communicatoin Refinement for System

Level Design,” Proc. 40th Intl. Conf. on Design Automation (DAC’03), ACM Press,

2003, pp. 300-305.

[28] D. Shin, S. Abdi, and D. Gajski, “Automatic Generation of Bus Functional Models

from Transaction Level Models,” Proc. Conf. on Asia South Pacific Design

Automation (ASPDAC’04), IEEE, 2004, pp. 756-758.

 134

[29] A.A. Jerraya, S. Yoo, A. Baghdadi, and D. Lyonnard, “Automatic Generation of

Application-Specific Architectures for Heterogeneous Multiprocessor System-on-

Chip,” Proc. 38th Intl. Conf. on Design Automation (DAC’01), ACM Press, 2001, pp.

518-523.

[30] R. Passerone, J.A. Rowson, and A. Sangiovanni-Vincentelli, “Automatic Synthesis of

Interfaces between Incompatible Protocols,” Proc. 35th Intl. Conf. on Design

Automation (DAC’98), ACM Press, 1998, pp. 8-13.

[31] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R.K. Brayton, and A. Sangiovanni-

Vincentelli, “HW/SW Partitioning and Code Generation of Embedded Control

Applications on a Reconfigurable Architecture Platform,” Proc. 10th Intl. Conf. on

Hardware Software Codesign (CODES’02), ACM Press, 2002, pp. 151-156.

[32] F. Herrera, H. Posadas, P. Sanchez, and E. Villar, “Systematic Embedded Software

Generation from SystemC,” Proc. Conf. on Design, Automation and Test in Europe

(DATE’03), IEEE Computer Society, 2003.

[33] H. Yu, R. Dömer, and D. Gajski, “Embedded Software Generation from System

Level Design Languages,” Proc. Conf. on Asia South Pacific Design Automation

(ASPDAC’04), IEEE, 2004, pp. 463-468.

