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Abstract—This paper presents a lossless double-precision float-
ing point compression algorithm. Floating point compression can
reduce the cost of storing and transmitting large amounts of data
associated with big data problems. A previous algorithm called
FPC performs well and uses predictors. However, predictors
have limitations. Our program (fzip) overcomes some of these
limitations. fzip has 2 phases, first BWT compression, second
value and prefix compression with variable length arithmetic
encoding. This approach has the advantage that the phases work
together and each phase compresses a different type of pattern.
On average fzip achieves a 20% higher compression ratio than
other algorithms.

I. INTRODUCTION

This paper deals with lossless double-precision floating
point compression. This involves compressing an array of
floating point values to take up less space in an archive.
Similarly, there has to exist a way to decompress this archive
back into the original data.

Floating point compression has multiple uses. In scien-
tific computing, floating point compression has improved
the performance of parallel computing applications. Many-
core computers have increased in computation capacity, but
internal communication has not increased as fast. However,
compression has increased the performance of MPI implemen-
tations [1]. Also, floating point compression has accelerated
RAM access in applications like SpMV (Sparse Matrix Vector
Multiplication) [2], [3].

Current general lossless compression applications, like gzip,
perform well, however, general compression algorithms can
not always achieve good compression [4]. Most floating
point datasets have characteristics that provide opportunities
for good compression. For example, many datasets contain
repeated values [2], [5].

Fig. 1 shows an analysis of repeated values. General com-
pression schemes like gzip and algorithms specific to floating
point compression like FPC do not single out this particular
feature. In contrast, we single out this feature for better
compression.

Take the following simple scheme: Store the repeated values
separately from the rest of the data stream. With this scheme an
index replaces each repeated value in the original data stream.
This simple scheme works remarkably well for some datasets.
However, we can achieve better compression. For example,
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Fig. 1: The above figure shows the distribution of repeats
in each dataset. Each shade represents a different number of
repeats. For instance: :> 512, :16, :2, :1(no repeats).

when many repeating sequences of values exist, compressing
them can vastly outperform the previous compression scheme.
In total, fzip takes advantage of three compressible features
of datasets: repeating sequences (more than 8 bytes long),
repeating values (8 bytes long) and repeating prefixes (less
than 8 bytes long).

In the remainder of this paper we talk about previous
approaches (Section II), an analysis of floating point datasets
(Section III), our approach to floating point compression
(Section IV) and our results (Section V).

II. RELATED WORK

FPC, the program most similar to our work, uses predictors
to compress data. A predictor uses the previous data in the data
set to guess the current element in the data set. FPC uses hash
functions to implement their predictors. Passing an argument
between 1 and 25 to FPC configures the hash table size. Larger
hash tables necessarily predict better because values in the
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Fig. 2: We engineering a dataset to make the performance of
FPC look bad compared to other programs. Although unfair,
this shows a type of pattern that FPC does not exploit and
other programs do. This problem exists because FPC only uses
predictors for compression.

hash table get overwritten less often. However, large hash
tables cause slower performance compared to hash tables that
can fit in cache.

In FPC, each value gets encoded with a 4 bit header
followed by 0, 1, 2, 3, 4, 6, 7 or 8 bytes. The first bit specifies
which of the 2 predictors resulted in the most matching bytes
compared to the correct current value. Then, the next 3 bits
encode this number of bytes, however, 5 bytes is rounded down
to 4 bytes. Then, the least significant bytes that the hash failed
to predict follow.

FPC has the advantage of speed. Particularly when the
hash table fits in cache. Although good, the compression ratio
suffers because predictors do not always get the best or a
good prediction. If a pattern does not exist among the values
in the data set then FPC can not predict with any accuracy.
Let us design this “anti-FPC” dataset. Take the set of numbers
{100, 101, 102, 103, . . . , 109} and randomly choose one (with
replacement) to add to the anti-FPC dataset. We do this a
million times to get a dataset with a million values (8MB in
size). You can observe the performance of this in Fig. 2.

III. FLOATING-POINT VALUE ANALYSIS

Continuing the analysis from Section I, Fig. 1 shows an
analysis of the repeating values in each of the datasets used
for testing. Several characteristics of this analysis suggest that
compressing repeating values will perform well. For example,
in half of the datasets at least 80% of the values repeat.

Another pattern exists among the prefixes of the values.
To understand why, look at the floating point data structure.
Double-precision floating-point values have 3 parts: a sign bit,
11 exponent bits and 52 fraction bits. Values close to each
other in the dataset often share the same sign. (Some datasets
only contain positive numbers.) Likewise, close values often
share the most significant bits of the exponent. In fact, the
bits in floating-point values already exist in most likely shared
to least likely shared sorted order: {sign bit, most significant
exponent bits, least significant exponent bits, most significant
fraction bits, least significant fraction bits}.

We gauge the strength of the pattern in a particular dataset
by looking at how many prefix bits the adjacent values share.
Fig. 3 describes this analysis. From this figure, we see that the
first byte or so often repeats. However, there usually exists a
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Fig. 3: The above figure represents local prefix prediction.
The figure shows the density function of 2 adjacent values
sharing at least x number prefix bits. All of the data sets start
at (0, 100%). The curves end at the percent of values that are
identical to their previous value for that dataset.

rapid decline in shared bits after this point.
Datasets might also have repeating patterns of values. For

example, the sequence 1.0, 2.0, 3.0, 1.0, 2.0, 3.0 has an ob-
vious pattern. One can use the Burrows-Wheeler Transform
[6] to analyze these patterns. Fig. 4 describes this algorithm
some, however, many other sources describe this algorithm
in more detail [4], [6]. Fig. 5 analyzes the number of repeats
that appear after the Burrow-Wheeler Transform. As the figure
shows, 4 of the 13 test cases have a lot of patterns, but the
rest have relatively few.

IV. OUR APPROACH

Our approach takes advantage of the features in Section III.
The algorithm starts with BWT compression, then compresses
further with using prefix and value compression.

A. Burrows-Wheeler Transform Compression

After completing the Burrows-Wheeler Transform, fzip uses
a simple encoding scheme (Fig. 4c). For each value in the
BWT, fzip pushes a ‘0’ or ‘1’ onto a bit array to denote
whether the value equals the previous value. If the values differ
(a ‘0’ in the bit array) a second array stores the next value.
The 4 datasets (msg sppm, num plasma, obs error, obs info)
expected to do well from the analysis in Fig. 4 do perform
well under this compression scheme (see Fig. 6).



ABCDEABCDEABC$
$ABCDEABCDEABC
C$ABCDEABCDEAB
BC$ABCDEABCDEA
ABC$ABCDEABCDE
EABC$ABCDEABCD
DEABC$ABCDEABC
CDEABC$ABCDEAB
BCDEABC$ABCDEA
ABCDEABC$ABCDE
EABCDEABC$ABCD
DEABCDEABC$ABC
CDEABCDEABC$AB
BCDEABCDEABC$A

(a) Step1: Generate
every cyclic rota-
tion of the original
sequence (the first
row).

ABCDEABCDEABC$
ABCDEABC$ABCDE
ABC$ABCDEABCDE
BCDEABCDEABC$A
BCDEABC$ABCDEA
BC$ABCDEABCDEA
CDEABCDEABC$AB
CDEABC$ABCDEAB
C$ABCDEABCDEAB
DEABCDEABC$ABC
DEABC$ABCDEABC
EABCDEABC$ABCD
EABC$ABCDEABCD
$ABCDEABCDEABC

(b) Step2: Sort the
rotations. Then the
last element in each
new row creates
the transformed
sequence.

$EEAAABBBCCDDC
New arrays:
11010010010101
$EABCDC

(c) Step3: This
transformed
sequence often
has consecutive
repeats. (This
example does.)
Then compression
occurs by storing
the first element
of each repeating
subsequence and
storing whether the
previous element
equaled the current
value.

Fig. 4: Above shows the Burrows-Wheeler Transform and
subsequent compression. Steps 1 and 2 show the brute force
calculation of BWT. Step 3 shows the basic compression used
in fzip.
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Fig. 5: Pattern analysis using the Burrows-Wheeler Transform.
Each shade represents the number of consecutive repeats in a
repeating sequence. represents sequences longer than 9.
represents sequences of length 5. represents sequences equal
to 1 (non-repeating).
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Fig. 6: This graph shows each of the three types of compres-
sion used to make up fzip. There are some cases where the
overhead of combining the schemes outweighs the advantages.

B. Prefix Compression

After BWT compression, there exists a new array of values.
This array should no longer contain many long pattern se-
quences. However, patterns still exist among the values them-
selves. The values either repeat or partially repeat. Specifically,
many values share common prefixes. fzip uses arithmetic codes
to encode these common prefixes.

To begin with, fzip creates a large tree to represent all the
values in the array. Fig. 7a shows an example tree for a small
dataset. The tree follows the following rules: each node has up
to two children. Each edge represents a 1 bit or a 0 bit. Each
node in the tree represents a prefix. The root node represents
“” or no prefix. Each node also has a weight, which represents
the number of values with the prefix the node represents. So,



the weight of the root node equals the total number of values.
The weight of the left (or 0 bit) child of the root represents
the prefix “0”. Its weight represents the number of values that
start with “0” (all non-negative values). Likewise, the right
child of the root represents the prefix “1” and its weight is the
number of values starting with 1 (all the negative values).

Several properties appear. First, the sum of all the weights
of the nodes in any level equals n, where n is the total
number of values. Moreover, the weight of any set of nodes
that partitions the root node from the 65th level (and does
not contain more nodes than necessary to create the partition)
equals n.

Second, the tree is unbalanced (in our case this is good).
Put another way, the datasets contain an unequal number
of positive and negative numbers, also any “normal” dataset
would not have an exponential distribution from 2−12 to 212

in such a way to make the rest of the tree balanced.
Tree creation starts with the root node, which has a starting

weight of 0. To create the rest of the tree, add each value to
the tree in the following way: Create a pointer to a “current
node” c and initiate c to the root node. Increment the weight
of c (the root node). Then, with the most significant bit (the
sign bit) of the floating point value, update c by following the
edge that matches this bit. If this edge does not exist create
the edge and corresponding node. Then, increment the weight
of the new c. This repeats until you reach the 64th bit. Then,
the next value gets added to the tree. This continues until the
last value gets added to the tree.

fzip calculates the prefix codes by creating a partition in
the tree. To start, fzip creates a partition with only the root
node. Then it includes the edge with the largest cut length
in the partition. This repeats until a predetermined number of
edges become cut by the partition. Using a list of prefix, prefix
code tuples we can represent the encoding scheme of the first
8 partitions of the example in Fig. 7:

1) (0,)
2) (00,0), (01,1)
3) (00,0), (010,1)
4) (00,00), (0100,01), (0101,10)
5) (00,00), (01000,01), (0101,10)
6) (00,00), (010000,01), (010001,10), (0101,11)
7) (00,000), (0100000,001), (0100001,010), (010001,011),

(0101,100)
8) (001,000), (0100000,001), (0100001,010),

(010001,011), (0101,100)

Each added node improves the compression because of the
following observation: Let the last added node equal A. The
number of bits in the uncompressed (not-encoded) stream
decreases by weight(A). However, the code lengths have to
increase because the partition cut-size (k) increases. The code
lengths equal log2(k). So the increase in the code length equals
log2(k+1)− log2(k) or 1

k by using derivatives. So the codes
stream will increase by n

k , where n equals to number of values
in the data set. If you choose A to maximize weight(A) (a
greedy algorithm) then weight(A) > average edge cut > n

k .
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(a) Each node in the above tree represents every prefix that occurs
in the dataset.

0 0 1 0 1 1 1 0

0 0 1 1 1 1 0 0
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0 1 0 0 0 0 1 0
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. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0.1:

1.0:
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(b) The above sorted list of values gives a second visual representation
of how the partition grows.

Fig. 7: The above 2 figures show the first 8 partition cuts in
prefix compression for the example dataset {0.1, 1.0, 3.0, 5.0,
3.0, 100.0, 4.0, 2.0}. For simplicity, this example uses half-
precision (16-bit) encoding.
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Fig. 8: The comparison of different compression schemes
shows fzip performs well.

Therefore, the total size of the prefix compression, excluding
overhead, keeps improving as the partition increases.

But, what if a value occurs often? Say the value 1.0 occurs
10% of the time? Ideally you should encode 1.0 as 4 bits
(log210 rounded up), but if we continue to grow the partition
beyond cutting 16 edges 1.0 would encode as more than 4
bits. Our solution freezes the codes once a node from the last
(65th) level becomes included in the partition. This allows
fzip to continue to improve prefix compression by growing the
partition and also encode common values with shorter codes.
This change makes the encoding to variable-length arithmetic
encoding.

Of course, the overhead to store all of the codes exists.
Currently, a 16 byte record describes each code. Each record
stores the prefix, the prefix length and the code length. To
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Fig. 9: The above compression runtime analysis shows that
fzip has some improvement to make to compete with other
programs’s runtime.

balance the benefit of prefix encoding with its overhead, we
limit the overhead to 1% of the original array size.

C. Repeated Value Extension

Prefix compression does not compress all of the repeated
values. So, fzip extends prefix compression to specifically
include all repeated values. Again explaining why repeated
values compress well: All of the datasets have less than 37
million values. An index of 26 bits can address the entire
dataset. Even if a value repeats only once (occurs twice)
there still exists an advantage to store the repeated values
in a repeated value array and store the indexes into this
array instead of the original values. In the previous example
26+ 26+ 64 < 64+ 64 (2 indices plus the value in the array
equals less than storing 2 values).



To encode these repeats, we expanded the set of prefix
codes. This increases the original code lengths by up to one
bit. This seemed like a small trade off to make. All the repeats
have the same length (64-bits) and the same code length so
we can encode each as 8 bytes, instead of the 16 used for the
prefixes.

V. RESULTS

When comparing fzip to other compressors we used the op-
tions that optimized for compression ratio (verses optimizing
for compression speed). For FPC [5] we used option “25” and
for gzip [7] and bzip2 [8] we used option “-9”. We also tried
to show the 3 algorithms used in fzip separately in Fig. 6. fzip
performed the best with the 3 algorithms combined together.
Occasionally, the overhead meant it did not perform better
than one algorithm alone for some test cases. When compared
to other programs (Fig. 8) fzip achieved the best average
compression ratio.

However, we did not attempt to optimize runtime. So, as
expected, fzip performs badly compared to other software
(Fig. 9). In future work, we plan to improve runtime along
with compression ratio.
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