
ONAC: Optimal Number of Active Cores Detector
for Energy Efficient GPU Computing

Xian Zhu, Mihir Awatramani, Diane Rover and Joseph Zambreno
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA, USA

Email: {xian, mihir, drover, zambreno}@iastate.edu

Abstract—Graphics Processing Units (GPUs) have become a
prevalent platform for high throughput general purpose com-
puting. The peak computational throughput of GPUs has been
steadily increasing with each technology node by scaling the
number of cores on the chip. Although this vastly improves
the performance of several compute-intensive applications, our
experiments show that some applications can achieve peak
performance without utilizing all cores on the chip. We refer
to the number of cores at which performance of an application
saturates as the optimal number of active cores (Nopt). We
propose executing the application on Nopt cores, and power-
gating the unused cores to reduce static power consumption.

Towards this target, we present ONAC (Optimal Number
of Active Cores detector), a runtime technique to detect Nopt.
ONAC uses a novel estimation model, which significantly reduces
the number of hardware samples taken to detect the optimal
core count, compared to a sequential detection technique (Seq-
Det). We implement ONAC and Seq-Det in a cycle-level GPU
performance simulator and analyze their effect on performance,
power and energy. Our evaluation shows that ONAC and Seq-Det
can reduce energy consumption by 20% and 10% on average for
memory-intensive applications, without sacrificing more than 2%
performance. The higher energy savings for ONAC comes from
reducing the detection time by 45% as compared to Seq-Det.

I. INTRODUCTION

Graphics Processing Units (GPUs) are increasingly becom-
ing the preferred choice of accelerator for various scientific
and engineering applications [17, 21]. A primary reason for
their continued adoption is the higher floating point throughput
GPUs offer compared to CPUs. Moreover, the amount of
computational power in GPUs is increasing at a steady rate.
The peak single and double precision floating point throughput
of the current state of the art GPU, the GP-100 [22] is 2.1x
and 3.15x compared to the GK-110 [18], released in 2012.

While compute intensive applications greatly benefit from
higher floating point throughput, our experiments show that
several GPU applications can achieve their peak performance
without utilizing all the cores on the chip. Similar observations
have been made previously [2, 11, 13]. Previous authors
showed that, for memory-intensive applications, fewer threads
can be executed per core without sacrificing performance.
Consequently, they proposed techniques that detect the mini-
mum number of threads required to achieve peak performance.

This work is supported in part by the National Science Foundation (NSF)
under awards CNS-1116810 and CCF-1149539.

0

5

10

15

20

25

30

35

4 8 12 16 20 24 28 32

IP
C

 n
o

rm
a

li
ze

d
 t

o
 a

v
e

ra
g

e

IP
C

 w
h

e
n

 e
xe

cu
te

d
 o

n
 1

 c
o

re

Number of cores in the simulated GPU configuration

Backprop kernel-2 FWT Hotspot Pathfinder

Fig. 1: The effect of number of cores on performance.

Executing fewer than the maximum threads reduces hardware
resource utilization, which enables opportunities for reducing
energy consumption through power-gating.

An orthogonal technique to reduce energy consumption is
to execute the application on fewer cores. To observe the effect
of number of cores on performance, we executed applications
from the Rodinia benchmark suite and the CUDA SDK on
a 32-core GPU simulated in GPGPU-Sim [3]. Fig. 1 plots
the average IPC at each core count for 4 applications. Two
clear performance trends can be observed. The performance of
Hotspot and Pathfinder scales linearly with number of cores.
Contrary to this, performance of Backprop and FWT scales
linearly only for lower core counts. Beyond a certain number
of cores, IPC scaling starts to decrease and performance
eventually saturates. This shows that for Backprop-K2 and
FWT, some of the cores can be power-gated without adversely
affecting performance.

We refer to the number of active cores at which perfor-
mance of an application saturates as its optimal active core
count. The authors in [24] proposed a mechanism to detect
the optimal active core count at runtime. Memory-intensive
applications typically have high average memory latency due
to DRAM queuing effects. Their technique marks a core as
memory-sensitive if the average memory latency (sampled at
runtime) is larger than an empirical threshold. The number of
active cores are reduced sequentially (one per sample), until
more than half the active cores are not memory-sensitive. Our

experiments show that there are two issues with this approach:
1. Reducing the number of active cores one at a time leads
to a long detection time for applications which have a low
optimal active core count. As all the cores consume static
power during the detection period, a long detection time leads
to lost opportunity for reducing energy consumption.
2. Memory latency is not a direct indicator of performance.
Instead, the amount of latency overlapped by compute instruc-
tions is a better indicator. Moreover, the capability to hide
memory latency varies across applications, and consequently a
single threshold might not scale across newer applications. We
implement the technique in [24] by directly using IPC as an
indicator of performance, and comparing samples across cores
instead of using a threshold. We refer to our implementation
as sequential detection or Seq-Det.

To address these problems, we design ONAC: Optimal
Number of Active Cores detector. ONAC uses an estimation
model inspired by Roofline [25], and estimates the IPC versus
core count curve described in Fig. 1. As the optimal active core
count is estimated instead of searched, ONAC significantly
reduces detection time and increases energy saving compared
to Seq-Det. The specific contributions of this paper are:
• We thoroughly analyze the impact of number of cores on

performance via case studies of two real-world applications.
We show that performance saturation at a certain core count
can be explained by measuring the amount of memory
latency that is overlapped by computation.

• We propose a novel model to estimate the optimal number
of active cores at runtime.

• We implement ONAC and Seq-Det in GPGPU-Sim [3],
and analyze their effect on performance, power and en-
ergy consumption. Our evaluation shows that for memory-
intensive applications, Seq-Det and ONAC reduce energy
consumption by 10% and 20% respectively, with negligible
impact on performance.
The remainder of the paper is organized as follows: Sect. 2

provides an overview of the GPU hardware architecture,
Sect. 3 analyzes the impact of number of cores on application
performance, Sect. 4 describes the estimation model used by
ONAC and its hardware implementation, Sect. 5 studies the
effect of ONAC and Seq-Det on application performance,
power and energy consumption, Sect. 6 discusses related work,
and Sect. 7 provides conclusions of our analysis.

II. BACKGROUND

This section provides a brief overview of the GPU compute
programming model and corresponding hardware architecture.
Further details are available in [3, 6, 8, 18, 19, 22].

A. Programming Model

In our evaluation experiments, applications written in
CUDA [19] were used. Nevertheless, our mechanism can be
used as-is with applications written using other languages as
well [8]. Fig. 2a depicts a highly simplified structure of a
GPU compute application. The application is executed on the
CPU, and portions of the computation to be offloaded to the

Ke
rn
el
&

Ke
rn
el
&

GP
U
$C
om

pu
te
$A
pp

lic
a1

on
&

...
&

C
T
A
&

C
T
A
&

C
T
A
&

C
T
A
&

...
&

..&

...
&

Threads&

...
&

..&

...
&

...
&

Sequential
portion

(a) Application

App&1&&

Applica0ons&using&GPU&for&compute&

Kernel&A& Kernel&B&
App&2&&

Ker.&A&

CPU

GPU

Core& Core& Core&…&

Kernel&A& Kernel&B& Kernel&A& CTA&
Sched&

List of kernels

SWM

(b) Hardware architecture

Fig. 2: GPGPU application hierarchy and GPU hardware
architecture block diagram.

GPU are written as separate functions called kernels. Kernels
use the Single Instruction Multiple Data (SIMD) programming
model to capture concurrency in an algorithm. Several thou-
sand threads typically perform the same set of computations,
described by the kernel instructions, on independent pieces of
data in parallel. Threads that share state are grouped into an
abstraction called Cooperative Thread Arrays (CTAs). Threads
from the same CTA can share data using SRAM memory
on the core and synchronize using barriers. Each kernel has
several thousand CTAs, collectively referred to as a grid.

B. Overview of Scheduling

Fig. 2b depicts how the programming model abstractions
described in the previous subsection are mapped to the GPU
hardware architecture. At a high level, the GPU chip consists
of several in-order SIMD cores called Streaming Multipro-
cessors (SMs). The SM Work Manager (SWM) has a list of
kernels launched from the application. The SWM selects a
kernel1 and a hardware unit, referred to as the CTA scheduler,
issues work from the selected kernel to the SMs.

As threads within a CTA can use synchronization primitives,
work is issued to SMs at the CTA granularity. A typical
scheduling policy used by the CTA scheduler is round-robin.
For example, CTA 1 is issued to SM 1, CTA 2 to SM 2, and so
on. The maximum number of CTAs executing simultaneously
on an SM depends on the number of registers and shared
memory used per thread. The default policy used by the SWM
is to issue CTAs to an SM until one of the hardware resources
is exhausted. In this work, we show that for memory-intensive
kernels, the SWM can selectively issue CTAs to fewer cores
and enable opportunities for reducing energy consumption.

Within each SM, threads are executed in groups of 32 called
warps. Warp scheduling policies have been extensively studied
in the academic research community and several optimizations
have been proposed [1, 16, 23]. In the remainder of this this
paper, we will focus on scheduling at the CTA granularity
only. We assume that only one kernel is active and the warp
scheduling policy used is Greedy Then Oldest (GTO).

1Priority among concurrently launched kernels can be set by the driver or
a hardware unit upstream of SWM.

0	

50	

100	

150	

200	

250	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	

Cy
cl
es
	

Number	of	cores	

Avg.	Mem.	Access	Time	(AMAT)	 AMAT	overlapped	by	computaCon	

44	

46	

48	

50	

52	

54	

4	 8	 12	 16	 20	 24	 28	 32	

Cy
cl
es
	

Number	of	cores	in	the	simulated	GPU	configuraCon	
(a) Pathfinder

0	

50	

100	

150	

200	

250	

4	 8	 12	 16	 20	 24	 28	 32	

Cy
cl
es
	

Number	of	cores	in	the	simulated	GPU	configuraCon	

(b) Backprop

Fig. 3: Average Memory Access Time (AMAT) and the
amount of AMAT overlapped by computation.

III. EFFECT OF NUMBER OF CORES ON PERFORMANCE

In this section we analyze the effect of the number of
active cores (Nactive) on performance for kernels from two
applications: Pathfinder and Backprop. The Pathfinder kernel
is compute-intensive, and obtains peak performance when all
cores on the GPU are utilized. On the contrary, the Backprop
kernel is memory-intensive, and its performance saturates after
a specific number of active cores.

A. Effect on Memory Latency and Performance

The fundamental effect of Nactive on performance can be
deduced by analyzing its effect on non-overlapped memory
latency (Fig. 3). Average memory access time (AMAT) is
typically defined as the average memory latency observed by
a memory instruction, irrespective of whether it hits in the
L1 or L2 data caches. Fig. 3 plots the AMAT observed for
the Backprop and Pathfinder kernels, at different core counts,
normalized to the run on a configuration with just one core.
As expected, as Nactive increases, the bandwidth available to
each core reduces, and consequently AMAT increases. Notice
in the figure that AMAT increases for both kernels. Thus, by
itself, AMAT is not an indicator of performance.

Fig. 3 also plots the amount of AMAT that is over-
lapped by computation (AMAToverlapped). AMAToverlapped

is the average number of cycles, for each memory request,
when there is at least one arithmetic instruction in flight on
its requesting core. Observe in Fig. 3a that for Pathfinder,
AMAToverlapped increases with AMAT. Consequently, perfor-
mance of Pathfinder keeps scaling until Nactive equals 32. On
the contrary, for the Backprop kernel, the difference between
AMAT and AMAToverlapped starts to increase after Nactive

0

100

200

300

400

500

600

700

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

En
er

gy
(m

J)

Po
w

er
(W

)

Number of cores

Total power Static power Dynamic power Energy

0	
1	
2	
3	
4	
5	
6	
7	

0	
50	

100	
150	
200	
250	
300	
350	

4	 8	 12	 16	 20	 24	 28	 32	

En
er
gy
	(J
)	

Po
w
er
	(W

)	

Number	of	cores	in	the	simulated	GPU	configuraCon	

(a) Pathfinder

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	

0	
50	

100	
150	
200	
250	
300	
350	

4	 8	 12	 16	 20	 24	 28	 32	

En
er
gy
	(J
)	

Po
w
er
	(W

)	

Number	of	cores	in	the	simulated	GPU	configuraCon	

(b) Backprop

Fig. 4: The effect of Nactive on power and energy.

is higher than 9 (Fig. 3b). This indicates that an increasing
amount of memory latency is exposed and contributes to the
execution time of each core. Thus, the performance of Back-
prop starts to plateau around this point and eventually saturates
when Nactive reaches 12 (refer to Fig. 1). The threshold used
to categorize a kernel’s performance as saturated is when it is
within 2% of the performance when Nactive equals 32.

B. Effect on Power and Energy

Fig. 4 plots the static and dynamic power consumed by
the two kernels with a varying number of active cores. While
static power increases linearly with Nactive, dynamic power
consumption scales proportionally to IPC. As discussed in
the previous subsection, Pathfinder’s IPC continues to scale
up until 32 cores. Consequently, dynamic power continues
to increase as well. On the contrary, Backprop spends an
increasing percentage of the total execution time on non-
overlapped memory latency as Nactive increases beyond 9
cores. As cores stay idle waiting for data for a larger portion
of their execution time, the average dynamic power consumed
per core reduces, and becomes almost constant after Nactive

is higher than 12 cores (Fig. 4b).
The energy consumed by a kernel is directly proportional to

average power consumption and inversely proportional to IPC.
Hence as Nactive increases, if the increase in IPC is larger than
the increase in power consumption, total energy consumption
reduces. Notice in Fig. 4a that although the average power
consumption of the Pathfinder kernel continues to increase
until Nactive = 32, energy consumption continues to decrease.
This is due to a steady increase in IPC. On the contrary
for Backprop (Fig. 4b), as the average power consumption

continues to increase (due to increase in static power), and
IPC saturates after Nactive = 12, the total energy increases.

IV. ONAC: ESTIMATION MODEL AND HARDWARE
IMPLEMENTATION

In the previous section, we showed that some GPU kernels
can achieve peak performance without using all the cores on
the chip. The unused cores can be power gated to reduce static
power consumption, and thereby energy. In this section we
describe ONAC, our detection technique which detects the op-
timal core count at runtime. At its crux is our novel estimation
model that significantly reduces the detection overhead.

A. Performance Estimation Model

Our estimation model leverages the following observations
from the IPC trends described in the previous sections:
Observation 1: IPC achieved when all cores are used (IPCall),
is the maximum IPC of the kernel on the current configuration.
Observation 2: Let IPC1 be the IPC achieved on the 1 core
configuration. The IPC at a given core count N, is lower than
or equal to N * IPC1.
Observation 3: As the number of cores increase, IPC per
core remains the same or decreases. For a configuration with
x cores, let the average IPC per core be IPCslope x. For any i
> j, IPCslope i ≤ IPCslope j (Fig. 5).

In the next subsection, we describe how our model uses
these observations and illustrate the steps it takes to estimate
the optimal active core count.

B. Optimal Core Detection Examples

At the beginning of a kernel’s execution, a sample of
IPC with all the cores active is taken (IPCall). Following
observation 1, our model assumes IPCall to be the maximum
achievable IPC for this kernel. Its objective is to find the
minimum number of cores required to achieve an average
IPC within a certain threshold of IPCall. We refer to this as
IPCthreshold, and is depicted by a solid line in Fig. 5 1 .

Next, all but 1 cores are put in a paused state and a sample
of the IPC is taken with just 1 core active. The details of
pausing cores and sampling are described in the next section.
Following observation 2, the maximum performance at each
core count can be projected by a line through the origin
with a slope of IPC1 2 . The intersection of this line with
the constant line through IPCthreshold is the least number of
cores required to achieve peak IPC. This gives the model a
first estimate of the optimal number of active cores. The first
estimate calculated for the Pathfinder and Backprop kernels is
31 and 9 cores respectively (refer to Fig. 5a and Fig. 5b 3).

An estimate of the optimal active core count is referred to as
Nest. At this point, a sample of the average IPC is taken with
Nest cores active (IPCest). If the IPCest is greater than or equal
to IPCthreshold, the model concludes that the optimal number
of cores has been detected. As expected, the first estimate
is very optimistic. The IPC of Backprop with 9 cores and
Pathfinder with 31 cores do not meet the required performance
threshold.

0	

100	

200	

300	

400	

500	

600	

2	 4	 6	 8	 10	 12	 14	 16	 18	 20	 22	 24	 26	 28	 30	 32	

IP
C	

Number	of	Cores	

Measured	 Threshold	 EsLmaLon	lines	

0	

300	

600	

900	

1200	

1500	

1800	

2	 4	 6	 8	 10	 12	 14	 16	 18	 20	 22	 24	 26	 28	 30	 32	

IP
C	

Number	of	cores	in	the	simulated	GPU	configuraLon	

①	
②	

1400	

1500	

1600	

1700	

1800	

28	 29	 30	 31	 32	

②	

③	

①	

(a) Pathfinder

350	

400	

450	

500	

550	

600	

8	 9	 10	 11	 12	 13	 14	 15	
0	

100	

200	

300	

400	

500	

600	

2	 4	 6	 8	 10	 12	 14	 16	 18	 20	 22	 24	 26	 28	 30	 32	
IP
C	

Number	of	cores	in	the	simulated	GPU	configuraLon	

②	

③	

①	

①	

②	

(b) Backprop

Fig. 5: Example of optimal active core count detection using
our model for the Backprop and Pathfinder kernels.

All the remaining estimates are calculated using obser-
vation 3. The model stores two values: a sample of the
IPC at the current (IPCcur) and previous (IPCprev) esti-
mates. The next estimate is calculated as the point at which
a line passing through IPCprev and IPCcur intersects with
IPCthreshold. For Backprop, a line through IPC1 and IPC9

intersects IPCthreshold at 10 cores. The IPC sampled at 10
cores is still lower than IPCthreshold, and a new estimate is
calculated using IPC9 and IPC10. In this way, the model keeps
updating IPCcur and IPCprev until the IPC at the current
estimate satisfies IPCthreshold. Our model converges at the
fourth estimate for Backprop, and correctly detects the optimal
core count as 12 cores. For Pathfinder, the optimal active core
count is correctly detected as 32 cores at the second estimate.

C. Hardware Implementation

We implemented ONAC inside the SM Work Manager
described in Sect. 2b. Fig. 6 illustrates a simplified block
diagram. The unit inside the SWM which detects the optimal
core count is shown as the ONAC control logic.

1) Core Status Table: The baseline SWM stores informa-
tion required for scheduling in a structure referred to as the
Core Status Table (CST). We add three new fields per core
to this structure: active bit, paused bit and a field to record
the IPCs sampled at runtime. CTAs are issued only to cores
which have the active bit set and paused bit unset.

2) ONAC Control Logic: The control logic in Fig. 6 illus-
trates a state machine representation of the detection algorithm.

Estimation Records
pre-est core count IPC

Init Est Opt Det

core id active IPCpause

Core Status Table (CST)

…

ONAC Fields
CTA Assigned

Basic Fields
. . .

CTA
Scheduling

Logiccur-est core count IPC
max core count IPC

ONAC Control Logic

core id active IPCpause CTA Assigned . . .

SM Work Manager(SWM)

To Cores

Fig. 6: Block diagram of ONAC’s hardware implementation.

The Estimation Records (ER) table has three entries each at
the previous estimate, current estimate and all cores active, to
store the core count and average IPC. The state machine has
three states:

Init: At the beginning of a kernel, all cores are active and
unpasused. Each core takes a sample of its IPC and stores it in
the CST (refer to Sect. IV-C3). When all the cores have taken
their samples, the IPC is summed and stored in the ER. Next,
the pause flag is set for 31 cores (refer to Sect. IV-C4). Once
all cores are paused, a sample of IPC with one core is taken
and Init invokes the Est logic to calculate the first estimate.

Est and Opt Det: The detection state machine stays in
either Est or the Opt Det states for the remaining portion of
the kernel. Est calculates the first estimate (Nest) using the
samples of the IPC at max and 1, and stores it in the cur-est
field of the ER. To get a sample of the IPC, Nest - 1 cores are
unpaused by resetting their pause bits. Once the sample with
Nest active cores is collected, Opt Det compares it with IPC
for max and checks if the performance threshold is satisfied.
If true, Nest is set as the optimal number of active cores and
the detection process is terminated. If false, pre-est and cur-est
entries are updated and Est calculates a new estimate.

3) Sampling: At the start of a sample, the SWM sends
a request to all cores that are active but not paused. The
requested cores wait for the instructions in-flight to complete,
and then take a sample of the IPC over the next sampling
period. Our experiments show that sampling period is a
significant factor that affects the accuracy of the IPC samples,
and consequently the accuracy of detection.

Sampling period: The total number of CTAs concurrently
active on the GPU is referred to as a CTA wave. GPU compute
kernels typically execute a similar set of instructions on a grid
of input data, organized into CTAs. Consequently, the total
computation performed by the kernel can be approximated
as computations performed by a sequence of CTA waves.
However, as all CTAs in a wave do not start and finish at
the same time, the IPC fluctuates over time, over execution of
a CTA wave. Our experiments show that the average over a

TABLE I: The GPU configuration used in our experiments

Number of Cores 32
Warp Size 32
Warp schedulers per core 2, GTO scheduling policy
Execution units per core 32 ALUs, 4 SFUs,16 LD/ST units

Resources/Core Max. 48 warps, Max. 8 thread blocks,
32768 Registers, 48KB Shared Memory

Core/ICNT/Memory Clock 1300MHz/1300MHz/1848MHz
Number of Mem. Partitions 12

DRAM Chip Model 32bits bus width/Memory Partition, 6
Banks/Memory Partition, GDDR5 timing

Processing Power Single precision: Max. 2662.4 GFLOPs
Memory Bandwidth Max. 177.4 GB/s

set of four CTA waves is a good sampling period and results
in a stable IPC value that is close to the kernel’s average IPC.

4) Core Pausing: During the detection period, the cores
that are inactive are put in a paused state. To pause a core, the
SWM sends a pause request, and the warp scheduler on the
core stops issuing instructions. Once the instructions that were
in-flight are completed, the core sends an acknowledgment
to the SWM. Once all the required cores have paused, the
SWM notifies the active cores to begin the next sample. We
pause cores at the beginning to take a sample with 1 core.
For the remaining portion, cores are unpaused and put back
into the active state as the estimate of optimal core count
increases. Pausing the cores instead of draining them, helps
reduce the time required to wait before beginning the next
sampling period. After the optimal core count is detected, the
cores that are paused, are drained and power-gated.

V. EXPERIMENTAL RESULTS

Two metrics are important in the design of a runtime
technique for detecting optimal active core count (Nopt):
1: Accuracy: The accuracy of detection is important as
overestimating Nopt reduces the amount of energy saved, while
underestimating it negatively impacts performance.
2: Detection Time: A short detection time is important as
it increases the amount of energy saved for memory-intensive
kernels. Moreover, a long detection time can negatively impact
performance, particularly for compute-intensive kernels.

In this section, we evaluate ONAC and the sequential de-
tection technique (Seq-Det) on the basis of accuracy, detection
time and their impact on performance, power and energy.

A. Methodology

We implemented ONAC and Seq-Det in GPGPU-Sim, a
cycle level GPU architecture simulator [3]. The simulator
was configured to match the ratio of peak computational
throughput to peak memory bandwidth of an NVIDIA Tesla
K40 GPU. Table I provides more details of the simulated GPU
configuration.

The applications used for our evaluation were chosen from
Rodinia [4], an open source benchmark suite for heterogeneous
computing and the CUDA SDK [20]. The set of kernels used
for our analysis is listed in Table II. We broadly group kernels
into two categories. Kernels grouped under type A have Nopt

TABLE II: Benchmark Application Kernels

Kernel Name Abbr. Suite Type Total
CTAs

LU Decomposition LUD Rodinia A 65025
K-Nearest Neighbor NN Rodinia A 50115
K-Means KM Rodinia A 25600
B+tree Kernel 2 BT-K2 Rodinia A 65535
Back Propagation kernel 2 BP-K2 Rodinia A 65535
Speckle Reducing Anisotropic Diffusion SRAD Rodinia A 32768
Discrete Cosine Transform kernel 1 DCT-K1 CUDA SDK A 32768
Discrete Cosine Transform kernel 2 DCT-K2 CUDA SDK A 32768
Transpose No Bank Conflicts TP-K1 CUDA SDK A 65536
Transpose Coarse Grained TP-K2 CUDA SDK A 65536
Fast Walsh Transform FWT CUDA SDK A 32768
Convolution Separable CVSEP CUDA SDK A 16384
Merge Sort MS CUDA SDK A 24567
Pathfinder PATH Rodinia B 46297
B+tree Kernel 1 BT-K1 Rodinia B 65535
Hotspot HS Rodinia B 29241
Back Propagation kernel 1 BP-K1 Rodinia B 65535
Convolution Texture Kernel 1 CVT-K1 CUDA SDK B 98304
Convolution Texture 6Kernel 2 CVT-K2 CUDA SDK B 98304
DXT Compression DXTC CUDA SDK B 16384

less than 32, and consequently are good candidates for saving
energy, while Type B kernels have Nopt equal to 32.

B. Accuracy of Detection and Performance

We detected the optimal number of cores for each kernel by
executing them separately at each core count. We refer to this
as Noracle. Fig. 7a compares the Nopt detected by ONAC and
Seq-Det to Noracle. As expected, the Nopt detected at runtime
has an impact on the kernel’s performance. Consequently in
Fig. 7b, we compare the performance achieved by kernels
when executed with ONAC and Seq-Det, to when executed on
Noracle cores. The results are normalized to the performance
achieved on the baseline configuration (referred to as Nmax).

1) Type A Kernels: 13 of the 20 kernels analyzed in our
experiments were type A kernels. Observe in Fig. 7a that the
Nopt detected by Seq-Det is always higher than or equal to
Noracle for all of them, except BT-K2. Consequently, notice
in Fig. 7b that the IPC achieved by Seq-Det is always higher
than the performance threshold of 2% for all kernels except
BT-K2, where Nopt is detected inaccurately due to a sampling
variation. The sampled IPC taken with 30 cores active, is
higher than the average IPC achieved when the kernel is
executed on 30 cores, which leads to Seq-Det underestimating
Nopt.

For ONAC, the Nopt value detected is higher than or equal
to Noracle for all type A kernels except MS. This detection
inaccuracy is caused by a similar sampling variation problem.
Consequently, the IPC achieved by ONAC is 95% of Nmax

for MS, and is close to the performance threshold for others
(refer to Fig. 7b). On average Seq-Det and ONAC achieve
99% and 98% of the performance achieved with Nmax cores.
On the other hand, we show in Sect. V-C that they reduce the
average energy consumption across kernels by 10% and 20%
respectively.

2) Type B Kernels: In addition to detection accuracy, detec-
tion time also has an effect on performance. Notice in Fig. 7a
that both techniques, Seq-Det and ONAC, detect Nopt with

Type	A� Type	B�

0	
5	

10	
15	
20	
25	
30	
35	

TP
-K
1	

TP
-K
2	

BP
-K
2	

FW
T	

KM
	

DC
T-
K2

	
DC

T-
K1

	
SR
AD

	
CV

S	
LU

D	
M
S	

N
N
	

BT
-K
2	

PA
TH

	
DX

TC
	

BP
-K
1	 HS
	

CV
T-
K1

	
CV

T-
K2

	
BT

-K
1	

#	
of
	C
or
es
	

Oracle	 Seq-Det	 ONAC	

(a) Optimal active core count detected

Type	A� Type	B�

0.9	

0.94	

0.98	

1.02	

1.06	

TP
-K
1	

TP
-K
2	

BP
-K
2	

FW
T	

KM
	

DC
T-
K2

	
DC

T-
K1

	
SR
AD

	
CV

S	
LU

D	
M
S	

N
N
	

BT
-K
2	

G.
M
ea
n	

PA
TH

	
DX

TC
	

BP
-K
1	 HS
	

CV
T-
K1

	
CV

T-
K2

	
BT

-K
1	

G.
M
ea
n	

N
or
m
al
ize

d	
IP
C	

Oracle	 Seq-Det	 ONAC	

(b) IPC performance

Fig. 7: Optimal number of active cores (Nopt) detected by
ONAC and Seq-Det, and the corresponding IPC achieved by
the kernels. IPC results are normalized to the IPC achieved
when the kernels are executed with all the cores active.

100% accuracy for all type B kernels. However, observe in
Fig. 7b that the IPC achieved by them varies across kernels.
As Seq-Det reduces the number of active cores one at a time,
it takes one sample at 31 active cores, and switches back to
32. Consequently, the IPC achieved by Seq-Det for all type B
kernels is close to that achieved by the baseline. On the other
hand, ONAC has to take a sample with one active core, which
causes the small impact on performance seen in the figure.

Although ONAC has this overhead for type B kernels, the
effect on performance is less than 2% on average. On the
other hand, ONAC saves significantly more energy compared
to Seq-Det for type A kernels. We analyze the correlation
between detection time and energy in detail in the next section.
Notice in Fig. 7b that the effect of detection time on IPC
is also observed in a few type A kernels. Although ONAC
detects Nopt accurately for the BP-K2, KM, SRAD and BT-K2
kernels, the IPC achieved is a little below the 2% threshold.

C. Detection Time and its Effect on Power and Energy

In this section, we analyze the effect of ONAC and Seq-
Det’s detection time on average power and energy consump-
tion. Fig. 8 plots the ratio of detection time to the total
execution time, while Fig. 9a and Fig. 9b plot the average
power and total energy consumed by the kernels. In summary,
ONAC and Seq-Det reduce the energy consumption of type A
kernels by 20% and 10% respectively, as compared to using
all the cores on the chip, with very insignificant overhead on
performance. The higher energy saving for ONAC, compared

Type	A� Type	B�

0	
10	
20	
30	
40	
50	
60	
70	
80	

TP
-K
1	

TP
-K
2	

BP
-K
2	

FW
T	

KM
	

D
CT

-K
2	

D
CT

-K
1	

SR
A
D
	

CV
S	

LU
D
	

M
S	

N
N
	

BT
-K
2	

G
.M

ea
n	

PA
TH

	
D
XT
C	

BP
-K
1	

H
S	

CV
T-
K1

	
CV

T-
K2

	
BT

-K
1	

G
.M

ea
n	%
	o
f	K

er
ne

l	E
xe
cu
So

n	
Ti
m
e	

Seq-Det	 ONAC	

Fig. 8: The percentage of kernel’s total execution time spent
on detection by ONAC and Seq-Det.

Type	A� Type	B�

0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	

TP
-K
1	

TP
-K
2	

BP
-K
2	

FW
T	

KM
	

DC
T-
K2

	
DC

T-
K1

	
SR
AD

	
CV

S	
LU

D	
M
S	

N
N
	

BT
-K
2	

G
.M

ea
n	

PA
TH

	
DX

TC
	

BP
-K
1	 H
S	

CV
T-
K1

	
CV

T-
K2

	
BT

-K
1	

G
.M

ea
n	

N
or
m
al
iz
ed

	P
ow

er
	

Oracle	 Seq-Det	 ONAC	

(a) Average power consumption

Type	A� Type	B�

0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	

TP
-K
1	

TP
-K
2	

BP
-K
2	

FW
T	

KM
	

DC
T-
K2

	
DC

T-
K1

	
SR
AD

	
CV

S	
LU

D	
M
S	

N
N
	

BT
-K
2	

G.
M
ea
n	

PA
TH

	
DX

TC
	

BP
-K
1	 HS
	

CV
T-
K1

	
CV

T-
K2

	
BT

-K
1	

G.
M
ea
n	

N
or
m
al
ize

d	
En
er
gy
	

Oracle	 Seq-Det	 ONAC	

(b) Total energy consumption

Fig. 9: Average power and total energy consumptions of the
kernels when executed with oracle number of cores, Seq-
Det and ONAC. The results are normalized to the power and
energy consumption when executed with all the cores active.

to the sequential detection technique, comes from reducing the
detection time by 45% on average across the type A kernels.

1) Type A kernels: The kernels in Fig. 8 and Fig. 9 are
sorted in ascending order of the optimal number of active
cores. The optimal core count of type A kernels ranges from
8 (transpose kernels) to 31 (B+Tree K2). Observe in Fig. 8
that as Nopt increases, the ratio of execution time spent on
detection by Seq-Det decreases. The spikes in this trend for
the DCT and MS kernels are because the total execution time
of the kernels is relatively short. Hence, although the detection
time of Seq-Det for the DCT kernels is lesser than the KM,
FWT, BP-K2 and TP kernels, the ratio is higher. For ONAC,
notice that the detection overhead increases as Nopt increases.
This is because ONAC starts the estimation with 1 core, and
increases the number of active cores as it converges to Nopt.

For all type A kernels, except MS, NN and BT-K2, Seq-

Det takes longer to detect the optimal core count compared to
ONAC. Its effect on the average power consumption can be
clearly observed in Fig. 9a. For all kernels to the left BT-K2,
the average power consumption with Seq-Det is higher com-
pared to ONAC. The difference is larger for lower core counts.
As Nopt increases, the detection time of Seq-Det decreases and
the difference reduces, until they become comparable for the
SRAD, CVS and LUD kernels.

With lower power consumption and comparable perfor-
mance, the energy consumption with ONAC is lower than
Seq-Det when Nopt is low. Similar to power, the difference
reduces as the optimal core count increases. ONAC consumes
a bit more energy compared to Seq-Det for the MS and BT-
K2 kernels. Notice that for the MS kernel ONAC consumes
lesser power compared to Seq-Det. The loss in IPC is more
than the reduction in power consumption, causing the energy
consumption to be higher.

2) Type B kernels: As kernels in the type B category have
the optimal number of active cores as 32, the detection times
for both ONAC and Seq-Det are modest (less than 4% of the
execution time). Consequently, the power consumption of both
ONAC and Seq-Det is similar to that of Nmax. As ONAC takes
a sample with 1 active core, it has a small impact on the IPC
(refer to Fig. 7b). Consequently, ONAC increases the energy
consumption of type A kernels by 2% on average.

VI. RELATED WORK

A. Parallelism optimization on GPU

Kayıran et al. [11] observe that executing the maximal
number of CTAs on GPU cores doesn’t always achieve the best
performance. They propose a mechanism to detect the optimal
number of CTAs based on sampling internal data of the
pipeline. When the sampled idle time is lower than a threshold
and the sampled memory stall time falls between lower and
upper bounds, the optimal number of CTAs is captured. The
scheme developed by Lee et al. [13] leverages the behavior of
greedy warp scheduler. Their scheme measures the number of
instructions issued, and uses the ratio of instructions issued by
the greediest CTA to instructions issued by all CTAs on the
core as the optimal number of CTAs.

Besides modulating the number of CTAs per core, there are
other papers focused on parallelism optimization at warp-level.
Gebhart et al. [5] propose a warp scheduler that groups warps
into two priorities and only issues instructions from the higher
priority warps. Their evaluations demonstrate that significant
energy saving can be achieved by power-gating unused in-core
resources. Rogers et al. [23] adopt a cache-locality scoring
system to throttle the number of warps adaptively. They show
their mechanism can improve the performance for highly
cache-sensitive workloads by reducing cache thrashing.

B. Energy-efficient computing on GPU

Although several works [10, 14] have explored thread-level
and core-level parallelism optimizations for energy savings in
the context of chip multiprocessors (CMP), these prior works

cannot be applied to GPU directly due to two distinct differ-
ences between CMP and GPU platforms: (1) The overhead
of starting and shutting down a core on a GPU platform is
much higher than on a CMP platform. (2) Also, the algorithms
for CMP platform typically require operating system support.
Thus, the energy optimizations specific to GPU platform are
introduced.

In [9] Jiao et al. characterize the performance and power
consumption of various GPU compute kernels at different
GPU core and DRAM frequencies, and show their effect on
performance and power consumption. In [12], Lee et al. adjust
the number of cores and modulate the core’s voltage and
frequency to improve throughput under power constraints.
While their objective is optimizing performance under given
power constraints, we focus on optimizing power consumption
under given performance constraints. In [15], Lin et al. utilize
software prefetching and dynamic voltage scaling to achieve
two objectives: energy optimization under performance con-
straints and performance optimization under power constraints.

In [7] Hong et al. propose an analytical model to predict
power, performance and the optimal number of cores based on
kernel’s static information. They optimize for performance per
watt, which has a side effect of losing performance. Our work
is closest to that of Song et al. in [24]. The propose to sample
memory latency to each core, and reduce the number of active
cores one at a time, until the average latency is lower than
an empirically found threshold. Our implementation of their
technique is referred to as sequential detection or Seq-Det in
this paper, and we have thoroughly compared the efficiency
of both approaches on different types of compute kernels.

VII. CONCLUSION

In this work we show that certain GPU compute kernels can
achieve peak performance without utilizing all the cores on
the chip. For such applications, detecting the optimal number
of active cores can enable energy savings by power-gating
the unused cores. Using detailed analysis of two application
kernels, we demonstrated the effect of number of active cores
on performance, power and energy consumption. To this effect
we design a mechanism to detect the optimal core count at
runtime with high accuracy and low detection overhead. We
implement the mechanism in a cycle level GPU simulator and
analyze its efficiency compared to a sequential technique. Our
results show that our mechanism reduces the detection time as
much as 45% compared to the sequential detection technique.
It reduces energy consumption by 20% on average compared
to the baseline, with less than 2% impact on performance.

REFERENCES

[1] M. Awatramani, X. Zhu, J. Zambreno, and D. Rover, “Phase aware warp
scheduling: Mitigating effects of phase behavior in gpgpu applications,”
in Proc. of The 24th Int. Conf. on Parallel Architecture and Compilation
Techniques, 2015, pp. 1–12.

[2] M. Awatramani, J. Zambreno, and D. Rover, “Perf-Sat: Runtime detec-
tion of performance saturation for GPGPU applications,” in Proc. of the
43rd Int. Conf. on Parallel Process. Workshops, 2014, pp. 1–8.

[3] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc.

of the 2009 IEEE Int. Symp. on Performance Anal. of Syst. and Software,
2009, pp. 163–174.

[4] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Proc. of the 2009 IEEE Int. Symp. on Workload Characteriza-
tion, 2009, pp. 44–54.

[5] M. Gebhart et al., “Energy-efficient mechanisms for managing thread
context in throughput processors,” in Proc. of the 38th Annu. Int. Symp.
on Computer Architecture, 2011, pp. 235–246.

[6] P. N. Glaskowsky, “NVIDIA’s Fermi: the first complete GPU computing
architecture,” White Paper, Nvidia, 2009. [Online]. Available:
http://www.nvidia.com/content/PDF/fermi white papers/P.Glaskowsky
Nvidia’s Fermi-The First Complete GPU Architecture.pdf

[7] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proc. of the 37th Annu. Int. Symp. on Computer Architecture,
vol. 38, no. 3, 2010, pp. 280–289.

[8] L. Howes and A. Munshi. (2015) The OpenCL specification. Khronos
OpenCL Working Group. [Online]. Available: https://www.khronos.org/
registry/cl/specs/opencl-2.1.pdf

[9] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and performance
characterization of computational kernels on the GPU,” in Proc. of 2010
IEEE/ACM Int. Conf. on Green Comput. and Commun. & Int. Conf. on
Cyber, Physical and Social Comput., 2010, pp. 221–228.

[10] C. Jung, D. Lim, J. Lee, and S. Han, “Adaptive execution techniques for
smt multiprocessor architectures,” in Proceedings of the 10th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
2005, pp. 236–246.

[11] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: Optimizing thread-level parallelism for GPGPUs,” in Proc. of the
22nd Int. Conf. on Parallel Architectures and Compilation Techniques,
2013, pp. 157–166.

[12] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. S. Kim, “Improving
throughput of power-constrained GPUs using dynamic voltage/frequency
and core scaling,” in Proc. of the 20th Int. Conf. on Parallel Architectures
and Compilation Techniques, 2011, pp. 111–120.

[13] M. Lee et al., “Improving GPGPU resource utilization through alterna-
tive thread block scheduling,” in Proc. of 20th IEEE Int. Symp. on High
Performance Computer Architecture, 2014, pp. 260–271.

[14] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in Proceedings of the
12th IEEE International Symposium on High-Performance Computer
Architecture, 2006, pp. 77–87.

[15] Y. Lin, T. Tang, and G. Wang, “Power optimization for GPU programs
based on software prefetching,” in Proc. of the 10th Int. Conf. on Trust,
Security and Privacy in Comput. and Commun., 2011, pp. 1339–1346.

[16] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU performance via large warps and two-
level warp scheduling,” in Proc. of the 44th Annu. IEEE/ACM Int. Symp.
on Microarchitecture, 2011, pp. 308–317.

[17] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56–69, 2010.

[18] “NVIDIA Kepler GK110,” White Paper, NVIDIA Corp.,
2012. [Online]. Available: http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[19] (2015) CUDA C programming guide. NVIDIA Corp. [Online]. Avail-
able: http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.
pdf

[20] (2015) NVIDIA CUDA SDK. NVIDIA Corp. [Online]. Available:
https://developer.nvidia.com/cuda-downloads

[21] (2015) NVIDIA Developer Zone. NVIDIA Corp. [Online]. Available:
https://developer.nvidia.com

[22] “NVIDIA Tesla P100,” White Paper, NVIDIA Corp., 2016. [On-
line]. Available: https://images.nvidia.com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf

[23] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in Proc. of the 45th Annu. IEEE/ACM Int. Symp.
on Microarchitecture, 2012, pp. 72–83.

[24] S. Song, M. Lee, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Energy-
efficient scheduling for memory-intensive GPGPU workloads,” in Proc.
of Design, Automation and Test in Europe Conf. and Exhib. 2014, 2014,
pp. 1–6.

[25] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. of the
ACM, vol. 52, no. 4, pp. 65–76, 2009.

