
Modeling Guidelines and Refinement Rules

Gajski, et al., SpecC textbook, Chapter 4, “The SpecC Methodology”

Model Guidelines
Specification
Architecture
Communication
Implementation

Refinement Rules

Behavior partitioning
Scheduling
Variable partitioning
Channel partitioning
Protocol insertion
Transducer synthesis
Inlining

Summary Listing of Guidelines and Rules
Table 4.1. Specification model guidelines.

Separate communication and computation
Expose parallelism
Use hierarchy to group related functionality
Choose proper granularity
Identify system states

Table 4.2. Refinement rules for behavior partitioning.
Introduce additional level of hierarchy
Bind behaviors to components
Group behaviors
Estimate behavior metrics
Add synchronization
Move communication

Table 4.3. Refinement rules for scheduling.
Serialize behavior hierarchy
Optimize control

Table 4.4. Refinement rules for variable partitioning.
Move variables into components
Add communication channels
Update variable accesses
Optimize communication and synchronization

Table 4.5. Refinement rules for channel partitioning.
Add level of hierarchy
Bind channels to busses
Group communication
Estimate channel metrics
Update channel accesses

Table 4.6. Architecture model guidelines.
Create high-level structure
Sequentialize component functionality
Specify global communication
Annotate estimated metrics

Table 4.7. Refinement rules for protocol insertion.
Insert protocol code

Generate application layer
Replace bus channels

Table 4.8. Refinement rules for transducer synthesis.
Insert transducers
Encapsulate with wrappers
Synthesize transducer code

Table 4.9. Refinement rules for inlining.
Inline communication methods
Optimize

Table 4.10. Communication model guidelines.
Implement bus functionality
Annotate bus timing

Table 4.11. Implementation model guidelines.
Implement system busses
Implement system components

Table 4.1. Specification model guidelines.

Separate communication and computation
Algorithmic functionality has to be detached from communication functionality. In addition, inputs and
outputs of a computation have to be explicitly specified to show data dependencies.

Expose parallelism
Allow independent behaviors to run concurrently instead of artificially serializing behaviors in
expectancy of a serial implementation. In essence, all parallelism should be made available to the
exploration tools in order to increase room for optimizations.

Use hierarchy to group related functionality
Introduce one hierarchical level for each functional group and eliminate localized effects at higher
levels. For example, local communication and local data dependencies are grouped and hidden by the
hierarchical structure.

Choose proper granularity
The size of leaf behaviors has to be chosen such that optimization possibilities and design complexity
are balanced when searching the design space. Basically, the leaf behaviors, which build the smallest
indivisible units for exploration, should reflect the division into basic algorithmic blocks.

Identify system states
Use state transitions to explicitly model the steps of the computation in terms of basic algorithms or
abstracted, hierarchical blocks.

Table 4.2. Refinement rules for behavior partitioning.

Introduce additional level of hierarchy
At the top-level of the behavior hierarchy, insert behaviors which represent the components of the
system architecture.

Bind behaviors to components
Annotate the component behaviors with the name of the component type out of the component library.
Since the inserted behaviors simply group behaviors for each PE, this establishes the correlation of PE

behaviors with allocated components in the system architecture.

Group behaviors
Group the behaviors of the specification under the component behavior to which they have been
mapped, preserving the structural and behavioral hierarchy of the specification in the parts mapped to
each component.

Estimate behavior metrics
Annotate the behaviors with the estimated values of chosen metrics for the components executing the
behaviors. For example, in leaf behaviors appropriate waitfor () statements are added to establish
correct execution times during simulation.

Add synchronization
For original behavior transitions that now cross component boundaries, introduce additional control
behaviors in each component and corresponding global synchronization channels in order to preserve
execution semantics.

Move communication
Move variables and channels in the original specification that are used for communication between
behaviors mapped to different components to the top level and declare them as global system
variables/channels. Add corresponding ports and connections in the structural hierarchy from the top
down to the behaviors accessing the variables and channels.

Table 4.3. Refinement rules for scheduling.

Serialize behavior hierarchy
Inside the PE behaviors, remove all concurrent (parallel, pipe) behaviors and transform the behavior
hierarchy according to the selected schedule into a purely sequential execution. Possibly flatten parts of
the hierarchy or move behaviors across the hierarchy.

Optimize control
Optimize the scheduled hierarchy by removing unnecessary control and synchronization behaviors and
channels.

Table 4.4. Refinement rules for variable partitioning.

Move variables into components
According to the selected partition, move variables into the (memory or processing) components to
which they have been assigned.

Add communication channels
For each variable add a global communication channel. In case a variable has been mapped to a
dedicated server component, add a channel for communication with the memory server and connect all
components accessing the variable to that channel. In case a local copy of a variable is kept in each
component, add a message-passing channel for exchange of updated values.

Update variable accesses

For PEs with no local copy of a variable, replace all variable accesses with read () and write () calls to
the corresponding channel. Otherwise, replace with accesses to local copy and add code at each
synchronization point (wait) to send or receive updated variable values over the corresponding message-
passing channel, in case the local copy was modified before or will be needed after synchronization,
respectively. In both cases, update ports and connectivity accordingly.

Optimize communication and synchronization
Optimize variable communication by merging it with any existing communication and/or
synchronization. For optimization, remove communication channels and corresponding code if variable
is accessed only inside the assigned component.

Table 4.5. Refinement rules for channel partitioning.

Add level of hierarchy
Introduce an additional level of hierarchy. At the top-level of the channel hierarchy, insert channels
which represent the busses in the system architecture.

Bind channels to busses
Annotate the busses with the name of the bus type and bus protocol out of the IP library. Since the
inserted busses simply group communication handled over each bus, virtual bus channels are thereby
correlated with allocated busses and their protocols in the system architecture.

Group communication
Group the global communication channels which have been assigned to the same bus under the top-level
channel representing the corresponding bus.

Estimate channel metrics
Annotate the channels in each bus with performance metrics estimated from the bus protocol assigned to
the channels. For example, appropriate waitfor() statements are added in the communication primitives
to establish execution times during simulation.

Update channel accesses
Replace channel accesses in the components with accesses to the corresponding bus interface. Update
the ports and connectivity of the structural hierarchy accordingly.

Table 4.6. Architecture model guidelines.

Create high-level structure
The top-level behaviors and channels represent the components and busses of the system architecture
and their connectivity corresponds to the structure of the architecture. Behaviors grouped under the top-
level behaviors specify the functionality (and storage) to be implemented on the corresponding
component. Similarly, channels grouped under the top-level channels represent the communication to be
implemented over the corresponding system bus.

Sequentialize component functionality
The behavior hierarchy inside the component behaviors is purely sequential, i.e. there are no parallel or
pipelined behavior types. Parallelism is available only at the top- level, where all the component

behaviors run concurrently.

Specify global communication
The bus channels exclusively contain abstract channels for directed communication of data values, i.e.
there are no variables and random-access storage inside the bus channels.

Annotate estimated metrics
Behaviors and channels are annotated with their estimated design metrics for the components and busses
to which they are mapped, respectively. For simulation purposes, appropriate delay statements are added
to the behaviors and channels.

Table 4.7. Refinement rules for protocol insertion.

Insert protocol code
For each system bus, pull the corresponding protocol channel out of the protocol library.

Generate application layer
For each bus, generate the application layer that implements the abstract communication assigned to that
bus, using the primitives provided by the corresponding protocol channel.

Replace bus channels
Replace the virtual bus channels in the architecture model with the hierarchical combination of
application layer and bus protocol channels.

Table 4.8. Refinement rules for transducer synthesis.

Insert transducers
Insert transducer behaviors between component behaviors and bus channels that have incompatible
protocols on their ports.

Encapsulate with wrappers
Replace the component behaviors with their wrapped equivalents that encapsulate the IP interface
protocols.

Synthesize transducer code
Create code inside the transducer behaviors which performs a one-to-one mapping of communication
primitives on one side to corresponding primitives on the other side.

Table 4.9. Refinement rules for inlining.

Inline communication methods
Move the communication functions provided by the wrappers and channels into the transducer and
component behaviors where they are accessed. Variables inside the low-level protocol channels become
global, shared variables. Change ports and connectivity from channel interfaces to variable accesses.

Optimize

Cancel away transducers in case the protocols on both sides of a transducer are equivalent after inlining.

Table 4.10. Communication model guidelines.

Implement bus functionality
At the top level, the behaviors which represent the components of the system architecture communicate
via a set of shared variables which represent the wires of the system busses in the target architecture.

Annotate bus timing
The communication between components over their interfaces and the bus wires is modeled with
accurate timing whereas the (purely sequential) behavior inside the components is at the functional level
with annotated estimated delays for simulation.

Table 4.11. Implementation model guidelines.

Implement system busses
As in the communication model, component behaviors communicate over shared variables representing
the wires of the system busses. Communication is modeled with accurate timing.

Implement system components
The component behaviors are replaced with a cycle-accurate model of the component implementation.
Hence, computation is modeled with accurate timing, too.

