
Center for Embedded Computer Systems

University of California, Irvine

Design of a MP3 Decoder using the System-On-Chip Environment
(SCE)

Andreas Gerstlauer
Dongwan Shin

Samar Abdi
Pramod Chandraiah

Daniel D. Gajski

Technical Report CECS-07-05
November 2, 2007

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

(949) 824-8919

{gerstl,dongwans,sabdi,pramodc,gajski}@cecs.uci.edu
http://www.cecs.uci.edu

http://www.cecs.uci.edu

Design of a MP3 Decoder using the System-On-Chip Environment
(SCE)

Andreas Gerstlauer
Dongwan Shin

Samar Abdi
Pramod Chandraiah

Daniel D. Gajski

Technical Report CECS-07-05
November 2, 2007

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

(949) 824-8919

{gerstl,dongwans,sabdi,pramodc,gajski}@cecs.uci.edu
http://www.cecs.uci.edu

Abstract
Electronic system-level (ESL) design is touted as a promising solution to sustain productivity in embedded

system design in the presence of increasing complexities and decreasing time-to-market. The System-On-Chip
Environment (SCE) provides such a SpecC-based ESL design solution. In this report, we demonstrate SCE as
applied to the design of a MP3 decoder. Starting from a reference C code, an initial specification model is
developed and several different architectural alternatives are explored for implementation on an ARM-based
target platform. Using SCE, models for all alternatives are generated and a final, optimal multi-processor
system-on-chip (MPSoC) design is selected.

Results of the SCE-based design process show the feasibility and benefits of the approach. Using SCE re-
finement and exploration tools, all models were generated within minutes. Including the time needed for model
simulations, the overall exploration process was completed within an hour. Therefore, the design example demon-
strates the capabilities of SCE for rapid, early design space exploration resulting in significant productivity gains.

http://www.cecs.uci.edu

Contents
1 Introduction 1

2 Specification 2
2.1 Reference C Code . 3
2.2 SpecC Model . 3

2.2.1 Frame Decoding . 6
2.2.2 PCM Synthesis . 7

3 Design Space Exploration 7
3.1 Pure Software Implementation . 7
3.2 DCT Hardware Acceleration . 8
3.3 Parallelized DCT Hardware Acceleration . 9
3.4 Parallelized IMDCT Hardware Acceleration . 11
3.5 DCT and IMDCT Hardware Acceleration . 11
3.6 Pipelined DCT and IMDCT Hardware Acceleration . 11

4 Refinement Results 13

5 Summary and Conclusions 14

References 15

ii

List of Figures
1 System-On-Chip Environment (SCE). 2
2 Top-level of MP3 SpecC specification model. 3
3 Behavioral and structural hierarchy of MP3 decoding. 4
4 Behavior hierarchy of MP3 frame decoding. 5
5 Behavior hierarchy of granule decoding in an MP3 frame. 5
6 Behavior hierarchy of MP3 PCM synthesis. 6
8 MP3 platform with pure software implementation (SWPE). 7
7 Computational complexity of MP3 decoder blocks. 8
9 MP3 platform with DCT hardware accelerator (HWSW1). 9
10 MP3 platform with concurrent DCT hardware accelerators (HWSW2). 10
11 MP3 platform with concurrent IMDCT hardware accelerators (HWSW3). 10
12 MP3 platform with DCT and IMDCT hardware accelerators (HWSW4). 10
13 MP3 platform with pipelined DCT and IMDCT hardware accelerators (HWSW). 12

iii

List of Tables
1 Exploration and refinement results. 14

iv

Design of a MP3 Decoder using the System-On-Chip Environment (SCE)

A. Gerstlauer, D. Shin, S. Abdi, P. Chandraiah, D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-2625, USA

{gerstl,dongwans,sabdi,pramodc,gajski}@cecs.uci.edu
http://www.cecs.uci.edu

Abstract
Electronic system-level (ESL) design is touted as a
promising solution to sustain productivity in embed-
ded system design in the presence of increasing com-
plexities and decreasing time-to-market. The System-
On-Chip Environment (SCE) provides such a SpecC-
based ESL design solution. In this report, we demon-
strate SCE as applied to the design of a MP3 decoder.
Starting from a reference C code, an initial specifica-
tion model is developed and several different archi-
tectural alternatives are explored for implementation
on an ARM-based target platform. Using SCE, mod-
els for all alternatives are generated and a final, opti-
mal multi-processor system-on-chip (MPSoC) design
is selected.

Results of the SCE-based design process show the
feasibility and benefits of the approach. Using SCE
refinement and exploration tools, all models were
generated within minutes. Including the time needed
for model simulations, the overall exploration pro-
cess was completed within an hour. Therefore, the
design example demonstrates the capabilities of SCE
for rapid, early design space exploration resulting in
significant productivity gains.

1 Introduction
In the presence of ever-increasing system complexi-
ties and time-to-market pressures, the design of em-
bedded systems is facing a growing productivity gap.
New methods and tools are needed to sustain the re-
quired productivity. Electronic system level (ESL)
design has been touted as one of the most promising

solutions. ESL approaches aim to close this gap by
raising the design process, supported by correspond-
ing design automation tools, to higher levels of ab-
straction.

The System-On-Chip Environment (SCE) is such a
comprehensive ESL design solution for taking a com-
plete embedded system design from initial specifica-
tion down to its final implementation. SCE supports
a wide range of applications and target platforms for
design of homogeneous multi-core or heterogeneous
multi-processor systems-on-chip (MPSoCs). In SCE,
the system is gradually synthesized through a series
of interactive exploration and automated refinement
steps. Leveraging human insight for crucial design
decisions while automating tedious and error-prone
tasks like model rewriting enables SCE to deliver the
required productivity gains for rapid and early design
space exploration. Furthermore, SCE provides an au-
tomated path all the way from high-level specification
down to hardware/software implementation.

SCE is based on the SpecC system-level design lan-
guage (SLDL) [5], and it follows a specify-explore-
refine methodology [8]. The design process starts
from a model specifying the design functionality
(specify). At each following step, the designer first ex-
plores the design space (explore) and makes the nec-
essary design decisions. SCE then automatically gen-
erates a new model at the next lower abstraction level
by integrating the decisions into the previous model
(refine).

An overview of SCE is shown in Figure 1 [1]. The
design process starts with a specification model. In
the general case, the specification model is an ab-

1

http://www.cecs.uci.edu

Figure 1: System-On-Chip Environment (SCE).

stract, high-level description of the desired function-
ality, free of any implementation details [7]. Follow-
ing a series of system exploration tasks, the speci-
fication is then gradually and stepwise refined into
transaction-level models (TLMs) of the design at
varying levels of abstraction [13, 17, 15, 16]. In
each step, the designer enters relevant design deci-
sions through a graphical user interface (GUI) or us-
ing SCE’s scripting capabilities [4]. Refinement tools
then automatically generate a new model implement-
ing and reflecting the user’s decisions. In the process,
the system is defined, synthesized and assembled us-
ing models of available system components taken out
of a set of processing element (PE), communication
element (CE) and bus databases [6]. As a result, with
each exploration and refinement step, a new layer of
implementation detail is introduced.

All models in the SCE design flow are represented
in SpecC form. As such, models at any stage are exe-
cutable and can be simulated for validation and feed-
back about design quality. Intermediate models in the
flow allow for early and fast validation of critical de-
sign aspects. In general, in an iterative process, de-
signers can vary decisions, generate models and eval-
uate effects through simulation or analysis until an op-
timal system design has been reached.

The final pin-accurate model (PAM) of the selected

design solution can then be fed into a backend process
for further hardware and software synthesis of each
individual system component. On the hardware side,
high-level synthesis (HLS) of the behavioral, bus-
functional description of each hardware component
in the PAM into a register-transfer level (RTL) imple-
mentation is performed. In addition, SCE supports
fully automatic synthesis of software for each pro-
grammable processor in the system. Target-specific
code is generated, compiled and linked against OS
and other libraries taken out of a software database.
For each processor, final processor binaries are gener-
ated and an instruction-set simulator (ISS) running the
target binary is re-integrated into the system model.

As a final result of the SCE design flow, the im-
plementation model at the output of the backend pro-
cess is a fully cycle- and pin-accurate description of
the system design. Furthermore, Verilog/VHDL code
and target binaries generated for each hardware and
software processor, respectively, provide the data for
final logic synthesis, manufacturing or FPGA-based
prototyping of the design.

In this report, we demonstrate the System-On-Chip
Environment (SCE) as applied to the design of a typi-
cal embedded system: an MP3 decoding algorithm as
used in cell phones or MP3 players. Starting from the
initial C reference code we obtained from [12], we de-
veloped the SpecC specification model of the design
as a starting point for the design and exploration pro-
cess (Section 2). Given the specification, we explored
several different target architectures for implementa-
tion of the decoder on an ARM-based platform (Sec-
tion 3). Using SCE tools, models of all candidates
were generated and evaluated, and an optimal archi-
tecture was selected (Section 4). As a result of the de-
sign and exploration process, the automatically gen-
erated pin-accurate model of the chosen system de-
sign is ready for final implementation through further
backend hardware and software synthesis.

2 Specification
We started the design process by developing a SpecC
specification model of the MP3 decoding algorithm
based on an open-source C reference implementation
we obtained from the internet [12]. Due to the fact

2

that SpecC is a complete superset of regular ANSI
C, any C code can serve as an initial SpecC model
of the application. However, in order to be able to
synthesize the code and efficiently explore the design
space, the initial C code needs to be converted into a
proper SpecC specification [9].

C to SpecC conversion needs to follow a process
of stepwise refinement of the code. First, we per-
formed a general cleanup of the C code in order to
improve synthesizability at the level of individual ex-
pressions. Starting at the top level, we then gradually
converted the C functional call hierarchy into a corre-
sponding SpecC hierarchy, introducing and exposing
structural and behavioral dependencies, and replac-
ing ambiguous C constructs with their explicit SpecC
equivalents.

The resulting SpecC specification model of the
MP3 decoder has 14,045 lines of code distributed over
44 behaviors (out of which 29 are leaf behaviors).
Conversion from C to SpecC code took approximately
6 man-weeks, out of which 2 man-weeks were spent
on initial C code cleanup and the remaining 4 man-
weeks on C-to-SpecC hierarchy conversion.

2.1 Reference C Code
The original MAD C code we obtained from [12] is
“a new implementation of the ISO/IEC standards that
is unencumbered by the errors of other implemen-
tations” and “not a derivation of the ISO reference
source or any other code.” The authors claim that con-
siderable effort has been expended to ensure a correct
implementation, even in cases where the standards are
ambiguous or misleading.

We chose the MAD library as the basis for our
MP3 decoder implementation because it is based on
100% fixed-pointer (integer) computation, allowing it
to be implemented even on target processors without
a floating-point unit. All calculations in the decoder
are performed with a 32-bit fixed-point integer repre-
sentation. The MAD implementation we started from
internally supports 24-bit PCM output for increased
precision and high-quality output. The SpecC model,
however, only produces 16-bit stereo PCM output, us-
ing simple rounding, clipping, and scaling of MAD’s
high-resolution samples down to 16 bits. As a basic
implementation, it does not employ any dithering or

Main

mp3decoder

nf
ra
m
es

stimulus errordecoder monitor

decoder_error

pcm_out

nframes

IMP3Decoder

stream_in

Figure 2: Top-level of MP3 SpecC specification
model.

noise shaping, which could increase the audible dy-
namic range based on the extra resolution available
internally.

The initial MAD implementation needed consid-
erable cleanup before converting it into a specifica-
tion model in SpecC. First of all, MAD was a com-
plete MP3 player and included features such as ID3
tag processing. We were only interested in the core
MP3 decoder functionality. As a first step, we derived
a light weight implementation of the core MP3 de-
coder with a simple user interface by eliminating un-
necessary files and functions. The platform-specific
optimizations included by MAD were also removed.
Code that depended on advanced C library functions
were eliminated if they were determined not to affect
the decoding functionality. Further, the MAD imple-
mentation used function pointers for some call-back
functions. These function pointers were replaced with
the calls to the actual functions. Dynamic memory al-
locations were analyzed and were replaced with safe
static allocations. This initial cleanup phase took ap-
proximately 2 man-weeks.

2.2 SpecC Model
Conversion of the C code to a SpecC hierarchy starts
at the top level of the C functional call hierarchy, i.e.
at the main() method. In the first step, the main()
method is converted into an equivalent SpecC Main
behavior. In the process, the testbench part of the ap-
plication has to be separated out from the actual parts
to be designed.

Figure 2 shows the results of this process for the
MP3 decoder SpecC model. At the top-level, the

3

MP3 decoder Main behavior simply executes the
mp3decoder application, supplying the parsed com-
mand line arguments like input and output file names
via interface method calls and ports. Internally, the
top-level mp3decoder executes the actual Decoder
design next to testbench behaviors for file I/O includ-
ing supplying input stimuli, monitoring resulting out-
puts, and checking for fatal error exit conditions.

As is typical for a specification testbench setup,
the testbench part (stimuli and monitor behaviors) run
concurrently to the actual design. Stimulus and Moni-
tor behaviors are supplied with the names of input and
output files to read from and write to through ports
connected to the overall Main behavior. Internally, the
design communicates with the testbench through ab-
stract channels for incoming MP3 bytes (stream in),
outgoing PCM samples (pcm out) and asynchronous
error conditions (decoder error). All three channels
are FIFO queues for buffering of frame data and de-
coupling of threads in order to improve performance.

The actual Decoder application to be designed
(Figure 3) is at its highest level a finite state machine,
captured in a SpecC fsm composition. After initial-
ization and setup of the decoder (init and mute states),
the decoder successively starts reading bytes from the
input MP3 stream channel (stream in) until a com-
plete frame has been received. Since MP3 frames can
be of variable length and since a frame’s main data
can include data from past and/or future frames (neg-
ative and positive main data offset aka MP3 bit reser-
voir), the frame header needs to be decoded in order
to determine how many bytes need to be read from
the input stream. Therefore, input and decode header
states run in a loop until a complete frame has been in-
ternally buffered (in the local stream array). Once the
header has been completely decoded and a complete
frame of data is available, decoding continues with
processing of the frame body (decoder frame). The
result of frame decoding is the set of decoded subband
samples for the given frame (frame sbsample). Fi-
nally, a last synth state performs full frequency PCM
synthesis to produce the final PCM samples sent out
over the pcm out channel.

After a frame has been successfully decoded and
a final error check has been performed (recover), the
Decoder loops back to the setup state (mute) in order

Mad_decoder

fail
stream
decoder_error

re
su
lt

st
re
am

...ode_frame
header
stream
frame_overlap
frame_sbsample
frame_overlap2
frame_sbsample2
result

...de_header
header
stream
more_input

sy
nt
h_
fil
te
r1

fra
m
e_
sb
sa
m
pl
e

he
ad
er

fra
m
e_
ov
er
la
p2

input
stream_in
more_input
flow
stream

er
ro
r

st
re
am
_i
n

sy
nt
h_
ph
as
e

synth
frame_header
synth_filter0
synth_filter1
frame_sbsample0
frame_sbsample1
synth_phase
pcm_out

finish

stream

fra
m
e_
ov
er
la
p

recover
stream
flow
result
decoder_error

init
stream
header
flow
synth_filter0
synth_filter1
synth_phase

mute
frame_overlap
frame_sbsample
frame_overlap2
frame_sbsample2

flo
w

sy
nt
h_
fil
te
r0

fra
m
e_
sb
sa
m
pl
e2

pc
m
_o
ut

Figure 3: Behavioral and structural hierarchy of MP3
decoding.

the begin processing of the next frame. In general, er-
rors can occur at any stage of the decoding process.
Errors are subdivided into recoverable and fatal er-
rors. In each state, decoding errors, e.g. due to invalid
input data, are checked. If a recoverable error is de-
tected, the state machine branches directly to the re-
cover state, which will try to restore the internal state
variables of the decoder to a sane status before jump-
ing ahead to the decoding of the next frame. Since the
start of a frame in the input stream is not known, the
decode header state (in a loop with the input state)
will try to re-synchronize decoding in such situations

4

Mad_frame_decode

fail

layer_III

init

preload

anc

sideinfo

main_data

decode

init

granule

init

Figure 4: Behavior hierarchy of MP3 frame decoding.

III_decode

granule

init

getdata

stereo

channels

left

right

right

left

scalefac

aliasreduce

imdct

huff

aliasreduce

imdct

huff

scalefac

Figure 5: Behavior hierarchy of granule decoding in
an MP3 frame.

5

by scanning the input stream until the next synchro-
nization word marking the start of a frame is received.
In all cases, if recovery or synchronization fails, or if a
fatal error occurs at any stage of the decoding process,
the Decoder will branch to the fail state before exiting
the decoding completely (finish). Also, the decoder
will finish if the end of the stream has been reached,
i.e. no more input is available.

2.2.1 Frame Decoding

The internal decomposition of the frame decoding
state is shown in more detail in Figure 4. The
Frame decode behavior is sequentially composed out
of a multi-level hierarchy of subbehaviors. At the top-
most level, frame decoding consists of a state machine
that performs the actual MPEG layer III decoding en-
closed by initialization and error handling states. The
Layer III behavior is then further decomposed into
a state machine for the actual decoding and signal
processing chain. Layer III processing consists of
states for initialization (init), decoding of frame side
information (sideinfo), preprocessing and collection
of frame main data (main data), core layer III decod-
ing (decode), designation of ancillary bits (anc), and
preloading of next frame’s data (preload). Further-
more, the core decoding is further subdivided into a
state machine that, after some initialization, sequen-
tially loops over the two granules that form the core
of each MP3 frame.

Figure 5 shows this core layer III decoding with
granule processing (granule) further expanded. De-
coding of each of the two granules is subdivided into
three major states: data demultiplexing and decom-
pression (getdata), joint stereo decoding (stereo) and
stereo channel decoding (channels). Note that the
stereo step is skipped if the stream does not use joint
stereo encoding. Both getdata and channels decod-
ing internally each contain two instances of basic sin-
gle channel processing behaviors, one instance each
per left and right channel. Data demultiplexing and
decompression consists of scalefactor (scalefac) and
huffman (huff) decoding for each channel. On the
other hand, decoding of each stereo channel consists
of anti-aliasing (alias reduction, aliasreduce) and an
IMDCT (imdct) for conversion from the frequency
into the time domain.

Mad_synth_frame

synth_full

synth_init

...th_header

output

synth_channel0 synth_channel1

filtercorefiltercore

init

calc_sample calc_sample

dct32dct32

init

Figure 6: Behavior hierarchy of MP3 PCM synthesis.

For channels decoding, both channels can be de-
coded in parallel. On the other hand, since internal
state is kept during huffman decoding, successive in-
vocations of huff are not independent of each other.
Therefore, neither the two channels in the getdata
block nor the two granules themselves can be decoded
concurrently, i.e. due to the dependencies across in-
vocations, the correct sequential order of huffman de-
coding calls needs to be maintained.

Finally, note that on each level of frame decoding,
error handling is performed asynchronously to the
regular decoding chain. If the stream is in error con-
dition or if errors are detected during input data pro-
cessing (main data or granule’s getdata), the global
error conditions is set and decoding is aborted, i.e. the
control flow transitions to the exit state through each
level of the hierarchy.

6

2.2.2 PCM Synthesis

The last stage of the MP3 decoding process is the fi-
nal synthesis of the PCM samples, shown in more de-
tail in Figure 6. At the top level, the Synth frame be-
havior sequentially performs the actual full-frequency
PCM synthesis (synth full), preceded and followed by
small blocks for variable initialization (synth init) and
header post-processing (synth header), respectively.

The synth full behavior is then further composed
out of two instances of a synth channel behavior run-
ning in parallel. Each of the two instances is inde-
pendently responsible for synthesizing one of the two
stereo output channels from the given input array of
subband samples. Internally, each channel behavior
executes the respective synthesis filter core (filtercore)
repeatedly in a loop, once for each group of 32 out-
put samples to be produced per channel. Synthesiz-
ing each block of 32 samples then consists of an ini-
tialization step (init), a discrete cosine transformation
(dct32), and rounding, clipping and quantization of
samples (calc sample).

Finally, following the core PCM synthesis, the fi-
nal output behavior then takes the internally buffered
samples and sends them to the testbench via the out-
put FIFO queue pcm out.

3 Design Space Exploration
Given the specification model, we investigated a real-
ization of the MP3 decoder design on an ARM-based
target platform [2]. In the process, we explored sev-
eral different architectural alternatives for implemen-
tation of the decoder across software and hardware
domains. The main objective of design space explo-
ration was the optimization of the overall MP3 frame
decoding delay. Based on the sequential nature of
the MP3 specification at its upper layers, optimiza-
tion was primarily focused on hardware acceleration
of critical blocks, with exploitation of available paral-
lelism as a secondary goal.

Using SCE’s profiling and estimation capabilities
[3], we analyzed the computational complexity of the
MP3 decoding algorithm. Combining dynamic pro-
filing of the input specification model simulation with
a static analysis and matching of specification and

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

sla
ve

2

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro

r

Arm/In Arm/O u t

Figure 8: MP3 platform with pure software imple-
mentation (SWPE).

ARM processor characteristics, the SCE profiler gen-
erates estimates about the software execution times of
each MP3 block on the given ARM processor. Fig-
ure 7 shows the estimated total delays per block ob-
tained for a decoding of eight MP3 frames. As shown
in Figure 7(a), overall MP3 decoding delays are al-
most evenly distributed between frame decoding and
PCM synthesis. Looking at individual leaf behav-
iors of the frame decoding and PCM synthesis blocks
(Figure 7(b), major contributors in each block are the
Imdct and Dct behaviors, respectively. Furthermore,
the regular and inverse modified discrete cosine trans-
forms (DCT and IMDCT) are both widely-used, gen-
eral digital filter algorithms, i.e. advanced hardware
implementations are readily available. As such, they
make good candidates for hardware acceleration.

3.1 Pure Software Implementation

We started the design and exploration process by in-
vestigating a pure software solution of the MP3 de-
coding algorithm running on an ARM7TDMI target
processor. As shown in Figure 8, in this most ba-
sic target architecture, the ARM processor runs the
main Decoder behavior on top of a real-time operat-
ing system. In our case, we chose µC/OS-II [18] using
a round-robin scheduling strategy as target operating
system. As part of the scheduling exploration step in

7

Computation Profile
Total seconds

Computation

0

0.2

0.4

0.6

0.8

1.0

ARM ARM ARM

decode_header decode_frame synth

(a) top-level

Computation Profile
Total seconds

Computation

0

10

20

30

40

ARM ARM ARM ARM ARM ARM ARM ARM ARM ARM

sideinfo main_data scalefac huff stereo aliasreduce imdct anc dct32 calc_sample

(b) leaf behaviors

Figure 7: Computational complexity of MP3 decoder blocks.

the SCE design process, all parallel behavior compo-
sitions for left and right channel processing inside the
granule decoding and PCM synth blocks were refined
into dynamically spawned tasks running concurrently
on top of the OS. For validation of and feedback about
dynamic scheduling effects during simulation, SCE
automatically inserts an abstract, high-level model of
the chosen operating system into the generated TLM
and PAM design models [11].

In addition to the actual decoding algorithm run-
ning on the ARM, the processor is assisted by two
hardware I/O units for MP3 stream input and PCM
speech sample output processing and buffering. As
such, the Stimulus, Monitor and Error behaviors of
the top-level MP3 design specification are mapped to
MP3 IN and PCM OUT I/O units, respectively. Fur-
thermore, note that the two FIFO queues for stream
input and PCM output between the decoder and
the monitor and stimulus behaviors have each been
mapped into the corresponding hardware unit for im-
plementation. Using SCE, the queues will therefore
be implemented as local send and receive FIFOs in-
side each of the hardware I/O processors.

The ARM processor and the I/O blocks communi-
cate over a single instance of an AMBA AHB local
processor bus. The ARM processor is a master on its
bus and the two I/O units are synthesized to connect as
AHB slaves. As such, all communication between the
ARM processor and the I/O units will be routed over
the AHB bus. Specifically, the decoder running on the
ARM processor will read input MP3 stream data from
and write output PCM samples to the hardware FIFOs

in the MP3 IN and PCM OUT I/O blocks, respec-
tively. All communication between the ARM proces-
sor and the I/O queues is implemented by mapping
FIFO registers and link channels into the AHB ad-
dress space using dedicated bus addresses and pro-
cessor interrupt lines.

3.2 DCT Hardware Acceleration
In the first step of the exploration and optimization
process, we chose the critical Dct32 component (see
Figure 7(b)) as the candidate for hardware-assisted
acceleration in a co-processor fashion. The Dct32 was
mapped into a separate, stand-alone hardware PE that
acts as a slave to the main decoding algorithm run-
ning on the master ARM processor. As a result, when
reaching the corresponding stage in the decoding pro-
cess, the ARM will send the input data to the DCT
hardware component for processing. The ARM soft-
ware will then wait for the results coming back from
the DCT before continuing with the decoding process.
While waiting for the DCT, the operating system on
the ARM can swap in and switch over to any other
ready task, thus exploiting available parallelism on
the software side, if any.

The resulting system computation and communi-
cation architecture is shown in Figure 9. In this first
step, we allocated only a single DCT co-processor.
The single DCT hardware PE is shared between both
left and right channel PCM synthesis processes on
the ARM (running two independent, concurrent loops
for processing of samples each, see Figure 6). All in
the hope to exploit the parallelism (across loop itera-

8

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

I P B u s

D C T (I P)

sla
ve

2

sla
ve

3

M
as

te
r

Sl
av

e

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro

r Dt c3 2

T X
Arm/D c t

Arm/I n Arm/O u t

(a) IP-based DCT hardware.

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

D C T (H W)

sla
ve

2

sla
ve

3

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro

r Dt c3 2

Arm/D c tArm/I n Arm/O u t

(b) Synthesized DCT hardware.

Figure 9: MP3 platform with DCT hardware accelerator (HWSW1).

tions) between calc sample processing of one channel
on the ARM while waiting for the dct32 of the other
channel being processed in hardware (and vice versa).

In the process of DCT acceleration, we explored
two different architectural variants: reuse of a pre-
designed DCT IP component (Figure 9(a)), and syn-
thesis of a fully-custom DCT hardware unit from
scratch (Figure 9(b)). In the latter case, the custom
hardware unit can be synthesized with SCE to imple-
ment any bus interface. Therefore, it can be directly
connected to and implement the AHB slave proto-
col. In this case, all communication for sending input
blocks from the ARM to the DCT and for receiving
transformed results back from the DCT to the ARM
will go over the main AHB bus. Following the co-
processor principle, the DCT is a slave on the main
system bus and the ARM controls all transfers as the
single master on its bus. To send events for status up-
dates to the ARM processor, the DCT hardware gen-
erates interrupts and is connected to selected proces-
sor interrupt input lines.

In the IP case, the DCT IP component is directly
connected to and comes with its own local, dedicated
IPBus. A transducer is then added to the communi-
cation architecture, translating between the two pro-
tocols and connecting the IP component to the main
AHB bus. As such, all communication between the
ARM processor and the DCT IP has to go over the
transducer and the two busses. Again, the ARM is
the single master on its bus. The transducer is a slave

on the system bus and a master for the IP, relaying
all ARM request for sending and receiving of data to
the IP. Again interrupts are used for event notification
from the DCT to the ARM, relayed by the transducer.

3.3 Parallelized DCT Hardware Accelera-
tion

The next logical step in hardware acceleration is to
duplicate the DCT unit in order to provide dedicated
co-processor instances for each of the two channels.
Theoretically, including two independent LDCT and
RDCT hardware PEs enables further exploitation of
available parallelism by allowing to run the two DCT
instances in the left and right channel concurrently at
the same time.

Figure 10 shows the corresponding architectures
with two DCT units, one for each channel. Again,
we implemented both an IP-based architecture with
transducer (Figure 10(a) and an architecture with syn-
thesizable DCT hardware PEs directly connected to
the AHB bus (Figure 10(b)). In the former case, it
was assumed that both DCT IPs can be connected
to a shared instance of a single IPBus. Without loss
of generality, an architecture with two separate, dedi-
cated busses for each IP would be a simple, straight-
forward extension that is not shown here.

9

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

I P B u s

RD C T (I P)

L D C T (I P)

sla
ve

2

sla
ve

3

M
as

te
r

Sl
av

e
Sl
av

e

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro
r

Dt c3 2

Dct 3 2

T X
Arm/L D c t
Arm/R D c t

Arm/I n Arm/O u t

(a) IP-based DCT hardware.

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

RD C T (H W)

L D C T (H W)

sla
ve

2

sla
ve

3
sla

ve
4

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro
r

Dct 3 2

Dct 3 2

Arm/L D c t Arm/R D c tArm/I n Arm/O u t

(b) Synthesized DCT hardware.

Figure 10: MP3 platform with concurrent DCT hardware accelerators (HWSW2).

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

I P B u s

RI MD C T (I P)

L I MD C T (I P)

sla
ve

2

sla
ve

3

M
as

te
r

Sl
av

e
Sl
av

e

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro
r

I m dct

I m dct

T X
Arm/L I md c t
Arm/R I md c t

Arm/I n Arm/O u t

(a) IP-based DCT hardware.

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

RI MD C T (H W)

L I MD C T (H W)

sla
ve

2

sla
ve

3
sla

ve
4

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro
r

I m dct

I m dct

Arm/L I md c t Arm/R I md c tArm/I n Arm/O u t

(b) Synthesized DCT hardware.

Figure 11: MP3 platform with concurrent IMDCT hardware accelerators (HWSW3).

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

I P B u s

RI MD C T (I P) RD C T (I P)

L I MD C T (I P) L D C T (I P)

sla
ve

2

sla
ve

3

M
as

te
r

Sl
av

e

Sl
av

e
Sl
av

e

Sl
av

e

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro
r Dct 3 2

Dct 3 2I m dct

I m dct

Arm/L D c t

T X
Arm/L I md c t

Arm/R D c t
Arm/R I md c t

Arm/I n Arm/O u t

(a) IP-based DCT hardware.

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

RI MD C T (H W) RD C T (H W)

L I MD C T (H W) L D C T (H W)

sla
ve

2

sla
ve

3

sla
ve

5
sla

ve
6

sla
ve

4

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro
r Dct 3 2

Dct 3 2I m dct

I m dct

Arm/L D c tArm/L I md c t Arm/R D c tArm/R I md c tArm/I n Arm/O u t

(b) Synthesized DCT hardware.

Figure 12: MP3 platform with DCT and IMDCT hardware accelerators (HWSW4).

10

3.4 Parallelized IMDCT Hardware Acceler-
ation

In addition to acceleration of the PCM synthesis
stage, we investigated options for decreasing the de-
lay in the frame decoding stage of the MP3 decoding
algorithm. As shown in Figure 7(a), both stages are
similar in their workload and contribution to overall
frame delays. Furthermore, from Figure 7(b), it can
be concluded that the Imdct block is the most criti-
cal leaf behavior in the frame decoding stage, i.e. the
primary candidate for hardware acceleration there.

In order to be able to explore effects of frame de-
coding optimizations independent of and unaffected
by PCM synthesis modifications, we first explored ac-
celeration of only the Imdct block alone. Similar to
the Dct32 behavior in the synthesis stage, the MP3
specification executes two instances of the Imdct con-
currently as part of parallel left and right channel de-
coding (Figure 5). Note, however, that even though
concurrent channel decoding is executed in a loop
over the two granules that are part of each MP3 frame,
parallelism does not extend across loop iterations. As
specified, both threads have to be joined before the
next loop iteration can be started.

Therefore, we did not further investigate a so-
lution with a single IMDCT hardware unit shared
across channels. Instead, we directly implemented
an architecture with separate, dedicated LIMDCT and
RIMDCT PEs allowing for maximal parallelism be-
tween the left and right channel decoding tasks, re-
spectively.

The result of that exploration step is shown in Fig-
ure 11. Following the two variants for the DCT
case, we explored both an IP-based (Figure 11(a))
and a custom synthesized (Figure 11(b)) version of
the IMDCT hardware units. In all cases, IMDCTs
operate as co-processors, i.e. they act as slaves to the
single master ARM processor on the main system bus.
In the IP case, the IMDCTs are connected to their own
IPBus and a transducer connects the IP bus as slave to
the main bus. Interrupts are used for synchronization
and event notification from IMDCT PEs to the ARM
processor in each case.

3.5 DCT and IMDCT Hardware Accelera-
tion

Based on the fully parallelized and hardware acceler-
ated architectures presented in Section 3.3 and Sec-
tion 3.5, we created a first combined, maximally par-
allel system architecture which includes both DCT
and IMDCT co-processors. To allow exploitation of
all potential and available concurrency, the resulting
system includes separate, dedicated LDCT/LIMDCT
and RDCT/RIMDCT hardware PEs for left and right
channels, respectively (Figure 12).

Similar to previous cases, we created architectures
with both IP-based and synthesized implementations
of DCT and IMDCT co-processors (Figure 12(a) and
Figure 12(b), respectively). In the IP-based solution,
all four IP components are assumed (without loss of
generality) to be connected as slaves to a common,
shared IPBus instances that is connected to the main
system bus via a transducer. In the case of synthe-
sizable custom hardware components, all four co-
processors are directly connected as and synthesized
to become slaves on the AHB bus. In all cases, co-
processors are slaves listening to and generating in-
terrupts for a sole master ARM processor.

3.6 Pipelined DCT and IMDCT Hardware
Acceleration

Even in the most parallel system architecture (Sec-
tion 3.5), the available concurrency within each MP3
frame is limited by the sequential nature and the in-
herent dependencies of the MP3 decoding algorithm.
We can, however, increase performance further by
pipelining the decoding algorithm in order to ex-
pose and exploit additional parallelism that is avail-
able across successive MP3 frames. This can be
achieved by splitting the decoder into two parts dis-
tributed across different processors such that the soft-
ware on the ARM processor can start processing the
next frame while the hardware is finishing the last
synthesis and PCM output stages of the current frame.

In the MP3 decoder this is possible because the
only dependencies are between stages in the same
frame (data passing from one stage to the next) and
inside the same stage across frames (huffman and syn-
thesis filter state kept across iterations). Specifically,

11

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

I P B u s 1
I P B u s 2

RI MD C T (I P) RD C T (I P)

L I MD C T (I P) L D C T (I P)

sla
ve

2
&

m
as

te
r1

sla
ve

4
sla

ve
3

M
as

te
r

M
as

te
r

Sl
av

e

Sl
av

e
Sl
av

e

Sl
av

e

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro

r

Sy
nth

_fr
am

e Dct 3 2

Dct 3 2I m dct

I m dct

Out/L D c t

T X 1

T X 2

A r m /L I m d c t

Out/R D c t
A r m /R I m d c t

A r m /I n A r m /Out

(a) IP-based DCT hardware.

ARM (ARM7)

Ma i n B u s (AMB A_ AH B)

m
as

te
r0

Ar
bi
te
r

MP 3 _ I N P C M_ O U T

sla
ve

1

RI MD C T (H W) RD C T (H W)

L I MD C T (H W) L D C T (H W)

sla
ve

2
&

m
as

te
r1

sla
ve

3

sla
ve

5
sla

ve
6

sla
ve

4

Mad_Decoder

Mad_S t i m u l u s

OS (round-rob i n)

s t ream _i n p cm _ou t

Ma
d_

Mo
nit

or

Ma
d_

Er
ro

r

Sy
nth

_fr
am

e Dct 3 2

Dct 3 2I m dct

I m dct

Out/L D c tA r m /L I m d c t Out/R D c tA r m /R I m d c tA r m /I n A r m /Out

(b) Synthesized DCT hardware.

Figure 13: MP3 platform with pipelined DCT and IMDCT hardware accelerators (HWSW).

no dependencies exist between the PCM synthesis
stage and the header or frame decoding stages of the
next frame. Therefore, in order to implement pipelin-
ing of those two stages, the complete PCM synthesis
and output block has to be mapped into hardware.

The resulting final, pipelined and parallelized MP3
decoder system is shown in Figure 13. As described
in Section 3.1, the Output and Error stages were al-
ready previously mapped into a separate PCM OUT
hardware. In order to enable pipelining, we also
map the complete synth frame block into the same
PCM OUT PE. As such, synth frame and Output be-
haviors communicate PCM samples through the HW-
local pcm out queue internally without involving the
ARM processor. This allows the PCM synthesis and
output stages to run completely independent of the
software on the ARM.

The frame decoding software on the ARM and the
PCM synthesis hardware in the PCM OUT PE are
each assisted by respective co-processors for IMDCT
and DCT acceleration. Again, co-processors are du-
plicated to include two dedicated PEs each for left and
right channel processing. The ARM processor com-
municates with the LIMDCT and RIMDCT compo-
nents whereas the PCM OUT PE exchanges data with
the two DCTs. Since all four co-processors are acting
as slaves, the PCM OUT has to become both a slave
(for communication with the ARM) and a secondary
master (for communication with LDCT and RDCT)
on the main system bus. As such, the AHB bus im-
plementation needs to include a mandatory bus arbiter

component.
As in all previous explorations, we implemented

two architectures using either IP components (Fig-
ure 13(a)) or synthesizing custom hardware (Fig-
ure 13(b)) for each co-processor. In the latter case, all
four co-processors are synthesized to become AHB
bus slaves directly connected to the main system bus.
In the former case, IP components require separate
instances of their own, proprietary IP bus protocol.
Transducers then connect the IP busses to the AHB
system bus, translating between the two.

In contrast to all previous architectures with a
single ARM master component only, the two AHB
bus masters (ARM and PCM OUT) can access co-
processors concurrently. Therefore, to avoid poten-
tial contention of concurrent accesses by competing
masters on a single, slow IP bus, we allocated two
separate IP busses connected via two transducers. Co-
processors are evenly distributed and connected to the
two IP busses based on a separation of left and right
channels. The two separated busses allow the ARM
and PCM OUT masters to concurrently access differ-
ent channel co-processors each, removing the poten-
tial bottleneck of a single, shared IP bus1.

1Note that due to the speed difference between the AHB and
IP busses, transactions are buffered in the transducers based on
a store-and-forward principle. Therefore, the AHB bus is not a
bottleneck. Even though they are serialized by arbitration, AHB
masters can fill or empty the buffers in the transducers faster than
and while transducers perform slow transactions on the IP busses.

12

4 Refinement Results

Going through the different exploration and refine-
ment steps of the SCE design and tool flow, we real-
ized the design implementations for all explored sys-
tem architectures as described in Section 3. Using
SCE’s automatic model generation and refinement ca-
pabilities, transaction-level and pin-accurate models
(TLM and PAM) at varying levels of abstraction were
automatically generated for each of the design alter-
natives [10]. Using SCE tools, models for all target
implementations were generated within minutes. Fur-
thermore, including time needed for validation and
simulation of models, the complete design space ex-
ploration process was completed in less than an hour.

In all cases, we brought down the implementation
to a final pin-accurate model ready for further hard-
ware and software synthesis. For final sign-off, all
models were executed for validation through simula-
tion. Model simulations were performed on a 2.8 GHz
Intel Pentium 4 workstation running Linux. Valida-
tion of models was based on a testbench that exercises
the MP3 design by decoding 10 frames of a stereo
MP3 test stream with 44.1 kHz sampling frequency
and a (constant) bitrate of 96 kbit/s. Note that since
a MP3 frame consists of 1152 PCM samples, each
frame corresponds to 26.12 ms and the total decoded
stream length for this setup is 0.2612 s of audio.

Results for the pin-accurate models of all explored
system architectures and for the initial specification
model are summarized in Table 1. For each model,
the table shows model statistics such as lines of code
(LOC) and number of behaviors (overall and leaf) and
channels. In addition, the time needed to simulate the
model, the simulated MP3 frame decoding delay and
the total runtime of the refinemenent tools for gener-
ation of the model are listed.

As is always the case for a purely functional model,
the initial specification executes in zero time, i.e. with
a frame delay of zero. Furthermore, specification sim-
ulation is very fast, running the algorithm natively
with no extra overhead on the simulation host. All
subsequent pin-accurate models, on the other hand,
have significantly higher simulation times due to the
extra implementation detail and resulting simulation
overhead in those models. Note that a large part of

the overhead at the pin-accurate level can be attributed
to the simulation of events on bus wires. Accurate
bus-functional models are necessary for further hard-
ware synthesis. On the other hand, for simulation and
validation, those details can be abstracted away. Ap-
plying transaction-level modeling (TLM) techniques,
speedups of several orders of magnitude with no loss
of accuracy can be achieved [14]. However, since we
focus on synthesis in this report, we do not include
any TLM results here.

In general, model complexities as measured by
model statistics (i.e. static code size and number of
objects) and simulation times are correlated to the
complexity of the target architecture (number of com-
ponents and busses). On the other hand, simulation
times also depend on the amount of dynamically sim-
ulated content and functionality, which are directly re-
lated to the actual frame decoding delay. Note, how-
ever, as discussed above, compared to the computa-
tion content, slow simulation of communication func-
tionality at the pin-accurate level will have a propor-
tionally higher impact on simulation speeds than its
actual contribution to overall simulated frame delays.

As can be seen from the results, a pure software
solution SWPE meets the frame deadline (frame de-
coding constraint) of 26.12 ms, but not comfortably.
However, since there is not a big enough margin to
compensate for any variations in delays when tak-
ing the high-level estimates down to their final imple-
mentation, the software implementation is not con-
sidered to be feasible. Looking at various levels of
hardware acceleration, we can conclude that in all
cases IP-based solutions have higher frame delays
than their synthesized counterparts. This is due to
the extra overhead necessary for translation to/from
and communication over the slower IP bus protocol.
Hence, there is a clear trade-off between reuse of pre-
designed IP components (i.e. cost reduction) and de-
lays (i.e. speed).

Results for architecture HWSW1 and HWSW2 show
that frame delays actually increase when adding DCT
hardware acceleration. This can be attributed to the
fact that the extra overhead for communication be-
tween the ARM and the DCT units outweigh the ben-
efits of speeding up the DCT algorithm in a hard-
ware implementation. The DCT in the PCM synthesis

13

Statistics Simulation Frame Generation
Model LOC Behaviors Leafs Channels time delay time
Specification 14,045 44 29 2 0.01 s 0.00 ms —
SWPE 22,085 96 58 29 5.67 s 25.92 ms 4.01 s

HWSW1 IP 24,922 119 72 81 254.9 s 38.67 ms 5.40 s
HW 23,766 114 68 57 157.6 s 26.34 ms 5.17 s

HWSW2 IP 24,800 119 72 81 255.4 s 38.67 ms 5.93 s
HW 23,710 114 68 57 158.6 s 26.34 ms 5.60 s

HWSW3 IP 25,140 123 73 85 104.7 s 25.76 ms 7.35 s
HW 24,042 118 69 61 65.9 s 20.29 ms 7.10 s

HWSW4 IP 27,404 143 85 129 377.9 s 38.51 ms 10.85 s
HW 25,697 136 79 89 221.1 s 20.71 ms 10.24 s

HWSW IP 28,528 148 87 150 308.5 s 17.71 ms 12.46 s
HW 26,847 142 83 110 225.2 s 12.46 ms 11.92 s

Table 1: Exploration and refinement results.

stage is executed in a loop, once for every group of
32 samples. For the 10 frames decoded through the
testbench, the Dct32 behavior is invoked 575 times.
On each invocation, a DCT co-processor requires to
receive and send about 2 kB of data. Therefore, ex-
ternal DCT processing incurs significant traffic on the
bus(es) in each frame. Furthermore, note that a par-
allel implementation with duplicated DCTs does not
bring any benefits as the frame delay is not affected.
This shows that delays in the PCM synthesis stage are
limited by the software running on the ARM, i.e. any
additional speedup of the DCT will not further reduce
the overall delay.

Comparing the IMDCT-based architecture HWSW3
with DCT acceleration, results are different. Hard-
ware acceleration of the Imdct block reduces frame
delay compared to the software solution. In the
IMDCT case, communication overhead does not be-
come a bottleneck and especially the custom synthe-
sized IMDCT PEs markedly improve delays (for IP-
based IMDCTs, on the other hand, the additional IP
communication overhead and acceleration gains even
out).

In the case of architecture HWSW4, when combin-
ing IMDCT and DCT acceleration results are mixed.
Again, adding DCT acceleration increases delays.
This effect is generally more pronounced for IP-based
DCT implementations due to the extra overhead for IP
protocol translation and communication in this case.

Therefore, an architecture with custom synthesized
co-processors can maintain delay gains whereas the
deadline is violated in the IP-based variant.

Finally, only the fully pipelined and parallelized ar-
chitecture HWSW can achieve the required frame de-
lays with a big enough margin. Pipelining of frame
decoding on the ARM and PCM synthesis in hard-
ware dramatically reduces overall delays. The par-
allelism available across frame iterations provides by
far the biggest potential for speed gains (at the ex-
pense of significantly higher hardware costs). There-
fore, architecture HWSW, either in its IP-based or syn-
thesized form, was chosen as the final system design
for an ARM-based implementation of the MP3 de-
coder.

5 Summary and Conclusions

In this report, we presented the application of the
System-On-Chip Environment (SCE) tool flow to the
design of a MP3 decoder system on an ARM-based
target platform. The design process starts with a spec-
ification model of the MP3 algorithm described in the
SpecC system-level design language (SLDL). Using
SCE exploration and refinement tools, six different
base architectures for implementation of the MP3 de-
sign with varying levels of either IP-based or synthe-
sized hardware acceleration were investigated. For all

14

design alternatives, transaction-level and pin-accurate
models were automatically generated. All models
were validated and evaluated through simulation. An
optimal architecture with pipelined and parallelized
hardware acceleration of DCT and IMDCT blocks
was obtained as the final system design and optimized
MP3 implementation. As a result of the exploration
process, the final pin-accurate model of the selected
architecture serves as the input to the backend process
for further hardware and software synthesis.

Results show the feasibility of the approach and
prove the tremendous benefit of a SCE-based elec-
tronic system-level (ESL) design solution. Varying
models for all design alternatives were automatically
generated using SCE refinement tools. As a result,
the exploration process was completed and an opti-
mal architecture was selected in less than 1 hour, in-
cluding time required for model validation and sim-
ulation. In summary, significant productivity gains
with design times that are several orders of magnitude
shorter when compared to traditional manual model-
ing and design approaches have been achieved.

References
[1] Samar Abdi, Junyu Peng, Haobo Yu, Dong-

wan Shin, Andreas Gerstlauer, Rainer Dömer,
and Daniel Gajski. System-on-chip environ-
ment (SCE version 2.2.0 beta): Tutorial. Tech-
nical Report CECS-TR-03-41, Center for Em-
bedded Computer Systems, University of Cali-
fornia, Irvine, July 2003.

[2] AMBA Home Page. www.arm.com/products/

solutions/AMBAHomePage.html.

[3] Lucai Cai, Andreas Gerstlauer, and Daniel D.
Gajski. Retargetable profiling for rapid, early
system-level design space exploration. In Pro-
ceedings of the Design Automation Conference
(DAC), San Diego, CA, June 2004.

[4] Lukai Cai, Andreas Gerstlauer, Samar Abdi,
Junyu Peng, Dongwan Shin, Haobo Yu, Rainer
Dömer, and Daniel Gajski. System-on-chip
environment (SCE version 2.2.0 beta): Man-
ual. Technical Report CECS-TR-03-45, Center

for Embedded Computer Systems, University of
California, Irvine, December 2003.

[5] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer,
Andreas Gerstlauer, and Shuqing Zhao. SpecC:
Specification Language and Design Methodol-
ogy. Kluwer Academic Publishers, 2000.

[6] Andreas Gerstlauer, Lukai Cai, Dongwan Shin,
Haobo Yu, Junyu Peng, and Rainer Dömer. SCE
Database Reference Manual, Version 2.2.0 beta.
Center for Embedded Computer Systems, Uni-
versity of California, Irvine, July 2003.

[7] Andreas Gerstlauer and Rainer Dömer. SCE
Specification Model Reference Manual, Version
2.2.0 beta. Center for Embedded Computer
Systems, University of California, Irvine, July
2003.

[8] Andreas Gerstlauer, Rainer Dömer, Junyu Peng,
and Daniel D. Gajski. System Design: A Practi-
cal Guide with SpecC. Kluwer Academic Pub-
lishers, 2001.

[9] Andreas Gerstlauer, Kiran Ramineni, Rainer
Dömer, and Daniel D. Gajski. System-on-
chip specification style guide. Technical Report
CECS-TR-03-21, Center for Embedded Com-
puter Systems, University of California, Irvine,
June 2003.

[10] Andreas Gerstlauer, Donwan Shin, Junyu Peng,
Rainer Dömer, and Daniel D. Gajski. Automatic
Layer-Based Generation of System-On-Chip
Bus Communication Models. IEEE Transac-
tions on Computer-Aided Design of Intergrated
Circuits and Systems (TCAD), 26(9):1676–
1687, September 2007.

[11] Andreas Gerstlauer, Haobo Yu, and Daniel D.
Gajski. RTOS modeling for system level de-
sign. In Ahmed A. Jerraya, Sungjoo Yoo, Nor-
bert Wehn, and Diedrik Verkest, editors, Embed-
ded Software for SoC. Kluwer Academic Pub-
lishers, 2003.

[12] Underbit Technologies Inc.
MAD: MPEG audio decoder.
http://www.underbit.com/products/mad.

15

http://www.underbit.com/products/mad

[13] Junyu Peng, Andreas Gerstlauer, Rainer Dömer,
and Daniel D. Gajski. System-on-Chip Archi-
tecture Modeling Style Guide. Technical Report
CECS-TR-04-22, Center for Embedded Com-
puter Systems, University of California, Irvine,
July 2004.

[14] Gunar Schirner and Rainer Dömer. Result
Oriented Modeling – A Novel Technique for
Fast and Accurate TLM. IEEE Transactions
on Computer-Aided Design of Intergrated Cir-
cuits and Systems (TCAD), 26(9):1688–1699,
September 2007.

[15] Dongwan Shin, Lukai Cai, Andreas Gerst-
lauer, Rainer Dömer, and Daniel D. Gajski.
System-on-Chip Transaction-Level Modeling
Style Guide. Technical Report CECS-TR-04-24,
Center for Embedded Computer Systems, Uni-
versity of California, Irvine, July 2004.

[16] Dongwan Shin, Andreas Gerstlauer, Rainer
Dömer, and Daniel D. Gajski. System-on-Chip
Communication Modeling Style Guide. Techni-
cal Report CECS-TR-04-25, Center for Embed-
ded Computer Systems, University of Califor-
nia, Irvine, July 2004.

[17] Dongwan Shin, Junyu Peng, Andreas Gerst-
lauer, Rainer Dömer, and Daniel D. Gajski.
System-on-Chip Network Modeling Style
Guide. Technical Report CECS-TR-04-23,
Center for Embedded Computer Systems,
University of California, Irvine, July 2004.

[18] uCos-II. http://www.ucos-ii.com.

16

http://www.ucos-ii.com

	1 Introduction
	2 Specification
	2.1 Reference C Code
	2.2 SpecC Model
	2.2.1 Frame Decoding
	2.2.2 PCM Synthesis

	3 Design Space Exploration
	3.1 Pure Software Implementation
	3.2 DCT Hardware Acceleration
	3.3 Parallelized DCT Hardware Acceleration
	3.4 Parallelized IMDCT Hardware Acceleration
	3.5 DCT and IMDCT Hardware Acceleration
	3.6 Pipelined DCT and IMDCT Hardware Acceleration

	4 Refinement Results
	5 Summary and Conclusions
	References

