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Abstract 

In this papel; we investigate the speed and area-eficiency of 
FPGAs employing “logic clusters” containing multiple LUTs and 
registers as their logic block. We introduce a new, timing-driven 
tool (T-VPack) to “pack” LUTs and registers into these logic 
clusters, and we show that this algorithm is superior to an existing 
packing algorithm. Then, using a realistic routing architecture and 
sophisticated delay and area models, we empirically evaluate 
FPGAs composed of clusters ranging in size from one to twenty 
LUTs, and show that clusters of size seven through ten provide the 
best area-delay trade-o@ Compared to circuits implemented in an 
FPGA composed of size one clusters, circuits implemented in an 
FPGA with size seven clusters have 30% less delay (a 43% increase 
in speed) and require 8% less area, and circuits implemented in an 
FPGA with size ten clusters have 34% less delay (a 52% increase in 
speed), and require no additional area. 

1. Introduction 

Much of the speed and area-efficiency of an FPGA is determined by 
the logic block it employs. If a very small, or fine-grained, logic 
block is used, many connections must be routed between the 
numerous logic blocks [Rose93]. Since routing consumes most of 
the area and accounts for most of the delay in FPGAs, a small logic 
block often results in poor area-efficiency and speed due to the 
excessive routing required to connect all the logic blocks. If, on the 
other hand, a very large, or coarse-grained, logic block is employed, 
the logic block area and delay may become excessive, again result- 
ing in poor area-efticiency and speed [Rose93]. Choosing the best 
size, or granularity, for an FPGA logic block therefore involves bal- 
ancing complex trade-offs. 

In this work we determine the best size for “cluster-based” logic 
blocks, which we refer to as “logic clusters”. This style of logic 
block is of interest for several reasons. First, the Altera Flex series 
FPGAs [Alte98], the Xilinx 5200 and Virtex FPGAs [Xili97, 
Xili98], and the Vantis VFl FPGAs [Vant98] all employ cluster- 
based logic blocks, so research concerning the best size of logic 
clusters is of clear commercial interest. Second, prior research 
[Betz98a] has shown that the area-efficiency of large logic clusters 
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is quite competitive with that of FPGAs using single look-up table 
(LUT) logic blocks. Third, an FPGA composed of large logic clus- 
ters requires fewer logic blocks to implement a circuit than an 
FPGA using a more fine-grained block. This reduces the size of the 
placement and routing problem, and hence design compile time - 
an increasingly important concern as the logic capacity of FPGAs 
rises. Finally, we show in this paper that cluster-based logic blocks 
can improve FPGA speed compared to single-LUT logic blocks by 
reducing the number of connections on the critical path that must be 
routed between logic blocks. 

Prior research [Retz98a] has focused only on the area-efficiency of 
different sizes of logic clusters. In this work, we simultaneously 
examine both the area-efficiency and the speed of FPGAs using dif- 
ferent logic cluster sizes. Since both speed and density are crucial in 
modem FPGAs, only by examining both issues can we determine 
the best logic cluster size. As well, we use a more complex and 
realistic routing architecture than [Betz98a] in our investigations, 
leading to more accurate architectural conclusions. Finally, we 
present a new, timing-driven algorithm (T-VPack) to “pack” cir- 
cuitry into logic clusters. Relative to prior work [Betz97a], this new 
algorithm not only improves circuit speed, but also reduces the total 
amount of routing required between logic blocks, resulting in 
improved area-efficiency. 

This paper is organized as follows. Section 2 introduces the struc- 
ture of cluster-based logic blocks. In Section 3 we outline the 
experimental methodology used to evaluate the utility of different 
cluster sizes. Then, in Section 4 we explain why the area-delay 
product is useful for evaluating the quality of each architecture. 
Next, Section 5 describes the FPGA architecture and timing models 
used in our experiments. Section 6 describes a new timing-driven 
logic block packing algorithm (T-VPack) and explains the enhance- 
ments it contains relative to an earlier CAD tool, VPack. In 
Section 7 we present experimental results comparing VPack and T- 
VPack, and the effect of various cluster sizes on FPGA area and 
delay. Section 8 discusses potential sources of inaccuracies. Finally, 
in Section 9 we present our conclusions. 

2. Cluster-Based Logic Blocks 

Cluster-based logic blocks, or logic clusters are a generalized ver- 
sion of the Logic Array Blocks used in Altera’s FLEX 8K and 
FLEX 10K parts [Alte98]. Figure l-a shows the structure of a basic 
logic element or BLE [Betz98a] which consists of a CLUT plus a 
flip-flop. A logic cluster consists of one or more BLEs, plus the 
local routing required to connect them together. Figure l-b shows 
how the BLEs are connected. For clusters of size greater than one, 
the architecture used is fully connected: each BLE input can be 
connected to any of the cluster inputs or to the output of any of the 
BLEs within the cluster. Clusters of size one (i.e. a cluster contain- 
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Figure 1. Structure of basic logic element (BLE) and logic 
cluster. 

ing a single BLE) do not contain local routing, and hence have nei- 
ther multiplexors on the BLE inputs nor local feedback paths. 

Following the convention of [Betz97a], we use two parameters to 
describe a logic cluster, N and I, where N is the number of BLEs 
per cluster and I is the number of inputs per cluster. In [Betz97a] it 
is shown that setting I = 2 N + 2 is sufficient for complete logic 
utilization, so we use this relation for all of our experiments. 

3. Experimental Methodology 

We use an empirical method to explore different FPGA architec- 
tures. This involves technology-mapping, packing, placing, and 
routing benchmark circuits’ into realistic architectures with clus- 
ters of size 1 through 20. We then estimate the area required by 
each architecture to implement each benchmark circuit, and mea- 
sure the speed of each implementation. At this point we have 
enough information to judge the quality of each architecture. 

3.1 CAD Flow 

Figure 2 illustrates the CAD flow for our experiments. Each circuit 
we use is logic-optimized by SIS [Sent921 and then technology- 
mapped into 4-LUTs by FlowMap [Cong94]. VPack [Betz98b, 
Betz97b, Betz99] or T-VPack is then used to group the LUTs and 
registers into logic clusters of the desired size. Finally, we use VPR 
[Betz98b, Betz97b, Betz99] to place and route each circuit. VPR’s 
timing-driven router extracts the elmore delay [Elmo48] of each 
routed net, and performs a path-based timing analysis to determine 
the delay of the circuit critical path. Finally, VPR uses a transistor- 
based area model [Betz98b, Betz99] to estimate the total layout 
area required by this FPGA. 

’ Our benchmarks consist of 20 of the largest MCNC circuits [Yang9 I] and 

5 University of Toronto benchmark circuits [Leve98, Ye98, Ga1198, 

Padi98, Hame98]. The circuits range in size from 1047 to 8383 4-LUTs. 

The MCNC circuits used are: alu4, apex2, apcx4, bigkey, clma, des, dif- 

feq, dsip, elliptic, ex1010, ex5p, frisc, misex3, pdc, ~298, ~38417, 

~38584.1, seq, spla, and tseng. The University of Toronto circuits used 

are: des_fm, des_sis, marb, grayscale, and wood. 
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Figure 2. CAD Flow 

In FPGA architecture and CAD research, it is convenient to have 
tools which can vary the FPGA dimensions (number of columns 
and rows) and channel width (number of tracks in each channel). 
VPR allows this, and it also allows us to find the minimum channel 
width required to successfully route a circuit. By allowing the 
channel width to vary, and searching for the minimum routable 
width, we can detect small improvements in FPGA architectures or 
CAD algorithms that might otherwise go unnoticed. Compare this 
to mapping a circuit into a fixed size FPGA - this would only tell 
us if it fit or not. It is more difficult to draw architectural conclu- 
sions from such a “binary” result. 

VPR is capable of performing both high-stress and low-stress rout- 
ings [Swar98]. A high-stress routing occurs when VPR routes a 
given circuit into an FPGA with the minimum channel width 
required for a successful routing. To accomplish this, VPR repeat- 
edly routes each circuit with different channel widths, scaling the 
architecture accordingly until it finds the minimum number of 
tracks in which the circuit will route. A low-stress routing occurs 
when an FPGA has significantly more routing resources than the 
minimum required to route a given circuit. In our experiments we 
define a low-stress routing to occur when there are 30% more 
tracks per channel than the minimum required. 

We feel that low-stress routings are indicative of how an FPGA 
would generally be used (it is rare that a user will utilize 100% of 
the routing and logic resources), so all of the results that we 
present are based on low-stress routings. Additionally, the low- 
stress and high-stress results are very similar, and both cases result 
in the same conclusions. 

4. Architecture Evaluation - Area-Delay Product 

One metric that we will use to evaluate the quality of different 
architectures is the area-delay product. We feel that there are two 
reasons that this metric makes sense: 

1. Intuitively, we want to find the point at which we are 
sacrificing the least amount of area for the most 
improvement in speed. Given that we can always trade 
area for speed (see below), and speed for area, it makes 
sense to combine these two factors into one curve to see 
where the best trade-off occurs. 
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2. Much of the performance gain from using an FPGA is 
derived from parallelizing functional units, rather than 
raw clock speed. In this case, rhrou,$zput = number of 
fkcrional units clock mle. Another way of looking at 
this is, throughput = (I/urea per funcfionml unir) . (I/ 
delay). Therefore if WC minimize the area-delay product, 
we will maximize throughput. 

There are two main factors which can affect the area-delay product 
of an FPGA: transistor sizing, and the FPGA architecture. In gen- 
eral, the speed of an FPGA can be increased (to a point) by sizing 
up the buffers and transistors within the FPGA, but this increases 
area. Alternatively, the FPGA can be made smaller by sizing down 
the buffers and transistors, but this degrades the FPGA perfor- 
mance. 

Throughout this paper, we will size the transistors in each FPGA 
architecture to minimize the FPGA’s area-delay product. Only by 
resizing transistors appropriately for each architecture in this way 
can we fairly compute the speed and area-efficiency of FPGAs 
with different logic block architectures. 

5. Architecture Modeling 

To evaluate the speed and area of an FPGA we must choose not 
only the logic block architccturc, but also a routing architecture 
and transistor sizes. The following sections detail all of our archi- 
tectural choices, which are provided to VPR in an architecture 
description file [BetzYgb, BetzYY]. 

5.1 Basic Architecture 

We investigate island-style FPGAs in which each logic block bor- 
ders a routing channel on its four sides. Each circuit is mapped to 
the smallest square FPGA with enough logic blocks and pads to 
accommodate it. The FPGAs of Xilinx [Xili94], Lucent Technolo- 
gies [Luce98], and Vantis [Vant98] employ an island-style archi- 
tecture. 

Delays, capacitances, and resistances of the FPGA circuitry are 
obtained from SPICE. [Meta92] simulations of TSMC’s 0.35 pm 
CMOS process. 

5.2 Routing Architecture 

We define the number of logic blocks which a routing segment 
spans as the logical lengfh of that segment. [BetzYsb, Betz9Y] 
found that an architecture in which routing segments have a logical 

I II I I lllul~llu 

Figure 3. FPGA Architecture with Length 4 Segments, and 

SO/SO Unbuffered/Buffered Switches. 

length of four, with 50% of the segments connected by tri-state 
buffers and 50% connected by pass-transistors, provides good 
area-efficiency and speed for FPGAs containing logic clusters of 
size four. An example of- this routing architecture is shown in 
Figure 3. We implicitly assume that this routing architecture is 
good for architectures containing logic clusters of all sizes, and we 
use this routing architecture in all of our experiments. Ideally, one 
would like to find the best routing architecture for each FPGA 
employing a different cluster size, but this would require a huge 
amount of effort. By basing all of our experiments on this routing 
architecture, we may slightly favor architectures with size four 
clusters over other architectures. 

5.3 Effect of Varying Cluster Size on FPGA Routing 
Segment Length 

As we increase the cluster size, both the logic area per cluster and 
routing area per cluster grow. The logic cluster and its associated 
routing is called a tile. Figure 4 demonstrates how a tile grows as 
cluster size is increased. This increased tile size results in routing 
segments with the same logical length having physically different 
lengths for logic clusters of different sizes. 

We define the measured length of a routing segment as its physical 
length. There is a linear relation between the physical length of a 
routing segment, and the resistance and capacitance of that seg- 
ment. We have experimentally determined the average rate at 
which the FPGA tiles grow with cluster size, and have used this 
knowledge to appropriately scale the routing segment resistance 
and capacitance values for the various cluster sizes. 

5.4 Scaling Transistor and Buffers to Compensate for 
Increased Segment Physical Length 

To compensate for differences in the capacitance and resistance of 
different length routing segments, we scale the routing pass-tran- 
sistors and buffers. All of our transistor and buffer scaling is in 
relation to a base architecture that has been area-delay optimized 
for clusters of size four [Betz98b, Betz99]. From this base archi- 
tecture, we linearly scale our buffers and pass transistors depend- 
ing on the relation between the new segment lengths and the base 
segment length. For example, in an FPGA with size 16 clusters, the 
physical segment length is approximately 2x longer than in an 
architecture with size 4 clusters. To maintain roughly the same 
routing speed, we increase the size of the routing switches con- 
necting to each wire by a factor of 2. In Section 7.2 we verify that 
this linear scaling of buffers and pass-transistors with segment 
length provides the best results. 

In our architecture models, we account for variations in delay 
caused by resizing buffers and pass-transistors. Also, changes in 

Channel 
Width 

Increased 
Channel 
Width Increased 

- 
- 

Logic 
luste Ijig 

Segment 
Length 

Increase 
Cluster 

Size 

< > Area 
Increased Per Cluster 
ScEment 
Length 

Figure 4. Effect of Increased Cluster Size on Segment Length 
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area due to the use of different sizes of routing pass-transistors and 
inverter chains are automatically calculated by VPR. 

5.5 Varying F,, in and Fc, OUt with Logic Cluster Size 

In [Rose911 it is shown that F, = W is good for logic clusters of 
size one; i.e. each logic block pin can be connected to any routing 
track in an adjacent channel. As cluster size increases, setting 
F, = W provides more flexibility than is required, wasting area. 
In [Betz98b, Betz99] it is shown that setting F, on the input pins 

(FC, in) to 2. W/N and F, on the output pins (FC, our) to W/N 

provides a good level of routing flexibility, so all of our experi- 
ments use these values for clusters of sizes other than one. 

5.6 Detailed Logic Cluster Structure. 

In Figure 5 we show the structure of a logic cluster and the cir- 
cuitry connecting the logic clusters to the main FPGA routing. 
Table 1 shows delay values for selected cluster sizes. The multi- 
plexor, buffer, LUT, and flip-flop delays were obtained by model- 
ing the structures in SPICE [Meta92] with TSMC’s 0.35 /tm 
process parameters. 

& Muxes 

Logic Cluster 

Figure 5. Detailed Logic Cluster Structure 

Table 1: Selected Logic Cluster Delay Values (in 
picoseconds) 0.35 pm CMOS 
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6. Packing Algorithms 

The packing step (in Figure 2) takes a netlist consisting of LUTs 
and flip-flops and produces a netlist consisting of logic clusters. 
This involves combining the LUTs and flip-flops into BLEs, and 
then grouping the BLEs into logic clusters. 

There are two main constraints that packing algorithms must meet: 

1. The number of BLEs must be less than the cluster size, 
N. 

2. The number of distinct inputs generated outside the 
cluster and used as inputs to BLEs within the cluster 
must be less than or equal to the number of cluster 
inputs, I. 

In this section, we present two packing algorithms, VPack 
[Betzgirb, Betz98b. Betz99], and T-VPack. Then we show that our 
new T-VPack algorithm outperforms the original VPack algorithm 
in both area and critical path delay. 

6.1 Input-Sharing VPack Algorithm 

The original VPack algorithm has two optimization goals. The first 
is to pack each logic cluster to its capacity in order to minimize the 
number of clusters needed. The second goal is to minimize the 
number of inputs to each cluster in order to reduce the number of 
connections required between clusters. 

Vpack uses a greedy algorithm to construct each cluster sequen- 
tially. At the start of each cluster operation, Vpack selects as a 
“seed” an unclustered BLE with the most used inputs, and then 
places this “seed” into a cluster C. Then VPack selects a new BLE, 
B to pack into C based on the attraction that B has to C. Attraction 
is determined by the number of inputs and outputs that B and C 
have in common: 

Attraction(B) = ]Nets(B) n Nets( (1.1) 

After each cluster reaches capacity, packing begins on a new clus- 
ter. The process terminates when there are no more unclustered 
BLEs left. The time complexity of this algorithm is O(k,,,n) 

(where n is the number of BLEs in the circuit and k,,, is the 

fanout of the highest fanout net) which results in an execution time 
of about four seconds to pack the largest circuit (clma) on a 296 
MHz UltraSPARC-II processor. 

6.2 Timing-Driven T-VPack Algorithm 

Our new packing algorithm is based on the original VPack algo- 
rithm, but its optimization goal is minimizing the number of exter- 
nal connections (connections between clusters) on the critical path. 
The reasoning behind this is that external connections have higher 
delay than internal connections (connections within a cluster), so 
by reducing the number of external nets on the critical path, we 
will reduce the circuit delay. The first stage of this algorithm 
involves computing which connections are on the critical path. We 
then sequentially pack BLEs along the critical path into logic clus- 
ters and recompute which BLEs are critical. 

6.2.1 An Overview of Slack and Criticality Calculation 

The first step in determining which nets are critical is to determine 
the slack of each connection [Hitc83, Fran92]. Slack is defined as 
the amount of delay which can be added to a connection without 
increasing the delay of the entire circuit. 

Calculating slack involves computing the arrival time, Tarriva[ and 

the required arrival time, TrequiRd at all BLE input pins. This is 

accomplished using two breadth-first traversals of the circuit; the 
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first traversal propagates Tarrival forward from input pins and regis- 

ter outputs (Sources), and the second propagates Trequired back 

from output pins and register inputs (Sinks). The slack of a connec- 
tion driving a BLE input pin, i, is defined as: 

Finally, we define the criticality of the connection driving input i 
as: 

slack(i) 
Connection_Criticafity(i) = I - MaxSlack (1.3) 

where MaxSlack is the largest slack amongst all point-to-point con- 
nections in the entire circuit. 

6.2.2 Delay Estimates of an Unplaced and Unrouted Circuit 

To obtain a good packing solution’ the T-VPack algorithm models 
three types of delay: The delay through a BLE, or logic-delay, the 
connection delay between blocks within the same cluster or 
intra_cluster_connection_delay, and the connection delay between 
blocks that are in different clusters, or 
inter_cluster_connection_delay. We experimentally determined 
that setting logic_delay=O. 1, intra_cluster_connection_delay=O. 1, 

and inter_cluster_connection_delay=l.0 results in the clustered 
circuits having the smallest delay after placement and routing by 
VPR’. 

6.2.3 The Attraction Function 

We extend the attraction function from the original VPack algo- 
rithm to include timing information. The first BLE that is placed 
into a cluster is the unclustered BLE that is driven by the most crit- 
ical connection in the circuit. Then, based on our attraction func- 
tion (Equation 1.8, below) we add the most attractive BLEs to the 
cluster. We repeat this absorbtion until either no more BLEs will fit 
into the cluster, or all of the cluster inputs are used. Once a cluster 
is full, we start a new cluster with a new seed, and repeat the pro- 
cess until there are no unclustered BLEs left in the circuit. We next 
describe how blocks are selected for absorbtion. 

We define the base criticality of each unclustered BLE, B, or 
Base_BLE_Criticality(B), to be the maximum 
Connection_Criticulity value of all connections joining B to BLEs 

Base BLE 

Base BLE 
Criticality=O.W Cluster, C 

Figure 6. BLE Base Criticality Assignment 

’ A good packing solution is one that results in the smallest delay after be- 
ing placed and routed by VPR. 

2 Note that these delay values are only used in the packing process. After 

packing is complete, VPR places and routes the circuits and extracts the 

real (elmore) delay of each routed net. All of the delay results that we 

present in this paper are computed by VPR. 

within the cluster currently being packed, C. If B does not have any 
connections to C then the base criticality score is zero. In Figure 6 
we illustrate how the Base_BLE_Criticulity values are assigned. 
We have labelled each connection between unclustered BLEs and 
BLEs within the cluster with a criticality value. Notice how the 
base criticality of each BLE is assigned the highest criticality value 
of all its connections to the cluster. 

When selecting which BLE to absorb into a cluster there is a high 
potential for multiple BLEs to have the same base criticality value. 
We use a tie-breaker mechanism to select which BLEs are the most 
beneficial to pack. This mechanism is based on the desire to pack 
BLEs together in a manner that most effectively reduces the 
number of BLEs remaining on the critical paths. This is best illus- 
trated by an example. 

In Figure 7 we have darkened connections and BLEs on the critical 
paths. Notice that when selecting which BLEs to pIace into a clus- 
ter, it is more beneficial to absorb certain critical BLEs over other 
critical BLEs. In this case, absorbing BLEs H, I, and J would be 
much more beneficial than absorbing BLEs A, D, and F. We can 
see that absorbing H, I, and J affects the criticality of seven BLEs 
(A, B, C, D, E, F, and G), while absorbing A, D, and F would only 
affect the criticality of three BLEs (H, I, and J). Clearly it is best to 
cluster BLEs that reduce the criticalities of the most other BLEs. 

We define three variables that keep track of the number of critical 
paths that each BLE in the circuit effects. First we define 
inputgaths_uffected as the number of critical paths between 
sources in the circuit and the BLE currently being labelled. Next 
we define outputgaths_uffected as the number of critical paths 
between the sinks in the circuit and the BLE currently being 
labelled. Finally, we define total_paths_affected as the sum of the 
previous two variables. The calculation of these variables is 
explained below. 

The BLE labels in Figure 7 demonstrate the input_paths_uJected 
value for each BLE. We assign any sources that are on the critical 
paths with an input_puths_ufSected value of one, and all other 
sources are set to zero. Then we perform a breadth-first traversal of 
the circuit starting at the sources, and define the 
input_puths_ufSected value as in (1.4). 

SiIlkS 

Figure 7. Criticality Tie-Breakers 
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input_paths_affected(B) = 

c input_paths_affected(D) 
VD E crirical inputs(E) 

(1.4) 

Where critical inputs(B) refers to the BLEs driving the connec- 
tions on B’s inputs that are on the critical path. 

The output_paths_aficted variable is calculated in the same man- 
ner, but it starts at outputs and works back towards the inputs. 

output_paths_affected(B) = 

c output_paths_affected(D) 
VD E crificai ourpurs(B) 

(1.5) 

We define total_paths_affected as 

total_paths_affected(B) = (1.6) 
input-paths-affected(B) + output_paths_affected(B) 

Criticality(B) is defined as. 

Criticality(B) = Base_BLE_Criticality( B) + 
(E total_paths_affected(B)) 

(1.7) 

where E is a very small value that ensures that the 
total-paths-affected value acts only as a tie-breaking mechanism. 

Finally, we define our new attraction function as follows: 

Attraction(B) = a. Criticality(B) + 

( 1 _ a) . (Nets(B) n Nets(C)/ 
G 

(1.8) 

Where G is a normalization factor which is set to the maximum 
number of nets to which any a BLE can connect, i.e. 

G = #BLE inputs + #BLE outputs + #BLE Clocks (1.9) 

In (1.8), o( is a trade-off variable which determines how much we 
wish the attraction to be affected by criticality vs. input pin shar- 
ing. If we set a to 0 then we have a purely pin-sharing based algo- 
rithm, and the program functions the same as the original VPack 
algorithm. If we set o? to 1 then we have an algorithm that focuses 
only on minimizing the critical path with no concern for the 
number of inputs shared. We experimentally determined that set- 
ting a to a value of 0.75 results in clusterings with the least delay. 

The time complexity of this algorithm is O(n*) (where n is the 
number of BLEs in the circuit) which results in an execution time 
of about two minutes’ to pack the largest circuit (clma) on a 296 
MHz UltraSPARC-II processor. 

7. Area and Delay at Various Cluster Sizes 

This section shows the effect of varying cluster size on the area and 
delay of the benchmarks. This involves packing, placing, and rout- 
ing the benchmark circuits and comparing the resulting FPGA area 
and critical path delay. The results that we present are based on 
low-stress routings (described in Section 3.1). 

’ There is an option in T-VPack which allows the user to specify how many 

blocks, P, to pack before re-computing the timing information. This re- 

duces the time complexity to O(n2/P). We have found that performing a 

timing analysis only once at the beginning (set P=n) does not reduce the 

quality of the placed and routed circuits. This reduces the complexity to 

O(k,, .n), and requires only a few seconds to pack the largest circuit. 

7.1 Cluster Size Comparison using both VPack and T- 
VPack 

In this section we present results from circuits packed with both 
VPack and T-VPack. We demonstrate that the T-VPack algorithm 
is superior to the VPack algorithm, and we show the effects of 
increased cluster size on area and delay. 
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Figure 8. Area vs. Cluster Size 
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7.1.1 Area and Delay as Cluster Size is Increased 

After the benchmark circuits were packed with the two different 
clustering algorithms, they were placed and routed using VPR to 
obtain area and critical-path delay estimations. The total area of 
each circuit (logic plus routing) is given in terms of the equivalent 
number of minimum-width transistor areas. A minimum-width 
transistor area is the layout area occupied by the smallest transistor 
that can be contacted in a process, plus the minimum spacing to 
another transistor above it and to its right [Betz98b, Betz99]. 

In Figure 8 we show the geometric average of the total circuit area 
of the benchmarks vs. cluster size. It can be seen that the T-VPack 
algorithm has significantly improved the area required for each cir- 
cuit when compared to the original VPack algorithm, particularly 
for larger cluster sizes (this improvement is explained in 
Section 7.1.2). 

Area is affected by two factors. First, as we increase cluster size we 
reduce the routing requirements between clusters, so we require 
less routing area. Second, as we increase cluster size, the total area 
of the multiplexors within each cluster grows quadratically. For 
sufficiently large clusters, the area reductions in the routing are 
overtaken by the increased area required within the larger clusters. 

Figure 9 shows the geometric average of the critical path delay of 
the benchmarks vs. cluster size for both algorithms, and demon- 
strates that the delay for the T-VPack algorithm is less than the 
delay for the original VPack algorithm. Additionally, this graph 
shows that the critical path delay is decreasing as cluster size is 
increased. This means that for clusters of size one through 20, 
larger clusters provide better speed (a detailed explanation of why 
this occurs is given in Section 7.1.3). 

In Figure 10 we show the geometric average of the area-delay 
product of the benchmarks vs. cluster size. Comparing T-VPack to 
VPack, we can see that T-VPack has improved the area-delay prod- 
uct by about 20% for clusters of size seven through ten. This repre- 
sents a comparison of both algorithms at their best performance 
points. At larger cluster sizes the T-VPack algorithm provides even 
more of a performance gain. This is mainly due to the increased 
number of nets that the T-VPack algorithm completely absorbs 
within clusters, resulting in reduced circuit area. 

Figure 10 makes an important result visible - clusters of size 
seven through ten provide the best trade-off between area and 
delay. Compared to a cluster of size one, a cluster of size seven has 
an area-delay product that is 36% better, and a cluster of size ten 
has an area-delay product that is 34% better. 

On average, circuits implemented in an FPGA with size seven 
clusters have 30% less delay (a 43% increase in speed) and use 8% 
less area than circuits implemented in an FPGA with size one clus- 
ters. Circuits implemented in an FPGA with size ten clusters have 
34% less delay (a 52% increase in speed), and require no addi- 
tional area compared to circuits implemented in an FPGA with size 
one clusters. 

All of the individual benchmark circuits tracked these averages 
quite well (with minor variations, mostly at cluster sizes one and 
two). 

7.12 T-VPack Area Improvement over VPack 

As Figure 8 shows, T-VPack produces circuits that require less 
area than circuits packed with VPack. To understand the reason for 
this surprising result, one must compare the structure of the packed 
circuits produced by VPack and T-VPack. The criticality term in 
the T-VPack attraction function (1.8) makes T-VPack prefer to 
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Figure 11. Number of Nets Absorbed vs. Cluster Size 

cluster a BLE with BLEs that are in its fan-in or fan-out, rather 
than with BLEs that it shares inputs with. As a result, T-VPack pro- 
duces circuit packings in which many low-fanout nets have been 
completely absorbed into logic clusters’. 

Figure 11 shows the number of nets absorbed vs. cluster size for 
both VPack and T-VPack. Since T-VPack has absorbed more nets 
than VPack, it has fewer nets to route between clusters than the 
output of VPack; however, the average fanout of each inter-cluster 
net is slightly higher (not shown). The net result is that the circuits 
packed with T-VPack are somewhat easier to route than the circuits 
packed with VPack, resulting in a reduction in the routing area 
required2. 

7.1.3 Explanation of Delay Results 

In Figure 12 we show the relationship between the number of 
internal (intra-cluster - fast) and external (inter-cluster - slower) 
connections on the critical path. As cluster size is increased the 
number of internal connections on the critical path is increased, 
and the number of external connections is decreased. This provides 
a circuit speedup due to fact that internal connections are faster 
than external connections3. 

It is interesting to note that for clusters of size greater than four, the 
number of external (inter-cluster) nets on the critical path does not 
decrease as much with cluster size as the inter-cluster delay 
decreases with cluster size (see Figure 13). From size four to size 
twenty we have a reduction in the number of external nets on the 
critical path (Figure 12) of about 18%; compare this to the inter- 

’ For a net to he completely absorbed into a cluster, it must have all of its 
terminals contained within that cluster. 

2 This result shows the importance of using a full CAD flow, including 
placement aad routing, to evaluate many FPGA issues. It would have 

been difficult or impossible to guess that the output of T-VPack would he 
easier to route than the output of VPack without actually placing and rout- 
ing the outputs from both packing algorithms. In fact, since the circuit 

packings produced by T-VPack have more point-to-point connections to 

route between clusters (despite having fewer nets), one would likely guess 

that T-VPack’s circuits would be more difficult to route. 

3 As cluster size is increased, internal cluster multiplexor and wiring delays 

increase. If we were to keep increasing the cluster size, this effect would 

eventually result in internal delays becoming large enough that any gains 

obtained from making connections local to the cluster would be. lost. 
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Figure 12. Internal and External Nets on the Critical Path 
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Figure 13. Critical Path External, Internal, and Total Path 
Delay (Post Place and Route, T-VPack Only) 

cluster critical path delay (Figure 13) which has been reduced by 
40% over this same range. This means that the circuit speedup vis- 
ible in Figure 13 for larger cluster sizes is not only caused by a 
reduction in the number of external nets on the critical path but it is 
also caused by inter-cluster connections on the critical path 
becoming faster. This is explained below. 

The improvement in inter-cluster delay with increased cluster size 
is caused in part by a reduction in the “logical” manhattan distance 
between connections in the FPGA as shown in Figure 14. By 
sizing buffers’ to compensate for the increased physical length of 
routing wire segments associated with larger clusters, the delay of 
each routing segment has remained roughly constant. Since the 
total number of segments on the critical path has decreased due to 
the reduction in the “logical” manhattan distance, the result is a 

’ Changes in delay and area due to different size routing buffers is account- 

ed for in VPRs timing and area models. 
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Figure 14. Decreased Manhattan Distance as Cluster Size 
Increases 

greater improvement in critical path delay than the reduction in the 
number of nets on the critical path would indicate. 

7.2 Effect of Routing Transistor Sizing on Critical Path 
Delay and Area at Various Cluster Sizes 

The purpose of this section is to provide a verification that the 
manner in which we sized buffers and transistors is acceptable, and 
did not favor one cluster size over another. In this section we use 
only T-VPack to pack the circuits since we have demonstrated that 
it is superior to VPack. 

We have repeated the experiments described in Section 7.1 using 
transistor and buffer sizes of one-half and double the sizes used in 
Section 7.1. The results from these experiments are shown in 
Figures 15, 16, and 17. These experiments validate the original 
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Figure 15. Area vs. Cluster Size for Various Transistor 
Sizings 
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Figure 17. Area-Delay Product vs. Cluster Size for Various 
Transistor Sizings 

transistor sizings that we used since the new transistor sizings do 
not improve the area delay trade-off. 

8. Potential Sources of Inaccuracies 

Every effort has been made to ensure that our results are accurate, 
however, there are three potential sources of inaccuracies. 

First, without actually laying out the various FPGA architectures, 
there is some estimation involved in determining how much area 
various FPGA implementations will require. 

Second, VPR uses the Elmore delay model [Elmo48] to evaluate 
the speeds of circuits implemented in various FPGA architectures. 
Generally the delays calculated by VPR are within 9% of SPICE 
delays [Betz98b, Betz99]. Also, delay results can be affected by 
our area model since it affects wire lengths and transistor sizings. 

Third, area and delay results are affected by the quality of the 
placement and routing software. The tools used for these experi- 
ments have been shown to produce high quality results [Betz98b, 
Betz99], but it is always possible that the CAD software does a 
better job for certain architectures over others. 
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We have taken considerable care to minimize the effects of these 
potential sources of inaccuracies, and we believe that the our 
results are of high quality. 

9. Conclusions 

We presented a new timing-driven packing algorithm, T-VPack 
and demonstrated that this algorithm provides significant timing 
and area improvements over the original VPack algorithm. Circuits 
packed with T-VPack have an area-delay product that is 20% better 
than circuits packed with VPack for clusters of size seven to ten, 
and for larger cluster sizes the improvement is even greater. 

Using the area-delay product evaluation metric, we demonstrated 
that clusters of size seven to ten are the best size to use when con- 
structing an FPGA. Compared to circuits implemented in an FPGA 
with size one clusters, circuits implemented in an FPGA with size 
seven clusters have 30% less delay (a 43% increase in speed) and 
use 8% less area, and circuits implemented in an FPGA with size 
ten clusters have 34% less delay (a 52% increase in speed), and 
require no additional area. The reason for this improvement in cir- 
cuit speed at larger cluster sizes is partly due to an increased 
number of critical connections becoming local within clusters, and 
partly due to a reduction in the “logical” manhattan distance 
between BLEs. 
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