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ABSTRACT 
In the introduction, we describe the motivation for proposing a 
Transaction Level Modeling standard, focusing on the main use 
cases and the increase in productivity such a standard will bring. 
In Section 2, we describe the core tlm proposal in detail. Section 
3 shows refinement of a single master / single slave from a 
programmers view model down through various levels of 
abstraction to an rtl only implementation. Section 4 shows how to 
code commonly occurring System Level design patterns such as 
centralized routers, arbiters, pipelines, and decentralized decoding 
schemes using the proposed tlm standard. In order to do this we 
briefly describe and use some extensions to the core proposals.  
Section 5 shows how to combine and recombine the generic 
components in section 4 to explore different switch architectures. 
In the first Appendix, we outline the uses of sc_export, which 
relied on in many of the examples. In the second Appendix, we 
briefly discuss some guidelines for using the TLM proposal in a 
concurrent SystemC environment in an efficient and safe way. 
The final appendix shows the TLM interface inheritance 
hierarchy. 
Code for all the examples contained in this paper is available in 
the OSCI TLM kit available at www.systemc.org.  

1. Introduction 
Transaction Level Modeling ( TLM ) is motivated by a number of 
practical problems. These include : 

• Providing an early platform for software development 

• System Level Design Exploration and Verification 

• The need to use System Level Models in Block Level 
Verification. 

A commonly accepted industry standard for TLM would help to 
increase the productivity of software engineers, architects, 
implementation and verification engineers. However, the 
improvement in productivity promised by such a standard can 
only be achieved if the standard meets a number of criteria : 

• It must be easy, efficient and safe to use in a concurrent 
environment. 

• It must enable reuse between projects and between 
abstraction levels within the same project. 

• It must easily model hardware, software and designs 
which cross the hardware / software boundary. 

• It must enable the design of generic components such as 
routers and arbiters. 

Since the release of version 2.0, it has been possible to do TLM 
using SystemC. However, the lack of established standards and 
methodologies has meant that each TLM effort has had to invent 
its own methodologies and APIs to do TLM. In addition to the 

cost of reinventing the wheel, these methodologies all differed 
slightly, making IP exchange difficult. 
This paper will describe how the proposed OSCI TLM standard 
meets the requirements above, and show how to use it to solve 
various common modeling problems. We believe that widespread 
adoption of this proposal will lead to the productivity 
improvements promised by TLM.  

2. The TLM Proposal 
2.1 Key Concepts 
There are three key concepts required to understand this proposal. 

• Interfaces 

• Blocking vs Non Blocking 

• Bidirectional vs Uni Directional 

2.1.1 Interfaces 
The emphasis on interfaces rather than implementation flows 
from the fact that SystemC is a C++ class library, and that C++ ( 
when used properly ) is an object orientated language. First we 
need to rigorously define the key interfaces, and then we can go 
on to discuss the various ways these may be implemented in a 
TLM design. It is crucial for the reader to understand that the 
TLM interface classes form the heart of the TLM standard, and 
that the implementations of those interfaces (e.g. tlm_fifo) are not 
as central. In SystemC, all interfaces should inherit from the class 
sc_interface. 

2.1.2 Blocking and Non Blocking 
In SystemC, there are two basic kinds of processes: 
SC_THREAD and SC_METHOD. The key difference between 
the two is that it is possible to suspend an SC_THREAD by 
calling wait(.). SC_METHODs on the other hand can only be 
synchronized by making them sensitive to an externally defined 
sc_event. Calling wait(.) inside an SC_METHOD leads to a 
runtime error. Using SC_THREAD is in many ways more natural, 
but it is slower because wait(.) induces a context switch in the 
SystemC scheduler. Using SC_METHOD is more constrained but 
more efficient, because it avoids the context switching [2]. 
Because there will be a runtime error if we call wait from inside 
an SC_METHOD, every method in every interface needs to 
clearly tell the user whether it may contain a wait(.) and therefore 
must be called from an SC_THREAD, or if it is guaranteed not to 
contain a wait(.) and therefore can be called from an 
SC_METHOD.  OSCI uses the terms blocking for the former and 
non blocking for the latter.  

The OSCI TLM standard strictly adheres to the OSCI use of the 
terms “blocking” and “non-blocking”.  For example, if a TLM 
interface is labeled “non-blocking”, then its methods can NEVER 
call wait(). 
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OSCI Terminology Contains wait(.) Can be called from 

Blocking Possibly SC_THREAD only 

Non Blocking No SC_METHOD or 
SC_THREAD 

 

2.1.3 Bidirectional and Unidirectional Transfers 
Some common transactions are clearly bidirectional, for example 
a read across a bus. Other transactions are clearly unidirectional, 
as is the case for most packet based communication mechanisms. 
Where there is a more complicated protocol, it is always possible 
to break it down into a sequence of bidirectional or unidirectional 
transfers. For example, a complex bus with address, control and 
data phases may look like a simple bidirectional read/write bus at 
a high level of abstraction, but more like a sequence of pipelined 
unidirectional transfers at a more detailed level. Any TLM 
standard must have both bidirectional and unidirectional 
interfaces. The standard should have a common look and feel for 
bidirectional and unidirectional interfaces, and it should be clearly 
shown how the two relate. 

2.2 The Core TLM Interfaces 
2.2.1 The Unidirectional Interfaces 
The unidirectional interfaces are based on the sc_fifo interfaces as 
standardized in the SystemC 2.1 release. Sc_fifo has been used 
for many years in many types of system level model, since the 
critical variable in many system level designs is the size of the 
fifos. As a result, the fifo interfaces are well understood and we 
know that they are reliable in the context of concurrent systems.  
A further advantage of using interfaces based on sc_fifo is that 
future simulators may be able to perform well known static 
scheduling optimizations on models which use them. In addition 
to this, the interface classes are split into blocking and non 
blocking classes and non blocking access methods are 
distinguished from blocking methods by the prefix “nb_”.  
However, for TLM we have two new requirements 

• We need some value free terminology, since “read” and 
“write” in the current sc_fifo interfaces are very loaded 
terms in the context of TLM 

• These interfaces may be implemented in a fifo, some 
other channel, or directly in the target using sc_export. 

To address the first of these concerns, when we move a 
transaction from initiator to target we call this a “put” and when 
we move the transaction from target to initiator we call this a 
“get”. 
A consequence of the second requirement is that we need to add 
tlm_tag<T> to some of the interfaces. This is a C++ trick which 
allows us to implement more than one version of an interface in a 
single target, provided the template parameters of the interfaces 
are different. 

2.2.2 The Unidirectional Blocking Interfaces 
 
template < typename T > 

class tlm_blocking_get_if : 

public virtual sc_interface 

{ 

public: 

  virtual T get( tlm_tag<T> *t = 0 ) = 0; 

  virtual void get( T &t ) { t = get(); } 

}; 

 

 

template < typename T > 

class tlm_blocking_put_if : 

public virtual sc_interface 

{ 

public: 

  virtual void put( const T &t ) = 0; 

}; 

 

Since we are allowed to call wait in the blocking functions, they 
never fail. For convenience, we supply two forms of get, although 
since we provide a default implementation for the pass-by-
reference form , an implementer of the interface need only supply 
one. 

2.2.3 The Unidirectional Non Blocking Interfaces 
 

template < typename T > 

class tlm_nonblocking_get_if : 

public virtual sc_interface 

{ 

public: 

  virtual bool nb_get( T &t ) = 0; 

  virtual bool nb_can_get( tlm_tag<T> *t = 0 ) 
const = 0; 

  virtual const sc_event &ok_to_get( tlm_tag<T> 
*t = 0 ) const = 0; 

}; 

 

template < typename T > 

class tlm_nonblocking_put_if : 

public virtual sc_interface 

{ 

public: 

  virtual bool nb_put( const T &t ) = 0; 

  virtual bool nb_can_put( tlm_tag<T> *t = 0 ) 
const = 0; 

  virtual const sc_event &ok_to_put( tlm_tag<T> 
*t = 0 ) const = 0; 

}; 

The non blocking interfaces may fail, since they are not allowed 
to wait for the correct conditions for these calls to succeed. Hence 
nb_put and nb_get must return a bool to indicate whether the 
nonblocking access succeeded.  We also supply nb_can_put and 
nb_can_get to enquire whether a transfer will be successful 
without actually moving any data. 
These methods are sufficient to do polling puts and gets. We also 
supply event functions which enable an SC_THREAD to wait 
until it is likely that the access succeeds or a SC_METHOD to be 
woken up because the event has been notified. These event 
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functions enable an interrupt driven approach to using the non 
blocking access functions. However, in the general case even if 
the relevant event has been notified, we still need to check the 
return value of the access function – for example, a number of 
threads may have been notified that a fifo is no longer full but 
only the first to wake up is guaranteed to have room before it is 
full again.  
 

2.2.4 Bidirectional Blocking Interface 
 
template<REQ, RSP>  
class tlm_transport_if : public sc_interface 
{ 
public: 

virtual RSP transport(const REQ&) = 0; 
}; 
 
The bidirectional blocking interface is used to model transactions 
where there is a tight one to one, non pipelined binding between 
the request going in and the response coming out. This is 
typically true when modeling from a software programmers point 
of view, when for example a read can be described as an address 
going in and the read data coming back.  
The signature of the transport function can be seen as a merger 
between the blocking get and put functions. This is by design, 
since then we can produce implementations of tlm_transport_if 
which simply call the put(.) and get(.) of two unidirectional 
interfaces. 
 

2.3 TLM Channels 
One or more of the interfaces described above can be 
implemented in any channel that a user cares to design, or directly 
in the target using sc_export. However, two channels seem to be 
useful in a large number of modeling contexts, so they are 
included as part of the core proposal. 

2.3.1 tlm_fifo<T> 
The tlm_fifo<T> templated class implements all the 
unidirectional interfaces described above. The implementation of 
the fifo is based on the implementation of sc_fifo. In particular, it 
addresses many ( but not all ) of the issues related to non 
determinism by using the request_update / update mechanism. 
Externally, the effect of this is that a transaction put into the 
tlm_fifo is not available for getting until the next delta cycle. In 
addition to the functionality provided by sc_fifo, tlm_fifo can be 
zero or infinite sized, and implements the fifo interface extensions 
discussed in 4.3.1 below. 

2.3.2 tlm_req_rsp_channel<REQ,RSP> 
The tlm_req_rsp_channel<REQ,RSP> class consists of two fifos, 
one for the request going from initiator to target and the other for 
the response being moved from target to initiator. To provide 
direct access to these fifos, it exports the put request and get 
response interfaces to the initiator and the get request and put 
response interfaces to the target. 
As well as directly exporting these four fifo interfaces, 
tlm_req_rsp_channel<REQ,RSP> implements three interfaces. 

The first two combine the unidirectional requests and responses 
into convenient master and slave interfaces : 
 
template < typename REQ , typename RSP > 

class tlm_master_if :  

  public virtual tlm_extended_put_if< REQ > , 

  public virtual tlm_extended_get_if< RSP > {}; 

 

template < typename REQ , typename RSP > 

class tlm_slave_if :  

  public virtual tlm_extended_put_if< RSP > , 

  public virtual tlm_extended_get_if< REQ > {}; 

}; 

 
In addition to this, it implements tlm_transport_if<REQ,RSP> as 
follows : 
 
RSP transport( const REQ &req ) { 

  RSP rsp; 

 

  mutex.lock(); 

 

  request_fifo.put( req ); 

  response_fifo.get( rsp ); 

 

  mutex.unlock(); 

  return rsp; 

 

} 

 

This simple function provides a key link between the bidirectional 
and sequential world as represented by the transport function and 
the timed, unidirectional world as represented by tlm_fifo. We 
will explain this in detail in the transactor ( 3.4 ) and arbiter ( 4.2 ) 
examples below. 

2.4 Summary of the Core TLM Proposal 
The ten methods split into five classes described in Section 2.2 
form the basis of the OSCI TLM proposal. On the basis of this 
simple transport mechanism, we can build models of software and 
hardware, generic routers and arbiters, pipelined and non 
pipelined buses, and packet based protocols. We can model at 
various different levels of timing and data abstraction and we can 
also provide channels to connect one abstraction level to another.  
Because they are based on the interfaces to sc_fifo, they are easily 
understood, safe and efficient. 
Users can and should design their own channels implementing 
some or all of these interfaces, or they can implement them 
directly in the target using sc_export. The transport function in 
particular will often be directly implemented in a target when 
used to provide fast programmers view models for software 
prototyping. 
In addition to the core interfaces, we have defined two standard 
channels, tlm_fifo<T> and tlm_req_rsp_channel<REQ,RSP>. 
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These two channels can be used to model a wide variety of timed 
systems, with the tlm_req_rsp_channel class providing an easy to 
use bridge between the untimed and timed domains. 

3. Modeling a simple peripheral bus at 
various levels of abstraction 
In this section, we will describe how to take an abstract single 
master / single slave model down through various levels of 
abstraction to an rtl only implementation. This ordering will be 
familiar to readers who are from a software background and want 
to understand how to incorporate real time hardware behaviour 
into their TLM models. We also discuss how to build a modeling 
architecture so that a meaningful interface can be presented to 
application experts while the underlying protocols can be 
accurately modeled. Hardware designers may find it easier to read 
this section backwards, starting with the rtl and abstracting to 
reach the programmers view model. 

3.1 A Programmers View Architecture 
In many organizations, there are two distinct groups of engineers. 
In fact, one of the primary goals of TLM is to provide a 
mechanism that allows these two groups of people to exchange 
models. The first group understands the application domain very 
well, but is not particularly expert in C++ nor interested in the 
finer details of the TLM transport layer or the signal level 
protocol used to communicate between modules. The second 
group does not necessarily understand the application domain 
well but does understand the underlying protocols and the C++ 
techniques needed to model them. Because of this divide in 
expertise and interests, it is often useful ( but by no means 
compulsory ) to define a protocol specific boundary between 
these two groups of engineers. 

 
Figure 1 : Modeling Architecture 

 
This interface is sometimes called the convenience interface. It 
will typically consist of methods that make sense to users of the 
protocol in question : for example, read, write, burst read and 
burst write. A user will use initiator ports that supply these 
interfaces, and define target modules which inherit from the these 
interfaces. The infrastructure team will implement the protocol 
layer for the users. This consists of the request and response 
classes that encapsulate the protocol, an initiator port that 
translates from the convenience functions to calls to RSP 
transport( const &REQ ) in the port, and a slave base class that 
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implements RSP transport( const REQ & ) in the slave. The 
infrastructure team then publishes the initiator port and slave base 
class to the users, who are then protected from the transport layer 
completely. In effect, we have a three layer protocol stack. 
In all the subsequent examples, we use this architecture when we 
are modeling at the PV level. The consequence of this is that we 
can reuse the master code shown below while we refine the slave 
from an abstract implementation down to rtl. 
void master::run() 

{ 

  DATA_TYPE d; 

  for( ADDRESS_TYPE a = 0; a < 20; a++ ) 

  { 

    initiator_port.write( a , a + 50 ); 

  } 

  for( ADDRESS_TYPE a = 0; a < 20; a++ ) 

  { 

    initiator_port.read( a , d ); 

  } 

} 

 
In order to achieve this level of reuse and usability at the user 
level, the implementation team has to define an initiator port, and 
slave base class and protocol that allows these two classes to 
communicate. 

3.1.1 The Protocol 
At this abstract modeling level, the request and response classes 
used to define the protocol have no signal level implementation, 
they simply describe the information going in to the slave in the 
request and the information coming out of the slave in the 
response. 
 
template< typename ADDRESS , typename DATA > 

class basic_request 

{ 

public: 

  basic_request_type type; 

  ADDRESS a; 

  DATA d; 

}; 

 

template< typename DATA > 

class basic_response 

{ 

public: 

  basic_request_type type; 

  basic_status status; 

  DATA d; 

};  

3.1.2 The Initiator Port 
On the master side, infrastructure team supplies an initiator port 
which translates from the convenience layer to the transport layer. 
basic_status read( const ADDRESS &a , DATA &d ) { 

    basic_request<ADDRESS,DATA> req; 

    basic_response<DATA> rsp; 

    req.type = READ; 

    req.a = a; 

    rsp = (*this)->transport( req ); 

    d = rsp.d; 

    return rsp.status; 

} 

The write method is implemented in a similar fashion. 

3.1.3 Slave Base Class 
In the slave base class, we translate back from the transport layer 
to the convenience layer. 
 
basic_response<DATA> 

transport( const basic_request<ADDRESS,DATA> 
&request ) { 

    basic_response<DATA> response; 

    switch( request.type ) { 

    case READ : 

      response.status = read( request.a , 
response.d ); 

      break;  

    case WRITE: 

      response.status = write( request.a , 
request.d ); 

      break; 

    … 

    } 

    return response; 

} 

 
The read and write functions are pure virtual in the slave base 
class, and are supplied by the user’s implementation which 
inherits from the slave base class. 

3.1.4 Only Request and Response Classes are 
Compulsory  
It is worth re-emphasizing that this modeling architecture is not 
compulsory. In this case, the infrastructure team only supplies the 
protocol itself and not the initiator port and slave base class. The 
consequence of this is that each master and each slave may have 
to do the translation to and from the underlying protocol 
described in the preceding two sections. While the examples 
below have been coded using a convenience layer, they could 
have been implemented directly on top of the transport layer. 
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3.2 PV Master / PV Slave 
This example uses a single thread in the master to send a 
sequence of writes and reads to the slave. Both write and read 
transactions are bidirectional ( although a write doesn’t return 
data it does return protocol specific status information ) so we use 
the bidirectional blocking interface, tlm_transport_if.  
 

Using the protocol and the modeling architecture described 
above, we can produce a simple PV master / PV slave 
arrangement as shown below.i 

 
Figure 2 : PV Master / PV Slave 

There is only one thread in this system, on the master side. The 
methods in the slave are run in the context of this thread, having 
been called directly by the master using the sc_export 
mechanism. 
The user only has to do two things in the slave : bind its interface 
to the sc_export so that the master can bind to it as in the diagram 
above, and define read() and write(). 
 
mem_slave::mem_slave( const sc_module_name 
&module_name , int k ) : 

  sc_module( module_name ) , 

  target_port("iport") 

{ 

  target_port( *this ); 

  memory = new ADDRESS_TYPE[ k * 1024 ]; 

} 

 

basic_status 

mem_slave:: 

read( const ADDRESS_TYPE &a , DATA_TYPE &d ) 

{ 

  d = memory[a]; 

  return basic_protocol::SUCCESS; 

} 

 

basic_status 

mem_slave:: 

write( const ADDRESS_TYPE &a, const DATA_TYPE &d) 

{ 

  memory[a] = d; 

  return basic_protocol::SUCCESS; 

                                                                 
i See Section 6 for the graphical conventions used in these 

examples 

} 

3.3 PV Master / tlm_req_rsp_channel / 
unidirectional slave 
This example shows how to connect a master using the 
bidirectional transport interface to a slave which has 
unidirectional interfaces. As described above, to do this we use 
tlm_req_rsp_channel which implements the transport function as 
blocking calls to a request and a response fifo. The different 
modules are connected together as shown. 

 
Figure 3 : PV master / unidirectional slave 

 
The slave now models the separate request and response phases of 
the transaction, which is closer to the final implementation than 
the previous example. However, it pays a price in performance 
because we now have two threads in the system and have to 
switch between them. 
The master is unchanged from the previous example, but the slave 
has a two sc_ports and a thread as shown below. 
 
void mem_slave::run() 

{ 

  basic_request<ADDRESS_TYPE,DATA_TYPE> request; 

  basic_response<DATA_TYPE> response; 

  

  for(;;) 

  { 

    request = in_port->get(); 

    response.type = request.type; 

 

    switch( request.type ) 

    { 

    case basic_protocol::READ : 

      response.d = memory[request.a]; 

      response.status = basic_protocol::SUCCESS; 

      break; 

    case basic_protocol::WRITE: 

    … 

    } 

    out_port->put( response ); 

  } 

} 

3.4 PV Master / transactor / rtl slave 
We can now refine the slave further to a genuine register transfer 
level implementation. The example shows this rtl implementation 

master slave tlm_req_rsp_channel 
master slave 
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in SystemC, although in reality it may be in a verilog or vhdl and 
linked to SystemC using a commercial simulator. 
 

 
Figure 4 : PV Master / rtl slave 

The key component in this system is the transactor. It gets an 
abstract request from the request fifo in the tlm_req_rsp_channel 
and waits for an opportunity to send this out over the rtl level bus. 
It then waits until it sees a response on the rtl bus, at which point 
it puts the abstract response into the response fifo in the 
tlm_req_rsp_channel. The master thread will then unblock 
because it has a response available to be “got” from the fifo. 
In order to do all this, the transactor has to implement at least one 
state machine to control the bus., usually in an SC_METHOD 
statically sensitive to the clock. A consequence of using 
SC_METHOD is that we need to use the non blocking interfaces 
when accessing the fifos in tlm_req_rsp_channel. 
If the slave and transactor use SC_METHODs, then the only 
thread in this system is the master. 

3.5 RTL Master / RTL Slave 
This example is a conventional rtl master talking across a simple 
peripheral bus to an rtl slave. While the example is implemented 
in SystemC using SC_METHODs statically sensitive to a clock, it 
could also be implemented entirely in vhdl or verilog and 
simulated using a commercial simulator. 
 

 
Figure 5 :  RTL Master / RTL Slave 

4. Typical SoC Modeling Patterns using the 
TLM Proposal 
In the previous section, we showed how to refine a single master 
and single slave down to rtl using simple non pipelined peripheral 
bus. In this section we show how to model typical patterns found 
in more complicated SoC modeling problems.  

4.1 Router 
The first case we will look at is a common problem found in 
almost any SoC : how to route the traffic generated by one master 
to one of many slaves connected to it. When it comes to the final 
implementation, the decoding may be centralized or 
decentralized. In 4.4 we discuss how to do decentralized 
decoding. However, modeling the decoding as a centralized router 
is easier to code and faster to execute, so we discuss the router 
pattern first. 
The basic pattern is shown below. The address map, router 
module and router port used in the diagram below are generic 
components. Provided a protocol satisfies some minimal 
requirements, this router module is capable of routing any 
protocol. 
 

 
Figure 6 : Master, Router, Multiple Slaves 

 
// an example address map 

// slave one is mapped to [ 0 , 0x10 )  

// slave two is mapped to [ 0x10, 0x20 )  

slave_1.iport 0 10  

slave_2.iport 10 20 

 
The address map in the router is a mapping from an address range 
to a port id. In order to build up this mapping from a file such as 
the one above, we need to be able to ask the port in the router 
how the names of the slaves that it is connected to map to port 
ids. The generic component router_port<IF> adds this 
functionality to sc_port. Because router_port inherits from 
sc_port, in all other respects it behaves like an sc_port. 
The router receives a request from the master. It attempts to find 
an address range which contains this address. If it is unable to 
find such a range, it returns a suitable protocol error. If it is 
successful, it subtracts the base address of the slave from the 
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request, forwards the adjusted request to the correct slave and 
finally sends the response back to the master. 
 
RSP transport( const REQ &req ) { 

  REQ new_req = req; 

  int port_index; 

  if( !amap.decode( new_req.get_address() , 

                    new_req.get_address() , 

       port_index ) ) { 

      return RSP(); 

  } 

  return router_port[port_index]-> 

         transport( new_req ); 

} 

 

As can be seen from the code above, we need to make two 
assumptions about the protocol to make it routable : the request 
must have a get_address function which returns a reference to the 
address, and the response’s default constructor must initialize the 
response to an error state. We also need to assume the address is 
reasonably well behaved ( eg it is copyable and has <, << and >> 
operators defined ). 

4.2 Arbiter 
Arbitration is not quite as common a pattern as the routing 
pattern, since by definition we only need to arbitrate between two 
simultaneous requests when we have introduced time into our 
model. In a pure PV model which executes in zero time, 
arbitration is a meaningless concept. However, pure PV models 
are in fact quite rare and arbitration is often needed in TLM 
models.  

 
Figure 7 : Arbitration between Multiple Masters 

The masters put a request into their respective 
tlm_req_rsp_channels and wait for a corresponding response. A 
separate thread in the arbiter polls all the request fifos ( using 
nb_get ) , decides which is the most important, and forwards the 
request to the slave. When the slave responds, the arbiter puts the 
response into the reponse fifo in the relevant 
tlm_req_rsp_channel. The master then picks up the response and 
completes the transaction. The key thread in the arbiter is below. 
 

 

virtual void run() { 

  port_type *port_ptr; 

  multimap_type::iterator i; 

  REQ req; 

  RSP rsp; 

  for( ;; ) { 

    port_ptr = get_next_request( i , req ); 

    if( port_ptr != 0 ) { 

      rsp = slave_port->transport( req ); 

      (*port_ptr)->put( rsp ); 

    } 

    wait( arb_t ); 

  } 

} 

 
get_next_request() iterates over a multimap of sc_ports. These 
ports have been sorted in priority order, although the precise 
operation of get_next_request can be changed according to the 
arbitration scheme. A very naïve starvation inducing arbitration 
scheme is shown below, for illustration purposes, although we 
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would expect that this virtual function is overridden to do 
something more realistic. 
 

virtual port_type * 

get_next_request( multimap_type::iterator &i, 

                  REQ &req ) { 

  port_type *p; 

  for( i = if_map.begin(); 

       i != if_map.end(); 

       ++i ) 

  { 

      p = (*i).second; 

      if( (*p)->nb_get( req )  ) { 

 return p; 

    } 

  } 

  return 0; 

} 

The multimap is a one to many mapping from priority level to 
port, which can be configured and reconfigured at any time. The 
code above will always get the highest priority port which has a 
pending request. Multimap is in the stl library and comes with 
many access functions useful for arbitration – for example, it is 
easy to find all ports of the same priority level for use in a 
prioritized round robin arbitration scheme. 

4.3 Multiple Slaves with Decentralized 
Decoding 
As discussed above, the easiest and most efficient way to model 
decoding is by using a centralized router. However, there are 
occasions when this technique diverges too far from the 
implementation it is modeling. In these cases, we need to use the 
decentralized decoding pattern. 

 
Figure 8 : Decentralised Decoding 

The master is connected to the tlm_req_rsp_channel in the normal 
way. All of the slaves monitor all of the requests coming in. If the 
request is successfully decoded locally, one of the slaves tells the 
master that the request has been decoded. This unblocks the 
request fifo in the tlm_req_rsp_channel. The slave then goes on to 
process the request, and send a response to the response fifo in the 
tlm_req_rsp_channel, from where the master can pick it up. 

4.3.1 The Moded Extensions to the Core  TLM 
Interfaces 
In the description of how the slave works above, it is apparent 
that the core tlm interfaces do not provide the functionality 
needed. The get() functions in the core interface all do three 
things. They get the data, they consume the transaction – ie 
successive calls to get will return a different transaction – and 
notify the master that they have done so, all in one function. The 
moded extensions split these three aspects up into separate 
functions. 
In this example, each slave needs to peek at the same request to 
see if it can be decoded. If it can be decoded, only one of the 
slaves consumes the request, notifies the master that it has done 
so, and sends back a response. So for this example, we need one 
function to get the data without consuming the data or notifying 
the master, and a separate function to consume and notify.  In 
other examples, we may want to get and consume in one function 
and notify but not consume in a separate one. 
Similarly, on the put side, the moded extensions allow a master to 
overwrite the most recently put transaction, without waiting for 
the slave. 
The put and get modes are : 
enum tlm_get_type { 

  NORMAL_GET , // consumes and notifies  

  SHRINK ,     // consumes but doesn't notify 

  PEEK ,       // neither consumes nor notifies 

}; 

 

enum tlm_finish_get_type { 

  UNSHRINK ,  // notifies  

  POP         // consumes and notifies 

}; 

 

enum tlm_put_type { 

  NORMAL_PUT , 

  OVERWRITE 

}; 

 

and they are used in the moded tlm interfaces : 
 
template < typename T >  

class tlm_moded_get_if : 

public virtual sc_interface 

{ 

public: 

virtual bool get( T & , tlm_get_type ) = 0; 

virtual bool nb_get( T & , tlm_get_type ) = 0; 

 

virtual bool notify_got( tlm_finish_get_type )=0; 

virtual bool nb_notify_got( tlm_finish_get_type ) 
= 0; 

virtual bool nb_notify_got( const sc_time & , 

                       tlm_finish_get_type ) = 0; 

master tlm_req_rsp_
channel 

slave 1 

slave 1 
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}; 

 

template < typename T > 

class tlm_moded_put_if : public virtual 
sc_interface 

{ 

public: 

  virtual bool put( const T & , 

                    tlm_put_type ) = 0; 

  virtual bool nb_put( const T & , 

                       tlm_put_type ) = 0; 

 

}; 

4.3.2 Decentralised Decoding Slaves 
As already described, the slaves need to get without consuming or 
notifying, and then consume and notify. The get type we need is 
PEEK, and the finish get type we need is POP. The code is shown 
below. 
 

while( true ) { 

  request_port->get( req , PEEK ); 

  if( decode( req.a ) { 

    request_port->nb_notify_got( POP ); 

    rsp = process_req( req ); 

    response_port->put( rsp ); 

  } 

  wait( request_port->ok_to_get() ); 

} 

4.4 Pipeline 
In Section 3, we started with a PV master connected to a PV 
slave, and refined first the slave and then the master down to an 
rtl description. If we use a weak definition of a Progammers View 
model ( ie a model which does call wait() but which does not 
advance time ) this example can be described as a PV model. We 
will leave it to the reader to do the refinement in a similar fashion 
to Section 3. 

 
Figure 9 : Pipeline 

The basic topology is shown above. Since the protocol now has 
separate address and data phases, we need two separate threads in 
the master. We also need a new protocol definition, or more 
accurately, we need two new protocols, one for each phase. 
 

enum address_phase_status {  

  ADDRESS_OK , 

  ADDRESS_ERROR 

}; 

 

template < typename ADDRESS >  

struct address_phase_request { 

  pipelined_protocol_type type; 

  ADDRESS a; 

}; 

 

template < typename DATA >  

struct data_phase_request { 

  pipelined_protocol_type type; 

  DATA wr_data; 

}; 

 

template < typename DATA > 

struct data_phase_response { 

  pipelined_protocol_type type; 

  DATA rd_data; 

  data_phase_status status; 

}; 

 

Since the template parameters for the two phases are completely 
different, we can implement both the address phase and the data 
phase transport functions at the top level in the slave. 
To make sure that we issue and process requests in the correct ( 
ie, pipelined ) order, we have fifos in both master and slave. In 
the master, whenever we issue an address phase request, we put 
the corresponding data phase request into a fifo to be processed 

slave 
master 

address_if 

data_if 
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later when the pipeline is full. The slave stores the requests as 
they come in, so that when it responds to a data phase it knows 
what request it is responding to. 
The critical lines of code, which control the correct operation of 
the pipeline, are in the slave data phase : 
 

while( pipeline->nb_can_put() ) { 

  wait( pipeline->ok_to_get() ); 

} 

pipeline->nb_get( pending , PEEK ); 

if( pending.type != req.type ) { 

  rsp.status = DATA_ERROR; 

  return rsp; 

} 

pipeline->nb_notify_got( POP ); 

 

rsp.status = DATA_OK; 

rsp.type = req.type; 

switch( req.type ) { 

case READ : 

  rsp.rd_data = memory[pending.a]; 

  break; 

… 

 

This code ensures that a data phase request is not responded to 
until the pipeline is full. It also checks that the address request 
just leaving the pipeline is of the same type as the data request. If 
this check fails, we do not process the request. If the check is ok, 
we go on to do the appropriate read or write. 
This is a particular, abstract model of an in-order pipeline. To 
understand the example properly, it may be necessary to look at 
the code in www.cadence.com/systemc/whitepaper/examples. Of 
course, there are many other kinds of pipelines, most of which 
will modeled at the rtl level or close to it. However, like this 
example, they will all need two threads either in the master or 
slave to connect to a TLM model, and will all need to store the 
unfinished transactions in some kind of buffer on the slave side as 
they proceed down the pipeline. 

5. Architectural Exploration 
The patterns in sections 3 and 4 have been presented in their most 
simple form, in order to clarify the main issues associated with 
each pattern. In real TLMs, various patterns and levels of 
abstraction will combined. In this section, we show how these 
basic components can be combined and recombined to explore 
different architectures for a switch. Because the basic components 
are very generic and use the proposed TLM interfaces, switching 
from one architecture to another is very easy and requires little if 
any disruption to the SoC model as a whole. 

5.1 Hub and Spoke  

 
Figure 10 : Hub and Spoke Architecture 

The first switch architecture we shall consider is a hub and spoke 
arrangement. In this architecture, all transactions pass through a 
central hub before being routed to their final destination. As a 
result, we have to arbitrate between the various requests for 
control of this central hub. While this is not the most efficient 
architecture in terms of throughput, it is efficient in terms of 
silicon area and therefore cost, since we only need one arbiter. 
Because all the transactions go through a central hub, its behavior 
is also more predictable than other switch architectures. 
We use the arbiter in 4.2 followed by the router in 4.3 to 
implement this architecture. 
 

 
Figure 11 : 2 * 2 Hub and Spoke Implementation 

masters 

arbiter router 

slaves

tlm_req_rsp_channel 

masters 
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5.2 Cross Bar Switch 

 
Figure 12 : Cross Bar Architecture 

The advantage of a cross bar architecture is that we are able to 
make more than one connection across the switch at the same 
time. If a slave is available, a master may connect to it whatever 
else is going on in the system at the same time. A disadvantage is 
that there is no central arbitration, so every slave has to arbitrate 
between all the masters. This makes this architecture more 
expensive and also less predictable. However, the overall 
throughput is much greater than for the hub and spoke. 
To move from the hub and spoke to the cross bar architecture, we 
need to make no changes at all to the masters and slaves. In terms 
of the modeling architecture in 2.1, we simply rearrange the 
components in the transport layer. 

 
Figure 13 : 2 * 2 Cross Bar Implementation 

5.3 Summary 
The intention of sections 3,4 and 5 is to show how to use the 
relatively simple transport mechanism provided by the tlm 
proposal to coordinate between different teams of engineers, how 
to combine different levels of abstraction in the same TLM, and 
how to approach common modeling problems. It is not intended 
to be prescriptive. Rather, it summarizes many of the discussions 
that have taken place in and around the OSCI TLM working 
group. We hope that many more discussions along these lines will 
take place in the future. 

masters slavesrouters arbiters 

tlm_req_rsp_channel 

masters 

slaves 
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7. Notes on the Graphical Representation of 
sc_port, sc_export and channels 
 
Throughout the examples in Sections 3, 4, and 5 we adopt the 
following graphical conventions. 
 

A small square with an 
arrow leaving it is an 

sc_port 

A small square with 
an arrow arriving at it 

is an sc_export 

An arrow arriving at a 
module with no small 

square indicates a channel 

This symbol 
represents a thread 
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Appendix A : sc_export 
SystemC 1.0 provided sc_signal to connect an sc_in to an sc_out.  
This was primarily used to model at or close to the register 
transfer level. 

Figure 14 : rtl level binding in SystemC 1.0 and 2.0 
 
For higher levels of abstraction, SystemC 2.0 generalised this 
pattern by introducing sc_port<IF> and channels. A channel 
implements one or more interfaces, and sc_ports are bound to that 
interface. 

 
Figure 15 : Binding to a Channel in SystemC 2.0 

 
The advantage of using channels is that there is a very clear 
boundary between behaviour and communication. The 
disadvantage is that we are forced to use two threads, one in each 
of the modules on either side of the channel. 
In SystemC 2.1, sc_export was introduced. This allows direct port 
to export binding, as shown below. 

 
Figure 16 : Binding to an sc_export in SystemC 2.1 

 
An sc_port assumes that it is bound to an interface. In Figure 16, 
this interface is supplied by sc_export. The port is bound to 
sc_export, and in turn sc_export is bound to an implementation of 
the interface somewhere inside the target block. In software 
engineering terms, we would describe sc_export<IF> as a proxy 
for the interface. The main reason for the introduction of 
sc_export is execution speed. We can now call the interface 
method in the target directly from within the initiator, so there is 
no need for a separate thread in the target and no reduction in 
performance associated with switching between threads. 

An important use of sc_export is to allow sc_ports to connect to 
more than one implementation of the same interface in the same 
top level block.  

 
Figure 17 : exporting two copies of the same interface 

 
Finally, an sc_export can be bound to another sc_export, provided 
the template parameter is the same. This mechanism is used to 
give access to an interface defined lower down in the sc_object 
hierarchy. 

 
Figure 18 : sc_port, sc_export and hierarchy 

The diagram above shows how a thread in a low level sub module 
inside an initiator directly calls a method in low level sub module 
in a target, using a chain of sc_ports to traverse up the initiator 
hierarchy, and a chain of sc_exports to traverse down the target 
hierarchy. 

sc_port<IF> sc_port<IF> sc_export<IF> sc_export<IF> 

sc_port<IF> sc_export<IF> 

sc_port<IF1> sc_port<IF2> channel 

sc_out sc_in sc_signal 

hierarchical 
sc_port to sc_port 

binding 

hierarchical 
sc_export to 

sc_export binding 

sc_port to 
sc_export 
binding 

sc_export to 
sc_interface 

binding 
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Appendix B : Safety in a Concurrent SystemC 
Environment 
There have been many discussions relating to safety in the TLM 
WG.ii By safety we mean protection from premature deletion or 
editing of transaction data by one process while that transaction is 
being used elsewhere in the TLM. We also mean safety from 
unintended memory leaks. This appendix offers guidelines for the 
safe use of the TLM interfaces presented in this paper. 
The TLM interfaces follow the style of the sc_fifo interfaces, 
which in turn are similar to many other C++ interfaces. Data 
going in to a method is always passed by const reference. Data 
coming back is passed by value if we can guarantee that there will 
always be data there eg the blocking get and transport calls. 
However, if we cannot guarantee that data will come back, we 
return the status by value and pass in a non const reference into 
the method, which will have data assigned to it if data is 
available. We do not pass by pointer, and we do not use a non 
const reference to pass data into a method. Since this style is 
widely used, in sc_fifo, throughout SystemC, and elsewhere in 
the C++ world, it is easily understood and used. 
However, SystemC is a co-operative multi-threaded environment, 
so some care does need to be taken when using these interfaces 
over and above the usual precautions when programming in a 
single threaded environment. When we say co-operative, we 
mean that a thread is only suspended when the thread itself calls 
wait. Hence if we are safe when we call a method, and we can 
guarantee that we do not call wait inside that method, then the 
transaction data in that method is safe. For this reason, we know 
that all non blocking interface methods are safe, whatever their 
signatures. 
In all the examples discussed in this paper, the transaction data is 
allocated and owned by the thread which calls the tlm interface 
function. Whether or not there is a wait in the target, if the master 
owns the data in this way, the transaction data is safe from 
premature deletion and unintended editing. 
It is a REQUIREMENT of the TLM standard that objects passed 
into blocking (or even potentially blocking) interface funtions are 
owned in the manner described above.  With this requirement, 
implementations of blocking TLM API functions can safely 
assume that data passed into them by reference will not be 
prematurely deleted, even if these implementations call wait(). 
In some cases where large objects are being passed, the effective 
pass by value semantics of the TLM API may become a 
significant overhead. In such cases the user may wish to leverage 
C++ smart pointers and containers to gain efficiency. For 
example, large objects can be safely and efficiently passed using 
the boost shared_ptr template using the form shared_ptr<const 
T>, where T is the underlying type to be passed. 

                                                                 
 
ii Thanks to Maurizio Vitale from Philips for stimulating the 

discussion around this issue. 
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Appendix C : Unidirectional TLM Interfaces 
 

tlm_moded_put_if 

tlm_put_if 

tlm_nonblocking_extended_put_if tlm_blocking_extended_put_if 

tlm_extended_put_if 

tlm_fifo_put_if 

tlm_fifo_debug_if 

tlm_blocking_moded_put_if tlm_nonblocking_moded_put_if 

tlm_blocking_put_if tlm_nonblocking_put_if 

Core TLM Interfaces classes are 

• tlm_transport_if<REQ,RSP> 

• tlm_blocking_put_if, tlm_nonblocking_put_if, tlm_put_if 

• tlm_blocking_get_if, tlm_nonblocking_get_if, tlm_get_if 
Extended TLM Interface classes are  

• tlm_blocking_moded_put_if, tlm_nonblocking_moded_if, tlm_moded_put_if 

• tlm_blocking_extended_put_if, tlm_nonblocking_extended_if, tlm_extended_put_if 

• and their get equivalents 
Also Provided are 

• tlm_master_if  - combines tlm_put_if<REQ> and tlm_get_if<RSP> 

• tlm_slave_if – combines tlm_get_if<REQ> and tlm_put_if<REQ> 
Fifo Specific Interface classes are 

• tlm_fifo_put_if, tlm_fifo_get_if, tlm_fifo_debug_if 

inherits 
from 

NB get interface hierarchy is not 
shown but follows the same 

pattern 


