
A High Performance Systolic Architecture for
k-NN Classification

Kevin R. Townsend, Phillip Jones, Joseph Zambreno
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA, USA

{ktown, phjones, zambreno}@iastate.edu

Abstract—This paper describes the architecture of the winning
entry to the 2014 Memocode Design Contest, in the maximum
performance category. This year’s Memocode design contest asks
contestants to find the 10 nearest neighbors between 1,000 testing
points and 10,000,000 training points. Instead of using Euclidean
distance, the contest uses Mahalanobis distance. The contest has 2
awards: the maximum performance award and the cost adjusted
performance award.

Our implementation uses a brute force approach that calcu-
lates the distance between every testing point to every training
point. We use the Convey HC-2ex, a FPGA-based platform.
However, the theory applies to software implementations as well.
At the time of publication, our runtime is 0.54 seconds.

I. INTRODUCTION

The problem of the 2014 Memocode design contest is to
find the k nearest neighbors among a training set of M train
vectors for N test vectors. Instead of using the Euclidean
distance,

√
(x− y)t(x− y), where x is a train point and y is a

testing point, the competition asks us to find the Mahalanobis
distance,

√
(x− y)tS−1(x− y). S−1, the inverse covariance

matrix, is given to us. Since the square root function is
an increasing function, it can be dropped and the nearest
neighbors will be the same, (x− y)tS−1(x− y). Each vector
is composed of 32 12-bit values. The large dataset, which was
used to judge performance, consisted of 1,000 test vectors and
10,000,000 train vectors.

Mahalanobis distance works well for some applications
[1]–[3]. This distance metric normalizes the dimensions to
standard deviations and also takes into account correlations.
For example, if the objective is to find hospital patients similar
to a given patient, then the patients’ information can be bro-
ken down into different dimensions representing age, gender,
number of hospital visits, blood pressure, etc. The euclidean
distance between two patients would be meaningless. We want
a unitless measurement, and that is what the Mahalanobis
distance achieves.

Our solution is brute force in the sense that the distance
between every test vector / train vector pair is calculated. In
this contest, this means 10,000,000,000 distance calculations
are required. The bottleneck of our design was the number
of multipliers we could fit on the chip. To fit 32 processing
elements (1024 multipliers), we used lookup table (LUT)
multipliers as well as multiplier (DSP) blocks. As of the
writing of this paper, our runtime is 0.54 seconds.

trainA trainA

trainB trainB

testA testA

testB testB
M

ah
la

no
bi

s
Pr

od
uc

t
M

ah
la

no
bi

s
Pr

od
uc

t
k-NN

retret

print

0.6GB

1.3GB

64KB

128KB

256KB

Host Coprocessor

start time

end time

Figure 1: As the dataflow shows, the timed data movement is
small and takes a short amount of time.

We describe the specifics of our algorithm in Section II.
In Section III, the platform used for implementation is intro-
duced. Section IV describes the high-level systolic architec-
ture of our solution. In Section V, we present architectural
details of an individual processing element. In Section VI, we
discuss results. Implementation alternatives are discussed in
Section VII. We conclude the paper in Section VIII.

II. ALGORITHM

Our algorithm is a brute force approach that calculates all
10,000,000,000 distances. In this way our algorithm is similar
to the naı̈ve reference implementation provided by the contest.
The primary difference is in how we calculate the Maha-
lanobis distance. Instead of computing (x − y)tS−1(x − y),
we use the distributed property of matrices and compute
(x−y)t(S−1x−S−1y). This creates 4 arrays of vectors: x, y,
S−1x, and S−1y. We call these arrays trainA, testA, trainB,
and testB respectfully.

Figure 1 shows the dataflow of our approach. Since pre-
processing is allowed, we calculate trainB and move trainA

and trainB to the coprocessor (Section III) before starting
the timer. testA and testB are comparatively smaller, and it
takes little time to calculate testB and move both arrays to the
coprocessor. We perform the dot product and sorting operation
on the coprocessor. Performing sorting on the coprocessor
reduces the data transferred back to the CPU board from 80GB
to 256KB.

III. CONVEY HC-2EX

We chose the Convey HC-2ex [4] as our computing platform
(Figure 2). For the contest, we estimated the machine cost as
$100,000. This gave a normalized runtime of 1,486 $hours.
The HC-2ex is an Intel server with an FPGA coprocessor
board. The coprocessor has 4 Xilinx Virtex-6 LX760 FPGAs
[5], 8 memory controllers, and is connected to a host (CPU)
board by PCIe. Our design uses 311,798/474,240 (65%),
433,133/948,480 (45%), 275/720 (38%), and 640/864 (74%)
of the LUTs, registers, BlockRAMs and DSP blocks respect-
fully on each FPGA. The clock frequency is 150 Mhz, 38% of
the maximum frequency, 400 Mhz. We use a read-first RAM
that has a max frequency of 400 Mhz. The DSP blocks have
a maximum frequency of 450Mhz.

IV. HIGH LEVEL IMPLEMENTATION

From the high level, we can see the brute force solution
requires O(M×N) computation, 10,000,000,000 Mahalanobis
products. However, there is only O(M +N) data, 10,001,000
vectors. The computation to data ratio suggests that the design
will be compute bound, and indeed, our final design is compute
bound.

The compute bound does not end the story. 1,000 test
vectors turns out to be quite small. To evenly split the vectors
among the processing elements we add 24 empty vectors for
a total of 1,024 vectors. We assign 8 test vectors to each of
the 128 processing elements.

The more test vectors each PE handles, the lower the
memory bandwidth needed to load the training vectors. One
vector pair, x and S−1x, is 192 bytes, when values in x and
S−1x are aligned to the 2 and 4 byte boundary respectfully.
So the bandwidth required is 192 bytes per 8 clock cycles or
24 bytes per clock cycle. This equals 3.6 GB/s, which is less
than the 19 GB/s memory bandwidth limit of each FPGA. To
ensure enough memory bandwidth, we use 4 of the 16, 150
Mhz 64 bit memory ports. The HC-2 doubles the number of
memory ports by clocking the memory ports at 300Mhz.

However, routing 192 wires from the memory controllers
to all the processing elements is difficult for place and route
tools. Instead, we create a systolic array architecture (Figure
3). The control signals and the 192 bit data signal are setup
in the systolic array.

V. LOW LEVEL IMPLEMENTATION

Each processing element consists of 5 sub components, as
illustrated in Figure 4. The first is the Buffer. The buffer either
buffers a vector pair from testA and testB, or trainA and trainB.
The Buffer shifts 192 bits every clock cycle from the “Data

testA testB trainA trainB ret

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

Figure 3: Systolic array view of k-NN PEs

Buffer Train
Buffer

Test
Cache Product

Sort

Data
in

Opcode
in

Index
in

Opcode
out

Index
out

/
192 Data

out

660 Registers
560 LUTs

316 Registers
388 LUTs

7 BlockRAMs

≈ 1536 Registers ≈1536 Registers
≈768 LUTs

8704 Registers
6806 Luts
20 DSPs

kNN PE

Figure 4: A single kNN PE uses 12208 registers, 8276 LUTs,
7 BlockRAMs, and 20 DSPs. As the diagram shows, the
product block consumes most of these resources. We do not
have exact numbers for the Buffer and Train Buffer because
in our hardware description they are not separate components.

in” line. The Test Cache receives data from the Buffer once
it contains a complete vector pair. After the test vectors are
loaded, the Train Buffer receives data from the Buffer. Unless
a stall occurs, the Train Buffer receives a new vector pair every
8 clock cycles.

The Product block contains most of the resources. This
block receives data from the Test Cache and the Train Buffer.
The Test Cache increments its address every clock cycle so
8 products are calculated from each Train vector that reaches
the Train Buffer.

testA

testB

trainA

trainB

product

V
ec

to
r

Su
bt

ra
ct

er
V

ec
to

r
Su

bt
ra

ct
er

V
ec

to
r

M
ul

tip
lie

r

A
dd

er
Tr

ee

Figure 5: The dot product pipeline

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

k-NN
PE

Memory
Controller 1

Memory
Controller 2

Memory
Controller 3

Memory
Controller 4

Memory
Controller 5

Memory
Controller 6

Memory
Controller 7

Memory
Controller 8

...
...

...
...

77GB/s Max Memory Bandwidth

Figure 2: The k-NN implementation on the Convey HC-2ex coprocessor: 4 Virtex-6 LX760 FPGAs tiled with 32 k-NN
processing elements each.

The product module (Figure 5) first calculates the differ-
ences between each value in the train and test vector pairs.
The product module requires 32 multiplications (13bit by 25bit
multiplication), which when efficiently implemented require 1
DSP block or 385 LUTs each. The accumulation is done by
implementing an adder tree.

The Sort block keeps track of the 16 nearest neighbors for
each of the 8 test vectors. The (index, value) pairs are stored
contiguously in a single RAM.

For our sorter (Figure 6), we implemented insertion sort.
Each insertion takes 20 cycles, however, on average, the sorter
must process one value each clock cycle or the pipeline will
stall. A bouncer module stores the last element in each array
so that new elements larger than this value will not be queued
for insertion.

We illustrate the sorter block with an example (Figure 6). In
the example, we insert the number 13 into an array of 4 values.
To simplify the diagram, we reduced the nearest neighbors
from 16 to 4 and removed the train vector indices from the
diagram.

VI. RESULTS

The 0.54 second runtime measured equals the theoretical
runtime. Our theoretical runtime can be calculated with the
following formula:

(test vectors per PE)×M × (Number of runs)

Clock frequency
(1)

Since our design computes 1024 test vectors each run, only
one run is needed to compute the 1000 test vectors in the large
dataset. The FPGA is clocked at 150Mhz so the result is:

8× 10000000× 1

150000000
=

8

15
= 0.54 (2)

VII. OTHER IMPLEMENTATIONS

We explored other implementations. At the end of the
competition, our design had 64 processing elements instead of
the current 128 and therefore had a runtime of 1.07 seconds.

Other changes could push performance further. For example,
using CPUs or other platforms, using floating point numbers,
and using approximate solutions.

A. CPU

Other implementations can also follow many of our steps.
We implemented a CPU version of this approach with a run-
time of 60 seconds. We chose a 2, X5650 Intel CPU platform.
Our calculations show that without SIMD instructions the
maximum performance is 40 seconds on this platform.

Similar to our FPGA implementation, we gave each thread
8 test vectors. We structured the nested “for” loops so the
training vectors are iterated on the outer loop. If the training
vector was on the inner loop, then the vectors would be loaded
multiple times and require more memory bandwidth. When we
switched the loops, the runtime increased to 120 seconds.

B. Floating Point

It may seem counter intuitive to use floating point num-
bers over integer numbers. However, CPUs often have better
performance for 4-byte floating point numebers than 8-byte
integers because of SIMD instructions on 4-byte values. FP-
GAs similarly get better performance. For example, 4-byte
floating point multiplication uses less resources than 8-byte
integer multiplication.

In the context of this competition, the 13-bit and 25-
bit integers would be replaced with smaller floating point
numbers. Using floating point numbers does cause a precision
loss. In the benchmarks, the nearest neighbors were all usually
more than 1% different. This can be used to our advantage

by first calculating the nearest neighbors using floating point
values and then going back and calculating the exact distances
and fixing any mis-orderings.

This will not work if many training points are very close to
the same distance to the testing points.

C. Approximate Nearest Neighbor

Solutions that are more efficient than brute force are attrac-
tive. However, they often miss some of the nearest neighbors.

Some implementations of k dimension trees (KD-tree) [6]
do not miss values and efficiently calculate a nearest neighbor.
Calculating multiple nearest neighbors causes complications.
KD-trees also do not handle high dimensional data well. For
this reason we did not pursue this route.

KD-trees can also find approximate answers faster [7]. For
example, correctly finding 9 of the 10 nearest neighbors. Other
methods for approximate neareast neighbors (ANN) also exist,
such as k-NN graph methods [8] and hashing [9].

VIII. CONCLUSION

In summary, we chose a brute force implementation to
accelerate the 2014 Memocode design contest problem. Cur-
rent research fails to show improvements using non-brute
force implementations. By using an FPGA, we were able
to compute approximately 2.4 trillion integer operations per
second. This allowed us to achieve a runtime of 0.54 seconds
and consequently win the maximum performance award.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation (NSF) under the awards CNS-1116810 and CCF-
1149539.

REFERENCES

[1] H. Ya-juan, H. Zhen, and S. Guo-fang, “Research for multidimensional
systems diagnostic analysis based on improved mahalanobis distance,”
in Proceedings of the IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), Oct. 2009, pp. 213–
217.

[2] G. Verdier and A. Ferreira, “Adaptive mahalanobis distance and k-nearest
neighbor rule for fault detection in semiconductor manufacturing,” IEEE
Transactions on Semiconductor Manufacturing, vol. 24, no. 1, pp. 59–68,
Feb. 2011.

[3] H. Wang, Y. Gao, and C. Zhang, “Multi-class support vector machines
based on the mahalanobis distance,” in Proceedings of the IEEE Inter-
national Conference on Machine Learning and Cybernetics (ICMLC),
vol. 2, Jul. 2011, pp. 757–762.

[4] Convey Reference Manual, 1st ed., Convey, Richardson, TX, May 2012.
[5] Virtex-6 Family Overview, 2nd ed., DS150, Xilinx, Jan. 2012.
[6] J. L. Bentley, “Multidimensional binary search trees used for associative

searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[7] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 1997,
pp. 1000–1006.

[8] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approx-
imate nearest-neighbor search with k-nearest neighbor graph,” in Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2011, pp. 1312–1317.

[9] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the ACM
Symposium on Theory of Computing (STOC), 1998, pp. 604–613.

Counter

product
13

Bouncer

B3
B2

B1=100
B0

In
se

rt
er

RAM

V0
V1
V2
V3

out

7
19
42
68

(a) When the value 13 arrives it is compared to the bouncer value.
A counter keeps track of the current test vector and therefore the
relevant bouncer value. In this case 13 is less than the bouncer value
100 and 13 gets let in to be inserted.

Counter

product

Bouncer

B3
B2

B1=100
B0

In
se

rt
er

RAM

V0
V1
V2
V3

out

7
19
42
68

13

(b) The value 13 gets compared to values starting with the smallest
value (7). Once it reaches a larger value (19), the smaller value
replaces the larger value.

Counter

product

Bouncer

B3
B2

B1=100
B0

In
se

rt
er

RAM

V0
V1
V2
V3

out

7
13
19
68

42

(c) The values after the inserted value need to shift down one. We
use the one clock cycle latency of the RAM to store the overwritten
value. This only works with read-first RAM. This latency value then
gets written to the next address.

Counter

product

Bouncer

B3
B2

B1=68
B0

In
se

rt
er

RAM

V0
V1
V2
V3

out

7
13
19
42

(d) The last value gets sent to the bouncer block to become the
new bouncer value. In this way the bouncer value keeps decreasing
throughout the k-NN task.

Figure 6: The Sort block keeps track of the nearest neighbors
for each test vector. The two main parts of this block are the
bouncer that checks to see if a value should be inserted and the
inserter that inserts the value into the nearest neighbor array.

