
663 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUW 1995

Synthesis of Application Specific Instruction Sets
Ing-Jer Huang, Member, IEEE and Alvin M. Despain, Member, IEEE

Abstract- An instruction set serves as the interface between
hardware and software in a computer system. In an application
specific environment, the system performance can be improved
by designing an instruction set that matches the characteris-
tics of hardware and the application. We present a system-
atic approach to generate application-specific instruction sets so
that software applications can be efficiently mapped to a given
pipelined micro-architecture. The approach synthesizes instruc-
tion sets from application benchmarks, given a machine model,
an objective function, and a set of design constraints. In addition,
assembly code is generated to show bow the benchmarks can be
compiled with the synthesized instruction set. The problem of
designing instruction sets is formulated as a modified scheduling
problem. A binary tuple is proposed to model the semantics
of instructions and integrate the instruction formation process
into the scheduling process. A simulated annealing scheme is
used to solve for the schedules. Experiments have shown that
the approach is capable of synthesizing powerful instructions for
modern pipelined microprocessors, and running with reasonable
time and a modest amount of memory for large applications.

I. INTRODUCTION

ICROPROCESSORS (instruction set processors) offer M a flexible and low-cost solution for embedded systems
with complex algorithms or control intensive applications. The
performance of a microprocessor-based system depends on
how efficiently the application is mapped to the hardware. One
key issue determining the success of the mapping is the design
of the instruction set, which serves as the interface between
the hardware and application (software). How to design an
instruction set that closely matches the characteristics of the
hardware and the application is an important design problem.

The design of instruction sets was once viewed as a design
process independent to the design of the hardware (micro-
architecture). Instruction sets designed under this principle,
such as those of many mainframe coFputers, suffered from
the fact that their supporting hardware was difficult to speed
up or hardware was wasted due to the low utilization rate
of the related instructions in real applications, The necessity
of closely matching the design of instruction ‘sets with the
design of micro-architectures was recognized and aQopted in
the design of many modem RISC-style pipelined pro%sors,
in order to achieve better performance and cost trade-off;
However, in most design projects, the designs were carried out
manually, which limited the exploration of the design space

Manuscript received March 11, 1994; revised January 19, 1995. This work
was supported by the M A under Contract Rutgers 4-26385. This paper was
recommended by Associate Editor M. McFarland.

1.-J. Huang is with the Institute of Computer and Information Engineering,
National Sun Yat-Sen University, Kaohsiung, Taiwan 804 R.O.C.

A. M. Despain is with the Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, CA 90007 USA.

IEEE Log Number 9410376.

and the understanding of the interaction between hardware and
software. CAD tools are necessary to explore and manage such
complex design space. While there has been much progress
in automating the instruction set processor design, most of
the work synthesizes micro-architectures at the RTL level
from given instruction sets (e.g., [l l] , [13], and [14]). How
to systematically design instruction sets which closely match
the characteristics of hardware and software is still an open
problem. The goal of our research is thus to investigate
the instruction set design problem in a systematic way. The
research intends to provide further understanding of the design
and interaction of the hardware and software interface.

In this paper we present the problem formulation and
the algorithm of a systematic approach [7] which synthe-
sizes application-specific instruction sets for parameterized,
pipelined micro-architectures, from a given application bench-
mark. The problem is formulated as a modified scheduling
problem, with the micro-operations (MOP’S) representing the
application benchmark as the nodes to be scheduled, subject
to several design constraints. Instructions are formed by an
instruction formation process which is integrated into the
scheduling process. The compiled code of the application is
generated, using the synthesized instruction set. A simulated
annealing scheme is used to solve for the schedule and the
instruction set. The design issues addressed in this approach
include: instruction utilization, instruction operand encoding,
delay loadlstore and delay branches.

The rest of the paper is organized as follows. Section
I1 reviews related work. Section I11 presents the models
for the micro-architectures, instruction sets and application
benchmarks. Sections IV and V describe the problem formula-
tion and algorithm, respectively. Section VI demonstrates our
techniques with some experiments. Section VI1 discusses the
current status, limitations, and future directions.

11. RELATED WORK

Most of the early work in automatic instruction set design
views the design problem as a design process independent to
the hardware implementation. Instructions were not restricted
to single cycle instructions since multiple cycle instructions

,can be supported through micro-programming (firmware).
Without knowing the decodekontrol complexity, the focus was
maihFin directly supporting high-level languages or increas-
ing the code,d\ensity. The results were CISC-like instructions.
These studies i k h d e Haney’s [l], Bose’s [2] , and Bennett’s
[3] work. These techniques are not suitable for designing
instruction sets for modem pipelined processors.

Sat0 er al. [6] propose an integrated design framework for
application specific instruction set processors. This framework

02784070/95$04.00 0 1995 IEEE

664 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

Instruction Field Typ

TABLE I
BIT WIDTH SPECIFICATION FOR SOME INSTRUCnON FIELD TYPES

Number of bitr

opmde 6

I -tern I 16 I

generates profiling information from a given set of application
benchmarks and their expected data. Based on the profiles,
the design system customizes an instruction set from a super
set, decides the hardware architecture (derived from the GCC’s
abstract machine model), and the related software development
tools. This framework is similar to our work in terms of the
inputs and outputs of the design system; however, it is different
from ours in terms of the machine model and the design
method. They assume a sequential (nonpipelined) machine
model, whereas we assume a pipelined machine with data-
stationary control model. On the other hand, they generate
instruction sets by selecting subsets from a super set, whereas
we synthesize the instruction sets directly in order to find new
and useful instructions for the given application domain.

Different from previous approaches, Holmer [4], [5] focuses
on generating instruction sets which closely couple to the
underlying micro-architecture. As pipelined micro-architecture
proved its superiority in 1980’s, Holmer adopts the modern
pipeline control model (data stationary control) and simple,
parameterized data path as the underlying micro-architecture
model. The parameters for a data path include the number of
readwrite register ports, memory ports, number of functional
units and the cycle counts for memory operation. The user
specifies the parameters, and then invokes the system to
find the set of instructions which best utilizes the hardware
resources such that minimal cycle counts for benchmarks are
achieved. Our work builds on the results of Holmer and
improves the problem formulation and synthesis algorithms,
in order to generate application-specific instruction sets and
compiled codes for microprocessor-based embedded systems.

Another design problem that is close to the instruction set
design problem is microcode compaction [151-[171. However,
it differs in terms of the design space and design goals.
The micro-instructions do not have “opcodes” (and hence the
semantics) and the goal of microcode compaction is to reduce
the number of cycles to execute a microprogram. On the other
hand, in the instruction set design, the size of the instruction
set is determined by both syntax and semantics. The goal
of the instruction set design is to optimize and trade off the
instruction set size, the program size, and the number of cycles
to execute a program.

111. DESIGN MODELS
In this section we present the models of instruction sets,

micro-architectures and application benchmark programs, and
describe how they are represented in our design system.

I

U
(a) (b)

Fig. 2. Variation in data path for different instruction sets.

A. Instruction Sets

The instruction set is assumed to be of fixed word length,
typically 32 b, which is specified by the designer. An in-
struction consists of fields. The fields are a combination of
some field types. For example, the instruction add (RI, R2,

Immed) consists of an opcode field add, two register index
fields Ri and R2, and one immediate data field Immed. The bit
width of each field type is provided by the designer. Table I
lists the specification of some instruction field types and their
bit widths, taken from the BAM instruction set [19]. Each
instruction has one opcode field, but the use of other fields
is constrained only by the total number of bits needed by the
operations in the instruction.

Fig. 1 lists the instruction formats for the instructions
add (RI, R2, Immed) ‘RI + R2 + Immed’ and inc (R)
‘ R + R + l’, based on the bit width specification in Table I.
Note that there are 21 b unused in the format of inc.

The operands of instructions can be encoded in the opcodes.
There are two ways to encode operands. First, a specific
value can be permanently assigned to an operand and becomes
implicit to the opcode. Second, the register specifiers can be
uniJied. For example, the instruction inc is obtained from
the general instruction add. The facts of R1 = R2 (unifying
register specifiers; i.e., both register accesses refer to the same
physical register) and Immed = 1 (fixing an operand to
a specific value which becomes implicit) are encoded into
the opcode inc. Encoding operands saves instruction fields,
at the cost of possibly larger instruction set size, additional
connections and hardwired constants in the data path. For
example, adding the instruction inc to the instruction set
increases the instruction set size by one, and adds a hardwired
constant ‘1’ and an additional multiplexer in the data path, as
shown in Fig. 2.

Furthermore, encoding allows more MOP’S to be packed
into a single instruction. For example, if we find it happens
very often that the values of two independent registers are
increased by one at the same time, we may then devise a

HUANG AND DESPAIN: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTION SETS 665

n

m

I-F-L- R A M W

I l lSrmCtiOn
MOP* Format Costt €Iardware

&<-& RI. R1 1RlW

R,<-R,+R, RI, R. 2 R 1 W, 1 P

u u u u u u
Insmction Instruction Registu Arithmetic/ Mcmory Register

fetch M e d LogicopCrSliOll access write + Instruction Execution

(a)

Instruction Insauction Aritbmc4icJ Memory Register
fetch decode. Logicoperation access write

Re*
Instruetion +
Execution

(3)

Instluction Insrmctioa Register Arithmctid Register
fetch dccodc reid qcgg? write

Lastruction +
Execution

(C)

Fig. 3. Basic pipeline and its variations.

new instruction incd (RI, R2) which performs the MOP’s
‘ RI t RI + 1; R2 +- R2 + 1’ (‘;’ represents concurrency).
This instruction uses only 16 b, as opposed to 58 b used by its
generalized form ‘RI t R2 + Immedl; R3 t R4 + Immedz’
which does not meet the instruction word width constraint for
32-b instructions.

B. Micro-Architectures

The styles of micro-architectures considered in this work are
pipelined micro-architectures. For example, Fig. 3(a) shows
a basic pipeline, which can be functionally partitioned into
6 pipeline stages: instruction fetch (IF), instruction decode
(ID), register read (R), arithmeticAogic operation (A), memory
access (M), and register write (W). Each functional stage
may take more than one cycle, and can be further pipelined.
The first two stages are identical to all instructions. The last
four stages, the instruction execution stages, are dependent
on the semantics of the instructions. The combination of
pipeline stages can be varied. For example, the pipeline ‘IF-
ID/R-A-M-W’ of Fig. 3(b) can be derived by merging the
register-read stage with the instruction-decode stage, at the
cost of restricting the instructions to use a single format
for register specification such that registers can always be
prefetched at the instruction-decode stage. On the other hand,
the pipeline ‘IF-ID-R-AM-W’ of Fig. 3(c) is derived by
merging the arithmetic stage with the memory stage, at the
cost of eliminating the displacement addressing mode. The
displacements have to be computed by other instructions
proceeding the memory-related instructions.

The pipeline is controlled in a data stationary fashion [9].
In the data stationary control, the opcode flows through the
pipeline in synchronization with the data being processed
in the data path. Fig. 4 shows the relationship between the
control path with data stationary model and the data path. The
register files at the top and bottom are the same register file.

TABLE II
MOP SPECIFICATION

They are duplicated for the ease of readability. Opcodes are
forwarded to next stages synchronously. At each stage, the
opcode, together with possible status bits from the data path,
is decoded to generate the control signals necessary to drive
the data path.

This pipeline configuration supports single-cycle instruc-
tions’ which are typical of modem RISC-style processors.
Multiple-cycle instructions can be accommodated with some
modification to the linear pipeline such as the insertion of
internal opcodes [lo]. To manage the complexity of this
research, general multiple-cycle instructions are not considered
at this moment. However, multiple-cycle arithmeticllogic
operations, memory access, and change of control flow
(branch/jump/call) are supported by specifying the delay
cycles as design parameters.

The Spec$cation for the Target Micro-Architecture: The
target micro-architecture can be fully described by specifying
the supported MOP‘s and a set of parameters. The supported
MOP’s describe the functionality supported by the micro-
architecture, and the connectivity among modules in the data
path. For example, the first two columns of Table I1 list
some of the MOP’s supported in the =SI-BAM micropro-
cessor [20] and their corresponding MOP type ID’S. The
basic pipeline structure of the microprocessor is the same as
Fig. 3(b).

The tabulated specification supports the variations of the
micro-architectures easily. For example, the pipeline con-
figuration ‘IF-ID-R-M-W’ in Fig. 3(c) can be derived by
eliminating the MOP’s rmd, m r d and mrad from Table 11.

The set of parameters describes resource allocation and
timing. The parameters include the number of register-file
readwrite ports, number of memory ports, number of func-
tional units, the sizes of the register file and memory, latencies
of operations, and the delay cycles between operations of
memory access, functional units and control flow change.

’ A single-cycle instruction has instruction latency of one cycle.

666 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

h=w
w*;wbteraeml
WrcaPm-aeoM

Y opratim Latency

3 RJ?g&lermad 1

1 Recbterwite 1

TABLE N

MICROARCHITECTURES: DELAY CYCLES
EXAMPLE OF PARAMETERS FOR THE TARGET

......

8
m

!-
......

.....

.....

Insmrtion opcoac Pipeline
status bits Stage I

........... R

...................

...................

Data path Control path

Fig. 4. Data stationary control model.

Table TI1 is an example of the resource parameters for the
VLSI-BAM microprocessor. The resource parameters speci-
fied in this table include the numbers and sizes of resources,
and their operation latencies. Table IV lists the delay param-
eters for various pairs of operations. For example, the M-A
pair in the table specifies that there should be one cycle delay
between a memory operation and a succeeding (dependent)
arithmetic operation.

Note that the existence of bypassing buses in the data path
can be modeled by the delay parameters. For example, if we
remove the bypassing bus in the ‘A’ stage in Fig. 4, then the
delay cycles for the A-A, A-M, and A-C pairs all become
one, instead of zero.

Each MOP supported by the data path is assigned costs
for the instruction format and hardware resources. The costs
of the instruction format are the instruction fields required to
operate the MOP’s, including register index, function selectors,
and immediate data. The hardware costs are the hardware re-
sources required to support the MOP. The hardware resources
include readwrite ports of the register file, memory ports, and
functional units. The third and fourth columns in Table I1 lists
the costs for the corresponding MOP’s.

\ ‘
‘ . - - A o 6 : L F t + l d <- - ’ /

Fig. 5. The controudata flow graph (CDFG) of MOP’s of a simple basic
block.

&,
Fig. 6. The integrated schedulinghstruction-formation process.

C. Application Benchmarks

Each application benchmark is represented as a group of
weighted basic blocks. The weight is defined by the designers,
and is usually used to indicate how many times the basic block
is executed in the benchmark. The basic blocks are mapped
to control/data flow graphs (CDFG’s) of MOP’s, based on the
given MOP specification. Different micro-architectures result
in different MOP specifications, which may map the basic
blocks to different CDFG’s. Fig. 5 shows an example of a
basic block, which consists of six MOP’s, based on the MOP
specification in Table 11. The bold labels before the MOP’s are
their ID’S. The dashed arrows are control dependencies; the
MOP’s MO6 changes the control flow at the end of the basic
block, and hence logically follows MOP’s MO1 - 6. The
solid arrows are data-related dependencies. The data related
dependencies can be characterized into three categories: read-
afer-write (RAW), write-after-read (WAR), and write-after-
write (WAW). They all specify a before relation: the preceding
MOP has to be scheduled before the succeeding MOP, except
in micro-architectures where master-slaved latches are used
to implement registers. In this case, the WAR dependency
indicates a no-later-than relation: the preceding MOP has to
be scheduled no later than the succeeding MOP. The data
dependencies in the figure are all WAR’S.

Iv. INSTRUCTION SET DESIGN AS
A MODIFIED SCHEDULING PROBLEM

The instruction set design problem can be formulated as a
modified scheduling problem (Fig. 6). The inputs of the prob-
lem are: an application represented in CDFG’s, constraints of
the instruction word and field widths and hardware resources,
the objective function, and the micro-architecture specification.
The MOP’s in CDFG’s are scheduled into time steps, subject

HUANG AND DESPAIN: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTION SETS 667

TABLE V
SCHEDULE I FOR THE MOP’S IN FIG. 5 AND THE RESULTED INSTRUCTIONS. *.

REFER TO THE FOOTNOTE OF TABLE 11 FOR THE MEANING OF THE NOTATION

I I I I

to various constraints to be discussed later. While scheduling
MOP’s into time steps, instructions are formed at the same
time. Finally, the outputs of this problem formulation is a
synthesized instruction set and compiled code.

Two schedules of the MOP’s in Fig. 5 are shown in Tables
V and VI, respectively. In the first column of the table are time
steps, and in the second column are the ID’s of the MOP’s
scheduled into the corresponding time step. In this example
we assume a one-cycle delay for the jump MOP (MO6) and
zero-cycle delay for memory MOP’s (MOO and MO3) . The
schedule in Table V is a serialized one, with seven cycles.
There is one MOP in each time step. Note that there is a nop
at the seventh cycle since MO6 is scheduled as the last MOP.
The schedule in Table VI is a more compact one, with four
cycles. Note that the delay slot of MO6 is filled with MO5 such
that there is no need for a nop.

A. Instruction Formation: The Binary Tuple and
Its Relation with Scheduling Process

The semantics of an instruction can be represented by a
binary tuple (MOPTypelDs, -IMPFields) , where MOPTypelDs
is a list of type ID’s (as shown in the first column of Table
11) of MOP’s contained in the instruction, and IMPFields is a
list of fields that are encoded into the opcode.

For example, the binary tuple for the instruction add (R1,
R2, Immed) is ([rrai I , [3). The instruction contains one
MOP ‘RI t Rz+ Immed’ with the type ID rrai, which
is represented by the list in the first argument of the tuple.
Since no fields are encoded, the second argument of the tuple
is an empty list. On the other hand, the binary tuple for the
instruction inc (RI, an encoded version of the instruction
add (RI, R2, Immed) as discussed in Section 111-A, is (
[rrail, [RI = R2, Immed = 11).Thelistinthesecond
argument of the tuple specifies how the fields are encoded:
The element R1 = R2 unifies the register specifiers RI and
Rz to the same register, and the element Immed = 1 fixes
the immediate value permanently to the constant of one.

Instructions are generated from time steps in the schedule.
Each time step corresponds to one instruction. The type ID’s of
the MOP’S scheduled to the same time step are assigned to the
first argument of the binary tuple for the instruction at the time
step. The operand encoding specification, which is generated
by an encoding process integrated into the scheduling process

TABLE VI
SCHEDULE II FOR THE MOP‘s IN FIG. 5 AND THE RESULTED I N s ~ ~ u c n o N s

(described in Section V), is assigned to the second argument
of the binary tuple.

In Tables V and VI, the columns under the header ‘In-
struction Semantics’ and ‘Instruction Fields’ describe the
semantics and field information of the instructions formed
for the two schedules, respectively. The columns ‘MOP type
IDS’ and ‘Encoded fields’ specify the binary tuples for the
instructions. The RTL’s for the corresponding MOP types
are listed under the ‘RTLs’ column. Note that ‘;’ denotes
concurrency. The ‘Inst Name’ column assigns names to the
generated instructions. The column ’Format’ describes the
instruction format, i.e., the required instruction fields. The
column ‘Field values’ lists the instantiated field values for the
corresponding time step. Note that, in order to demonstrate
the variation in the instruction formation, the instruction set in
Table V is chosen from a nonoptimal one.

For example, in Table V, the MOP’s scheduled into time
steps 4 and 5 have the same binary tuple, and thus are mapped
to the same instruction inst4 (R1, R2, I) , with their
field values instantiated to (rl , r2 , 1) and (r2 , r2 ,2) ,
respectively. Note that we use capitalized letters, e.g. RI, to
denote the instruction fields, and noncapitalized letters, e.g.
r2, to denote the instantiated values of the fields. On the
other hand, the MOP in time step 2, is mapped to a different
instruction inst2 (RI, R2), although it contains the same
type of MOP rrai as in time steps 4 and 5. The reason is
that its field for the immediate data I is permanently assigned
to the constant ‘zero’ and made implicit in the opcode, which
is indicated by the specification 1 = 0 in the ‘Encoded field’
column. This implicit field makes the generated instruction
behave as a ‘move’ instruction, instead of ‘add.’

The compiled code can be obtained easily from the instruc-
tion names and instantiated field values. For example, the
compiled code for the scheduled basic block in Table VI is
represented as the sequence

insti’(r2, r O , O), insti’(r2, rl , I), inst5(1024),
i n s t 4 (r 2 , r2 ,2) .

The instruction set is formed by unioning instructions gen-
erated from all time steps. For example, the instruction set
derived from the schedule in Table V contains six instructions
(instl-inst6), and the instruction set for the schedule

in Table VI contains three instructions (inst4, inst5,
inst7).

668 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

B. Performance (Cycle Count) and Costs
(Instruction Bits and Hardware Resources)

The weighted sum of the lengths (number of time steps)
of the scheduled basic blocks is the execution cycles of the
benchmarks. The length of the basic block includes nop slots
which are inserted by the design process to preserve the con-
straints due to multicycle operations. The design process will
try to eliminate the nop slots by reordering other independent
operations into the nop slots.

Each instruction has two costs associated with it. One is
the total number of bits required to represent the instruction.
The number is a summation of field widths of opcode and all
explicit fields required to operate the MOP’s contained in the
instruction. The implicit fields do not consume instruction bits.
For example, in Table V, the instruction inst4 requires 32
b, using the bit width specification in Table I; whereas inst2
requires 16 b only because its immediate data field is made
implicit, saving 16 b. The maximal bit widths of the instruction
sets in Tables V and VI are 48 and 32 b, respectively.

Another cost is hardware. It is the collection of the resources
required by all MOP’s contained in the instruction, minus the
shared resources. The sharing of the resources can be related
to field encoding. When two or more register reads of different
MOP’s are unified, i.e., reading from the same register, one
read port of the register file is sufficient, instead of two or
more. On the other hand, if more than one destination register
receive results of the same arithmeticflogic expression, one
functional unit is enough since the computation result can
be shared. For example, inst7 needs only one read port
instead of three since R1, R2, and R4 are unified. It also
needs only one functional unit, instead of three, since the three
destinations (memory data register, memory address register,
register file) all receive the same value: R~ + D ~ .

The global hardware resources are obtained by choosing the
maximal number for each resource type from all instructions.
For example, the global hardware resources used for the
schedule I and I1 in Tables V and VI are (2R, lW, lM, 2F)
and (lR, lW, lM, lF),’ respectively.

The example in Table VI shows that compact and powerful
instructions can be synthesized by packing more MOP’s into a
single instruction, and making fields implicit and register ports
unified to satisfy the cost constraints. This is particularly useful
in an application specific environment where instruction sets
can be customized to produce compact and efficient codes for
the intended applications.

C, Constraints
The MOP’s are scheduled into time steps, subject to several

constraints. First, the data/control dependencies and the timing
constraints (for multicycle MOP’s) have to be satisfied. Data-
dependent MOP’s have to be scheduled into different time
steps, subject to the precedent relationship and timing con-
straints, except single-cycle MOP’s with WAR dependencies,
which can be scheduled into the same time step if the registers
can be read and written simultaneously. A control dependency
with a timing constraint, e.g., a delayed jump, has to be

2Refer to the footnote $. of Table II for the meaning of the notation.

dealt with differently. The MOP’s that are data-independent
to the jumphranch MOP’s can be scheduled into the time
steps before the jumphranch MOP’s or the delay slots after
the jumphranch MOP’s. The length of the delay slots is
determined by the timing constraint. For example, in Table
VI, the independent MOP MO5 is scheduled into time step 4,
which is the delay slot of the jump M 0 6 .

Second, the instruction word width and the hardware re-
sources consumed by the instructions have to be no larger
than what are specified by the designer. Third, the size of the
instruction set has to be no more than what the opcode field
can afford.

D. Objective Function

General speaking, a richer instruction set may result in more
compact and efficient compiled code. On the other hand, the
larger the instruction set size, the more complex the decoding
circuitry, and the more time the hardware designers spend
in design and verification. The same trends hold true in the
compiler side as well. Therefore, an objective function is
necessary to control the performancekost trade-off.

The goal of our design system is to minimize the objective
function. The objective function is a function of the cycle
count C and instruction set size S, where C represents
the performance metrics, how many cycles the benchmarks
execute on the target machine, and S represents the cost
metrics. An interesting objective function suitable for our
purpose is the following equation.

(1)

This is an integral form, derived by Holmer in [4], of the
statement “a new instruction will be accepted if it provides
a P% performance improvement,” which tries to balance the
instruction set size with the performance gain. Other types of
objective functions can be used with the design system as well.

Note that in our formulation, the design constraints are
checked separately, and are not captured in the objective
function.

Objective = (l O O / P) . ln(C) + S.

V. SLMULATED ANNEALING
ALGOFUTHM AND THE DESIGN Row

Although we have formulated the instruction set design
problem as a scheduling problem, it is indeed more difficult
than a regular scheduling problem, because we have to control
the number of unique patterns (instruction set) in the time
steps during the scheduling, in addition to the dependency
and performancekost constraints. Also, the problem size is
usually much larger than regular scheduling problems since
the application benchmarks may easily contain thousands of
MOP’s to be scheduled.

We propose an efficient solution to the problem based on a
simulated annealing scheme. An initial design state consisting
of an initial schedule and its derived instruction set (generated
by a preprocessor) is given to the design system, and then a
simulated annealing process is invoked to modify the design
state in order to optimize the objective function, until the
design state achieves an equilibrium state.

HUANG AND DESPAIN: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTION SETS 669

/* Basic simulated anwpIing process */
1: GIVEN: design state S, current tempemme T, max. movement M;

2: rh i lo (not achieving equilibrium state)
3: { ca.
4 r h i l o (C < M)
5: 1 i f (violate constraints)Rosolve_Cmstmint-Violafion (S, S&;
6 01.0 Generate-Next-State (S, S,,, T);

7:
8: else s= s;
9 C = C + I ;
1 0 1;
11: T=Update(T);
1 2)

Fig. 7.

if (Accept-Nd-State (cost(S), cost(SneXJ, T)) then S= S,;

The basic simulated annealing algorithm.

Fig. 7 lists the basic structure of our simulated annealing
algorithm. In the outer while loop are the operations per-
formed at each temperature point T. The temperature T is
updated at the end of the operations. At each temperature,
several movements (changes of the design state) are generated
by the inner while loop. The number of movements (M)
generated is specified by the designer.

In the following subsection, we present the move operators
(Section V-A) and heuristics (Section V-B) for the procedures
Resolve-Constraint-Violation and Generate AextState, the
cooling schedule (Section V-C) for Update, and the move
acceptance rules (Section V-D) in AcceptAextState. Finally,
we present the global design flow in Section V-E.

A. Move Operators
The move operators change the design state. They provide

methods of manipulating the MOP’s and time steps. The move
operators can be characterized into three groups.

Manipulation of the Instruction Semantics and Fomtat: The
first group manipulates the instruction semantics and format
of a selected time step. There are five move operators in this
group.

Unijication: Unify two register accesses in the MOP’s;
i.e., they always access the same register. For example, the
specification of RI = R2 in our previous example of the
increment instruction inc (R) is a result of the ‘unification’
operator. The effects of this operator are the decreases in the
instruction word width and register reaawrite ports.

Split: Cancel the effect of the ‘unification’ operator. Two
register accesses that are previously unified to the same register
are made independent. The effects of this operator are the
increases in the instruction word width and register readwrite
ports.

Implicit value: Bind a register specifier to a specific
register, or an immediate data field to a specific value. The
specific values are the instantiated values in the MOP’s of the
selected time step. For example, the specification of Immed
= 1 in the instruction inc (RI is a result of this operator.
The effect of this operator is the decrease in the instruction
word width.

Explicit value: Cancel the effect of the ‘implicit value’
operator. Instruction fields that are previously bound to specific
values are made explicit; i.e., their values are assigned by the

compiler and are specified in the regular instruction fields. The
effect of this operator is the increase in the instruction word
width.

Generalization: If the current instruction format of the
selected time step contains encoded operands, make these
operands general and become explicit in the instruction fields.
The effects of this operator are increased instruction word
width and hardware resources.

Manipulation of MOP’s Locations: The second group of
move operators involves the movement of the MOP’s. There
are four move operators in this group, which are all subject
to the dakdcontrol dependencies and delay constraints when
moving MOP’s. The target MOP’s and time steps can be
selected randomly or with the guidance of heuristics.

Interchange: Interchange the locations of two MOP’s
from different time steps. This operator changes the semantics
and formats of the two instructions in the corresponding time
steps.

Displacement: Displace a MOP to another time step.
This operator simplifies the semantics and format of the
instruction in the original time step, and enriches the semantics
and format of the other instruction in the destination time step.

Insertion: Insert an empty time step after or before the
selected time step and move one MOP to the new time
slot. This operator simplifies the semantics and formats of
instructions in the selected and new time steps, and increases
the cycle count.

Deletion: Delete the selected time step if it is an empty
one. This operator decreases the cycle count.

In our current implementation, if the selected MOP’s contain
unified or implicit fields, these fields are restored to the original
forms (generalized, explicit) before the move operators in
this group are applied to the MOP’s. In addition to the
aforementioned effects, these move operators may changes the
resource usage in the selected time steps as well.

Micro-Architecture-Dependent Operators: The third group
of move operators includes methods that explore the spe-
cial properties of the target micro-architecture. These move
operators are provided by the designer as part of the micro-
architecture specification.

For example, if the target micro-architecture provides both
register file -+ functional unit -+ register file, and register file
-+ register file data paths, then the designer can specify that the
following MOP’s (rrai and rr) are functionally equivalent
and can be transformed from one to another

rrai: RI+ R2+Immed(Immed = 0)
rr: RI+ R2,

These MOP’s have different costs in hardware and instruc-
tion format. While rrai uses a functional unit and consumes
an additional instruction field for the immediate data, rr uses
a direct bus between the read and write ports of the register
file. When discovering an rrai MOP with its immediate
data being zero, the design system can map this MOP to the
equivalent rr MOP, or vice verse.

An Example: Changing the Design State with Move Op-
erators: We demonstrate how the move operators are used
to change design states. Here we show a sequence of move

670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

TABLE VI1
THE DESIGN STATE AFTER THE APPLICATION OF THE FIRST MOVE OPERATOR

TABLE IX
THE DESIGN STATE AFI'ER THE APPLICATION OF THE SEVENTH MOVE OPERATOR

Instruction set size ~ardware cost Max. 1 4R, 1W. 1M,3F 1 ::dEG I Cycle count
Max.

ZR. 1W. IM, ZP ::dyFi I I I Cycle mint Instruction set size

TABLE VIII
THE DESIGN STATE AFTER THE APPLICATION OF THE FPTH MOVE OPERATOR

TABLE X
THE DESIGN STATE AFER THE APPLICATION OF THE ELEVENTH MOVE OPERATOR

. . , I 1

Insmtionsctsize Hardwarecost 1 Max' 1 1R. lW, lM, 1F
Cycle count l 7

operators which transforms the schedule and instruction set
(one design state) in Table V to the ones (a better design
state) in Table VI. The sequence is

DISPLACEMENT: displace the MO2 from time step 2
to 1 (as shown in Table VII).
UNIFICATION: unify fields D1 and 0 2 in the time step
1.
UNIFICATION: unify fields D1 and I in the time step 1.
UNIFICATION: unify fields R1 and Rz in the time step
1.
UNIFICATION: unify fields RI and R4 in the time step
1 (as shown in Table VIII).
DELETION: delete the empty time step 2.
DISPLACEMENT: displace the MO2 from time step 4
to 3 (as shown in Table IX).
DELETION: delete the empty time step 4.
UNIFICATION: unify fields D1 and I in the time step 1.

10) UNIFICATION: unify fields R1 and R4 in the time

11) DISPLACEMENT: displace the MO5 from time step 5

12) DELETION: delete the empty time step 5.
Tables VII-X show the resulted schedule and instruction set

for the design state after the first, fifth, seventh, and eleventh
move operators are applied, respectively. After the twelfth
move operator is applied, the design state in Table VI can be
obtained. In the last row of the tables we show the cycle count,

step 1.

to 7 (as shown in Table X)

instruction set size, hardware cost, and instruction word width
for the corresponding design states. The deleted time steps
are shown as shaded rows. The time steps in which the move
operators are applied are emphasized with heavy rectangles
around the time step indices. The elements in the design state
that are modified by the move operators are listed with bold
face. Note that, for ease of illustration, we use the original time
step indices in Table V in the above sequence when referring
to selected time steps. In the implementation, the indices of
time steps have to be adjusted when time steps are inserted
or deleted such that the delay constraints between MOP'S can
be correctly maintained.

Note that there are more than one sequence which accom-
plish the same design state transition. How such sequences
are formed depends on the design algorithm. In our simulated
annealing scheme, the move operators are selected with a mix
of random and heuristics strategies as described in Section V-
B.

B. Heuristics for Target Selection

During each iteration, the design space is examined whether
it violates design constraints. If yes, a time step is randomly
selected from a pool of time steps that violate constraints. If
more than one constraint is violated, the resource violation
gets higher priority than the instruction word width violation
since a movement that resolves the former may resolve the
latter as well.

HUANG AND DESPAIN: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTION SETS 671

Depending on the type of the constraints, one of the fol-

1) If the instruction word width constraint is violated,
apply randomly one of the move operators: ‘unifica-
tion,’ ‘implicit value,’ ‘interchange,’ ‘displacement,’ or
‘insertion’;

2) If the resource constraint is violated, apply randomly
one of the move operators: ‘unification’ (only when
the register port constraint is violated), ‘implicit value,’
‘displacement,’ or ‘insertion.’

When the current design space does not violate any con-
straint, all move operators are eligible for changing the design
state. In this case, a basic block is selected with the probability
Selectioni, which is the selection weight of a basic block i
and is defined by the following equation, where Fi is the
execution frequency of the basic block i in the benchmark,
N; is the number of MOP’s in the basic block i , and the
summation in the denominator is the total number of MOP’s
executed in the benchmark. Therefore, the selection weight is
intended to denote the degree of importance of a basic block
in the benchmark. A time step is then randomly chosen from
the selected basic block, and one move operator is randomly
selected and applied to the time step.

lowing rules is applied.

F; . N; xi Fi . Ni ‘
Selection; =

C, Cooling Schedule

The cooling schedule is controlled by five parameters.
The initial temperature (TO) should be high enough so
that there is no rejection for high-cost states at the
initial temperature. A simple heuristic to set the initial
temperature is to start the simulated annealing algorithm
with a given initial temperature. If some states are
rejected at the initial temperature, then the value of the
initial temperature is doubled. The trial run is repeated
until the ideal initial temperature is obtained.
The number (M) of movements tried at each tempera-
ture is proportional to the total number (Ops) of MOP’s
in the benchmarks, typically five times, which is given
by the designer.
The next temperature is 90% of the current temperature.
A low temperature point is defined such that a special
handling routine can be applied to stabilize the design
state. The special handling routine stabilizes the design
state by adopting move acceptance rules that are dif-
ferent from the ones in high temperatures. The move
acceptance rules are described in Section V-D.
The annealing process terminates when the design state
stays unchanged for a certain (e.g., four) consecutive
temperature points. The number of the consecutive stable
temperature points is given by the designer.

The complexity of the algorithm is mainly determined by
the cooling schedule and the data structures used to represent
the design state. As discussed previously, the number of
movements tried at each temperature is proportional to the total
number (Ops) of MOP’s in the benchmarks; the complexity of

accessing the data structures, in our current implementation,
is proportional to 0,, as well. Therefore, the complexity of
the algorithm at each temperature is of the order of OPs.’
This complexity can by lowered by using more efficient data
structures in our future implementation.

To derive the global complexity formally, we need to
determine the total number of temperature points, which is
difficult to analyze since it is affected by both the problem
size and the nature of the benchmarks. However, our empirical
study shows that the global complexity of the algorithm is
roughly about the order of Ops.3

D. Move Acceptance

following conditions is definitely accepted.
At high temperatures, a movement that satisfies one of the

1) The movement reduces the value of the objective func-
tion;

2) The movement is a result of constraint resolution; i.e.,
it is a necessary movement in order to resolve some
constraint violations.

Otherwise, a movement is accepted with the probability of
where A is the increased value of the objective

function and T is the current temperature.
At low temperatures, a different strategy is adopted to

stabilize the design state. A movement is accepted when either
one of the following conditions is true.

1) The movement generates a new state which does not
violate any design constraint and has lower objective
value;

2) The movement is a result of constraint resolution. This
condition is same as the one at high temperatures.

Otherwise, only those movements that generates new states
which do not violate any design constraint are accepted with
the probability of exp-(A/T).

In addition, the current best design state is kept when the
algorithm decides to accept inferior design states. At the end of
each temperature point, if the reached design state is inferior to
the current best state, the design state falls back to the current
best state with the probability 1 - T/T, where Ti is the initial
temperature.

E. Design Flow Based on the Simulated Annealing Algorithm

The instruction set design process consists of three major
steps.

1) The given application is translated to dependency graphs
of MOP’s which are supported by the given architecture
template. This translation is performed in two steps.
First, the application, written in a high-level language,
is translated into an intermediate representation by the
compiler of the high-level language (in our current envi-
ronment, the Aquarius Prolog Compiler [21]). Second, a
retargetable MOP mapper, consulting the given architec-
tural template specified with the language described in
Section III-B, transforms the intermediate representation
into the dependency graphs of MOP’s.

612 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

Instruction
name

inllll

TABLE XI
THE MOP's AND THEIR DEPENDENCIES OF A LIST-CREATING APPLICATION

MOP type ID* Encoded fields' Instruction -
fields

R,, D id. Id I d , RI=& pc"pc'rh
R, <-& + I

TABLE XI11
COMPILED CODE WITH THE 32-B INSTRUCTION SET

bf(13.16).
bf(14.15).

bf(lO.l2). bf(14.16).
bf(10.13). bf(16.17).

bp before $:<;: bf(7.10). bf(ll.12).
bf(13.14). d(18).
bf(l3.15).

bf(l.4). bf(5.6). bf(8.9).
bf(2.3). bf(5,7). bf(9.11).

bf(5.8).
bf(6.8).

bf(7.9). bf(8.11).

Dependencies bf(2.5).

ctl: control bf(4.6).
bf(4.7).

*.bit width: tag=2. Immed=14

TABLE XII
32-8 INSTRUCTION SET

2) A preprocessor generates a simple schedule for the
MOP's. The schedule is obtained by serializing the
dependency graphs. An initial instruction set is then
derived from the schedule. This is done by directly
mapping time steps in the schedule into instructions
without encoding any operand. The obtained schedule
and instruction set constitute the initial design state.

3) The simulated annealing algorithm is invoked to opti-
mize the design state. Several trial runs of the algorithm
may be necessary to adjust the cooling schedule.

The best instruction set, micro-architecture, and assembly
code which minimize the objective function can be obtained
after the design state reaches the equilibrium state.

We have implemented the algorithm and its supporting
tools into our design system ASIA (Automatic Synthesis of
Instruction-set Architectures). It consists of about SO00 lines
of Prolog code.

VI. EXPERIMENTS
We first demonstrate our technique with a small, illustrative

example, and then with Prolog application benchmarks.

A. A Small Example

In this example, we assumed the target architecture in
Table 11, the instruction field specification in Table I with
smaller bit widths for tag (2 b) and immediate (14 b), and
the delay specification in Table IV. The example used in this

TABLE XIV
64-8 INSTRUCTION SET

TABLE XV
COMPILED CODE WITH THE 64-8 INSTRUCTION SET

subsection is a small application which sets up a list of two
elements in Prolog. It consists of 18 MOP's. Table XI lists
the MOP's and their dependencies. The bf clauses in the
last row specify the before dependencies between MOP's. For
example, bf (1, 4) constrains that MOP 1 has to be scheduled
in a time step earlier than MOP 4's. The ctl (18) clause
specifies that the MOP 18 changes the control flow. Note that
the control flow change has one cycle delay. We synthesized
the 32-b and 64-b instruction sets, with the resource constraints
(3R, l W , 2M, 1F) and (6R, 4W, 4M, 4F),3 respectively. The
objective function used is EQ 1 with P = 1.

The synthesized 32-b instruction set is listed in Table XII,
consisting of four instructions. Note that two instructions
instll and instl2 contain encoded fields, in order to
satisfy the required 32-b word constraint. This instruction set
compiles the application into 12 cycles, as shown in Table
XIII. Note that time step 12 is the delay slot of inst 11 which
changes the control flow. An independent instruction inst 12
is scheduled into time step 12 to make use of the delay slot.

Table XIV lists the 64-b instruction sets, consisting of five
instructions. Most of the instructions have concurrent MOP's.
Since 64 b are wide enough to accommodate all instruction
fields, there is no encoded field required in this instruction set.
The compiled code (Table XV) consists of 9 cycles, which is
3 cycles less than the 32-b one. Also note that the instruction
ins t 1 6 is scheduled to the delay slot of instruction ins t 15
which changes the control flow.

3Refer to the footnote $. of Table 11 for the meaning of the notation.

HUANG AND DESPAIN SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTION SETS 673

TABLE XVI
RESULTS (OBECTIVE FUNCTION = 100 - h(C) -k s)

TABLE XVII
PERFORMANCE COMPARISON WITH A MANUALLY DESIGNED INSTRUCTION SET

the 48-b instruction sets are ‘embarrassing’ designs for con1
and nreverse. Their instruction set sizes are larger, and
their performance is worse than their 64-b alternatives in
compiling the benchmarks. The 48 b are not wide enough for
these benchmarks to accommodate the most frequent MOP
patterns, for which 64 b are sufficient. Therefore, the design
process has to specialize the general forms of some powerful
instructions into several distinct instructions by fields
implicit or unifying register in order to satisfy the bit
width constraint.

In the ‘Instruction set space’ column we examined the num-
ber of instruction candidates explored by the design process.
The numbers, much larger than the final instruction sets, show
that the design process was able to explore a rich design space
for the best candidates while keeping the size of the design
space manageable.

the two right most columns we also list the run time
and memory usage of our algorithm, which show that our
tools were able to synthesize instructions for application
benchmarks within reasonable time and
amount of memory.

In Table XVII we compared the synthesized 32-b instruction
sets for these benchmarks with the BAM instruction set,
which was designed for the VLSI-BAM microprocessor by the
~ ~ ~ a r i ~ ~ Project at the university of California at Berkeley.
ne VLSI-BAM microprocessor has RISC-style instructions
plus Some powerful instructions to support efficient logic
computation such as Prolog. The benchmarks were compiled
with the BAM instruction set, and we measured the number of

and the number of cycles to execute the compiled code (in
the ‘cycle’ column). ne programs were by the
~ ~ ~ a r i ~ ~ ~ , . ~ l ~ ~ compiler, with the post-phase optimization
phase turned off: The experiments show that the synthesized
instruction sets produced codes for all four
benchmarks, with lo%, 5%, 17%, and 3% reduction in the
code size, respectively. n i s was achieved at the cost of a
small number of additional instructions (7, 1, and 2 for coni,

where 16 additional instructions are required. we then used
Holmer’s objective function 4 1 0 0 . ln(c) + s’ to evaluate

4The post-phase optimization of the Aquarius Prolog Compiler alters the
classic definition of the basic block. Due to the time limit, we were not able

*.The mba ofcmml &,px&ncica is cmnfd U thc mol n v m k of b m n N m p MOR.

3W. 4F for &bit inrrmctionr
t .mm-co-i~;ne3R. IW,ZM.

B. Prolog Application Benchmarks

In this subsection, experiments are Presented to show the
versatility and practicality of our tools by synthesizing in-
struction sets for some application benchmarks, with various
design constraints and objective functions. Four benchmarks
were selected from the Prolog Benchmark suite [I810 The
benchmarks and nreverSe are programs for list
manipulation. The baChmark query is a Program for database
query. The benchmark circuit maps equations
into logic gates. The second column in Table XVI lists the
characteristics of the benchmarks, including the numbers of
MOP’s, data-related dependencies, and control dependencies
in the benchmarks. The number of MOP’s represents the size
of the benchmark; the number of data-related dependencies
is related to the degree of parallelism available within the
benchmark; the number of control dependencies indicates
the degree of the impact of the brancWmp delays on the
benchmark.

We assumed that every basic block executes Once. w e
assumed the target architecture in Table I1 and the instruction
field specification in Table I. The delay constraints for control
and memory operations are one and zero, respectively. The
experiment was conducted On a HP750 workstation with
256 MBytes of memory.

64-b instruction sets, respectively. We were interested in how
the instruction sets vary with bit widths. Table XVI lists the
results, synthesized under the objective function with P = 1
in (1). For all three benchmarks, as we had expected, the
cycle decreases when the instruction word width increases.
However, we Observed a gain in nreverSe and
circuit. This can be explained by their larger ratios of the
number of data dependencies to the number of MOP’s. Most

parallelism available when packing MOP’s into instructions.
In general, the size of the instruction set also increases

when the instruction word width increases. This is due to

resulting in richer and more powerful instructions. However,

a

For each benchmark, we synthesized its 32-b7 48-b7 and distinct instructions used (in the ‘Instruction set size’ column),

Of the depend On each other such that there is less nr-verse, and query, respectively), except in circuit

the fact that wider accommodate more
to modify our tools to accommodate such change.

614 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 19%

Objective hmctiw

IDO.ln(C)*S P=l in EQ 1

2oln(c)+S PSinEQl

*. Notnriona: I). llx K l b in an instruc!ion are e x m t d simult~~~usly:
latch which holds L e rmth vslus of a logic computation; 3). l l ~ opetator
to B valve bcfm the value is sent U) a &stinstioh
t. That rhrr+ instmaions can be found in tbc BAM i m a i o n IU.

lnamrtion sel si= (SI cycle (C)

135 29

151 72

2). rf: a one bit
'*' a@s a tag

the global performancekost trade-offs for both instruction
sets and found that in most cases (conl, nreverse,
and query) the synthesized ones yield better results, as
indicated in the 'Objective value' column (smaller values
are better). It is possible to improve the result of circuit
by adjusting the initial temperature and the cooling schedule
in our future experiment. We also compared the hardware
resources used by both instruction sets. They both use the
same amount of resources, except in the nreverse case our
synthesized instruction set uses one less register read port and
one less memory port than BAM does. This experiment shows
that ASIA is capable of competing with manually designed
instruction sets within our collection of benchmarks. Further
studies will be needed to investigate its competence in more
general cases.

Table XVIII shows some interesting instructions synthesized
for the benchmark query. They are selected from the 32-b,
48-b, and 64-b instruction sets, respectively. For ease of illus-
tration, we do not list the binary tuples for these instructions;
instead, we describe the RTL's of these instructions directly. In
the RTL's, the register sharing is indicated by using the same
register index. Note that the 32-b version of the instructions
can be found in the BAM instruction set as well. This fact
provides the BAM designers with more confidence about
their instruction set, since some of the instructions that they
considered 'powerful' retain their existence when the instruc-
tion set is designed by other independent designers (in this
case, the ASIA design automation system). This observation
suggests that ASIA, in addition to its original purpose (an
automatic design tool), can be used as a verification tool for
designers to verify their manually designed instruction sets as
well.

Finally, Table XIX shows how the synthesized instruction
sets vary with the objective functions. In this experiment we
synthesized 32-b instruction sets for the benchmark query
with two objective functions: one with P = 1, another with
P = 5. The latter assigns less importance to the cycle count.
Therefore, the tools focused on reducing the instruction set
size, resulting in 7 instructions less, but 16 cycles more than
the former case.

TABLE X M
INSTRUCTION VARIATION DUE TO DIFFERENT O B ~ C ~ I V E FUNCTIONS

VII. CONCLUSION

We have presented a design automation system ASIA (Au-
tomatic Synthesis of Instruction-set Architectures) that synthe-
sizes computer instruction sets from application benchmarks.
The design problem is formulated as a modified scheduling
problem. The benchmarks are represented as datakontrol flow
graphs of MOP's. The MOP's are scheduled into time steps
subject to constraints of dependencies, hardware resources,
and instruction word width. Instructions are formed during
the scheduling phase. A binary tuple is used to describe the
semantics and formats of instructions. The binary tuple is
the key idea which links the instruction formation to the
scheduling process. In addition to the synthesized instruction
sets, ASIA also generates the compiled codes for the given
benchmarks, showing that how the instruction sets can be
actually used to compile programs. An objective function of
the cycle count and instruction set size is used to guide the
design process, in order to balance the performancekost trade-
off. A simulated annealing algorithm is used to solve for the
schedules. We have discussed the move operators suitable for
our problem, and other issues such as cooling schedules and
heuristics.

We have demonstrated the versatility and practicality of
ASIA by conducting experiments on some application bench-
marks, with various design constraints and objective functions.
The tools used reasonable amount of CPU time and a modest
amount of memory. It has been shown that our tools are
capable of synthesizing powerful instruction sets. Many of
them can be found in today's processors. Compared with
manually designed instruction sets, the synthesized instruc-
tion sets produce more compact code and may require less
hardware. The tools were able to explore a rich design space,
and handle important design options such as the instruction
word width, and performancekost trade-off. We were able to
explain the variation of the performance of the instruction sets
on different benchmarks, based on the characteristics of the
benchmarks. The experiments also show that ASIA, in addition
to its original purpose in automating the design process, can
be used by the designers to verify their manually designed
instruction sets as well.

The current limitations include: First, the designers are
required to specify the number of hardware resources, which
may takes several iterations to find the best hardware alloca-
tion. Second, ASIA does not recognize the situation when the
constraints are too loose, e.g., the instruction word is too wide
or hardware resources are too rich. In this case, it is possible
to suggest some partitioning of the constraints. For example,
a 128-b instruction word can be realized as a single wide-
word instruction or an abutting of several smaller instructions.
Third, in our problem formulation, the concept of the basic
block is used to partition benchmarks into small pieces.

675 HUANG AND DESPAIN: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTION SETS

However, there are other ways of partitioning benchmarks
such as traces, and random segments [5] . What is the best
way is unknown at this moment. Fourth, even though we
have demonstrated that our algorithm is able to synthesize
instruction sets from thousands of MOP’S within 22 h, real
world application benchmarks, such as system, CAD and
simulation software, are usually much larger. How to manage
problems of such sizes is an important issue. Fifth, the machine
model is insufficient to account for the dynamic behavior of
some modem architectures such as superscalar machines.

In the future, we will continue our efforts in ASIA and
pursue the following issues: 1) improving the aforementioned
limitations; 2) code generation for the synthesized instruction
sets; 3) synthesis and comparison for application specific
uniprocessors and VLIW processors; 4) design and synthesis
of low-power instruction set architectures; and 5) analysis of
architectural properties for application benchmarks.

ACKNOWLEDGMENT

The authors would like to thank B. Holmer, C.-L. Su, and
the anonymous reviewers for their comments and suggestions
in improving this work.

REFERENCES

[l] F. M. Haney, “ISDS-A program that designs computer instruction
sets,” in Fall Joint Comput. Con$, 1969.

[2] P. Bose and E. S. Davidson, “Design of instruction set architectures
for support of high-level languages,” in Proc. 11th Annual Int. Symp.
Compur. Architecture, 1984, pp. 198-206.

[3] J. P. Bennett, “A methodology for automated design of computer
instruction sets,” Ph.D. dissertation, Computer Laboratory, Univ. of
Cambridge, England, 1988. Also available as Tech. Rep. 129.

[4] B. Holmer and A. Despain, “Viewing instruction set design as an
optimization problem,” in Proc. Micro-24, 1991.

[5] B. Holmer, “Automatic design of computer instruction sets,” Ph.D.
dissertation, Comp. Sci. Dept., Univ. of California, Berkeley, 1993.

[6] J. Sat0 et al., “An integrated design environment for application specific
integrated processor,” in Proc. ICCD, 1991, pp. 414417.

[7] I.-J. Huang, B. Holmer, and A. Despain, “ASIA: Automatic synthesis
of instruction-set architectures,” in Proc. SASIMI Wkshp., Nara, Japan,
Oct. 1993, pp. 15-22.

[8] 1.-J. Huang and A. Despain, “Synthesis of instruction sets for pipelined
microprocessors,” in Proc. 31st Design Automation Con$, June 1994,

New York
McGraw-Hill, 1981.

[lo] J. Pendleton et al., “A 32-bit microprocessor for smalltalk,” IEEE J.
Solid-State Circuits, vol. SC-21, no. 5 , pp. 741-749, Oct. 1986.

1111 M. Breternitz, Jr. and J. P. Shen, “Architecture synthesis of high-
performance application-specific processors,” in Proc. Design Automa-
tion Con$, 1990, pp. 542-548.

1121 S. Devadas and R. Newton, “Algorithms for hardware allocation in data
path synthesis,” IEEE Trans. Computer-Aided Design, vol. 8, no. 7, pp.

1131 1.-J. Huang and A. Despain, “High level synthesis of pipelined instruc-
tion sei processors and back end compilers,” in Proc. 29th DAC, 1992,
pp. 135-140.

pp. 5-11.
[9] P. M. Kogge, The Architecture of Pipelined Computers.

768-781, July 1989.

R. Cloutier and D. Thomas, “Synthesis of pipelined instruction set
processors,” in Proc. 30th DAC, 1993.
G. Goossens et al., “An efficient microcode compiler for application
specific DSP processors,” IEEE Trans. Computer-Aided Design, vol. 9,
no. 9, pp. 925-937, Sept. 1990.
S.-Z. Lin, C.-T. Hwang, and Y.-C. Hsu, “Efficient microcode arrange-
ment and controller synthesis for application specific integrated circuits,”
in Pmc. ICCAD, 1991.
A. Kumar and S. Kumar, “Automatic synthesis of microprogrammed
control units from behavior descriptions,” Proc. 261h DAC, 1989, pp.
147-1 54.
R. Haygood, “A prolog benchmark suite for aquarius,” Comp. Sci. Dep.,
Univ. of California, Berkeley, Tech. Rep. UCB/CSD 89/509, 1989.
B. Bush et al., “The Berkeley abstract machine instruction manual,”
Advanced Computer Architecture Lab., Univ. of Southern California,
Los Angeles, Internal Tech. Rep., 1990.
B. Holmer et aL, “Fast Prolog with an extended general purpose
architecture,” Proc. 27th Int. Symp. Comput. Architecture, 1990, pp.
282-291.
P. L. Van Roy, “Can logic programming execute as fast as imperative
programming,” Ph.D. dissertation, Comp. Sci. Dep., Univ. of California,
Berkeley, 1990. Also available as Tech. Rep. UCB/CSD 90/600.

Ing-Jer Huang (S’89-M’95) received the B.S.
degree in electrical engineenng from the National
Taiwan University, Taiwan, R.O.C., in 1986, and the
M.S. and Ph.D. degrees in computer engineering
from the University of Southern California, Los
Angeles, in 1989 and 1994, respectively.

He is currently with the Institute of Computer
and Information Engineering at National Sun
Yat-Sen University, Taiwan, R.O.C. as an As-
sociate Professor. His research interests include
hardware/software co-design, highlsystem level

Dr. Huang has published ten technical papers in his areas of research. He
synthesis, computer architecture, and VLSI system design.

is a member of ACM.

Alvin M. Despain (S’58-M’65) received the B.S.
(1960), M.S. (1962). and Ph.D. (1966) degrees in
electrical engineering from the University of Utah,
Salt Lake City.

He is currently with the University of South-
ern California, Los Angeles as the Powell Profes-
sor of Computer Engineering and as a Professor
in the Computer Science and Electrical Engineer-
ing-Systems Departments. He has been an Assis-
tant Research Professor with Utah State University,
Logan, a Visiting Associate Professor with Stanford

University, Stanford, CA, a Professor with the University of California at
Berkeley, and has been with USC since 1989. He is a pioneer in the
study of high-performance computer systems for symbolic calculations. His
research group builds experimental software and hardware systems including
computers, custom VLSI processors, and multiprocessor systems. The goal
is to determine principles for the design of high-performance computer
systems. His research interests include computer architecture, multiprocessor
and multicomputer systems, logic programming, and design automation.

Dr. Despain is a member of ACM and AAAI.

