
A Next-Generation Design Framework
for Platform-Based Design

Abhijit Davare, Douglas Densmore, Trevor Meyerowitz, Alessandro Pinto,
Alberto Sangiovanni-Vincentelli, Guang Yang, Haibo Zeng, Qi Zhu

{davare, densmore, tcm, apinto, alberto, guyang, zenghb, zhuqi}@eecs.berkeley.edu

Abstract— The platform-based design methodology [1] is based
on the usage of formal modeling techniques, clearly defined
abstraction levels and the separation of concerns to enable an
effective design process. The METROPOLIS framework embodies
the platform-based design methodology and has been applied
to a number of case studies across multiple domains. Based
on these experiences, we have identified three key features that
need to be enhanced: heterogeneous IP import, orthogonalization
of performance from behavior, and design space exploration.
The next generation METRO II framework incorporates these
advanced features. The main concepts underlying METRO II are
described in this paper and illustrated with a small example.

I. INTRODUCTION

The design of embedded systems is becoming more diffi-
cult as design complexity increases, time-to-market pressures
continue, and development teams with diverse backgrounds are
assembled. The platform-based design methodology (PBD) [1]
is a technique to combat these challenges. This methodology
advocates the separation of concerns between an architectural
platform – a collection of architectural primitives configured to
provide a set of services – and the functionality – a description
of what the design does defined in terms of the same services.
By taking these two portions of a design through a set of
clearly defined abstraction/refinement steps which culminate in
mapping, correct-by-construction design as well as structured
design space exploration are enabled.

To support the design and analysis of heterogenous systems
our group has developed the METROPOLIS Design Framework
[2]. It is based on the ideas of PBD and orthogonaliza-
tion of concerns [3] in terms of communication-computation,
function-architecture, and behavior-performance. It features a
flexible and formal semantics that supports a wide variety of
models of computation.

In this paper, we will describe METROPOLIS in more detail
and present some of the lessons learned from several case
studies. These limitations will be used to drive the three main
features we would like to enhance in the future: the import of
heterogeneous IP, designer-friendly orthogonalization between
performance and behavior, and design space exploration. In
turn, these requirements motivate the development of the
METRO II framework, whose semantics and building blocks
are described using a small example.

II. RELATED WORK

There are multiple tools, environments, and languages re-
lated to METROPOLIS and the planned features of METRO

II. A broad survey of this related work in the context of
the PBD methodology is provided in [4]. Both academic
and industrial approaches are summarized with respect to
functional modeling, architectural modeling, and mapping.
This section highlights a few of these approaches.

A. SystemC-Based Solutions

SystemC [5] is a free C++ library for modeling both
hardware and software at various levels of abstraction. It is
currently the most popular language for system-level design.
For hardware design, it is based on the discrete-event MoC
(Model of Computation). Because of this similarity, RTL de-
signers can migrate to SystemC with little difficulty. The main
synchronization mechanisms are events and global timing. For
software design, C++ constructs can be used.

SystemC separates communication from computation by
using port-interface calls. However, it lacks all other separa-
tions of concerns, such as behavior-performance and function-
architecture. As a result, it is less efficient in modeling reusable
system level designs. SystemC also has standard libraries for
Transaction Level Modeling and Verification.

B. Ptolemy II

Ptolemy II [6] focuses on component-based heterogeneous
modeling. It uses tokens as the underlying communication
mechanism. Directors regulate how actors in the design fire
and how tokens are used to communicate between them. This
mechanism allows different MoCs to be constructed within
Ptolemy II. Actors are specified using Java.

Ptolemy II uses hierarchical composition to handle hetero-
geneity. Each level in a hierarchy has a director that organizes
the firing of the actors at that level. Ptolemy II has no intrinsic
notion of mapping between actors or of using declarative
specification in the design.

C. Rapide

Rapide [7] is an executable architecture definition lan-
guage (EADL) which has advanced features for handling
event patterns. Architectures in Rapide are interconnections
of modules which can represent a system at any level of
abstraction. Modules must conform to certain interfaces, which
include facilities that are provided, facilities that are required,
some definition of behavior, and constraints on the external
environment. Compatible modules can be connected to each
other to form an architecture.



When architectures execute, they generate timed events
along with causality relationships. Event patterns can be used
to recognize certain sets of events. Event patterns, in turn,
can be used to specify relationships between different archi-
tectures. For instance, a specific event pattern in an abstract
architecture can be used to trigger a larger event pattern in a
more refined architecture. Rapide is not targeted specifically
at embedded systems design, and as such there is no mention
of different MoCs or function-architecture mapping.

D. SPIRIT

SPIRIT [8] is an IP-integration consortium that aims to
provide a common specification mechanism for describing and
handling IPs. It includes: an XML-based IP meta-data schema
that leverages industry standards (such as VSIA, XSLT, and
XPath), configuration and generation interfaces, and the IP-
XACT methodology which uses the former two. This is cur-
rently mainly at the RTL level, but an IP-XACT methodology
with ESL extensions is currently under development. The ESL
requirements for the XML schema include module hierarchy
support, ad-hoc connection support, multiple views of different
levels for one component (e.g., TLM PV, TLM CA, etc.),
supporting mixed IP modeling abstraction levels.

E. Others

1) Academic: The MILAN project [9] employs a model-
based solution for hardware/software co-design and co-
simulation. Different simulators can be integrated once differ-
ent simulation models are interpreted into the common model
supported in MILAN. It is built on top of the Generic Model-
ing Environment (GME) [10], a framework creating domain-
specific modeling languages, and DESERT, a collection of
tools which are used for navigating and pruning large design
spaces in GME. Artemis, Compaan and Laura, Sesame, and
Spade [11] are provided together as a workbench to model
applications and SoC based architectures. Finally, MESCAL
provides programming infrastructure for application specific
programmable platforms [12].

2) Industrial: Cofluent Studio by CoFluent Design enables
design space exploration at the transaction level using a
Y-chart modeling approach. MLDesign Technologies offers
MLDesigner which offers support for discrete event, dynamic
dataflow, and synchronous dataflow modeling of architectures
and functionality. Mirabilis Design provides the VisualSim
product family which also models continuous time and FSM
based systems. Finally, Synopsys offers System Studio which
performs algorithm capture and performance evaluation in
SystemC [5].

III. FIRST GENERATION METROPOLIS FRAMEWORK

This section describes the first generation METROPOLIS
framework [13][2] in more detail. METROPOLIS features
a flexible and formal semantics based upon the tagged-
signal model [14] that allows it to represent a wide va-
riety of models of computation. Furthermore, it supports:

platform-based design, behavior-architecture mapping, and or-
thogonalization of concerns at the levels of communication-
computation-coordination, architecture-function-mapping, and
behavior-performance. First, the execution semantics and the
specification language are covered. Next, the set of tools
developed within this framework is described. Finally, the
limitations observed after carrying out a number of case
studies are listed.

A. MetaModel Language and Execution Semantics

The METROPOLIS MetaModel specification language is
used for the specification of both the functionality and ar-
chitecture. It allows for imperative as well as declarative
specification.

The four main types of objects in the MetaModel are: pro-
cesses, media, quantity managers, and netlists. Each process
contains its own thread of control and executes concurrently
with all other processes in the system. The execution of a
process is represented by a sequence of events, where events
are actions executed by processes. Media are passive objects
that are used for inter-process communication. Each medium
implements a set of interface methods. Media are connected
to processes and other media by means of ports that are type
compatible with their interfaces. Quantity managers control
access to shared media or assign physical quantities such as
time or power to events. Netlists are objects where the other
objects are instantiated and connected. Netlists can contain
other netlists.

1) Two-phase Execution: When designing with the Meta-
Model, a system is captured by two netlists of objects: a
scheduled netlist and a scheduling netlist. The scheduled netlist
consists of a number of processes and media, which form
the skeleton of the system behavior. The scheduling netlist
contains a collection of quantity managers, each of which can
model execution costs or scheduling policies. The execution
semantics of the entire system is simply the alternation be-
tween the scheduled netlist and the scheduling netlist. The
interaction between the two netlists is carried out by quantity
annotation requests associated with events.

For example, if two processes in the scheduled netlists
require arbitration to access a common resource, each of them
will generate a representative event, and send an (arbitration)
quantity annotation request for that event to an arbiter (a
particular quantity manager). This occurs in the scheduled
netlist phase. In the following scheduling netlist phase, those
quantity annotation requests will be resolved by the arbiter
quantity manager. When the execution is switched back to the
scheduled netlist, based on the quantity resolution results, the
processes can either proceed to access the common resource
or wait until the resource becomes available.

2) Declarative Specification: Processes, media, and quan-
tity managers are described with purely imperative specifica-
tion. In addition, the METROPOLIS MetaModel also supports
declarative constraints. The mixture of imperative and declara-
tive specification gives the designer additional flexibility. Two



kinds of formal constraint logics are supported: Linear Tem-
poral Logic (LTL) [15] and Logic of Constraints (LOC) [16].
LTL is well studied in the formal verification field. It is quite
expressive to specify properties along a time line. Therefore, it
can be used to specify coordination among processes. LOC is
particularly suited for specification of performance constraints
over system behaviors.

Both LTL and LOC constraints can be interpreted either
as part of the specification or as assertions. Assertions are
checked by viewing simulation traces or by formal reasoning.
Similarly, constraints that are part of the specification can
either be used to restrict the simulation or provide input to
synthesis tools.

B. Tool Support

METROPOLIS features a frontend that parses the input
MetaModel language and creates an abstract syntax tree.
Then, the abstract syntax tree can be passed to different
backend tools for analysis. One of the most important backend
tools is the simulator [17], which preserves the MetaModel
semantics while translating a MetaModel specification into
the executable SystemC [5] language. LTL and a set of built-
in LOC constraints can be enforced during simulation [16].
For verification there are backends for: checking LOC proper-
ties [18], interfacing to the SPIN model checker [19] to verify
LTL constraints, and a refinement verification tool [20]. There
is also an interface to the UCLA’s xPilot [21] synthesis system
that works on a synthesizable subset of the MetaModel. All
of the frontend and backend tools can be invoked interactively
by using the METROPOLIS Interactive Shell.

C. Limitations

We have performed multiple case studies [20] [22] [23]
[24] using this framework and the PBD methodology. While
validating the core ideas of our approach, these case studies
also revealed some limitations of the tool framework that
impede wide-spread adoption.

The generality of the MetaModel language [13] creates dif-
ficulties for both users and framework developers. Expecting
users to learn a new language, which lacks many of the niceties
of their favorite language(s), is a burden, as is creating import
and export support for a variety of languages. Furthermore,
a rich new language requires extensive infrastructure support
for compilation, simulation, and debugging.

Secondly, interactions with quantities must be explicitly
represented, and simplifying assumptions made in domain-
specific languages cannot be made in the MetaModel. Al-
though there are conceptual and implementation distinctions
between modeling costs and modeling scheduling policies with
quantity managers, METROPOLIS does not make them clear
in the execution semantics. The end result is that specifying
quantity managers – especially the interaction between them
– is a difficult task for designers

Finally, the case studies reveal that design space exploration
is one of the main benefits of the PBD methodology. Carrying
out design space exploration requires relating together events

and analyzing the associated annotations. The MetaModel
language provides support for these features, but the ease-of-
use can be significantly enhanced.

By focusing on the key value-added features of METROPO-
LIS, and addressing these limitations, we plan to make METRO
II an IP-integration framework with enhanced support for PBD
activities.

IV. METRO II GOALS

Based on the experience gained from the development and
usage of the METROPOLIS framework, we have identified
three main features to enhance. These features form the basis
of the second-generation METRO II framework. The three
features are:

1) The ability to import pre-designed IP. IP providers
develop their models using languages and tools that are
domain specific. Requiring a singular form of design
entry in a system-level environment results in signif-
icant effort to translate the original specification into
the new language while making sure that semantics
are preserved. If different designs can have different
semantics, heterogeneity has to be supported by the new
environment.

2) The ability to separate cost from behavior when carrying
out design. In a system-level framework that supports
multiple abstraction levels, many implementations of
the same basic functionality will have the same be-
havioral representation at higher levels of abstraction.
For instance, different processors will be abstracted into
the same programmable component. What distinguishes
them is the performance vs. cost trade-off. Moreover,
not all metrics are optimized at the same time. It should
be possible to introduce performance metrics during the
design process from specification to implementation.

3) The ability to explore the design space in a struc-
tured manner. This requirement is divided into two
main parts: facilitating correct-by-construction abstrac-
tion/refinement and efficiently relating the functional and
architectural portions of the design together. The first
part is crucial to guarantee that the points explored in
the design space are legal.

The remainder of this section describes these three require-
ments in more detail.

A. Heterogeneous IP Import

This feature exposes many implementation challenges. It
shapes the nature of METRO II to be primarily an integration
environment. There are two main challenges that have to be
addressed.

First, IPs can be described in different languages and can
have different semantics that can be tightly related to a
particular simulator. Importing the IP would entail providing
a way of exposing its interface. The user must have the
necessary aids to define wrappers that mediate between the
IP and the framework such that the behavior can be exposed
in an unambiguous way.



Secondly, wrapped components have to be interconnected.
Even if the interfaces are exposed in a unified way, inter-
connecting them is not usually a straightforward process.
For instance, the type of data produced by one IP can be
incompatible with the type of data that the receiving IP is
expecting. Type conversion is the simplest case; more chal-
lenging communication problems can arise. Consider the case
of a software model of an engine controller unit, represented
as a finite state machine, that interacts with a continuous time
model of a car engine. The composite system is known as
a hybrid system. One model (finite state machine) is untimed
while the other model (continuous time) is defined as functions
over time that belongs to the reals. It is completely arbitrary
to introduce a sample-and-hold interface between the two.
Even if this is a commonly used interface, we believe that
the designer is the only one that has the knowledge of how
such heterogeneous models should interact. Therefore, the
design environment should provide a formal way of defining
these adaptors between different MoCs rather than imposing
predefined ones.

B. Behavior-Performance Orthogonalization

The specification of what a component does should be
independent of how long it takes or how much power it
consumes to carry out a task. This is the reason why we
introduce dedicated components, called annotators to annotate
quantities to events.

A distinction has to be made between quantities used just to
track the value of a specific metric of interest and quantities
whose value is used for synchronization. For instance, time
is used to synchronize actions and it is not merely a number
that is computed based on the state evolution of the system.
For quantities that influence the evolution of the system,
special components, called schedulers are provided by the glue
language. Schedulers are used to arbitrate shared resources.

The separation of schedulers from annotators allows for sim-
pler specification and provides a cleaner separation between
behavior and performance. As a result, instead of two-phase
execution as in METROPOLIS, the execution semantics become
three-phase.

C. Design Space Exploration

Following the platform-based design approach, we want
to keep functionality and architecture separate. The imple-
mentation of the functionality on the architecture is achieved
in the mapping step. In order to explore several different
implementations with minimal effort, the design environment
needs to provide a fast and efficient way of mapping without
touching the functional or the architectural models.

The main problems to tackle are related to the specification
of mapping itself and to the synchronization of the two
models. The behavior of a mapped model (and therefore of
the implementation) is essentially defined as the intersection
of the behaviors of the functional model and the behaviors of
the architectural model. The intersection is obtained through
synchronization of events between the two models. Such

Fig. 1. Three Phase Execution in METRO II

constraints introduce potential deadlocks whose causes are
usually difficult to identify.

A set of tools must be provided to help the design space
exploration phase. A new set of theoretical results are needed
to understand when automatic mapping can be carried out
in order to guarantee optimal and correct-by-construction
solutions. When manual mapping is the only viable solution,
the number of constraints required may be very large. A flat
graphical representation of the mapped system would not help
the designer. New tools to handle hierarchical mapping and
new languages to express mapping in a structured way must
be developed.

The result of the mapping step is another model that refines
both the function and the architecture. Checking that this
function obeys the refinement relationship with the original
specification is a task that should be automated by providing
new verification tools that leverage the semantics of the glue
language.

V. METRO II EXECUTION SEMANTICS

We are designing METRO II to address the design chal-
lenges in Section IV, and to overcome some of the limitations
of METROPOLIS. Like METROPOLIS, the semantics of the
METRO II framework will be centered around the connection
and coordination of components.

The key concept underlying METRO II is an event. An event
is a tuple < p, T, V > where p is a process, T is a tag
set, and V is a set of associated values. An event denotes
an action taken by a process (p). Events may be associated
with annotations (T) and state (V). Annotations correspond to
quantities in the design, such as time or power. State includes
variables that are in the scope of an event.

Based on the treatment of events, the design is partitioned
into three phases of execution. In the first phase, processes
propose possible events, the second phase associates tags with
the proposed events, and the third phase allows a subset of
the proposed events to execute. Figure 1 summarizes these
execution semantics.

A. First phase: Base Model Execution

The base model consists of concurrently executing pro-
cesses that block only after proposing events. A process may
atomically propose multiple events – this represents non-
determinism in the system. After all processes in the base



Producer 1

FIFO Consumer

Producer 2

(a) General View

Producer 1

FIFO Consumer

Producer 2

(b) In METRO II

Producer 1

FIFO Consumer

Producer 2

(c) In METRO II with Synchronization

Fig. 2. Producers Consumer Example

model have proposed at least one event each, the design shifts
to the second phase.

B. Second phase: Quantity Annotation

In the second phase, each of the proposed events is an-
notated with various quantities of interest. For instance, a
proposed event may be annotated with local and global time
tags. New events may not be proposed during this phase of
execution.

C. Third phase: Scheduling

In scheduling, a subset of the proposed events are enabled
and permitted to execute, while the remainder are blocked.
At most one event per process is permitted to execute. Once
again, new events may not be proposed during this stage.

VI. METRO II BUILDING BLOCKS

To simplify the designer’s task of specifying models that
conform to the three-phase semantics described in Section V,
different types of objects are defined in METRO II. First, we
describe the component, the primary block used for speci-
fication, and then introduce the different types of ports and
connections in METRO II. After this the specialized METRO II
objects are described, these are: constraints, adaptors, mappers,
annotators, and schedulers.

To illustrate the function of some of these objects we use
the same example as in [2], but we implement it in METRO
II to highlight some of the differences. Figure 2(a) shows this
example, which consists of two producers communicating with
a consumer over a shared FIFO.

Component

IP Wrapper

Fig. 3. Atomic Component

A. Components

A component is a possibly concurrent block which may con-
tain zero or more processes. Components interface with other
components via zero or more ports. There are two types of
components: atomic components and composite components.
An atomic component is a block specified in some language
and is viewed by the framework as a black box with only
its interface information exposed. A composite component is
a group of one or more objects as well as any connections
between them.

An atomic component with zero ports is shown in Figure 3.
The IP encapsulated by the component is interfaced by means
of a wrapper, which translates and exposes the appropriate
events and interfaces from the IP.
� Components in the example

The three components in the figure are the producer, the
consumer, and the FIFO. Their basic behavior is specified in
SystemC. Each producer keeps writing integers to the FIFO.
The consumer continually tries to read data from the FIFO,
and the FIFO provides buffering between the reads and writes.
Additional constraints can be added, for instance, in Figure
2(c), the writing of the two producers are synchronized to
maintain the same rate.

B. Ports

There are two types of ports that components may have:
coordination and view ports. Coordination ports are used for
two-way interaction with other components by using events.
View ports, on the other hand, may only expose internal events
to the outside.

A coordination port is used to interact with other com-
ponents. Each coordination port is associated with a set of
methods. A method is a sequence of events, with a unique
begin/end event pair. Variables in the scope of the begin event
are method arguments. Variables in the scope of the end event
are return values.

By setting constraints between events associated with co-
ordination ports of different components, the execution of
these components can be coordinated. Coordination ports are
divided into three types based on the type of interaction:
rendezvous ports, required ports, and provided ports.

1) Rendezvous Ports: Rendezvous ports can only be con-
nected to other rendezvous ports. They are used to synchronize
methods from different components. A connection between
two rendezvous ports implies that the begin events of all
methods in the first port occur simultaneously (same valuations
for all tags) with all the begin events from the corresponding



Provided Required

Rendezvous View

Fig. 4. Component with 4 ports

methods in the second port. The end events of corresponding
methods occur simultaneously as well.

The execution semantics of rendezvous ports is as follows.
All components with connected rendezvous ports indepen-
dently propose their respective begin events. These proposed
events are allowed to occur if and only if all other begin
events have also been proposed, otherwise they are blocked.
Similarly, after executing the methods, all components inde-
pendently propose end events and wait for all other end events
to be proposed. Depending on the specifics of the connection,
values in the scope of the begin/end events may be checked
for equality or transferred between the components.

2) Required Ports: Required ports are used by components
to request methods that are implemented in other components.
A required port can only be connected to a provided port that
provides the required methods.

For required ports, a component proposes a begin event and
associates values with the proposed event that represent the
arguments of the method being requested. When the proposed
event is executed, control transfers to the component at the
other end of the connection, which owns the provided port.
The component waits for the end event to be executed and
obtains the return values from the method.

3) Provided Ports: Provided ports are used by components
to provide methods to other components. As stated before,
connections are permitted only between a required port and a
provided port.

For provided ports, no separate process exists in the compo-
nent to carry out the provided method. Instead, the component
inherits the process from the caller component and executes
the events in the provided method using that process. After
the method has been executed, the component proposes the
end event.

4) View Ports: A view port exposes some of a component’s
internal events to the outside world. These events are read-
only, i.e., they cannot be blocked by outside world. View ports
cannot be connected to other ports.

A component with required, provided, rendezvous, and view
ports is shown in Figure 4.
� The FIFO Component

Figure 5 shows how a FIFO medium in METROPOLIS might
be wrapped for use within METRO II. Each provides port
connects to an interface implemented by the medium, with
2 write ports connecting to the write interface of the medium.
The view port provides visibility of certain events. Examples
of this could be: FIFO empty, FIFO full, read finished, and
write finished.

FIFO

METROPOLIS

FIFO

write_if

write_if

read_if

Write0

Write1

Read

Viewer

Fig. 5. Wrapped FIFO

C. Connections

Connections between coordination ports are the primary
means of component interaction. One-to-one port connections
are allowed between a required port and a provided port, and
between a pair of rendezvous ports. Rendezvous and provided
ports do not need to be connected, but each required port must
be connected to a corresponding provided port.
� Connections in the example

This example has required-provided port connections from
the producers to the FIFO and from the consumer to the
FIFO. Also, there is a rendezvous connection in Figure 2(c)
that synchronizes the events in each producer such that both
producers proceed at the same rate.

D. Constraints and Assertions

Constraints are used to specify the design via declarative
means (as opposed to imperative specification which is used in
components). Assertions are used to check whether the rest of
the design conforms to given requirements. Both constraints
and assertions are described in terms of events, the values
associated with them, and their tags. The events referenced
by constraints or assertions must be exposed by means of
coordination or view ports. Depending on the logic used to
describe them, constraints can be enforced either by the base
model or the scheduling phases of execution. Linear Temporal
Logic (LTL) [15] and Logic of Constraints (LOC) [16] will
be supported by METRO II.

E. Adaptors

There are many ways of handling heterogeneous MoCs
in a design. One of the most common approaches is the
hierarchical composition of heterogeneous models as done in
Ptolemy II [6]. With hierarchical composition, a specific MoC
exists at each level of the hierarchy. To allow models in two
heterogeneous MoCs to communicate, a third MoC may need
to be found within which the two will be embedded.

In our experience there is a strong need to interconnect
heterogeneous models at the same level. For instance, the user
may want to connect the output of a base-band processing
component to the input of an RF component (i.e. a dataflow
model interacting with a continuous time model). This way of
handling complexity does not require changing the interface
of a model in order to behave like another model. This is in
line with one of the our main concerns: being able to re-use
IPs in different contexts.

To bridge the different semantics of heterogeneous compo-
nents, we define adaptors as first class citizens in our language.
Adaptors are used to modify events as they pass from one MoC



Analog Signal Dataflow Block

A2D

Fig. 6. An adaptor interfacing dataflow and continuous time models

to another. Denotationally, an adaptor is a relation that maps
sets of events from one model to sets of events in another
model.

Adaptors are connected with components through coordina-
tion ports. In the PBD methodology, they can be regarded as
the bridge between heterogeneous functional components or
between heterogeneous architectural components.
� An Adaptor in the Example

If a producer in the Producer-Consumer example contained
a dataflow processing element and obtained its data from a
continuous time component, an adaptor would be required to
bridge the two MoCs. In continuous time, an event could be
defined as a pair of a function and a right open interval of
the reals (i.e. a time interval), (f(t), [t−, t+)). The adaptor
between continuous time and data flow would relate the
continuous time event with a set of samples of that function
at specific times:

{(f(ti), t′i) : t0 = t−, ti+1 − ti = T,

ti < t+ ∧ t′i < t′j ⇐⇒ ti < tj}

where T is the sampling period. This definition corresponds
to sampling the continuous time signal at constant rate and
storing the values in a FIFO which are then consumed by the
dataflow model.

Figure 6 shows the example adaptor, called A2D, repre-
sented in METRO II. A2D is configured with the beginning
times, ending times, and the period length. It transforms each
request for data from the dataflow block of the producer into a
request for the value of the analog signal at a particular time.

F. Mappers

When carrying out mapping, there is a many-to-one alloca-
tion of all functional components to architectural components.
Similar to adaptors, mappers may be required to bridge the
functional and architectural components.

The most common usage of mappers is to transform or add
values in the scope of events. For instance, a functional compo-
nent may have a required port whose begin event is associated
with a data value. The architectural component to which the
functional component is mapped has a corresponding required
port. However, the expected values in the scope of the begin
event of the architectural component’s port may include both
the data and the start address. In this case, it is the job of the
mapper to specify this start address, since it is not relevant in
the description of the functional component.

FIFO

Core

FIFO

FIFO

Sched

Fig. 7. FIFO with Scheduling Inside

G. Annotators and Schedulers

In METROPOLIS, both event scheduling and performance
annotation is carried out with a special component called a
quantity manager. It is hard to have a general mechanism to
handle both scenarios since different design styles are used
specify both. In METRO II, these two aspects will be separated
by using annotators and schedulers.

Annotators are objects that write tags to events. Each tag is
determined in terms of the event, the event’s values, and any
parameters supplied to the annotator. Only static parameters
are permitted for annotators, which may not have their own
state.

Schedulers are objects that can disable proposed events
based on their scheduling policy. After the annotation phase
has completed, the scheduling phase begins. Based on the
scheduler’s local state, the proposed events, and their values
and tags, scheduling occurs which can lead to the disabling of
some proposed events.

Like in METROPOLIS, annotators (schedulers) are instanti-
ated in the netlist level. However, instead of explicit coordi-
nation or service connections, events are directly associated
with individual annotators (schedulers). It is important to note
that now these associations are specified at the netlist level
instead of directly in the component as in METROPOLIS.
The specification of these associations is static. When these
are specified they are directly registered with the appropriate
annotator or scheduler. Multiple annotators may be associated
with a single event, as long as they write different tags. If
multiple schedulers are associated with a single event, then
they must agree on their decisions before switching back to
the base model.
� Example 1: Scheduling in the Example

Figure 7 shows the FIFO refined to be a composite component
that contains a scheduler. The scheduler connects to the events
on the individual ports and ensures that race conditions do not
occur between the two producers.
� Example 2: Global Time

Global time is a special quantity. Besides the performance an-
notation aspect of global time, the other concept of scheduling
exists in almost all systems. For example, in synchronous lan-
guages, the logical time denotes the global execution ordering.
This kind of global ordering is important to synchronize the
entire systems and sometimes crucial to capture the correct
behavior. In METROPOLIS, there is a global time quantity
manager which provides both the scheduling and annotation



aspects.
As discussed before, we want to separate scheduling from

annotation in METRO II. More specifically, the GlobalTime
scheduler will take care of only the scheduling part; there is
a separate performance annotator which will charge the time
for a particular service. If a component gets a performance
annotation from a performance annotator, it then sends to
GlobalTime scheduler that number and its current global time.
This seems like just a simple twist of what we are doing in
METROPOLIS, but it makes the two natures of global time
separate.

VII. CONCLUSIONS

The Platform-based design methodology imposes a num-
ber of requirements on system-level design frameworks.
METROPOLIS represents the first attempt at such a framework.
To address the limitations of METROPOLIS, in this paper
we identified three main features that must be enhanced
and described how the next generation METRO II framework
will support them. The aim is to develop a framework that
supports the import of heterogeneous IP, facilitates behavior-
performance orthogonalization, and eases design space explo-
ration. This is achieved by building an integration framework
based on events with three separate phases of execution.

We are currently implementing the semantics of METRO
II based on the SystemC kernel, and developing further case
studies to exercise its capabilities.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Foundation
(NSF award #CCR-0225610), the State of California Micro
Program, and the following companies: Agilent, DGIST, Gen-
eral Motors, Hewlett Packard, Infineon, Microsoft, National
Instruments, and Toyota. This work is also supported by
the MARCO-sponsored Gigascale Systems Research Center
(GSRC).

We would like to thank Felice Balarin, Yaron Kashai, Lu-
ciano Lavagno, Claudio Pinello, Stavros Tripakis, and Yosinori
Watanabe for helpful discussions about METRO II.

REFERENCES

[1] A. Sangiovanni-Vincentelli, “Defining platform-based design,” EE De-
sign, March 2002.

[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,” Computer Magazine, pp. 45–52, April 2003.

[3] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System level design: Orthogonolization of concerns and
platform-based design,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 19, no. 12, December 2000.

[4] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli, “A
platform-based taxonomy for esl design,” IEEE Design and Test of
Computers, vol. 23, no. 5, pp. 359–374, 2006.

[5] “Open systemc initiative web site: http://www.systemc.org.”
[6] C. Brooks, E. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Z. (eds.),

“Heterogeneous concurrent modeling and design in java (volume 1:
Introduction to ptolemy ii),” University of California, Berkeley, Tech.
Rep. UCB/ERL M05/21, July 2005.

[7] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and analysis of system architecture using
rapide,” IEEE Transactions on Software Engineering, vol. 21, no. 4, pp.
336–355, Apr. 1995.

[8] “Spirit consortium website: http://www.spiritconsortium.org.”
[9] A. Bakshi, V. Prasanna, and A. Ledeczi, “MILAN: A model based

integrated simulation framework for design of embedded systems,”
in Proceedings of Workshop on Languages, Compilers, and Tools for
Embedded Systems, June 2001.

[10] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling
environment,” in IEEE Workshop on Intelligent Signal Processing, May
2001.

[11] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Transactions on Computers, vol. 55, no. 2, pp. 99–112, 2006.

[12] A. Mihal, C. Kulkarni, M. Moskewicz, M. Tsai, N. Shah, S. Weber,
Y. Jin, K. Keutzer, C. Sauer, K. Vissers, and S. Malik, “Developing
architectural platforms: A disciplined approach,” IEEE Des. Test, vol. 19,
no. 6, pp. 6–16, 2002.

[13] MetropolisDesignTeam, “The metropolis meta model version 0.4,” in
Technical Memorandum UCB/ERL M04/38, University of California,
Berkeley, CA 94720, September 14, 2004.

[14] E. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems, pp. 1217–29, December 1998.

[15] A. Pnueli, “The temporal semantics of concurrent programs,” Theoretical
Computer Science, vol. 13, pp. 45–60, 1981.

[16] G. Yang, H. Hsieh, X. Chen, F. Balarin, and A. Sangiovanni-Vincentelli,
“Constraints assisted modeling and validation in metropolis framework,”
in Proceedings of The Asilomar Conference on Signals, Systems, and
Computers, Nov. 2006.

[17] G. Yang and et al., “Separation of concerns: Overhead in modeling and
efficient simulation techniques,” in Fourth ACM International Confer-
ence on Embedded Software, September 2004.

[18] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, “Logic of constraints:
A quantitative performance and functional constraint formalism,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits, vol. 23,
no. 8, Aug. 2004.

[19] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. on Software
Engineering, vol. 23, no. 5, pp. 279–295, May 1997.

[20] D. Densmore, S. Rekhi, and A. Sangiovanni-Vincentelli, “Microarchi-
tecture development via metropolis successive platform refinement,” in
Design Automation and Test in Europe (DATE), February 2004.

[21] “The xpilot system, http://cadlab.cs.ucla.edu/soc.”
[22] H. Zeng, A. Davare, A. Sangiovanni-Vincentelli, S. Sonalkar, S. Kana-

jan, and C. Pinello, “Design space exploration of automotive platforms
in metropolis,” in Society of Automotive Engineers Congress, April 2006.

[23] A. Davare, Q. Zhu, J. Moondanos, and A. Sangiovanni-Vincentelli,
“Jpeg encoding on the intel mxp5800: A platform-based design case
study,” in IEEE 2005 3rd Workshop on Embedded Systems for Real-
time Multimedia, September 2005.

[24] D. Densmore, A. Donlin, and A. Sangiovanni-Vincentelli, “Fpga ar-
chitecture characterization for system level performance analysis,” in
Design Automation and Test Europe 2006. DATE, March 2006.


