
Parallelizing Latent Semantic Indexing Using an
FPGA-based Architecture

Xinying Wang and Joseph Zambreno
Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa, USA
Email: {xinying, zambreno}@iastate.edu

Abstract—Latent Semantic Indexing (LSI) has played a signif-
icant role in discovering patterns on the relationships between
query terms and unstructured documents. However, the inherent
characteristics of complex matrix factorization in LSI make it dif-
ficult to meet stringent performance requirements. In this paper,
we present a deeply pipelined reconfigurable architecture for LSI,
which parallelizes the matrix factorization and dimensionality
reduction, computation of cosine similarity between vectors,
and the ranking of documents. Our architecture implements
the reduced Singular Value Decomposition with Hestenes-Jacobi
algorithm, in which both singular values and orthogonal vectors
are collected, and its components can be reconfigured to update
query vector coordinate and calculate query-document similarity.
In addition, an ordered tree structure is used to reduce the
matrix dimension and rank the documents. Analysis of our
design indicates the potential to achieve a performance of 8.9
GFLOPS with dimension-dependent speedups over an optimized
software implementation that range from 3.8× to 10.1× in terms
of computation time.

I. INTRODUCTION

In many scientific and engineering applications (e.g., text
processing [1], information retrieval [2], and bioinformatics
[3]) , Latent Semantic Indexing (LSI) has been widely used as
an information analysis technique to identify the relationships
between the query terms and the content of unstructured
documents. LSI commonly implements a linear factorization
tool named reduced Singular Value Decomposition (rSVD)
at its core, followed by ranking process according to the
cosine similarity between query terms and documents. LSI
is considered computationally expensive, and in many appli-
cations, sequential LSI implementations are unlikely to satisfy
requirements of querying semantical retrieval over millions of
documents in a few milliseconds [4].

FPGAs have shown the promise to provide fine-grained par-
allelism, and are more compatible with highly data-dependent
transformations in computing SVD, compared to other hard-
ware accelerators. Previous FPGA-based implementations of
Latent semantic processing [4]–[7] reformulated the compu-
tationally intensive portion of Latent semantic processing as
matrix or vector operations (e.g., multiplication, addition).
Although speedups are achieved, the reconfigurability and
flexibility of FPGAs have shown potentials to further improve
the performance by parallelizing all phases of Latent semantic

This work is supported in part by the National Science Foundation (NSF)
under awards CNS-1116810 and CCF-1149539.

processing, including SVD computation, the ranking process,
and vector coordinate updates.

In this paper, we propose an FPGA-based architecture
to accelerate LSI, which parallelizes the SVD computation,
vector coordinate updates, cosine similarity calculation, and
the process of ranking selected documents in an order of
the calculated query-document cosine similarity. Our deeply
pipelined reconfigurable architecture implements the reduced
SVD with Hestenes-Jacobi algorithm [8] that collects both
the singular values and orthogonal vectors in the reduced k-
dimensional space. In addition, the individual components of
our architecture can be dynamically configured to update the
query vector coordinates and calculate query-document cosine
similarity. Also, we utilize an ordered tree structure to perform
dimensionality reduction and rank the documents. Analysis of
our design indicates the potential to achieve a performance of
8.9 GFLOPS with dimensional dependent speedups over an
optimized software implementation that range from 3.8× to
10.1× in terms of computation time.

II. THEORETICAL BACKGROUND

A. The Process of Latent Semantic Indexing

Latent Semantic Indexing is a mathematical technique to
analyze the correlation between query terms and a collection
of documents. Traditionally, information retrieval is processed
through lexically matching query terms with concepts in
documents. However, its accuracy is impaired by synonymy
that a given concept can be expressed in multiple ways,
and polysemy that a word is able to convey many different
meanings [9]. To solve this problem, LSI introduces a method
to retrieve information through matching the context of query
terms and documents. The documents are ranked by query-
document cosine similarity, which has no direct relationship
with the number of shared terms.

To perform LSI, the documents and query terms are mod-
eled by term-document matrix D and query vector q. D is an
m × n matrix and q is a vector with a length of m, where
m and n are the number of selected terms (key words) and
documents, respectively.

To reduce the dimensions of the semantic space, the reduced
Singular Value Decomposition (rSVD) is performed on the
term-document matrix D in the form given by eq. (1)

Dm×n ≈ Um×kΣk×kV
T
k×n k < min(m,n) (1)



Fig. 1: 2-3 Search Tree Structure and Operations.

where U and V are orthogonal matrices and Σ is a di-
agonal matrix with singular values as its diagonal elements.
Matrix V contains n documents coordinates in the reduced
k-dimensional space. After rSVD, query vector q is updated
to the new coordinates in the reduced k-dimensional space in
the form of eq. (2).

q′ = qTUΣ−1 (2)

The query-document cosine similarity between query vector
and every document vector in matrix V in the reduced k-
dimensional space is calculated in the form given by eq. (3)

sim(q, di) =
q · di

∥q∥ · ∥di∥
(3)

where the values of sim(q, di) are used to rank the docu-
ments for their association with query terms. A high cosine
similarity indicates the close relationship between query term
and document.

B. 2-3 Tree Structure

Sorting is necessary to reduce the dimension and rank the
documents based on the calculated cosine similarity. In our
design, we select the 2− 3 tree data structure (see Fig. 1) to
sort the documents since it is considered as a self-balanced
search tree that can be easily parallelized [10].

The 2 − 3 tree either has one element with two children
or two elements with three children attached [10]. When an
internal node has two elements p and q, the elements in its
left and right children nodes are smaller and greater than both
p and q respectively, while its middle children node contains
the elements with the values between p and q (p ≤ q).

III. RELATED WORK

FPGAs have been widely investigated in accelerating La-
tent Semantic Analysis (LSA). Majumdar et al. proposed an
FPGA-based accelerator for supervised Semantic Indexing [4],
in which an FPGA provides a solution to parallelize a huge
amount of dot products with fine granularity. Eick et al. [5] use
an FPGA to accelerate Latent Semantic processing by mapping
three compute-bound operations onto highly parallel platform.
To improve the scalability, a parallel programmable learning
and classification accelerator was presented by Cadambi et
al. [6], which uses on-chip memory for intermediate data,
and banked off-chip memory with independent processing

Fig. 2: The proposed architecture for Latent Semantic Index-
ing.

elements group assigned. Graf et al. [7] implemented arrays
of variable-resolution arithmetic vector processing elements
(VPEs) on FPGAs to accelerate a learning process.

IV. PROPOSED ARCHITECTURE

LSI primarily consists of four computational or logic oper-
ations: (1) calculating the squared norms of vectors and the
covariances between vector pairs for the SVD and cosine simi-
larity computation; (2) conducting Jacobi rotations with paired
squared norms and their respective covariances; (3) updating
the matrix elements, the newly generated right orthogonal
matrix elements, and the covariances affected by rotation; (4)
sorting the singular values and the calculated cosine similarity
for dimensionality reduction and the final output respectively.

In our architecture for LSI (see Fig. 2), we created four fully
pipelined components: the Vector reduction component, the
Jacobi rotation component, the Update component, and the 2-3
tree sorting component, in which the Vector reduction compo-
nent and the Update component reuse the same computational
resources. The Vector reduction component is responsible
for the computation of squared vector norms and associated
covariances in SVD and the cosine similarity computing
afterwards. The Jacobi rotation component is used to perform
plane rotation with squared vector norms to annihilate their
related vector covariance. The update component is employed
to update the elements affected by rotations. The final result
of this architecture is produced by the 2 − 3 tree sorting
component, which sorts the document vectors according to
their cosine similarity with query vector.

A. Vector reduction component

The Vector reduction component extends the Hestenes Pre-
processor from previous work [8] to compute vector dot prod-
ucts for the norms and covariances computing, the query vec-
tor coordinates updates, and cosine similarity calculation. The



Fig. 3: Parallel process of new element insertion and 2-3 tree
structure updates.

Vector reduction component compute squared column 2-norms
and covariance between column vectors through AT

i ∗Aj with
a design of multiple layers of pipelined multiplier-arrays. In
this design, a multiplier-array is responsible for calculating
the partial results of different squared norms and their related
covariances, and operands are reused by all the multipliers
in a pipelined manner. The “reduce” process is performed
through summing up the calculated product of a multiplier
with the results of its corresponding multiplications across all
the layers, who share the same matrix column indexes.

B. Jacobi rotation component

Similar to the Jacobi rotation component from previous
work [8], this Jacobi rotation component is mainly responsible
for performing orthogonal transformation between column
vectors through a series of operations with paired squared
column 2-norms and the associate covariance. In addition, the
divider in this component is also reused in later computations
for query vector coordinates updates and vector cosine simi-
larity computation.

C. Update component

The Update component performs element-wise update on
matrix column entries and covariances which are affected
by the processed Jacobi rotations in the SVD computing.
Generated rotation angle parameters cos and sin are employed
to update the matrix column covariances before they are used
by later rotations, and calculate matrix column entries of both
left and right orthogonal matrices. To optimize the hardware
resource usage, the multiplier-arrays and their direct connected
adders in Vector reduction component are reused as Update
component at runtime.

D. 2-3 tree sorting component

The 2−3 tree sorting component organizes BRAMs into unit
to store tree node information, and uses a group of BRAMs
to maintain a full tree structure. Among them, the BRAM
named DataMem is used to store the floating-point numerics,

and each entry of which has corresponding entries in BRAMs
LeftNode, MidNode, RightNode, and ParentNode to
store the address pointers of its parent, left child, center child,
and right child entries. Meanwhile, the BRAM SortedLink
keeps the address pointers of the last and next elements in the
sorted order, whose access produces the final sorted result.
Besides, additional BRAMs are used to record the tree node
status, which determines the operations on the tree.

The 2− 3 tree is a self-balanced search tree data structure,
and the operations performed on the 2 − 3 tree mainly
include searching, insertion, update and deletion. When a new
data element arrives, the process starts with searching the
proper position for insertion. The search function starts with
examining the root node, and then is directed to the proper
subtree according to the key value of the new element. By
recursively performing comparisons from the root node to leaf
level-by-level, the search process is ended when a leaf node
is reached, and the insertion operation takes place. If only one
element exists in a leaf node, the new data element can be
directly added into this node, otherwise update operation is
started, due to the maximum capacity of a single node being
violated with the new element inserted. The update operation
splits a tree node into two tree nodes, and moves the elements
with middle key up to the parent node. This update operation
is performed upwards recursively if parent tree node capacity
is exceeded. A new root node will be generated if current
root node has more than two data elements. Also, the node
deletion requires iterative updates from child node to parent
node until the 2 − 3 tree property is satisfied, but with data
moving downwards.

To parallelize the 2 − 3 tree operations, numerous search
processes can be executed concurrently, and the key value
comparisons at different levels can be performed in parallel. As
searching the tree does not alter its structure, the parallelism
of the search operation is straightforward. However, after in-
serting a new element or deleting an old one, the tree structure
needs to be updated if the tree property is violated. In most
cases, the search, insertion, deletion and update operations can
be performed simultaneously, since this component maintains
the tree structure and update the tree nodes connections locally.
An example 2−3 tree operation process is demonstrated in Fig.
3. Here, independent comparisons are performed concurrently
at different level except the stalling happens at the second level
tree node when 10 arrives, due to its right children leaf node
starting an update to recover the tree property violation at this
cycle. Additionally, the 2−3 tree is partitioned into numerous
groups of on-chip BRAM units, which are operated in parallel.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

A. Implementation and experimental setup

To evaluate the performance of our Latent Sematic Indexing
design, we implement our architecture on a single Xilinx
Virtex-5 XC5VLX330 FPGA on the Convey HC-2 system
[11]. In our implementation, we generate the double-precision
floating-point computational cores by using Xilinx Coregen
generator [12]. In the Vector reduction component, eight layers



Fig. 4: LSI computation time (in seconds) for matrices with
different dimensions(k is 128)

of multiplier-array are implemented, in which 32 multipliers
and 32 adders are used. In the Jacobi rotation component,
1 multiplier, 2 adder, 1 divider and 1 square-root operator
are employed, which initializes 8 independent Jacobi rotations
in the pipeline in every 64 clock cycles. In our system, our
generated computational cores are configured with default
latencies as 9, 14, 57, 57 clock cycles for multiplier, adder,
divider and square-root calculator respectively. Four groups of
eight simple dual port RAMs are employed for the 2− 3 tree
sorting component. The system is evaluated by executing at
150 Mhz, in which the SVD computing is an iterative process,
and each element is rotated by 6 times.

B. Performance analysis

We experiment with both square and rectangular matrices
with different dimensions of reduced k-subspace, the perfor-
mance for matrices with dimensions from 256 to 1024 is
demonstrated in Fig. 4, in which the dimension of the subspace
is set at 128. The experimental results demonstrate that the
execution time grows significantly as the number of documents
increases, due to the amount of updates for the right orthogonal
matrices, and matrix vector covariances is determined by the
quantity of documents. Comparably, the number of key words,
which determines the dimensions of the left orthogonal matrix,
has smaller impact on the overall performance. However, the
LSI process requires the usage of both left and right orthogonal
matrices, and the matrices elements updates after each rotation
usually dominates the performance of the SVD computation
for medium to large sized matrices.

Comparisons of execution times have been made between
our implementation and Matlab LSI program, and in Fig. 5, the
dimensional speedups of our design compared to the Matlab
7.10.0 LSI program running on a 2.2 GHz dual core Intel
Xeon processor are demonstrated, in which Matlab uses the
SVD and sorting routines. By analyzing those data points in
Fig. 5, our architecture shows better efficiency than Matlab im-
plementation, with dimensional speedups that can be achieved
range from 3.8× to 10.1× for matrices with dimensions from
256 to 2048. The speedup decreases as the I/O limits start to
affect the overall performance, and the speedups then gradually
increase as the dimensions have further growth due to the
improved efficiency of the pipelined computational cores.

Fig. 5: Speedups of our LSI process compare to Matlab LSI
program execution.

VI. CONCLUSION

An FPGA-based hardware architecture is proposed and
implemented to perform Latent Semantic Indexing, which
parallelizes the Hestenes-Jacobi SVD computation, the vec-
tor computation, and the ordered tree-based sorting process.
The performance analysis indicates our design has achieved
dimensional-dependent speedups range from 3.8× to 10.1×
compared to a standard software solution.

REFERENCES

[1] K. R. Gee, “Using Latent Semantic Indexing to filter spam,” in Proceed-
ings of the ACM Symposium on Applied Computing, 2003, pp. 460–464.

[2] J. Maletic and A. Marcus, “Using Latent Semantic Analysis to iden-
tify similarities in source code to support program understanding,” in
Proceedings of IEEE International Conference on Tools with Artificial
Intelligence, 2000, pp. 46–53.

[3] B. Vanteru, J. Shaik, and M. Yeasin, “Semantically linking and browsing
PubMed abstracts with gene ontology,” Journal of BMC Genomics,
vol. 9, no. Suppl 1, p. S10, 2008.

[4] A. Majumdar, S. Cadambi, S. Chakradhar, and H. Graf, “A parallel
accelerator for semantic search,” in Proceedings of IEEE Symposium on
Application Specific Processors, June 2011, pp. 122–128.

[5] S. Eick, J. Lockwood, R. Loui, A. Levine, J. Mauger, D. Weishar,
A. Ratner, and J. Byrnes, “Hardware accelerated algorithms for semantic
processing of document streams,” in Proceedings of IEEE Aerospace
Conference, 2006.

[6] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf,
“A programmable parallel accelerator for learning and classification,” in
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, 2010, pp. 273–284.

[7] H. P. Graf, S. Cadambi, V. Jakkula, M. Sankaradass, E. Cosatto,
S. Chakradhar, and I. Dourdanovic, “A massively parallel digital learning
processor,” in Advances in Neural Information Processing Systems 21.
Curran Associates, Inc., 2009, pp. 529–536.

[8] X. Wang and J. Zambreno, “An FPGA implementation of the hestenes-
jacobi algorithm for Singular Value Decomposition,” in Proceedings of
the IEEE International Parallel & Distributed Processing Symposium
Workshops, 2014, pp. 220–227.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by Latent Semantic Analysis,” Journal of the
American society for information science, vol. 41, no. 6, pp. 391–407,
1990.

[10] Y.-H. E. Yang and V. K. Prasanna, “High throughput and large capacity
pipelined dynamic search tree on FPGA,” in Proceedings of the Annual
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2010, pp. 83–92.

[11] “The convey hc-2 computer architecture overview.” [Online]. Available:
http://www.conveycomputer.com/

[12] “Logicore IP floating-point operator data sheet,” March 2011. [Online].
Available: http://www.xilinx.com/


