Quick Points

- Lectures are viewable for on-campus students via WebCT
- Class e-mail list created: cpre583@iastate.edu
- Less focus on interconnect theory
 - More on interconnects in actual devices
 - Read [AggLew94], [ChaWon96A], [Deh96A] for more details

Recap

- Various FPGA programming technologies (Anti-fuse, (E)EPROM, Flash, SRAM):
 - SRAM most popular

LUTs and Digital Logic

- k inputs $\rightarrow 2^k$ possible input values
- k-LUT corresponds to $2^k \times 1$ bit memory
 - Truth table is stored
 - 2^k possible functions $\sim O(2^k / k!)$ unique

$$F = \overline{A_0}A_1A_2 + \overline{A_0}A_1\overline{A_2} + \overline{A_0}A_1A_2$$

<table>
<thead>
<tr>
<th>A_0</th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

General Routing Architecture

- A wire segment is a wire unbroken by programmable switches
- A track is a sequence of one or more wire segments in a line
- A routing channel is a group of parallel tracks
- A connection block provides connectivity from the inputs and outputs of a logic block to the wire segments in the channels
- A switch block is a block which provides connectivity between the horizontal and vertical wire segments on all four of its sides
Switch Boxes

- \(F_s \) – connections offered per incoming wire
- Universal switchbox can connect any set of inputs to their target output channels simultaneously
 - Build-able with \(F_s = 3 \)
 - Xilinx XC4000 switchbox is \(F_s = 3 \) but not universal
- Read [ChaWon96A] for more details

Architectural Issues [AhmRos04A]

- What values of \(N \), \(I \), and \(K \) minimize the following parameters?
 - Area
 - Delay
 - Area-delay product
- Assumptions
 - All routing wires length 4
 - Fully populated IMUX
 - Wiring is half pass transistor, half tri-state

Number of Inputs per Cluster

- Lots of opportunities for input sharing in large clusters [BetRos97A]
- Reducing inputs reduces the size of the device and makes it faster
- Most FPGA devices (Xilinx) have 4 BLE per cluster with more inputs than actually needed

Logic Cluster Size

- Small block cluster more efficient
- Includes area needed for routing
- Smallest clusters (e.g. one BLE per cluster) not “CAD friendly”
- Most commercial devices have 4-8 BLEs per cluster

Effect of \(N \) and \(K \) on Area

- Cluster size of \(N = [6-8] \) is good, \(K = [4-5] \)

Effect of \(N \) and \(K \) on Performance

- Inconclusive: Big \(K \) and \(N > 3 \) value looks good
Effect of N and K on Area-Delay

- K = 4-6, N= 4-10 looks OK

Putting it All Together

- Area:
 - LUT count decreases with k (slower than exponential)
 - LUT size increases with k (exponential logic area, linear interconnect area)
- Delay:
 - LUT depth decreases with k (logarithmic)
 - LUT delay increases with k (linear)
- Examples:
 - Xilinx XC3000 family
 - F_s = 3
 - I = 5
 - N = 2
 - Xilinx XC4000 family
 - F_s = 3
 - I = 9
 - N = 2.5

XC3000 Logic Block

- 5-LUT, or two 4-LUTs

XC4000 Logic Block

XC4000 Routing Structure

XC4000 Routing Structure (cont.)
LUT Computational Limits

- k-LUT can implement 2^{2k} functions
 - Given n such k-LUTs, can implement $(2^{2k})^n$
 - Since 4-LUTs are efficient, want to find n such that $(2^{24})^n \geq 2^{2M}$
- Example – implementing a 7-LUT with 4-LUTs:

LUTs Versus Memories

- Can also implement $(2^k)^n$ as a single large memory with k inputs and w outputs
- Large memory advantage – no need for interconnect and only one input decoder required
- Consider a 32K x 8bit memory (170M λ^2, 21ns latency)
 - $w = 8$
 - $k = 16$ (or 2 8-bit inputs to address 216 locations)
 - Can implement an 8-bit addition or subtraction
- Xilinx XC3042 – 288 4-LUTs (180M λ^2, 13ns CLB delay)
- 15-bit parity calculation:
 - 5 4-LUTs (<2% of XC4032) – 3.125M λ^2
 - Entire SRAM – 170M λ^2
- 7-bit addition:
 - 14 4-LUTs (<5% of XC4032) – 8.75M λ^2
 - Entire SRAM – 170M λ^2

LUT Technology Mapping

- Task: map netlist to LUTs, minimizing area and/or delay
 - Similar to technology mapping for traditional designs
 - Library approach not feasible – $O(2^{2k} / k!)$ elements in library
 - In general it is NP-hard

Area vs. Delay Mapping

Decomposition
Why Replicate?

Reconvergence

Dynamic Programming

Summary

- FPGA design issues involve number of logic blocks per cluster, number of inputs per logic block, routing architecture, and k-LUT size
- Can build M-LUT with n k-LUTs where $2^{M-3} \leq n \leq 2^{M-4}$
- Large LUTs generally inefficient
- Technology mapping is simplified because of 4-LUT properties
 - Techniques — decomposition, replication, reconvergence, dynamic programming
 - Area- or delay-optimal mapping still NP hard