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Abstract—In the decade since the concept was publicly intro-
duced, power analysis attacks on cryptographic systems have be-
come an increasingly studied topic in the computer security com-
munity. Research into countermeasures for these cryptographic
systems has intensified as well. Experiments have been conducted
showing the potential effectiveness of power analysis attacks and
preventative techniques on both software (e.g. smartcard, DSP)
and hardware (e.g. ASIC, FPGA) processing elements. One key
observation that motivates our work is that the majority of
the research into power analysis on FPGA-based cryptographic
systems has been a) theoretical in nature, b) evaluated through
simulation, or c) experimented using custom hardware that does
not closely mirror real-world systems. In this paper, we look
to bridge this gap between theory and practice by detailing
our experience in performing a Differential Power Analysis
(DPA) attack on a commercial FPGA development board. We
present an automated data acquisition and analysis design for an
FPGA-based implementation of the Data Encryption Standard
(DES), and discuss some of the challenges and obstacles that
we encountered when performing the DPA attack on our chosen
commercial platform.

I. INTRODUCTION

Power analysis attacks are regarded as a very powerful
approach to cracking cryptographic systems [1]. This class of
attacks make use of the power consumption information from
processing elements built using CMOS circuits. Introduced
first by Kocher et al. [2] in 1998, there are two main flavors
of power analysis attack: the Simple Power Analysis (SPA)
attack and the Differential Power Analysis (DPA) attack. In the
SPA attack, by tracing the whole system power consumption
information, the adversary can deduce the types of instructions
running in the processing element, which in a cryptographic
system will often be directly influenced by the choice of
secret key. By comparison, the DPA attack combines this
power analysis with statistical and error correction techniques,
leading to a more powerful approach. As will be described in
Section III, due to the statistical nature of the DPA attack, an
attacker using DPA is not required to know any details of the
internal algorithmic implementation.

Reconfigurable computing systems, such as those based
on Field Programmable Gate Array (FPGA) technology, are
a very promising platform for designing high-performance
cryptographic systems, due to their high throughput rates
and inherent design flexibility [3]. The growing popularity of
FPGAs as a cryptographic processing element has necessitated

research into their susceptibility to power analysis attacks.
Indeed, much previous effort has gone into applying DPA
attacks on FPGA platforms [4], [5], [6], [7], and on developing
corresponding anti-attack methods [8], [9], [10], [11], [12].
Unfortunately, in all of the previous research on this topic,
the experimental results and analysis were based on either
simulated power consumption models or synthetic hand-made
FPGA boards. As a result, little is known as to the practical
impact that DPA attacks can have on commercial FPGA
boards. In our opinion this may lead to a disconnect between
the theory and practice of protecting FPGA-based embedded
systems.

In this paper, we describe an automated data acquisition
and analysis system for applying a DPA attack on an FPGA
executing a cryptographic algorithm. Using this system, we
mounted an attack on a Xilinx Virtex-II Pro FPGA running
a Data Encryption Standard (DES) core. Our choice of both
FPGA board and cryptographic algorithm are driven by their
respective popularity; the Virtex-II Pro was the first Xilinx
FPGA that was capable of running hardware/software designs
in an integrated reconfigurable fabric, and can commonly be
found in both academic and industrial environments. DES was
the first standardized cryptographic implementation broken
by the power analysis community, and as such remains a
popular target, even after the introduction of newer, more
robust private-key algorithms.

Our goal in running these experiments is to provide an in-
depth case study to the security community describing the
challenges inherent in performing real-world DPA attacks on
FPGA-based systems. One surprising result of our work is
that the practical impact of DPA (and other power analysis)
attacks on commercial FPGA boards is severely limited by
several factors not considered in previous research, and as
such we strongly suggest that many of the current efforts
into DPA countermeasures may be misguided. At the very
least our work implies that given the physical access required
by the DPA methodology, an attacker’s time would be better
spent performing other non-invasive techniques. We hope to
stir debate in the security community on the actual reach and
importance of DPA attacks on real-world hardware systems.

The remainder of this paper is organized as follows. In the
following section, we review current efforts in performing and
preventing power analysis attacks on FPGA-based embedded



systems, both of the SPA and DPA variety. In Section 3,
we describe some of the basic theory and practice of the
DPA attack, and describe how it can be applied to an FPGA
board. In Section 4, we detail our automated data acquisition
and analysis system, and describe the experimental setup and
steps taken. We provide an analysis of the collected data
in Section 5, and discuss some of the practical implications
of our results. Finally, the paper is concluded in Section 6
with a summary of the direction for our future work, and an
introductory discussion of suggestions for the DPA on FPGA
research community.

II. RELATED WORK

Research into power analysis attacks on cryptographic sys-
tems has flourished ever since the topic was first announced
by Kocher et al. [2]. Originally intended as a technique
to use on smartcards and other portable software systems,
in recent years power analysis has been applied to FPGA-
based computing systems. The authors in [4] investigated DPA
attacks on FPGA platforms through the use of a simulator
that counted the transitions of CLB output signals to estimate
power. The authors also evaluate the usefulness of various
gate-level countermeasures to DPA through the use of this
simulation infrastructure. Although the conclusions presented
were of potential use (the authors concluded that only a few
nodes in the circuit had a high relation to the bits of the secret
key), the ultimate value of this and other similar approaches is
lessened by the choice of a simulator that considers the power
consumption of the FPGA in isolation from its supporting
environment.

An investigation into performing DPA on actual FPGA
hardware is presented in [5]. One limitation of this approach
is that the FPGA is placed on a custom board in order
to facilitate the power analysis. Conclusions made in this
synthetic environment may not have a direct corollary when
adapted to a commercial FPGA board.

The power consumption characteristics of an FPGA is not
fundamentally different from that of an ASIC using CMOS
technology [13]. The authors in [6] first generalize this power
consumption model using DES transition counts, and then
perform a DPA attack by correlating the real measurement
data to their model.

As previously mentioned, many of the reported power anal-
ysis attacks are based on the DES encryption standard [14].
More recently some have began the initial work required to
perfom a DPA attack on implementations of AES [15], [13]
and elliptic curve cryptosystems [8].

After the initial reports of successful power analysis attacks,
many countermeasures have been proposed in response. These
SPA- and DPA-resistant techniques try to solve the problem
from different angles, by looking at hardware design at the
logic level, as well as the interaction between instruction
set architecture and software. One of the first logic level
countermeasures was the transformed masking method, which
was introduced in [9]. In [10] the authors proposed a family of
DPA-resistant compound standard cells, referred to as Wave
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Fig. 1. Structure of the S-box in a round of DES

Dynamic Differential Logic (WDDL). In theory, each WDDL
gate has a constant power consumption profile; a fixed charge
is used for each signal transition, making the consumption
independent of the transition frequency. The same authors have
also presented a place-and-route methodology [11] and full
VLSI design flow [12] in support of their technique.

Many of these proposed anti-DPA measures are themselves
nullified by improved attack technology. It is also important to
note that any imperfect masking will only serve to obfuscate
the power consumption characteristics of a circuit, which can
be circumvented at the expense of additional computational or
data acquisition time. Even if the DPA computational workload
for an attacker is increased beyond reasonable limits [7],
higher-order differential power analysis attacks may still be
possible [16].

III. DIFFERENTIAL POWER ANALYSIS PRINCIPLES

DPA is a passive attack that is performed by externally
observing the power consumption of a circuit performing
cryptographic computations. The theory behind DPA is that
the power consumed by the computational logic is statistically
correlated with the internal bit transitions.

We selected DES as the attack target since DES was the first
algorithm used to demonstrate the practicality of DPA in [2]. In
the following explanation, we assume that the attacker knows
the input plaintext values (the known plaintext variety of DPA
attack). The DPA process can be described as follows:

First, the attacker records N plaintexts and their correspond-
ing power traces P [N ]. In reality, the plaintext value are likely
to be randomly distributed. The power trace for each input
plaintext can be represented as P [N ][M ]. The voltage value
on power trace P [i] at time j is P [i][j]. The value of N and
M can be determined by the attacker. The larger the value of
N , the more accurate is the guess of the final extracted key.
A larger M implies a higher power sampling rate.

Next, the attacker chooses an output bit of a S-box in the
first round. The structure of the S-box in DES is shown in
Fig. 1. Typically, the first output bit b0 is chosen. Bit b0



Fig. 2. Data acquisition experimental setup

depends on the six bits of the secret key and plaintext. The
attacker makes an initial guess of those key bits (out of 64
possible values). Based on the guessed value of the six bits of
the key and the known-plaintext, one can compute the guessed
value of b0. Since bit b0 can only have two values (0 or 1), the
attacker can divide the whole N power traces into two groups
according to the value of b0. For each power trace of the N
iterations using varied plaintext values, it is assigned into the
first group A if the theoretical value of b0 is 0; otherwise, it is
assigned into the second group B. Once all of the power traces
values have been acquired, the average power is calculated.
The average power is calculated at each time point j using
the equations:

P̄ j
A =

1
|A|

|A|∑
i=1

P [i][j] (1)

P̄ j
B =

1
|B|

|B|∑
i=1

P [i][j] (2)

If the guessed six-bit key is not correct, the computed
value of bit b0 will be different from the real value with
a probability of 0.5. This has the actual effect of placing a
power trace vector randomly into two groups A or B. The
average power traces of the two groups will be the same if
the number of different plaintext approaches to infinity. Hence
the difference of average power traces between the two groups
will approximately be zero as N approaches infinity.

lim
N→∞

(P̄ j
A − P̄ j

B) = 0, 1 ≤ j ≤ M (3)

However, if the guessed six-bit key is correct, the computed
value of bit b0 will be the same as the actual value with a
probability of 1. As stated before, the power consumption of
the electrical device is correlated to the internal bit transition.
The power traces with the value of bit b0 equal to 0 must
be different from those with the value of bit b0 equal to 1.
In this sense, the average power of group A will diverge
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Fig. 3. Components in the experimental setup

from the average power of group B, as the number of input
plaintext values approaches infinity. The other factors which
affect the power data values (such as measurement errors,
electrical noise, etc.) that are not correlated to the value of bit
b0 will approach zero as the value of N approaches infinity. If
the value of M is large enough to encapsulate the power data
for each of the sixteen rounds, a spike will be observed for
the graph of the average power difference. Everywhere else in
the graph the value will converge to zero.

lim
N→∞

(P̄ j
A − P̄ j

B)
{ �= 0 for some j

= 0 otherwise
(4)

There are in total eight S boxes in the DES F function.
Finding all 48 bits of the subkey can be accomplished by
combining all eight 6-bit keys. There are another eight bits in
the 56-bit input key that can be easily found in the second
round analysis. Once the subkey for the first round is known,
the input to the second round can be considered as a known
plaintext value. The search process can then continue in a
similar fashion as for the first round.

IV. EXPERIMENTAL SETUP

The goal of our experiment is to automate the data collection
and analysis stages of the DPA attack targeting a commercial
FPGA board. As is shown in Fig. 2, our setup consists of
essentially three parts: the digital oscilloscope, the FPGA-
based development board and the host PC. Two kinds of
software are run on the host PC which we will explain in
detail in the following section.

The oscilloscope is responsible for collecting differential
power traces from the FPGA board. It is connected with the
Xilinx Virtex-II Pro FPGA board through two probe needles.
The host PC is the control center of the whole system. It
coordinates the activity sequence of the oscilloscope and the
Virtex-II Pro board. The host PC and the oscilloscope are
connected using USB. The bridge between the host PC and
FPGA board is composed of two connections. One is a USB
connection which is used for FPGA configuration download.
The other one is a serial connection which is used as data
communication between the host PC software and the software
running on the FPGA (developed using Xilinx EDK) that
controls the DES module. More details of the components
in the experimental setup are shown in Fig. 3.
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A. Oscilloscope

The oscilloscope is a Tektronix DPO4032 digital phosphor
oscilloscope whose sampling rate is 2.5G/s on all channels.
A USB 2.0 device port is used for direct PC control of the
oscilloscope using the USBTMC protocol. One probe needle
of the oscilloscope is connected to the trigger output of the
DES module which is running on the FPGA board. The other
probe needle is connected to the ground output of the board.
The ground output of the oscilloscope is also connected to a
resistor whose other end is connected to the true ground of the
oscilloscope. One probe needle connection is shown in Fig. 4.
The Vss pin is the ground of the board. Leakage current will
flow through the resistor load whose two ends are connected
to the probe needles of oscilloscope. The voltage measured
varies with the activity inside the board, which includes the
FPGA chip operation.

B. Host PC

There are two kinds of software running on the host PC.
One is the MATLAB Instrument Control Toolbox [17]. The
other is the Xilinx Embedded Development Kit (EDK). The
MATLAB instrument control toolbox interacts directly with
Tektronix oscilloscopes, enabling users to acquire and analyze
data, graphically visualize data, make custom measurements,
generate reports, and develop automated applications. This can
all be done through the USB port between the host PC and
the oscilloscope. MATLAB itself also can communicate data
with other devices connected to host PC by the serial port.
In our setup, MATLAB sends DES plaintext to the software
controller on the FPGA via the serial port.

C. FPGA Board

The FPGA board contains a Virtex-II Pro XC2VP30 FPGA,
which includes two IBM PowerPC 405 processor cores [18].
The architecture of the PowerPC-based embedded system for
use in running these experiments is shown in Fig. 5. In the
EDK project, we divide the whole system into a hardware
component and a software component. The hardware part
runs in the FPGA logic while the software part runs on the
PPC. The PPC swaps data with the FPGA hardware logic
through the CoreConnect Processor Local Bus (PLB). The data
swapped between the PPC and FPGA logic consists of three
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Fig. 5. Architecture of our target FPGA-based cryptographic system

parts: the DES encryption key, the input plaintext for DES,
and the output for each plaintext and key combination.

D. Comprehensive Operation

Upon system startup, the EDK project code is downloaded
into the FPGA board, including both the hardware and soft-
ware components. The software running on the PPC sits and
waits to receive data from the MATLAB interface, while the
hardware design running in the FPGA user logic is waiting
to receive data from the PLB. The DES key information is
embedded in the EDK code. More precisely, the 56-bit key is
stored in the PPC software. Then it is extended and aligned
to 64 bits and sent to the user logic via PLB.

After initializing all kinds of parameters, the MATLAB
interface sends a plaintext value to the FPGA board via the
serial port. Each plaintext is generated randomly. Although
there exist alternative ways to obtain the plaintext for the
known plaintext DPA attack, in our platform the randomly
produced plaintext is used to simulate the real-world data
encryption source.

The PPC receives the plaintext and transfers it to the user
logic over the PLB. The DES core running in the user logic
has both the key and plaintext. After one DES computation
iteration, the ciphertext is made available at a shared register
location. If necessary, the ciphertext can be read by the
MATLAB interface through the serial port connecting them.
What is more important is the power traces measured by the
oscilloscope. In the MATLAB instrument control toolbox we
wait for enough time (usually more than one DES cycle) to
gather the data from the oscilloscope. We must synchronize
the starting point of the power traces to the starting point of
one DES iteration. The trick is that the rising edge of the
trigger pulse can be aligned with the start of one DES round
as shown in Fig. 6. Accordingly, the starting point of the DES
transition power trace can be located at the rising edge of the
trigger output.



The clock frequency of the Xilinx board is set at 100 MHz.
The time to run one DES round is 10 nanoseconds. The
sampling rate of the oscilloscope is 2.5G/s. Consequently there
are 25 samples we can get from the oscilloscope for each
round. Even though we only use such a small part of the
sampled power trace data, it is on the order of megabytes of
data for each sampling operation. Transferring MBs of data
through the USB port can take several seconds. To make the
attack less time-consuming, the PPC sends m plaintext values
to the DES module running in the FPGA logic. For example,
if the plaintext value sent by the MATLAB interface is p,
the plaintext values used by DES module in one iteration is
p, p+1, p+2, p+3 for m equal to 2. That is, the MATLAB
instrument control toolbox can obtain 16*4 rounds of power
trace data each iteration. For the large number of plaintext
values required by differential power analysis, this can save
quite a bit of attack time. After collecting all of the power trace
data needed, they are saved by the MATLAB interface as a
single large matrix variable. Each row in this matrix contains
the plaintext and its corresponding power trace data. There are
in total N rows and M+1 columns of power trace data.

For each S-box, there are 64 possible input values. For each
input value, we divide the power traces data into two groups
according to the computed value of the first output bit. If the
output bit value is 0, the corresponding power data is put in
group A; otherwise, it is put in group B. Then we calculate the
average difference value between the two the groups. In theory,
as described in Section III, the average power difference graph
with a spike corresponds to the correct subkey. However, in
reality the average power difference cannot be absolutely zero
because N is not infinite. In practice a larger value of N will
give less error and noise in the output. In our experimental
setup, N is equal to ten thousand and M is equal to 25 for
each DES round. Figure 7 shows an average power difference
for the first round of an S-box.

From this graph, we can see that the average power differ-
ence is very small and up to the micro-voltage scale. Thus,
it is extremely difficult to find a spike in such a graph in
reality. To avoid this problem, we adapted the original method
to use the average value of the average difference instead to
find the spike. The average value of the average difference is
calculated and recorded with respect to the related plaintext.
We call such an average value as the score of the input value.
We select the input value with the maximum score value as
the guessed part of the subkey. That is, the part of the subkey
as the input of an S-box is computed as:

max
k=1,2,...,64

1
M

M∑
j=1

(|P̄ j
A − P̄ j

B |) (5)

V. RESULT ANALYSIS

Figure 8 shows the score for the 64 input values. From this
figure, one can recognize the maximum score. Unfortunately,
however, the extracted key is not correct. In order to enlarge
the chance of finding out the right data, we observe the spike

Fig. 6. Power traces for four DES iterations in one trigger pulse period

figures for all 64 possible inputs, but still, no right key was
found in any one of them.

After thoroughly checking our code, the focus of our
concern switched to the board-level circuitry. Eventually, we
discovered that one main reason our DPA attack failed was
because there are a group of decoupling capacitors around
the input of the FPGA internal power supply. Decoupling
capacitors can effectively prevent the internal power supply
from bouncing, which turns out to effectively mask the needed
power leakage information. As a result, the likelihood of
successfully mounting DPA attacks on this specific FPGA
board are largely reduced with the capacitors in place. It is
a general rule that the decoupling capacitors are essential in
maintaining a stable-working high-performance FPGA circuit
with signal and power integrity. In this way, the decoupling
capacitor itself can be a very good preventative method against
a DPA attacker who does not want to physically break the
board.

Another factor that may affect the final result is the noise
introduced by the functionalities, other than the DES core,
which are also running on the FPGA. Due to the time
complexity of collecting and post-processing the power data,
Xilinx EDK was used to automate these steps. However, the
EDK tool itself generates a large number of interface VHDL
codes which are eventually configured into the FPGA board.
Due to the fact that all of the programs are sharing the same
internal logic power supply, these logic modules may also
affect the power leakage traces. As a result, these two inherent
obstacles prevented us from obtaining satisfactory results.

VI. CONCLUSION

We have presented a platform to automatically perform
DPA on a real-world FPGA board. This platform gives us
a systematic view on how to successfully perform the DPA
attack in a practical sense. The efficiency of analysis is critical
to DPA if the attacker wants to break the FPGA cryptographic
system. This requirement comes from two scenarios. Firstly,
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most modern cryptographic algorithms are based on the fact
that they can be broken in theory, but not in practice. For
example, it will take billions of years to break a 256-bit
AES system in a brute-force search. Secondly, the key of
cryptosystem like AES or DES is usually changed after a
variable period of time. The new key is newly negotiated by
the peers in a security protocol like IPSec. From this point
of view, DPA must be able to destroy the cryptosystem in a
limited time range.

Most previous work focuses on using a custom FPGA
board as the target of DPA attack. While it is a great jump
from theory to practice, commercial secure embedded systems
should be the target for all researchers in this area. As the
analysis demonstrated above, the experimental result shows
that the DPA attacks are not as powerful as expected when
facing the commercial FPGA platform due to the decoupling
capacitors. The FPGA board must be physically broken before
successfully applying DPA, making it no longer a passive
attack. The decoupling capacitor is a natural countermeasure.

The last obstacle limiting DPA attacks in from practice is
that there is more than one electrical device on an FPGA board.
In our example, the on-chip PPC processor also participated
in the power consumption. Other on-board components may
overwhelm the power consumed by the reconfigurable logic.
It is also likely that there would be more than one module
concurrently running on the FPGA. All of this leads to a DPA
attack being difficult and expensive to perform on this kind of
system. How to solve these challenges in a demonstrable way
is still a topic which deserves further research.
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