

 Page 1 of 17

Transaction Level Modeling in SystemC
Adam Rose, Stuart Swan, John Pierce, Jean-Michel Fernandez

Cadence Design Systems, Inc

ABSTRACT
In the introduction, we describe the motivation for proposing a
Transaction Level Modeling standard, focusing on the main use
cases and the increase in productivity such a standard will bring.
In Section 2, we describe the core tlm proposal in detail. Section
3 shows refinement of a single master / single slave from a
programmers view model down through various levels of
abstraction to an rtl only implementation. Section 4 shows how to
code commonly occurring System Level design patterns such as
centralized routers, arbiters, pipelines, and decentralized decoding
schemes using the proposed tlm standard. In order to do this we
briefly describe and use some extensions to the core proposals.
Section 5 shows how to combine and recombine the generic
components in section 4 to explore different switch architectures.
In the first Appendix, we outline the uses of sc_export, which
relied on in many of the examples. In the second Appendix, we
briefly discuss some guidelines for using the TLM proposal in a
concurrent SystemC environment in an efficient and safe way.
The final appendix shows the TLM interface inheritance
hierarchy.
Code for all the examples contained in this paper is available in
the OSCI TLM kit available at www.systemc.org.

1. Introduction
Transaction Level Modeling (TLM) is motivated by a number of
practical problems. These include :

• Providing an early platform for software development

• System Level Design Exploration and Verification

• The need to use System Level Models in Block Level
Verification.

A commonly accepted industry standard for TLM would help to
increase the productivity of software engineers, architects,
implementation and verification engineers. However, the
improvement in productivity promised by such a standard can
only be achieved if the standard meets a number of criteria :

• It must be easy, efficient and safe to use in a concurrent
environment.

• It must enable reuse between projects and between
abstraction levels within the same project.

• It must easily model hardware, software and designs
which cross the hardware / software boundary.

• It must enable the design of generic components such as
routers and arbiters.

Since the release of version 2.0, it has been possible to do TLM
using SystemC. However, the lack of established standards and
methodologies has meant that each TLM effort has had to invent
its own methodologies and APIs to do TLM. In addition to the

cost of reinventing the wheel, these methodologies all differed
slightly, making IP exchange difficult.
This paper will describe how the proposed OSCI TLM standard
meets the requirements above, and show how to use it to solve
various common modeling problems. We believe that widespread
adoption of this proposal will lead to the productivity
improvements promised by TLM.

2. The TLM Proposal
2.1 Key Concepts
There are three key concepts required to understand this proposal.

• Interfaces

• Blocking vs Non Blocking

• Bidirectional vs Uni Directional

2.1.1 Interfaces
The emphasis on interfaces rather than implementation flows
from the fact that SystemC is a C++ class library, and that C++ (
when used properly) is an object orientated language. First we
need to rigorously define the key interfaces, and then we can go
on to discuss the various ways these may be implemented in a
TLM design. It is crucial for the reader to understand that the
TLM interface classes form the heart of the TLM standard, and
that the implementations of those interfaces (e.g. tlm_fifo) are not
as central. In SystemC, all interfaces should inherit from the class
sc_interface.

2.1.2 Blocking and Non Blocking
In SystemC, there are two basic kinds of processes:
SC_THREAD and SC_METHOD. The key difference between
the two is that it is possible to suspend an SC_THREAD by
calling wait(.). SC_METHODs on the other hand can only be
synchronized by making them sensitive to an externally defined
sc_event. Calling wait(.) inside an SC_METHOD leads to a
runtime error. Using SC_THREAD is in many ways more natural,
but it is slower because wait(.) induces a context switch in the
SystemC scheduler. Using SC_METHOD is more constrained but
more efficient, because it avoids the context switching [2].
Because there will be a runtime error if we call wait from inside
an SC_METHOD, every method in every interface needs to
clearly tell the user whether it may contain a wait(.) and therefore
must be called from an SC_THREAD, or if it is guaranteed not to
contain a wait(.) and therefore can be called from an
SC_METHOD. OSCI uses the terms blocking for the former and
non blocking for the latter.

The OSCI TLM standard strictly adheres to the OSCI use of the
terms “blocking” and “non-blocking”. For example, if a TLM
interface is labeled “non-blocking”, then its methods can NEVER
call wait().

 Page 2 of 17

OSCI Terminology Contains wait(.) Can be called from

Blocking Possibly SC_THREAD only

Non Blocking No SC_METHOD or
SC_THREAD

2.1.3 Bidirectional and Unidirectional Transfers
Some common transactions are clearly bidirectional, for example
a read across a bus. Other transactions are clearly unidirectional,
as is the case for most packet based communication mechanisms.
Where there is a more complicated protocol, it is always possible
to break it down into a sequence of bidirectional or unidirectional
transfers. For example, a complex bus with address, control and
data phases may look like a simple bidirectional read/write bus at
a high level of abstraction, but more like a sequence of pipelined
unidirectional transfers at a more detailed level. Any TLM
standard must have both bidirectional and unidirectional
interfaces. The standard should have a common look and feel for
bidirectional and unidirectional interfaces, and it should be clearly
shown how the two relate.

2.2 The Core TLM Interfaces
2.2.1 The Unidirectional Interfaces
The unidirectional interfaces are based on the sc_fifo interfaces as
standardized in the SystemC 2.1 release. Sc_fifo has been used
for many years in many types of system level model, since the
critical variable in many system level designs is the size of the
fifos. As a result, the fifo interfaces are well understood and we
know that they are reliable in the context of concurrent systems.
A further advantage of using interfaces based on sc_fifo is that
future simulators may be able to perform well known static
scheduling optimizations on models which use them. In addition
to this, the interface classes are split into blocking and non
blocking classes and non blocking access methods are
distinguished from blocking methods by the prefix “nb_”.
However, for TLM we have two new requirements

• We need some value free terminology, since “read” and
“write” in the current sc_fifo interfaces are very loaded
terms in the context of TLM

• These interfaces may be implemented in a fifo, some
other channel, or directly in the target using sc_export.

To address the first of these concerns, when we move a
transaction from initiator to target we call this a “put” and when
we move the transaction from target to initiator we call this a
“get”.
A consequence of the second requirement is that we need to add
tlm_tag<T> to some of the interfaces. This is a C++ trick which
allows us to implement more than one version of an interface in a
single target, provided the template parameters of the interfaces
are different.

2.2.2 The Unidirectional Blocking Interfaces

template < typename T >

class tlm_blocking_get_if :

public virtual sc_interface

{

public:

 virtual T get(tlm_tag<T> *t = 0) = 0;

 virtual void get(T &t) { t = get(); }

};

template < typename T >

class tlm_blocking_put_if :

public virtual sc_interface

{

public:

 virtual void put(const T &t) = 0;

};

Since we are allowed to call wait in the blocking functions, they
never fail. For convenience, we supply two forms of get, although
since we provide a default implementation for the pass-by-
reference form , an implementer of the interface need only supply
one.

2.2.3 The Unidirectional Non Blocking Interfaces

template < typename T >

class tlm_nonblocking_get_if :

public virtual sc_interface

{

public:

 virtual bool nb_get(T &t) = 0;

 virtual bool nb_can_get(tlm_tag<T> *t = 0)
const = 0;

 virtual const sc_event &ok_to_get(tlm_tag<T>
*t = 0) const = 0;

};

template < typename T >

class tlm_nonblocking_put_if :

public virtual sc_interface

{

public:

 virtual bool nb_put(const T &t) = 0;

 virtual bool nb_can_put(tlm_tag<T> *t = 0)
const = 0;

 virtual const sc_event &ok_to_put(tlm_tag<T>
*t = 0) const = 0;

};

The non blocking interfaces may fail, since they are not allowed
to wait for the correct conditions for these calls to succeed. Hence
nb_put and nb_get must return a bool to indicate whether the
nonblocking access succeeded. We also supply nb_can_put and
nb_can_get to enquire whether a transfer will be successful
without actually moving any data.
These methods are sufficient to do polling puts and gets. We also
supply event functions which enable an SC_THREAD to wait
until it is likely that the access succeeds or a SC_METHOD to be
woken up because the event has been notified. These event

 Page 3 of 17

functions enable an interrupt driven approach to using the non
blocking access functions. However, in the general case even if
the relevant event has been notified, we still need to check the
return value of the access function – for example, a number of
threads may have been notified that a fifo is no longer full but
only the first to wake up is guaranteed to have room before it is
full again.

2.2.4 Bidirectional Blocking Interface

template<REQ, RSP>
class tlm_transport_if : public sc_interface
{
public:

virtual RSP transport(const REQ&) = 0;
};

The bidirectional blocking interface is used to model transactions
where there is a tight one to one, non pipelined binding between
the request going in and the response coming out. This is
typically true when modeling from a software programmers point
of view, when for example a read can be described as an address
going in and the read data coming back.
The signature of the transport function can be seen as a merger
between the blocking get and put functions. This is by design,
since then we can produce implementations of tlm_transport_if
which simply call the put(.) and get(.) of two unidirectional
interfaces.

2.3 TLM Channels
One or more of the interfaces described above can be
implemented in any channel that a user cares to design, or directly
in the target using sc_export. However, two channels seem to be
useful in a large number of modeling contexts, so they are
included as part of the core proposal.

2.3.1 tlm_fifo<T>
The tlm_fifo<T> templated class implements all the
unidirectional interfaces described above. The implementation of
the fifo is based on the implementation of sc_fifo. In particular, it
addresses many (but not all) of the issues related to non
determinism by using the request_update / update mechanism.
Externally, the effect of this is that a transaction put into the
tlm_fifo is not available for getting until the next delta cycle. In
addition to the functionality provided by sc_fifo, tlm_fifo can be
zero or infinite sized, and implements the fifo interface extensions
discussed in 4.3.1 below.

2.3.2 tlm_req_rsp_channel<REQ,RSP>
The tlm_req_rsp_channel<REQ,RSP> class consists of two fifos,
one for the request going from initiator to target and the other for
the response being moved from target to initiator. To provide
direct access to these fifos, it exports the put request and get
response interfaces to the initiator and the get request and put
response interfaces to the target.
As well as directly exporting these four fifo interfaces,
tlm_req_rsp_channel<REQ,RSP> implements three interfaces.

The first two combine the unidirectional requests and responses
into convenient master and slave interfaces :

template < typename REQ , typename RSP >

class tlm_master_if :

 public virtual tlm_extended_put_if< REQ > ,

 public virtual tlm_extended_get_if< RSP > {};

template < typename REQ , typename RSP >

class tlm_slave_if :

 public virtual tlm_extended_put_if< RSP > ,

 public virtual tlm_extended_get_if< REQ > {};

};

In addition to this, it implements tlm_transport_if<REQ,RSP> as
follows :

RSP transport(const REQ &req) {

 RSP rsp;

 mutex.lock();

 request_fifo.put(req);

 response_fifo.get(rsp);

 mutex.unlock();

 return rsp;

}

This simple function provides a key link between the bidirectional
and sequential world as represented by the transport function and
the timed, unidirectional world as represented by tlm_fifo. We
will explain this in detail in the transactor (3.4) and arbiter (4.2)
examples below.

2.4 Summary of the Core TLM Proposal
The ten methods split into five classes described in Section 2.2
form the basis of the OSCI TLM proposal. On the basis of this
simple transport mechanism, we can build models of software and
hardware, generic routers and arbiters, pipelined and non
pipelined buses, and packet based protocols. We can model at
various different levels of timing and data abstraction and we can
also provide channels to connect one abstraction level to another.
Because they are based on the interfaces to sc_fifo, they are easily
understood, safe and efficient.
Users can and should design their own channels implementing
some or all of these interfaces, or they can implement them
directly in the target using sc_export. The transport function in
particular will often be directly implemented in a target when
used to provide fast programmers view models for software
prototyping.
In addition to the core interfaces, we have defined two standard
channels, tlm_fifo<T> and tlm_req_rsp_channel<REQ,RSP>.

 Page 4 of 17

These two channels can be used to model a wide variety of timed
systems, with the tlm_req_rsp_channel class providing an easy to
use bridge between the untimed and timed domains.

3. Modeling a simple peripheral bus at
various levels of abstraction
In this section, we will describe how to take an abstract single
master / single slave model down through various levels of
abstraction to an rtl only implementation. This ordering will be
familiar to readers who are from a software background and want
to understand how to incorporate real time hardware behaviour
into their TLM models. We also discuss how to build a modeling
architecture so that a meaningful interface can be presented to
application experts while the underlying protocols can be
accurately modeled. Hardware designers may find it easier to read
this section backwards, starting with the rtl and abstracting to
reach the programmers view model.

3.1 A Programmers View Architecture
In many organizations, there are two distinct groups of engineers.
In fact, one of the primary goals of TLM is to provide a
mechanism that allows these two groups of people to exchange
models. The first group understands the application domain very
well, but is not particularly expert in C++ nor interested in the
finer details of the TLM transport layer or the signal level
protocol used to communicate between modules. The second
group does not necessarily understand the application domain
well but does understand the underlying protocols and the C++
techniques needed to model them. Because of this divide in
expertise and interests, it is often useful (but by no means
compulsory) to define a protocol specific boundary between
these two groups of engineers.

Figure 1 : Modeling Architecture

This interface is sometimes called the convenience interface. It
will typically consist of methods that make sense to users of the
protocol in question : for example, read, write, burst read and
burst write. A user will use initiator ports that supply these
interfaces, and define target modules which inherit from the these
interfaces. The infrastructure team will implement the protocol
layer for the users. This consists of the request and response
classes that encapsulate the protocol, an initiator port that
translates from the convenience functions to calls to RSP
transport(const &REQ) in the port, and a slave base class that

Master

initiator_port

sc_port

Slave

slave_base

sc_export

read()
write()

transport()

User
Layer

Protocol
Layer

Transport
Layer

tlm
interface

convenience
interface

tlm
interface

convenience
interface

 Page 5 of 17

implements RSP transport(const REQ &) in the slave. The
infrastructure team then publishes the initiator port and slave base
class to the users, who are then protected from the transport layer
completely. In effect, we have a three layer protocol stack.
In all the subsequent examples, we use this architecture when we
are modeling at the PV level. The consequence of this is that we
can reuse the master code shown below while we refine the slave
from an abstract implementation down to rtl.
void master::run()

{

 DATA_TYPE d;

 for(ADDRESS_TYPE a = 0; a < 20; a++)

 {

 initiator_port.write(a , a + 50);

 }

 for(ADDRESS_TYPE a = 0; a < 20; a++)

 {

 initiator_port.read(a , d);

 }

}

In order to achieve this level of reuse and usability at the user
level, the implementation team has to define an initiator port, and
slave base class and protocol that allows these two classes to
communicate.

3.1.1 The Protocol
At this abstract modeling level, the request and response classes
used to define the protocol have no signal level implementation,
they simply describe the information going in to the slave in the
request and the information coming out of the slave in the
response.

template< typename ADDRESS , typename DATA >

class basic_request

{

public:

 basic_request_type type;

 ADDRESS a;

 DATA d;

};

template< typename DATA >

class basic_response

{

public:

 basic_request_type type;

 basic_status status;

 DATA d;

};

3.1.2 The Initiator Port
On the master side, infrastructure team supplies an initiator port
which translates from the convenience layer to the transport layer.
basic_status read(const ADDRESS &a , DATA &d) {

 basic_request<ADDRESS,DATA> req;

 basic_response<DATA> rsp;

 req.type = READ;

 req.a = a;

 rsp = (*this)->transport(req);

 d = rsp.d;

 return rsp.status;

}

The write method is implemented in a similar fashion.

3.1.3 Slave Base Class
In the slave base class, we translate back from the transport layer
to the convenience layer.

basic_response<DATA>

transport(const basic_request<ADDRESS,DATA>
&request) {

 basic_response<DATA> response;

 switch(request.type) {

 case READ :

 response.status = read(request.a ,
response.d);

 break;

 case WRITE:

 response.status = write(request.a ,
request.d);

 break;

 …

 }

 return response;

}

The read and write functions are pure virtual in the slave base
class, and are supplied by the user’s implementation which
inherits from the slave base class.

3.1.4 Only Request and Response Classes are
Compulsory
It is worth re-emphasizing that this modeling architecture is not
compulsory. In this case, the infrastructure team only supplies the
protocol itself and not the initiator port and slave base class. The
consequence of this is that each master and each slave may have
to do the translation to and from the underlying protocol
described in the preceding two sections. While the examples
below have been coded using a convenience layer, they could
have been implemented directly on top of the transport layer.

 Page 6 of 17

3.2 PV Master / PV Slave
This example uses a single thread in the master to send a
sequence of writes and reads to the slave. Both write and read
transactions are bidirectional (although a write doesn’t return
data it does return protocol specific status information) so we use
the bidirectional blocking interface, tlm_transport_if.

Using the protocol and the modeling architecture described
above, we can produce a simple PV master / PV slave
arrangement as shown below.i

Figure 2 : PV Master / PV Slave

There is only one thread in this system, on the master side. The
methods in the slave are run in the context of this thread, having
been called directly by the master using the sc_export
mechanism.
The user only has to do two things in the slave : bind its interface
to the sc_export so that the master can bind to it as in the diagram
above, and define read() and write().

mem_slave::mem_slave(const sc_module_name
&module_name , int k) :

 sc_module(module_name) ,

 target_port("iport")

{

 target_port(*this);

 memory = new ADDRESS_TYPE[k * 1024];

}

basic_status

mem_slave::

read(const ADDRESS_TYPE &a , DATA_TYPE &d)

{

 d = memory[a];

 return basic_protocol::SUCCESS;

}

basic_status

mem_slave::

write(const ADDRESS_TYPE &a, const DATA_TYPE &d)

{

 memory[a] = d;

 return basic_protocol::SUCCESS;

i See Section 6 for the graphical conventions used in these

examples

}

3.3 PV Master / tlm_req_rsp_channel /
unidirectional slave
This example shows how to connect a master using the
bidirectional transport interface to a slave which has
unidirectional interfaces. As described above, to do this we use
tlm_req_rsp_channel which implements the transport function as
blocking calls to a request and a response fifo. The different
modules are connected together as shown.

Figure 3 : PV master / unidirectional slave

The slave now models the separate request and response phases of
the transaction, which is closer to the final implementation than
the previous example. However, it pays a price in performance
because we now have two threads in the system and have to
switch between them.
The master is unchanged from the previous example, but the slave
has a two sc_ports and a thread as shown below.

void mem_slave::run()

{

 basic_request<ADDRESS_TYPE,DATA_TYPE> request;

 basic_response<DATA_TYPE> response;

 for(;;)

 {

 request = in_port->get();

 response.type = request.type;

 switch(request.type)

 {

 case basic_protocol::READ :

 response.d = memory[request.a];

 response.status = basic_protocol::SUCCESS;

 break;

 case basic_protocol::WRITE:

 …

 }

 out_port->put(response);

 }

}

3.4 PV Master / transactor / rtl slave
We can now refine the slave further to a genuine register transfer
level implementation. The example shows this rtl implementation

master slave tlm_req_rsp_channel
master slave

 Page 7 of 17

in SystemC, although in reality it may be in a verilog or vhdl and
linked to SystemC using a commercial simulator.

Figure 4 : PV Master / rtl slave

The key component in this system is the transactor. It gets an
abstract request from the request fifo in the tlm_req_rsp_channel
and waits for an opportunity to send this out over the rtl level bus.
It then waits until it sees a response on the rtl bus, at which point
it puts the abstract response into the response fifo in the
tlm_req_rsp_channel. The master thread will then unblock
because it has a response available to be “got” from the fifo.
In order to do all this, the transactor has to implement at least one
state machine to control the bus., usually in an SC_METHOD
statically sensitive to the clock. A consequence of using
SC_METHOD is that we need to use the non blocking interfaces
when accessing the fifos in tlm_req_rsp_channel.
If the slave and transactor use SC_METHODs, then the only
thread in this system is the master.

3.5 RTL Master / RTL Slave
This example is a conventional rtl master talking across a simple
peripheral bus to an rtl slave. While the example is implemented
in SystemC using SC_METHODs statically sensitive to a clock, it
could also be implemented entirely in vhdl or verilog and
simulated using a commercial simulator.

Figure 5 : RTL Master / RTL Slave

4. Typical SoC Modeling Patterns using the
TLM Proposal
In the previous section, we showed how to refine a single master
and single slave down to rtl using simple non pipelined peripheral
bus. In this section we show how to model typical patterns found
in more complicated SoC modeling problems.

4.1 Router
The first case we will look at is a common problem found in
almost any SoC : how to route the traffic generated by one master
to one of many slaves connected to it. When it comes to the final
implementation, the decoding may be centralized or
decentralized. In 4.4 we discuss how to do decentralized
decoding. However, modeling the decoding as a centralized router
is easier to code and faster to execute, so we discuss the router
pattern first.
The basic pattern is shown below. The address map, router
module and router port used in the diagram below are generic
components. Provided a protocol satisfies some minimal
requirements, this router module is capable of routing any
protocol.

Figure 6 : Master, Router, Multiple Slaves

// an example address map

// slave one is mapped to [0 , 0x10)

// slave two is mapped to [0x10, 0x20)

slave_1.iport 0 10

slave_2.iport 10 20

The address map in the router is a mapping from an address range
to a port id. In order to build up this mapping from a file such as
the one above, we need to be able to ask the port in the router
how the names of the slaves that it is connected to map to port
ids. The generic component router_port<IF> adds this
functionality to sc_port. Because router_port inherits from
sc_port, in all other respects it behaves like an sc_port.
The router receives a request from the master. It attempts to find
an address range which contains this address. If it is unable to
find such a range, it returns a suitable protocol error. If it is
successful, it subtracts the base address of the slave from the

router master

slave 1

 slave 2

router port

master slave

signal level
interface

clk / reset

tlm_req_rsp_channel master transactor slave

signal level
interface

clk / reset

 Page 8 of 17

request, forwards the adjusted request to the correct slave and
finally sends the response back to the master.

RSP transport(const REQ &req) {

 REQ new_req = req;

 int port_index;

 if(!amap.decode(new_req.get_address() ,

 new_req.get_address() ,

 port_index)) {

 return RSP();

 }

 return router_port[port_index]->

 transport(new_req);

}

As can be seen from the code above, we need to make two
assumptions about the protocol to make it routable : the request
must have a get_address function which returns a reference to the
address, and the response’s default constructor must initialize the
response to an error state. We also need to assume the address is
reasonably well behaved (eg it is copyable and has <, << and >>
operators defined).

4.2 Arbiter
Arbitration is not quite as common a pattern as the routing
pattern, since by definition we only need to arbitrate between two
simultaneous requests when we have introduced time into our
model. In a pure PV model which executes in zero time,
arbitration is a meaningless concept. However, pure PV models
are in fact quite rare and arbitration is often needed in TLM
models.

Figure 7 : Arbitration between Multiple Masters

The masters put a request into their respective
tlm_req_rsp_channels and wait for a corresponding response. A
separate thread in the arbiter polls all the request fifos (using
nb_get) , decides which is the most important, and forwards the
request to the slave. When the slave responds, the arbiter puts the
response into the reponse fifo in the relevant
tlm_req_rsp_channel. The master then picks up the response and
completes the transaction. The key thread in the arbiter is below.

virtual void run() {

 port_type *port_ptr;

 multimap_type::iterator i;

 REQ req;

 RSP rsp;

 for(;;) {

 port_ptr = get_next_request(i , req);

 if(port_ptr != 0) {

 rsp = slave_port->transport(req);

 (*port_ptr)->put(rsp);

 }

 wait(arb_t);

 }

}

get_next_request() iterates over a multimap of sc_ports. These
ports have been sorted in priority order, although the precise
operation of get_next_request can be changed according to the
arbitration scheme. A very naïve starvation inducing arbitration
scheme is shown below, for illustration purposes, although we

master 1

slave arbiter

master 2

tlm_req_rsp_
channel 1

tlm_req_rsp_
channel 2

transport
nb_put
nb_get

 Page 9 of 17

would expect that this virtual function is overridden to do
something more realistic.

virtual port_type *

get_next_request(multimap_type::iterator &i,

 REQ &req) {

 port_type *p;

 for(i = if_map.begin();

 i != if_map.end();

 ++i)

 {

 p = (*i).second;

 if((*p)->nb_get(req)) {

 return p;

 }

 }

 return 0;

}

The multimap is a one to many mapping from priority level to
port, which can be configured and reconfigured at any time. The
code above will always get the highest priority port which has a
pending request. Multimap is in the stl library and comes with
many access functions useful for arbitration – for example, it is
easy to find all ports of the same priority level for use in a
prioritized round robin arbitration scheme.

4.3 Multiple Slaves with Decentralized
Decoding
As discussed above, the easiest and most efficient way to model
decoding is by using a centralized router. However, there are
occasions when this technique diverges too far from the
implementation it is modeling. In these cases, we need to use the
decentralized decoding pattern.

Figure 8 : Decentralised Decoding

The master is connected to the tlm_req_rsp_channel in the normal
way. All of the slaves monitor all of the requests coming in. If the
request is successfully decoded locally, one of the slaves tells the
master that the request has been decoded. This unblocks the
request fifo in the tlm_req_rsp_channel. The slave then goes on to
process the request, and send a response to the response fifo in the
tlm_req_rsp_channel, from where the master can pick it up.

4.3.1 The Moded Extensions to the Core TLM
Interfaces
In the description of how the slave works above, it is apparent
that the core tlm interfaces do not provide the functionality
needed. The get() functions in the core interface all do three
things. They get the data, they consume the transaction – ie
successive calls to get will return a different transaction – and
notify the master that they have done so, all in one function. The
moded extensions split these three aspects up into separate
functions.
In this example, each slave needs to peek at the same request to
see if it can be decoded. If it can be decoded, only one of the
slaves consumes the request, notifies the master that it has done
so, and sends back a response. So for this example, we need one
function to get the data without consuming the data or notifying
the master, and a separate function to consume and notify. In
other examples, we may want to get and consume in one function
and notify but not consume in a separate one.
Similarly, on the put side, the moded extensions allow a master to
overwrite the most recently put transaction, without waiting for
the slave.
The put and get modes are :
enum tlm_get_type {

 NORMAL_GET , // consumes and notifies

 SHRINK , // consumes but doesn't notify

 PEEK , // neither consumes nor notifies

};

enum tlm_finish_get_type {

 UNSHRINK , // notifies

 POP // consumes and notifies

};

enum tlm_put_type {

 NORMAL_PUT ,

 OVERWRITE

};

and they are used in the moded tlm interfaces :

template < typename T >

class tlm_moded_get_if :

public virtual sc_interface

{

public:

virtual bool get(T & , tlm_get_type) = 0;

virtual bool nb_get(T & , tlm_get_type) = 0;

virtual bool notify_got(tlm_finish_get_type)=0;

virtual bool nb_notify_got(tlm_finish_get_type)
= 0;

virtual bool nb_notify_got(const sc_time & ,

 tlm_finish_get_type) = 0;

master tlm_req_rsp_
channel

slave 1

slave 1

 Page 10 of 17

};

template < typename T >

class tlm_moded_put_if : public virtual
sc_interface

{

public:

 virtual bool put(const T & ,

 tlm_put_type) = 0;

 virtual bool nb_put(const T & ,

 tlm_put_type) = 0;

};

4.3.2 Decentralised Decoding Slaves
As already described, the slaves need to get without consuming or
notifying, and then consume and notify. The get type we need is
PEEK, and the finish get type we need is POP. The code is shown
below.

while(true) {

 request_port->get(req , PEEK);

 if(decode(req.a) {

 request_port->nb_notify_got(POP);

 rsp = process_req(req);

 response_port->put(rsp);

 }

 wait(request_port->ok_to_get());

}

4.4 Pipeline
In Section 3, we started with a PV master connected to a PV
slave, and refined first the slave and then the master down to an
rtl description. If we use a weak definition of a Progammers View
model (ie a model which does call wait() but which does not
advance time) this example can be described as a PV model. We
will leave it to the reader to do the refinement in a similar fashion
to Section 3.

Figure 9 : Pipeline

The basic topology is shown above. Since the protocol now has
separate address and data phases, we need two separate threads in
the master. We also need a new protocol definition, or more
accurately, we need two new protocols, one for each phase.

enum address_phase_status {

 ADDRESS_OK ,

 ADDRESS_ERROR

};

template < typename ADDRESS >

struct address_phase_request {

 pipelined_protocol_type type;

 ADDRESS a;

};

template < typename DATA >

struct data_phase_request {

 pipelined_protocol_type type;

 DATA wr_data;

};

template < typename DATA >

struct data_phase_response {

 pipelined_protocol_type type;

 DATA rd_data;

 data_phase_status status;

};

Since the template parameters for the two phases are completely
different, we can implement both the address phase and the data
phase transport functions at the top level in the slave.
To make sure that we issue and process requests in the correct (
ie, pipelined) order, we have fifos in both master and slave. In
the master, whenever we issue an address phase request, we put
the corresponding data phase request into a fifo to be processed

slave
master

address_if

data_if

 Page 11 of 17

later when the pipeline is full. The slave stores the requests as
they come in, so that when it responds to a data phase it knows
what request it is responding to.
The critical lines of code, which control the correct operation of
the pipeline, are in the slave data phase :

while(pipeline->nb_can_put()) {

 wait(pipeline->ok_to_get());

}

pipeline->nb_get(pending , PEEK);

if(pending.type != req.type) {

 rsp.status = DATA_ERROR;

 return rsp;

}

pipeline->nb_notify_got(POP);

rsp.status = DATA_OK;

rsp.type = req.type;

switch(req.type) {

case READ :

 rsp.rd_data = memory[pending.a];

 break;

…

This code ensures that a data phase request is not responded to
until the pipeline is full. It also checks that the address request
just leaving the pipeline is of the same type as the data request. If
this check fails, we do not process the request. If the check is ok,
we go on to do the appropriate read or write.
This is a particular, abstract model of an in-order pipeline. To
understand the example properly, it may be necessary to look at
the code in www.cadence.com/systemc/whitepaper/examples. Of
course, there are many other kinds of pipelines, most of which
will modeled at the rtl level or close to it. However, like this
example, they will all need two threads either in the master or
slave to connect to a TLM model, and will all need to store the
unfinished transactions in some kind of buffer on the slave side as
they proceed down the pipeline.

5. Architectural Exploration
The patterns in sections 3 and 4 have been presented in their most
simple form, in order to clarify the main issues associated with
each pattern. In real TLMs, various patterns and levels of
abstraction will combined. In this section, we show how these
basic components can be combined and recombined to explore
different architectures for a switch. Because the basic components
are very generic and use the proposed TLM interfaces, switching
from one architecture to another is very easy and requires little if
any disruption to the SoC model as a whole.

5.1 Hub and Spoke

Figure 10 : Hub and Spoke Architecture

The first switch architecture we shall consider is a hub and spoke
arrangement. In this architecture, all transactions pass through a
central hub before being routed to their final destination. As a
result, we have to arbitrate between the various requests for
control of this central hub. While this is not the most efficient
architecture in terms of throughput, it is efficient in terms of
silicon area and therefore cost, since we only need one arbiter.
Because all the transactions go through a central hub, its behavior
is also more predictable than other switch architectures.
We use the arbiter in 4.2 followed by the router in 4.3 to
implement this architecture.

Figure 11 : 2 * 2 Hub and Spoke Implementation

masters

arbiter router

slaves

tlm_req_rsp_channel

masters

 Page 12 of 17

5.2 Cross Bar Switch

Figure 12 : Cross Bar Architecture

The advantage of a cross bar architecture is that we are able to
make more than one connection across the switch at the same
time. If a slave is available, a master may connect to it whatever
else is going on in the system at the same time. A disadvantage is
that there is no central arbitration, so every slave has to arbitrate
between all the masters. This makes this architecture more
expensive and also less predictable. However, the overall
throughput is much greater than for the hub and spoke.
To move from the hub and spoke to the cross bar architecture, we
need to make no changes at all to the masters and slaves. In terms
of the modeling architecture in 2.1, we simply rearrange the
components in the transport layer.

Figure 13 : 2 * 2 Cross Bar Implementation

5.3 Summary
The intention of sections 3,4 and 5 is to show how to use the
relatively simple transport mechanism provided by the tlm
proposal to coordinate between different teams of engineers, how
to combine different levels of abstraction in the same TLM, and
how to approach common modeling problems. It is not intended
to be prescriptive. Rather, it summarizes many of the discussions
that have taken place in and around the OSCI TLM working
group. We hope that many more discussions along these lines will
take place in the future.

masters slavesrouters arbiters

tlm_req_rsp_channel

masters

slaves

 Page 13 of 17

 Page 14 of 17

6. References
[1] Clouard A, Jain K, Ghenassia F, Laurent Maillet-

Contoz L, Strassen J-P “SystemC, Methodologies and
Applications” Chapter 2. Edited by Muller, Rosenstiel
and Ruf, published by Kluwer, ISBN 1402074794.

[2] Pierce, J.L, Erickson A, Swan S, and Rose A.D,
“Standard SystemC Interfaces for Hardware
Functional Modeling and Verification”, Internal
Cadence Document, 2004

[3] Burton, M and Donlin, A, “Transaction Level
Modeling : Above RTL design and methodology”, Feb
2004, internal OSCI TLM WG document.

[4] “Functional Specification for SystemC 2.0”, Version
2.0-Q, April 5th 2002 available at www.systemc.org

[5] multimap<Key, Data, Compare, Alloc> at
http://www.sgi.com/tech/stl/Multimap.html

[6] T. Groetker, S. Liao, G. Martin, S. Swan, “System
Design with SystemC”, book available at
www.amazon.com

7. Notes on the Graphical Representation of
sc_port, sc_export and channels

Throughout the examples in Sections 3, 4, and 5 we adopt the
following graphical conventions.

A small square with an
arrow leaving it is an

sc_port

A small square with
an arrow arriving at it

is an sc_export

An arrow arriving at a
module with no small

square indicates a channel

This symbol
represents a thread

 Page 15 of 17

Appendix A : sc_export
SystemC 1.0 provided sc_signal to connect an sc_in to an sc_out.
This was primarily used to model at or close to the register
transfer level.

Figure 14 : rtl level binding in SystemC 1.0 and 2.0

For higher levels of abstraction, SystemC 2.0 generalised this
pattern by introducing sc_port<IF> and channels. A channel
implements one or more interfaces, and sc_ports are bound to that
interface.

Figure 15 : Binding to a Channel in SystemC 2.0

The advantage of using channels is that there is a very clear
boundary between behaviour and communication. The
disadvantage is that we are forced to use two threads, one in each
of the modules on either side of the channel.
In SystemC 2.1, sc_export was introduced. This allows direct port
to export binding, as shown below.

Figure 16 : Binding to an sc_export in SystemC 2.1

An sc_port assumes that it is bound to an interface. In Figure 16,
this interface is supplied by sc_export. The port is bound to
sc_export, and in turn sc_export is bound to an implementation of
the interface somewhere inside the target block. In software
engineering terms, we would describe sc_export<IF> as a proxy
for the interface. The main reason for the introduction of
sc_export is execution speed. We can now call the interface
method in the target directly from within the initiator, so there is
no need for a separate thread in the target and no reduction in
performance associated with switching between threads.

An important use of sc_export is to allow sc_ports to connect to
more than one implementation of the same interface in the same
top level block.

Figure 17 : exporting two copies of the same interface

Finally, an sc_export can be bound to another sc_export, provided
the template parameter is the same. This mechanism is used to
give access to an interface defined lower down in the sc_object
hierarchy.

Figure 18 : sc_port, sc_export and hierarchy

The diagram above shows how a thread in a low level sub module
inside an initiator directly calls a method in low level sub module
in a target, using a chain of sc_ports to traverse up the initiator
hierarchy, and a chain of sc_exports to traverse down the target
hierarchy.

sc_port<IF> sc_port<IF> sc_export<IF> sc_export<IF>

sc_port<IF> sc_export<IF>

sc_port<IF1> sc_port<IF2> channel

sc_out sc_in sc_signal

hierarchical
sc_port to sc_port

binding

hierarchical
sc_export to

sc_export binding

sc_port to
sc_export
binding

sc_export to
sc_interface

binding

 Page 16 of 17

Appendix B : Safety in a Concurrent SystemC
Environment
There have been many discussions relating to safety in the TLM
WG.ii By safety we mean protection from premature deletion or
editing of transaction data by one process while that transaction is
being used elsewhere in the TLM. We also mean safety from
unintended memory leaks. This appendix offers guidelines for the
safe use of the TLM interfaces presented in this paper.
The TLM interfaces follow the style of the sc_fifo interfaces,
which in turn are similar to many other C++ interfaces. Data
going in to a method is always passed by const reference. Data
coming back is passed by value if we can guarantee that there will
always be data there eg the blocking get and transport calls.
However, if we cannot guarantee that data will come back, we
return the status by value and pass in a non const reference into
the method, which will have data assigned to it if data is
available. We do not pass by pointer, and we do not use a non
const reference to pass data into a method. Since this style is
widely used, in sc_fifo, throughout SystemC, and elsewhere in
the C++ world, it is easily understood and used.
However, SystemC is a co-operative multi-threaded environment,
so some care does need to be taken when using these interfaces
over and above the usual precautions when programming in a
single threaded environment. When we say co-operative, we
mean that a thread is only suspended when the thread itself calls
wait. Hence if we are safe when we call a method, and we can
guarantee that we do not call wait inside that method, then the
transaction data in that method is safe. For this reason, we know
that all non blocking interface methods are safe, whatever their
signatures.
In all the examples discussed in this paper, the transaction data is
allocated and owned by the thread which calls the tlm interface
function. Whether or not there is a wait in the target, if the master
owns the data in this way, the transaction data is safe from
premature deletion and unintended editing.
It is a REQUIREMENT of the TLM standard that objects passed
into blocking (or even potentially blocking) interface funtions are
owned in the manner described above. With this requirement,
implementations of blocking TLM API functions can safely
assume that data passed into them by reference will not be
prematurely deleted, even if these implementations call wait().
In some cases where large objects are being passed, the effective
pass by value semantics of the TLM API may become a
significant overhead. In such cases the user may wish to leverage
C++ smart pointers and containers to gain efficiency. For
example, large objects can be safely and efficiently passed using
the boost shared_ptr template using the form shared_ptr<const
T>, where T is the underlying type to be passed.

ii Thanks to Maurizio Vitale from Philips for stimulating the

discussion around this issue.

 Page 17 of 17

Appendix C : Unidirectional TLM Interfaces

tlm_moded_put_if

tlm_put_if

tlm_nonblocking_extended_put_if tlm_blocking_extended_put_if

tlm_extended_put_if

tlm_fifo_put_if

tlm_fifo_debug_if

tlm_blocking_moded_put_if tlm_nonblocking_moded_put_if

tlm_blocking_put_if tlm_nonblocking_put_if

Core TLM Interfaces classes are

• tlm_transport_if<REQ,RSP>

• tlm_blocking_put_if, tlm_nonblocking_put_if, tlm_put_if

• tlm_blocking_get_if, tlm_nonblocking_get_if, tlm_get_if
Extended TLM Interface classes are

• tlm_blocking_moded_put_if, tlm_nonblocking_moded_if, tlm_moded_put_if

• tlm_blocking_extended_put_if, tlm_nonblocking_extended_if, tlm_extended_put_if

• and their get equivalents
Also Provided are

• tlm_master_if - combines tlm_put_if<REQ> and tlm_get_if<RSP>

• tlm_slave_if – combines tlm_get_if<REQ> and tlm_put_if<REQ>
Fifo Specific Interface classes are

• tlm_fifo_put_if, tlm_fifo_get_if, tlm_fifo_debug_if

inherits
from

NB get interface hierarchy is not
shown but follows the same

pattern

