
An Efficient Architecture for Floating-Point
Eigenvalue Decomposition

Xinying Wang and Joseph Zambreno

Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa, USA

Email: {xinying, zambreno}@iastate.edu

Abstract—Eigenvalue decomposition (EVD) is a widely-used
factorization tool to perform principal component analysis, and
has been employed for dimensionality reduction and pattern
recognition in many scientific and engineering applications,
such as image processing, text mining and wireless commu-
nications. EVD is considered computationally expensive, and
as software implementations have not been able to meet the
performance requirements of many real-time applications, the
use of reconfigurable computing technology has shown promise in
accelerating this type of computation. In this paper, we present an
efficient FPGA-based double-precision floating-point architecture
for EVD, which can efficiently analyze large-scale matrices. Our
experimental results using an FPGA-based hybrid acceleration
system indicate the efficiency of our novel array architecture,
with dimension-dependent speedups over an optimized software
implementation that range from 1.5× to 15.45× in terms of
computation time.

I. INTRODUCTION

Eigenvalue decomposition (EVD) has been widely used as

a factorization tool to conduct principal component analysis

in many scientific and engineering applications, such as im-

age processing, acoustic processing, mobile communication

and remote sensing. To minimize the “dimensionality curse”,

which refers to the difficulties in managing and analyzing

high-dimensional data, EVD can be employed to identify key

patterns in the data, after which the original datasets can be

approximated with fewer dimensions without losing significant

information. In many signal processing applications, EVD is

performed iteratively, which incurs a relatively high compu-

tational cost for the entire system. As data dimensionality is

continuing to increase in scientific and engineering applica-

tions, EVD runtime is likely to keep pace.

Eigenvalue decomposition is characterized as the process of

orthogonal transformations to diagonalize symmetric matrices,

in which large amounts of highly data-dependent rotations

are performed iteratively. Efficient software implementations

such as MATLAB and LAPACK employ the Householder

transformation [1] to diagonalize matrices, which consists of

recursive bidiagonalization process and implicit QR decom-

positions; however, the high data dependency and inherent

computational complexity of O(n3) restrict its performance,

especially for applications involving large-scale matrices. The

recent emergence of Graphic Processing Units (GPUs) in the

high performance computing community has allowed for new

methods to accelerate many general-purpose computations.

However, the multi-dimensional threading structure of GPU

computing is not highly compatible with the iterative thread

synchronization and irregular memory access required for bet-

ter EVD convergence making the optimization of these designs

on GPUs quite challenging, especially for input matrices with

dimensions smaller than 1000 [2], [3].

Modern FPGAs are highly parallel and specialized computa-

tional fabrics, and previously researchers have investigated ac-

celerating both EVD and singular value decomposition (SVD)

using FPGAs [4], [5]. However, the logic capacity of FPGAs

has typically limited the scalability of the adapted matrices

[6]–[8], even though this previous work targeted applications

in real-time signal processing using fixed-point arithmetic, for

which hardware resource utilization is significantly less than

for floating-point arithmetic.

In this paper, we present a novel and efficient FPGA-

based architecture for eigenvalue decomposition, which at-

tempts to analyze considerably larger matrices than those

applied to previous hardware designs, using matrix partition

and a pipelined 1D systolic array. Our single FPGA-based

design supports double precision float-point operands, offer-

ing a wider dynamic range than previous fixed-point imple-

mentations. Our experimental results demonstrate the better

efficiency of our system compared to optimized CPU-based

software solutions, the latest FPGA design for large matrices

[8], and a GPU-based implementation when the matrix size is

under 2000× 2000 [2].

II. THEORETICAL BACKGROUND

A. Singular Value / Eigenvalue Decomposition (SVD/EVD)
The singular value decomposition of an m× n matrix A is

in the form of eq. (1)

A=UΣV
′

(1)

where U is an m×m matrix and V is an n×n matrix, both

of which are orthogonal matrices such that U’·U = V’·V = I.
Σ is an m×n diagonal matrix with the nonnegative diagonal

elements, which are the singular values. Factorization is called

EVD when A is a squared symmetric matrix.

B. Jacobi Rotations

Jacobi rotations are performed iteratively for matrix diag-

onalization by using Jacobi rotation matrices J l and Jr as

shown in eq. (2).

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.25

64

Fig. 1: An example matrix partition for EVD.

J l′ ·
(

App Apq

Aqp Aqq

)
·Jr=

(
A”

pp 0
0 A”

qq

)
(2)

The Jacobi matrices J l and Jr can be obtained through the

determinations of plain rotation angles with paired diagonal

elements and their respective off-diagonal elements.

III. RELATED WORK

Jacobi-related approaches for eigenvalue decomposition and

singular value decomposition, including the two-sided Jacobi

Rotation algorithm [4] and the one-sided Jacobi Rotation

algorithm [5], provide an opportunity for fine-grain paral-

lelism. Previously, FPGAs were employed to demonstrate the

highly parallel implementations of EVD and SVD based on

two-sided Jacobi Rotations, by accelerating their independent

2 × 2 rotations, using a parallel architecture featuring a 2-

dimensional systolic array. In this earlier work, the scalability

of the applicable matrices had been severely restricted by

the limited resources on FPGAs [4], [6], [7]. The Hestenes-

Jacobi Method, which is also known as one-sided Jacobi

rotation, provides a better opportunity for vectorized parallel

operations [3]. However, its architectural design with iterative

and repetitive processing limited the overall speedup [3],

while GPU implementations have suffered from the overhead

associated with thread synchronization and global memory

reads [8].

IV. THE PARTITIONED EVD COMPUTATION ALGORITHM

Our partitioned EVD computation algorithm was derived

from the two-sided Jacobi approach [4] to zero out all the

off-diagonal elements iteratively. The rotations for a symmet-

ric matrix are identical on both sides, whose computations

can be reduced by half as the processing on a lower or

upper triangular matrix. To improve the scalability of the

design, the matrix is first partitioned into a series of vector-

blocks and then followed by recursively rotating diagonal

elements to annihilate off-diagonals. Each partition consists

of numerical diagonal elements and their respective rows and

columns in the lower or upper triangular part of the matrix.

A partition example is shown in Fig. 1, and vector-block

partitions related to the diagonal elements of x1,1-x4,4 and

x5,5-xn,n are highlighted by the polygons with solid and

dashed lines, respectively. In this paper, for each partitioned

vector-block, the diagonal elements and off-diagonal elements

in this partition are referred to as host diagonal elements and

host off-diagonal elements respectively, while the remainder

Fig. 2: Demonstration of partitioned Jacobi Rotation approach

(for r ≥ 9).

of diagonal elements and off-diagonal elements in the matrix

are referred to as guest diagonal elements and guest off-
diagonal elements respectively. For example, considering the

solid lines highlighted partition in Fig. 1, x1,1-x4,4 are host

diagonal elements and x5,5-x8,8 are guest diagonal elements,

while the off-diagonal elements in the first four columns are

host off-diagonal elements and the rest of off-diagonals are

guest off-diagonal elements. At runtime, the partitioned vector-

blocks are processed successively; in processing each partition,

host diagonal elements are paired with every other diagonal

elements of the matrix to perform Jacobi rotations to zero out

all the host off-diagonal elements. Meanwhile, the updates of

affected off-diagonal elements are calculated.

V. THE EVD ARCHITECTURE

To parallelize our partitioned EVD approach, each partition

is mapped to a systolic array of computational processing

elements (PEs). Figure 2 shows the example of mapping the

partition, which is highlighted by polygon with the solid line

in Fig. 1, to the systolic array. As shown in Fig. 2, this

systolic array consists of three types of computational PEs:

diagonal Jacobi Rotation elements, off-diagonal single update
elements, off-diagonal double update elements, in which the

diagonal PEs (shown as ovals in Fig. 2) are employed to

conduct Jacobi Rotation, while the Off-diagonal Single Update

elements and the Off-diagonal Double Update elements are

used to update off-diagonal vectors affected by one or two

rotations respectively (shown as rectangles in Fig. 2).

Rotation angle parameters cos and sin are generated by the

diagonal PEs and then broadcast to the respective off-diagonal

PEs, which are in the same rows and columns with diagonal

PEs, to update the remaining elements. Off-diagonal PEs with

two off-diagonal elements, are affected only by the rotations

in the same row that a “single update” is needed over the two

off-diagonal elements; on the other hand, off-diagonal PEs,

with which four off-diagonal elements are included, have to

update twice on different combinations of the two off-diagonal

pairs as named “double update”, since they are affected by the

rotations both from the same rows and columns. Numerical

diagonal PEs perform rotation simultaneously in parallel with

the updates of their respective columns and rows that are

operated in off-diagonal PEs. Values are transmitted along

their dataflow paths once their calculations are completed. The

general dataflow is demonstrated in Fig. 2 as arrows, in which

65

Fig. 3: Block diagram of the general 1D systolic array archi-

tecture for EVD.

the arrows labeled with 1© and 2© indicate the transmission

of guest diagonal element and rotation angle parameter (cos,
sin) respectively while the movements of host off-diagonal

elements and guest off-diagonal elements are represented by

the arrows labeled with 3© and 4© respectively. The host off-

diagonal elements xr+1,1, which move leftwards for rotations

iteratively, continue to be updated while moving downward

after being zeroed and then loop back to the end of the row

when they have reached the bottom row of the PEs. The

movement of guest off-diagonal elements xr+1,r follows their

respective guest diagonal element xr+1,r+1; guest off-diagonal

elements loop back to the end of row when they are needed

by subsequent updates.
To fit our design on a single chip, pipelined computational

cores provide the opportunity to reuse the PEs with parallel

calculations. One Jacobi Rotation PE is devised to perform

all the Jacobi Rotations in a pipeline, while a series of

pipelined off-diagonal single update PEs and one pipelined off-

diagonal double update PE are used to simultaneously update

groups of affected off-diagonal sub-matrices. Consequently,

the architecture is converted into a one-dimensional systolic

array as shown in Fig. 3 with the number of off-diagonal

Single Update components determined by the dimension of

the matrices and the resource capacity of the hardware.

A. Diagonal Jacobi Rotation Component
To zero out an off-diagonal element, Jacobi rotation is per-

formed with its respective two diagonal elements in the same

row or column. Jacobi Rotation can be performed through

a series of addition, subtraction, multiplication, division and

square root operations. Through expanding the rotation for-

mulas, the rotation process is shown in Eqns. (3, 4), in which

app, aqq , and apq represent two diagonal elements and an off-

diagonal element respectively. Then, the process is optimized

by shortening the latency and parallelizing the calculations.

To balance resource allocation between the Jacobi rotation

component and all the updating modules, whose computational

latency increases linearly with the growth of matrix dimension,

pipelined floating-point cores are shared by the calculations.

cos =

√
(aqq−app)2+2∗a2

pq+|aqq−app|∗
√

(aqq−app)2+4∗a2
pq

(aqq−app)2+4∗a2
pq+|aqq−app|∗

√
(aqq−app)2+4∗a2

pq

(3)

Fig. 4: Update component architecture.

sin = (sign)
√

2∗a2
pq

(aqq−app)2+4∗a2
pq+|aqq−app|∗

√
(aqq−app)2+4∗a2

pq

(4)

B. Off-diagonal Single Update Component

Offdiag′host = Offdiaghost × cos−Offdiagguest × sin (5)

Offdiag
′
guest = Offdiaghost × sin+Offdiagguest × cos (6)

The off-diagonal single update component is responsible for

updating the off-diagonal elements, which are affected by one

Jacobi Rotation each iteration. Although the updating process

consists of simple multiplications and addition or subtraction

as is shown in eq. 5 and eq. 6, it is infeasible to fit an

arbitrary number of updating components on a single chip. In

our design, floating-point computational cores are employed

to process the updates of sub-matrices of host off-diagonal

elements and guest off-diagonal elements in a pipeline, in

which limited number of PEs can perform large-scale updates

in parallel. Every time the sub-matrices are completed with

their update, a vector of host off-diagonal elements will be sent

leftwards to the next off-diagonal single update component,

and a vector of guest off-diagonal elements will be transmitted

to external memory or looped back as input of another off-

diagonal single update component according to the request.The

architecture of our off-diagonal single update component is

shown by the solid lines in Fig. 4.

C. Off-diagonal Double Update Component

The off-diagonal double update component is responsible

to update sub-matrices of off-diagonals, which have to be

processed with two updates successively each time, since both

of their respective columns and rows are involving with the

rotations. To integrate all of the updates affected by two

rotations into one component, local memories are used to

hold four triangular sub-matrices of off-diagonal elements,

and the number of computational cores is at least twice as

many used in the off-diagonal single update component in

order to synchronize with the other components. An example

off-diagonal double update component architecture is shown

in Fig. 4 with both solid and dashed lines.

66

VI. EXPERIMENTS AND EVALUATIONS

A. Implementation and Experimental Setup

To evaluate our design, we programmed our architecture

on a single Xilinx Virtex-5 XC5VLX330 FPGA of the Con-

vey HC-2 system [9]. In our implementation, we generated

IEEE-754 double-precision floating-point calculators using

the Xilinx Logic IP core generator. In the diagonal Jacobi

Rotation component, eight rotations can be initiated for every

64 clock cycles with double-precision calculators as one

divider, one square root, two adders and three multipliers,

among which adders and multipliers were configured to use

dedicated multiplier circuitry (DSPs). In each off-diagonal

single update component, IP core generated Block RAMs are

used to hold the sub-matrices of off-diagonal elements and

rotation angle parameters, while one double-precision floating-

point adder and two double-precision floating-point multipliers

were implemented by dedicated multiplier circuitry (DSPs)

and logics respectively.

B. Performance Analysis

In our design, maximally, 32 off-diagonal updating com-

ponents can be allocated on our target FPGA, in which 31
off-diagonal single update components and one off-diagonal

double update component are included. By evaluating our de-

sign at the frequency of 100 Mhz with 6 iterations, which was

believed sufficient for convergence on matrices with certain

thresholds, the performance of our design has demonstrated

dimensional-dependent speedups from 1.5× to 15.45× for

moderate- to large-sized matrix compared to optimized Matlab

7.10.0 software SVD solution that was processed on a 2.2 GHz

dual core Intel Xeon processor with 16 GB installed memory

as shown in Table I.

Fig. 5 demonstrates the quantitative comparison among

dimensional dependent execution times of EVD processing

by using different approaches. The blue line demonstrates

the EVD performance by using our architecture while the

performance of the Matlab 7.10.0 EVD routine running on the

Intel platform is shown by the red line. The execution time

of EVD/SVD solutions with Intel MLK 10.0.4 and NVIDIA

8800 GPU [2], both of which are using a 2.66 GHz Intel

Core 2 Duo CPU, are depicted as green and purple lines

respectively. By analyzing those data points in Fig. 5, although

GPU-based solution has demonstrated better efficiency when

matrix size grows over thousands, our design is more efficient

for processing matrices up to 2000× 2000.

Practically, the system performance of our design is dom-

inated by the time consumption of rotations for small-scale

applications; however, when the matrix size grows over a

comparably large value such as 512, updates consume more

time than rotating, which incurs a performance degradation.

Additionally, to the best of our knowledge, [8] was the latest

and only scalable architecture for FPGA-based EVD/SVD

design; however, its performance suffered from the iterative

design and low-capacity platform they employed, and these

previous published results are slower than our results by two

orders of magnitude with a matrix size limitation of 32×128.

Fig. 5: EVD/SVD computation time (in seconds) for symmet-

ric matrix by our design, Intel MKL and GPU.

TABLE I: Proposed Architecture performance in speed.

Dimension Our Architecture Matlab Speedup
64× 64 0.00202s 0.0312s 15.45×

128× 128 0.0091s 0.0624s 6.4×
256× 256 0.0320s 0.1428s 4.46×
512× 512 0.2558s 0.5446s 2.2×

1024× 1024 2.0290s 3.0607s 1.5×

VII. CONCLUSION

An efficient reconfigurable FPGA-based hardware architec-

ture is proposed to perform eigenvalue decomposition; which

employed a novel modified Partitioned-Jacobi algorithm and

a pipelined one dimensional systolic array. The analysis of

our architecture demonstrates the scalability and dimensional

dependent efficiency of our design.

ACKNOWLEDGEMENTS

This work is supported in part by the National Science

Foundation (NSF) under awards CNS-1116810 and CCF-

1149539.

REFERENCES

[1] G. Golub and W. Kahan, “Calculating the Singular Values and Pseudo-
Inverse of a Matrix,” Journal of the Society for Industrial and Applied
Mathematics, Series B: Numerical Analysis, vol. 2, no. 2, pp. 205–224,
1965.

[2] S. Lahabar and P. Narayanan, “Singular value decomposition on GPU
using CUDA,” in Proceedings of IEEE International Symposium on
Parallel Distributed Processing, May 2009, pp. 1 –10.

[3] C. Kotas and J. Barhen, “Singular value decomposition utilizing parallel
algorithms on graphical processors,” in Proceedings of OCEANS 2011,
Sept. 2011, pp. 1 –7.

[4] F. T. Brent, Richard P. Luk and C. V. Loan, “Computation of the singular
value decomposition using mesh-connected processors,” Journal of VLSI
Computer Systems, pp. 243–270, 1985.

[5] M. Hestenes, “Inversion of matrices by biorthogonalization and related
results,” Journal of the Society for Industrial and Applied Mathematics,
vol. 6, no. 1, pp. 51–90, 1958.

[6] R. P. Brent and F. T. Luk, “A systolic architecture for the singular value
decomposition,” Ithaca, NY, USA, Tech. Rep., 1982.

[7] A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD systolic
array and implementation on FPGA,” in Proceedings of IEEE Interna-
tional Conference on Field-Programmable Technology (FPT), Dec. 2003,
pp. 35 – 42.

[8] L. Ledesma-Carrillo, E. Cabal-Yepez, R. de J Romero-Troncoso,
A. Garcia-Perez, R. Osornio-Rios, and T. Carozzi, “Reconfigurable
FPGA-Based unit for singular value decomposition of large m x n
matrices,” in Proceedings of International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Nov.-Dec. 2011, pp. 345 –350.

[9] “The convey hc-2 computer architecture overview.” [Online]. Available:
http://www.conveycomputer.com/

67

