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Abstract—Text classification is an important enabling technol-
ogy for a wide range of applications such as Internet search,
email filtering, network intrusion detection, and data mining
electronic documents in general. The k Nearest Neighbors (k-
NN) text classification algorithm is among the most accurate
classification approaches, but is also among the most compu-
tationally expensive. In this paper, we propose accelerating k-
NN using a novel reconfigurable hardware based architecture.
More specifically, we accelerate a k-NN application’s core with
an FPGA-based sparse matrix vector multiplication coprocessor.
On average our implementation shows a speed up factor of 15
over a naı̈ve single threaded CPU implementation of k-NN text
classification for our datasets, and a speed up factor of 1.5 over
a 32-threaded parallelized CPU implementation.

Index Terms—Text Classification, Reconfigurable Computing,
k Nearest Neighbor, FPGA

I. INTRODUCTION

As electronic medium continues to grow, so does the need
for efficient mechanisms to organize this vast amount of
information. For example, web browsers have billions [1], [2]
of sites to search for a given query, and servers filter over
100 billion emails per day for spam world wide [3]. Machine
learning techniques have been developed to enable such tasks.
Some of these techniques focus on classifying electronic
documents based on text [4], some based on images [5],
[6], and hybrid techniques that use both. In the area of text
classification, the primary approaches used are: Naı̈ve Bayes,
Rule Based, Decision Tree, k Nearest Neighbors (k-NN),
Support-vector Machines (SVM), and Neural Network [4].

In this paper, we focus on accelerating k-NN text classi-
fication. k-NN has been shown to give good classification
accuracy in many cases [7], [8], [9], however it is also
known to be computationally expensive [10]. As discussed
in Section III, multiplication of large sparse matrices with
vectors is a substantial part of the k-NN computation. We
propose leveraging our reconfigurable coprocessor architecture
[11], called R3, to accelerate this aspect of k-NN based text
classification.

Our approach is evaluated against a naı̈ve single CPU core
k-NN implementation and against a 32 hardware-threaded
CPU implementation. On average our implementation shows
a speed up factor of 15 over the naı̈ve single threaded CPU
implementation, and a speed up factor of 1.5 over the 32-
threaded parallelized CPU implementation, in terms of the
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Fig. 1: Term-document vectors in a 3-D space where each
dimension represents a word.

number of nonzero elements processed in the sparse matrix
per second (term-document elements per second). Our FPGA-
based approach processes 2.7 billion term document elements
per second, while the multiple CPU thread approach processes
1.8 billion term-document elements per second.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III then provides a brief
overview of k-NN based text classification. In Section IV,
implementation details of our FPGA-based design are pro-
vided. Publicly available workloads are utilized in Section V
as benchmarks to evaluate our FPGA-based implementation,
and compare against a single-threaded and multi-threaded im-
plementation. Section VI summarizes our findings and points
toward future research directions.

II. RELATED WORK

The general research area of text classification is fairly
mature, and [4] presents a nice survey. In this section, we focus
on providing an overview of related work from the areas of: k-
NN, sparse matrix vector multiplication (SpMV), and the use
of FPGAs for the accelerating machine learning algorithms.

While to our knowledge no prior work has specifically fo-
cused on accelerating k-NN text classification, there has been
work that focuses on accelerating k-NN using FPGAs [12]
and GPUs [13] for other applications. Unlike the use of
k-NN for text classification, this other work typically has
different characteristics in terms of scale of dimensionality,
and the sparseness of matrices used for k-NN computation.
Work also exists in the area of designing fast algorithms
with classification accuracy similar to k-NN. These algorithms
include support vector machines [14], [15] and dimension
reduction [16].



TABLE I: Example documents for classification

name class text
Tr

ai
ni

ng

D1 a
Autumn was it when we first met
Autumn is it what I can’t forget
Autumn have made me alive

D2 a

Grinning pumpkins, falling leaves,
Dancing scarecrows, twirling breeze,
Color, color everywhere,
Autumn dreams are in the air!
Autumn is a woman growing old

D3 b

butterfly, butterfly
fly in the sky
butterfly, butterfly
flies so high

D4 b

Hoping to catch your eye
Circling around you, oh my
Butterfly, butterfly, come into the light
Oh, what a beautiful sight

Te
st

in
g D5 a

Its autumn again
Leaves whisper the sound of our past
In loss they pay a descent
To the ground we fall

D6 b
Butterfly; butterfly fly away,
teach me how to be as free as free can be.
Butterfly; butterfly I see you there

In the area of SpMV acceleration, there is work that uses
Multicore processor[17], GPU [18] and FPGA [11], [19] based
approaches. For each of these platforms a different approach is
taken to achieve acceleration: CPU implementations typically
attempt to keep all the data associated with a vector in cache,
GPUs tend to focus on efficient memory bandwidth usage, and
FPGA implementations focus on compressing matrix data to
reduce memory bandwidth requirements.

In the broader field of machine learning and data mining,
there are many areas for which FPGAs have been used for ac-
celeration. For example, neural nets [20], Apriori [21], support
vector machines [22], and other k-NN type algorithms [23].
Recently, FPGAs have found their way into data centers,
showing interest in FPGA acceleration by corporations. In
[24], researchers from Microsoft used an FPGA-based design
to accelerate their “Bing” web-search engine.

III. k-NN TEXT CLASSIFICATION BASICS

This section walks through an illustrative example of the k-
NN algorithm being used to classify a small set of documents,
provided in Table I. The key idea of k-NN is to use training
documents (D1-D4) to guide the algorithm in classifying new
documents (D5-D6) into predefined classes (class a or b in
this case). Only the k “closest” training documents to the new
document are used for classifying the new document.

k-NN consists of 3 steps: 1) converting documents into
term-document vectors, 2) finding the k closest training doc-
uments to the test documents (i.e. new documents), and 3)
classifying the test documents.

Term-document vectors. A vector of word frequencies
(a term-document vector) abstractly represents a document’s
location in term-document space. Figure 1 depicts the location
of documents D1-D6 if each vector was composed of only 3
terms (words). Concatenating these row-vectors creates term-
document matrices, shown in Fig. 2 for a 17 dimensional term-
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Fig. 2: Training matrix A and testing matrix B for the
documents in Table I. For simplicity, we removed some words
that occur once, and removed commonly occurring words.
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Fig. 3: The ABT

matrix. This rep-
resents the relative
distance values (us-
ing dot products)
of each testing doc-
ument from each
training document.

document space. Matrix A in this figure will be referred to as
the training term-document matrix, and Matrix B as the testing
term-document matrix.

Closest training documents. A notion of distance must be
defined in order to compute how far apart documents are. In
text classification, the dot product of term-document vectors
works well as the distance metric [25]. As an example, the dot
product (i.e. distance) between D1 and D5 equals 3. It should
be noted that unlike Euclidean distance, larger dot products
indicate that vectors (i.e. documents) are closer. Finding the
distance between all training document / testing document
pairs equates to matrix-matrix multiplication. Fig. 3 shows
the resulting matrix (ABT ) containing the distance between
all such pairs. With respect to the individual computations
performed, ABT reduces to a series of dot products.

Classifying. Only the k closest training documents are used
to classify testing documents. For this example we let k = 2, in
practice k is experimentally chosen. Fig. 4 shows the training
documents sorted by their distance for each testing document,
as well as the k = 2 cut-off depicted as a dotted line.

Once the k = 2 closest training documents for each
testing document (D5 and D6) have been determined, then

D5 D6
D1,a,3
D2,a,3
D3,b,0
D4,b,0

D3,b,17
D4,b,8
D1,a,0
D2,a,0

k

sum a=6,b=0 b=25,a=0

Fig. 4: In this figure each ele-
ment is a tuple with the values:
(document, document’s class,
distance from testing docu-
ment). The sums are segre-
gated by class and only the
tuples above the k cutoff line
get included in the sums.
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Fig. 5: The dataflow of the training phase, when using the
FPGA coprocessor.

for each testing document the dot product is summed for each
document class. In this case, for D5 the 2 closest training
documents are both type a, and for D6 they both happen to
be type b. D5 has a “score” of 6 for class a and 0 for class
b, and D6 a score of 0 for class a and 25 for class b, thus
D5 is classified as type a, and D6 is classified as type b. In
other words, the class for which a testing document scores the
highest is its classification.

IV. IMPLEMENTATION

In this section, we describe the implementation details of
our design for each of the three k-NN Text Classification
steps discussed in Section III: 1) creating term-document
matrices, 2) computing document distances, and 3) classifying
test documents.

Fig. 5, 6, and Algorithm 1 provide a high-level overview
of these steps, and depict if computation and data reside on
our system’s CPU-based Host or FPGA-based coproccesor
(partition indicated by a dotted line). Fig. 5 summarizes
the creation of the training term-document matrix, this is
often referred to as the training phase of k-NN. Fig. 6 and
Algorithm 1 summarize what is typically called the testing
phase. In this phase, the testing term-document matrix is
generated, distance between training and testing documents
are computed, and testing documents are classified.

A. Creating Term-Document Matrices

The training term-document matrix A and testing term-
document matrix B are generated on the system’s host CPU
using an open source software package called Libbow [25].
More specifically, an executable within this package called
Rainbow generates our matrix A and B. These matrices
are transferred to the coprocessor for the document distance
computation step of k-NN. In addition to generating term-
document matrices, Rainbow can also perform the full k-
NN Text Classification algorithm. We use the classification
results generated by Rainbow as a correctness validation of
our implementation, and provide Rainbow’s run time (Fig. 9)
as a reference.

B. Computing Document Distances

To compute the columns of the ABT matrix, where each
column represents the distance between a given testing doc-
ument and all training documents, [26] suggests expanding
one row of B at a time and running SpMV by starting with
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0 Vector

Vector filler
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R3 SpMV
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Fig. 6: The testing phase dataflow, when using the FPGA
coprocessor.

Algorithm 1 Testing Phase

Use Rainbow [25] to convert documents to test matrix B
x ← {0, 0, 0, . . . , 0} {Initialize and zero vector x with
length equal to the height of Bt on coprocessor}
for i := 0 to width(BT ) do

Let the ith sparse column of BT equal C.
for j := 0 to size(C) do
x[index(C[j])] ← val(C[j]) {fill in x with C, the
column in the test matrix B}

end for
y ← A · x {run sparse matrix vector multiplication}
for j := 0 to size(C) do
x[index(C[j])]← 0 {set x back to 0 using C}

end for
Move y from coprocessor to host.
bestMatches[0→ k]← {0, 0, 0, . . . , 0}
for j := 0 to height(A) do

for l := 0 to k do
if y[j] > bestMatches[l] then
bestMatches[l]← y[j]

else
break

end if
end for

end for
Decide classification of document based on
bestMatches.

end for



a zero vector and then filling in the nonzero values with the
sparse vector data. Before moving onto the next vector, the
expanded vector needs to be reset to zero. Given that we are
assuming that most vectors are sparse, significant time can be
saved by just zeroing out the nonzero entries of the previous
sparse vector, as opposed to always generating a brand new
zero vector.

Referring back to the example in Section III to help
explain this process, the term-document vector of docu-
ment five, {1,0,0,1,0,. . . ,0,1,1,0,0}, has a sparse format of:
Indices={1,4,14,15} and Values={1,1,1,1}. Starting with a
zero vector, {0,0,0,0,0,. . . ,0,0,0,0,0}, the vector expansion
only requires 4 writes: the first, value 1 written to in-
dex 1, {1,0,0,0,0,. . . ,0,0,0,0,0}, the second, value 1 writ-
ten to index 4, {1,0,0,1,0,. . . ,0,0,0,0,0}, the third, value
1 to index 14, {1,0,0,1,0,. . . ,0,1,0,0,0}, and lastly the
fourth, value 1 to index 15, {1,0,0,1,0,. . . ,0,1,1,0,0}. The
indices also help reset the vector faster: the first 0 writ-
ten to index 1, {0,0,0,1,0,. . . ,0,1,1,0,0}, the second, to
index 4, {0,0,0,0,0,. . . ,0,1,1,0,0}, the third, to index 14,
{0,0,0,0,0,. . . ,0,0,1,0,0}, and lastly the fourth, to index 15,
{0,0,0,0,0,. . . ,0,0,0,0,0}.

1) Parallel CPU Platform: We used 2, 8-core, 16-thread,
Intel E5-2650 CPUs for our software implementation (a total
of 32 theads). To run SpMV on the CPU, we wrote a C
function, and compiled it with gcc with speed optimization
(gcc -O3). This achieves performance comparable to Intel’s
published performance [27]. To parallelize the software, we
split the SpMV function into 32 threads and gave each a 32nd
of the matrix split horizontally.

2) FPGA Platform: We used a Convey HC-2 [28] as our
FPGA platform, with R3 as our SpMV implementation. This
platform has 4 Xilinx Virtex-5 LX330 [29] FPGAs. At the high
level (see Fig. 7), R3 places as many processing elements as
possible on the FPGAs. R3 occupies 75%, 72%, 75%, and
86% of the registers, LUTs, DSP blocks (multipliers), and
BlockRAMs on the FPGA respectively, and runs at 150Mhz.
Similar to the CPU implementation, R3 needs to split the
matrix into 64 horizontal pieces to parallelize the SpMV task,
one for each processing element.

At the low level (see Fig. 8), a R3 processing element
has three main features which enable high performance. First,
R3 reduces the size of the matrix through index and value
compression. This increases the rate information flows from
RAM to the FPGA. The compression overhead amortizes
across the test documents.

Second, R3 has a multiply-accumulator that handles 32 rows
at a time. This ensures the accumulator does not stall when
the accumulator finishes the current row and moves to the next
row.

Third, the ability to process multiple rows at a time means
the elements in those rows of the matrix can be traversed
in any order. R3 uses a hybrid column and row traversal.
This traversal, called Global Row Major Local Column Major
traversal, reduces the number of vector value accesses.
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Fig. 7: R3 implementation on the Convey HC-2 coprocessor:
4 Virtex-5 LX330 FPGAs tiled with 16 R3 SpMV processing
elements (PE) each. Each Virtex-5 chip connects to all 8
memory controllers (MC), which enables each chip to have
access to all of the coprocessor’s memory.
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Fig. 8: A single R3 processing element. The arrows show the
flow of data through the processing element.

C. Document Classification

The last step of k-NN involves finding the k (k = 30 in
our case) largest values that have just been calculated (recall
for the dot-product a larger value corresponds to a smaller
distance). Sorting the entire set of distances does find the
largest distances, but requires a non-trivial amount of time.
However, only partially sorting the list (i.e. keeping track of
the k largest values) requires a much smaller computation [30].
We implement partial insertion sort to accomplish this.

To explain partial insertion sort and its benefits, we refer
back to the example in Section III, specifically the distances
from document five: {3,3,0,0}, which we want to extract the
2 largest values. Our partial insertion sort starts with a zero
array: {0,0}. When inserting the first value 3, the array changes
from {0,0} to {3,0} to {0,3}. When inserting the second value,
also 3, the array changes from {0,3} to {3,3}. The final two
values, both 0, do not get pass the first value in the array and
get discarded.

This algorithm’s efficiency comes from the fact that a high
percent of the values get discarded after comparing to the first
value in the sorted array.



TABLE II: Matrix statistics

Height1 Width2 nnz3 nnz/row4

Twenty
Newsgroups

train:11,314
test:7,531 114,545

train:1,082,852
test:705,576 94.9

NSF
Abstracts 374,989 261,976 30,182,110 80.5
Reuters
News 804,414 276,167 61,439,527 76.4

1 Documents in the dataset.
2 Unique words in the dataset.
3 Number of nonzeros or term-document elements.
4 Average unique words per document.

V. RESULTS

For benchmarking, we used 3 datasets: 20 newsgroups
[31], NSF abstracts [32], and Reuters News Corpus [33]. 20
newsgroups consists of 18,845 post on 20 Usenet newsgroups.
NSF abstracts consists of abstracts of NSF grants from 1976
to 2014. Reuters News Corpus consists of news stories from
1996 to 1997.

Fig. 10 shows the matrix density plots after Rainbow
processes them. The dimensions, number of nonzero elements
and sparsity of the matrices in Table II provide insights into
performance differences of different datasets.

The quality of results (correct classifications) equals Rain-
bow’s implementation because our program performs the
same operation as Rainbow. (Each implementation’s results
match Rainbow’s results exactly.) For simplicity, the NSF and
Reuters datasets only have one test document each. Only the
runtime of k-NN is being tested.

For simplicity we choose not to use any vector normal-
izations to achieve better quality. Normalizations do not
significantly change the number of floating point operations
in the k-NN calculation so the performance should remain
about the same with vector normalizations. For reference,
the Rainbow options we used were: “–method=knn –knn-
k=30 –knn-weighting=nnn.nnn”. With these settings Rainbow
achieves 31% accuracy.

We measure the performance of 4 different implemen-
tations: Rainbow, single-threaded CPU, multi-threaded (32
threads) CPU, and FPGA. The runtimes (Fig. 9) indicate that
the FPGA implementation outperforms competing implemen-
tations.

The term-document elements processed per second met-
ric helps to compare the 4 implementations. Table III con-
tains each performance number for each implementation. The
parallel CPU averages 1.80 billion term-document elements
per second, whereas the FPGA averages 2.72 billion term-
document elements per second, a speed up factor of 1.5 for
the dataset.

Since SpMV takes a large percent of the run time, the
SpMV performance (Table IV) provides a more direct un-
derstanding for the different performance of different imple-
mentations. Rainbow and the naı̈ve implementation perform
worse for large matrices. The increased matrix size causes
worse cache performance. In the parallel case, the overhead
of creating 32 threads means larger matrices perform better
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Fig. 9: The runtimes of the different implementations shows
our FPGA implementation outperforms the others. It also
performs better for large datasets relative to the CPU imple-
mentations.

TABLE III: Performance of each implementation, in terms of
billion term-document elements processed per second.

20
New

sg
ro

up
s

NSF
Abs

tra
cts

Reu
ter

s
New

s

Ave
rag

e

Rainbow[25] 1 0.089 0.002 0.003 0.031
Naı̈ve (CPU) 0.25 0.19 0.11 0.18

Parallel (CPU) 1.54 2.16 1.71 1.80
FPGA (R3) 1.57 3.11 3.49 2.72

1 Included as reference.

to a point. This explains the increase in performance from
the 20 newsgroups dataset to the NSF abstracts dataset. The
decrease in performance from the NSF dataset to the Reuters
dataset can be explained using the same reason the naı̈ve and
Rainbow implementation get worse performance, worse cache
performance.

R3 performs slightly better on the NSF and Reuters datasets
than the 20 newsgroups dataset. Some of this can be explained
by R3’s overhead, which equals the time to process 100,000
matrix elements. However, the difference is larger than the
expected .5 GFLOPS difference. It is likely the values in the
NSF and Reuters matrices compress better.

VI. CONCLUSION

This paper has demonstrated that FPGAs are a viable
means to accelerate k-NN text classification. Profiling a k-
NN application revealed that its run time was dominated by
sparse matrix vector multiplication (SpMV). Offloading these
SpMV computations to an FPGA-based coprocessor resulted
in an average speed up factor of 15 over a naı̈ve single
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Fig. 10: The density plots of the three matrices derived from the datasets used to test k-NN implementations (20 newsgroup
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(0.1% 0%) in that location of the matrix.

TABLE IV: SpMV performance of each implementation in
terms of GFLOPS (billion floating-point operations per sec-
ond).

20
New

sg
ro

up
s

NSF
Abs

tra
cts

Reu
ter

s
New

s

Ave
rag

e

Naı̈ve (CPU) 0.54 0.38 0.23 0.38
Parallel (CPU) 3.30 4.61 3.66 3.86
R3 (FPGA) 5.07 8.05 9.45 7.52

threaded CPU, and a speed up factor of 1.5 over a 32-threaded
parallelized CPU implementation.

Even when SpMV computations were offloaded to our co-
processor, SpMV still dominated the k-NN text classification
application run time (Figure 11). An interesting direction for
future work would be attempting to further speed up these
computations by treating them as sparse matrix-sparse matrix
multiplication. As a second avenue for future research, since
Libbow is such a widely used software application, integrating
this FPGA-coprocessor approach into the Libbow framework
would make it more attractive to the wider text classification
research community.
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