Project Proposals

- Group 01 – Real-time Ray-Tracing Scene Manager Architecture
 - Scene data management
 - Ray intersection calculation

- Group 02 – FPGA-based Emulation of an 8051 Microprocessor
 - Memory controller
 - Serial interface, ethernet interface

- Group 04 – A Prototype for Verifying Application Integrity and Checkpointing Execution
 - Attack detection scheme
 - Hardware-accelerated checkpointing scheme

- Group 05 – Implementation of the FP-Growth Algorithm using Reconfigurable Hardware
 - Hardware implementation of systolic tree structure
 - Benchmarking

- Group 06 – Real-time Audio Spectrography using FPGA
 - High-speed FFT implementations
 - FPGA interfacing with analog data
Project Proposals (cont.)

• Group 07 – True Random Bitstream Generator
 • Interface with true random noise stream
 • Real-time statistical analysis, bias correction

Project Proposals (cont.)

• Group 08 – FAP: A Fast Analytical Placer for Large-Scale FPGA Designs
 • Four-phase algorithm integration within VPR
 • Benchmarking with real circuit designs

Project Proposals (cont.)

• Group 09 – Implementing the 2-D Wavelet Transform over Reconfigurable Platforms
 • Wavelet function selection
 • Fixed-point quantization analysis

Project Proposals (cont.)

• Group 10 – Video Watermarking System for SD MPEG-2
 • Software implementation for comparison
 • DCT/iDCT computations on FPGA

Project Proposals (cont.)

• Group 12 – Web Line Array Sensor
 • Conveyor-line control
 • Computer vision techniques

Reminders:
• 11/15 – Project Updates (10 minutes)
• 12/4-12/6 – Final Presentations (25 minutes)
• 12/14 – Final Reports
Midterm Review

- Using the Silicon
 - PE
 - More Cache
 - CISC
 - Vector
 - Reconfigurable Fabric
 - Reconfigurable Processor

What is Reconfigurable Computing?

- In its current usage, the term reconfigurable computing refers to some form of hardware programmability
 - Hardware that can be customized using some physical control points
 - Goal: to adapt at the logic level to solve specific problems

- Some other definitions:
 - (1) systems incorporating some form of hardware programmability – customizing how the hardware is used using a number of physical control points [Compton, 2002]
 - (2) computing via a post-fabrication and spatially programmed connection of processing elements [Wawrzynek, 2004]
 - (3) general-purpose custom hardware [Goldstein, 1998]

FPGA Technology

- Various FPGA programming technologies (Anti-fuse, (E)EPROM, Flash, SRAM):
- SRAM most popular

Computational Density (Qualitative)

- FPGAs can complete more work per unit time than a processor or DSP:
 - Less instruction overhead
 - More active computation onto the same silicon area (allows for more parallelism)
 - Can control operations at the bit level (as opposed to word level)

Generic FPGA Architecture

- FPGA = Field-Programmable Gate Array
- Input/Output Buffers (IOBs)
- Configurable Logic Blocks (CLBs)
- Programmable interconnect mesh

LUT-based Logic Element

- Each LUT operates on four one-bit inputs
- Output is one data bit
- Can perform any Boolean function of four inputs
- $2^4 = 65536$ functions (4096 patterns)

- The basic logic element can be more complex
- Coarse v. Fine grained
- Contains some sort of programmable interconnect
Architectural Issues [AhmRos04A]

- What values of N, I, and K minimize the following parameters?
 - Area
 - Delay
 - Area-delay product

- Assumptions
 - All routing wires length 4
 - Fully populated IMUX
 - Wiring is half pass transistor, half tri-state

Switch Boxes

- \(F_s \) – connections offered per incoming wire
- Universal switchbox can connect any set of inputs to their target output channels simultaneously
 - Build-able with \(F_s = 3 \)
 - Xilinx XC4000 switchbox is \(F_s = 3 \) but not universal

Read [ChaWon96A] for more details

Switch Boxes

- \(F_s \) – connections offered per incoming wire
- Universal switchbox can connect any set of inputs to their target output channels simultaneously
 - Build-able with \(F_s = 3 \)
 - Xilinx XC4000 switchbox is \(F_s = 3 \) but not universal

Read [ChaWon96A] for more details

FPGA Memory Resources

- Individual LUTs can be programmed as 16x1 RAMs and combined to form larger memory structures

- Block Select+RAM – dedicated blocks of on-chip, true dual port read/write synchronous RAM
 - 4Kb (later 18Kb, 36Kb) of RAM with different aspect ratios
 - Faster, less flexible than distributed RAM using LUTs

Example FPGA: Xilinx Virtex-II

FPGA Arithmetic

- Traditional microprocessors, DSPs, etc. don’t use LUTs
- Instead use a w-bit Arithmetic and Logic Unit (ALU)
 - Carry connections are hard-wired
 - No switches, no stubs, short wires

Example FPGA: Xilinx Virtex-II

FPGA Arithmetic (cont.)

- Hard-wired carry logic support

 Altera FLEX 8000 Xilinx XCV4000
Arithmetic (cont.)

- Carry save multiplication

LUT-Based Constant Multipliers

- Constants can be changed in the LUTs to program new multipliers

Systolic Architectures

- Goal – general methodology for mapping computations into hardware (spatial computing) structures
- Composition:
 - Simple compute cells (e.g. add, sub, max, min)
 - Regular interconnect pattern
 - Pipelined communication between cells
 - I/O at boundaries

Finite Impulse Response

- Sequential
 - Memory bandwidth per output – \(2k+1\)
 - \(O(k)\) cycles per output
 - \(O(1)\) hardware

- Systolic
 - Memory bandwidth per output – 2
 - \(O(1)\) cycles per output
 - \(O(k)\) hardware

Matrix-Vector Product

\[
\begin{align*}
\mathbf{a} & = \begin{bmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} \end{bmatrix} \\
\mathbf{x} & = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \end{bmatrix} \\
\mathbf{y} & = \begin{bmatrix} y_0 & y_1 \end{bmatrix}
\end{align*}
\]

Splash 1 Architecture
Other Multi-FPGA Topologies

- Crossbar topology:
 - Devices A-D are routing only
 - Gives predictable performance
 - Potential waste of resources for near-neighbor connections

![Crossbar topology diagram]

FPGA-based Router

- FPX module contains two FPGAs
- NID – network interface device
 - Performs data queuing
- RAD – reprogrammable application device
 - Specialized control sequences

![FPGA-based Router diagram]

Logic Emulation

- Emulation takes a sizable amount of resources
- Compilation time can be large due to FPGA compiles

![Logic Emulation diagram]

ASAP and ALAP Schedules

- ASAP
- ALAP

![ASAP and ALAP Schedules diagram]

Recursive Partitioning

![Recursive Partitioning diagram]

Next Steps

- VHDL for synthesis
- Non-conventional reconfigurable architectures
- HW/SW codesign / high-level compilation

- Other topics?
 - Second course survey next week
 - Provide general feedback, suggest additional topics
Midterm Exam

- Three questions
 - Review
 - Analysis
 - Extension
- Any paper mentioned in class is fair game
- Due in 1 week (10/16 – 12:00pm)
 - No class on Thursday!
- Some restrictions:
 - Work alone
 - Can ask if something is unclear (“what does this mean?” questions, not “how do I do this?” questions)
 - No late submissions – strict WebCT deadline