
AC 2012-4981: EXPOSING HIGH SCHOOL STUDENTS TO CONCUR-
RENT PROGRAMMING PRINCIPLES USING VIDEO GAME SCRIPT-
ING ENGINES

Mr. Michael Steffen, Iowa State University

Michael Steffen is a Ph.D. candidate in computer engineering and NSF graduate research fellow. His
research interests include computer architecture, graphics hardware, computer graphics and embedded
systems, and specifically he focuses on improving SIMT processor thread efficiency using a mixture of
custom architectures and programming models. He received a B.S, degrees in both mechanical engineer-
ing and electrical engineering from Valparaiso University in 2007.

Prof. Joseph Zambreno, Iowa State University

Joseph Zambreno has been with the Department of Electrical and Computer Engineering at Iowa State
University since 2006, where he is currently an Assistant Professor. Prior to joining ISU, he was at North-
western University in Evanston, Ill., where he graduated with his Ph.D. degree in electrical and computer
engineering in 2006, his M.S. degree in electrical and computer engineering in 2002, and his B.S. degree
summa cum laude in computer engineering in 2001. While at Northwestern University, Zambreno was
a recipient of a National Science Foundation Graduate Research Fellowship, a Northwestern University
Graduate School Fellowship, a Walter P. Murphy Fellowship, and the EECS department Best Dissertation
Award for his Ph.D. dissertation titled ”Compiler and Architectural Approaches to Software Protection
and Security.”

c©American Society for Engineering Education, 2012

P
age 25.623.1



Exposing High School Students to Concurrent

Programming Principles using Video Game

Scripting Engines

Abstract

Introducing programming using an imperative language often requires a steep learning curve due

to the significant emphasis and corresponding time commitment placed on a particular language’s

syntax and semantics. This paper presents two separate video game scripting engines focusing on

nurturing computational skills that can be explored in as little as one hour. Scripting engines run

code developed by students to control four concurrent players on a team; up to four teams (four

different code scripts) can play in a head-to-head competition. To achieve a quick learning curve,

the scripting engine only supports a limited number of instructions to define initial player

qualities, movements, and game actions. Students are faced with the computational thinking

challenge of mapping their game strategies into code. Successful strategies require teams to

appreciate the complexities of concurrent programming to control all game players

simultaneously. We have observed that students quickly learn that writing code for all team

players individually does not result in a competitive match, but requires a mixture of collaboration

and parallel programming to be competitive in a short amount of time. The need for more

advanced control flow semantics are also motivated, since students must rewrite similar code for

performing similar routines through the game simulation. The video game scripting engines have

been used in two high school outreach programs and results from these events indicate that the

learning objectives were met and students were engaged in the activities the entire duration by

modifying their code to be more competitive. Lessons learned from the first scripting engine

(Dodgeball) that went into creating the second engine (Boomtown) are also presented.

I. Introduction

With the rapid development of computing technology in consumer products, users have become

familiar with computing capabilities and performance. While consumers have taken to utilizing

computing technology, the majority know nothing of the development of these devices. While this

disconnect is fine for consumers, it can cause problems for students who are being exposed to

computer programming for the first time. Introductory programming courses spend a majority of

their time covering the syntax and semantics of a specific programming language. While this

knowledge is required to become proficient in computer programming, this learning method can

be frustrating for introductory computer programming students, since programming semantics are

usually very specific and initially difficult to understand. In addition, the outcome of a

semester-long class does not always fulfill the students’ expectations of creating useful or fun

applications.

For use in an introduction to computer programming environment, we have created two separate

scripting languages designed to teach students computational thinking and concurrent

programming skills. The scripting language controls four concurrent players on a team in a video

P
age 25.623.2



�
�
�
�
��

�
�
�
�
��

������

������

�

	

�

	

�

	

�

	

Figure 1: Our first video game playing field (Dodgeball), where students control four concurrent

players on a team using a custom scripting language.

game where teams can play in a head-to-head competition. Both of the scripting languages are

specifically for their video game. A limited number of instructions are implemented for

controlling initial player status, position and game actions. By using a limited number of

instructions, the challenge for students is coding up a game strategy and working efficiently in

teams, rather than learning syntax. When student code is executed, a simulation of the video

game is also displayed on the monitor for students to watch, keeping them engaged and connected

to their familiar experiences with interactive applications. Ultimately, the intended goal for these

scripting engines are to get students with no coding experience excited about computer

programming by introducing computational thinking problems, rather than bogging them down

with coding semantics.

Both video game scripting engines have been used during two separate high school outreach

programs. Students were able to pick up on the coding method and implement competitive

strategies in as little as one hour. In addition, students as young as sixth grade have been able to

implement their own strategies using our scripting language.

P
age 25.623.3



The remainder of this paper is organized as follows: Section II presents a brief overview of

related environments used to teach computer programming. Section III describes both of our

scripting engines and provides details about the video games implemented. Sample students

implementations are shown in Section IV, and Section V presents lessons learned from our first

game engine. Section VI concludes the paper with a discussion of planned future work.

II. Related Applications

Mindstorms4 are a LEGO-based construction kit that allows for students to build and program

simple robots. LEGO Mindstorms is targeted for kids aged ten years and older, and supports

multiple programming languages from conventional text-based to graphical flow charts. A wide

range of motors and sensors are available, allowing for a large variety of projects and coding

challenges.

Alice 3D1 is a programming environment that allows students to create 3D applications. Students

can use Alice 3D to tell stories, create games and produce movies. Programming in Alice 3D uses

a graphical interface, where students drag-and-drop instructions, objects and actions into their

application scene. By using a graphical interface that allows drag-and-drop of instructions,

students are not weighed down by language syntax. MIT Scratch2 is another environment for

creating videos and games using a drag-and-drop programming method. Processing3 is another

programming language for teaching programming concepts using a visual style. Students develop

applications used to generate artistic scenes and simple games.

These examples provide a wide variety of functionality for people interested in learning how to

program, but can require some time (on the order of hours for Alice and Scratch, and days for

Mindstorms and Processing) before introductory students can become proficient enough to create

their own interesting designs.

III. Video Game Scripting Engine Framework

Both video game scripting languages interface with video game environments consisting of 2D

playing fields, four team members and a total of four teams. Figure 1 shows our first video game

(Dodgeball) in action. The major differences between the two engines are the video games

being played, requiring different game action instructions and display engines.

Students first develop their application using a text editor to control one team. Each source code

file controls instructions for four players on the same team. The code to control a single player is

broken down into two parts: an initialization instruction and instructions executed during the

actual game play. The first instruction for every team member must be an initialization function

(similar to allocating a variable). The initialization instruction takes a single argument that defines

the type of player. Multiple pre-defined player types can be chosen, each with different strengths

and weaknesses. After the initialization is processed, the game starts, and player instructions are

executed sequentially. Once the current instruction for a player is completed, the next instruction

is executed. To simplify the programming model, no control flow instructions are supported (e.g.

P
age 25.623.4



Student 

Application 

Development

TXT

File

Syntax 

Checking

Player Parsing

P1 P2 P3 P4

Game 

Simulator

Display

Engine

Empty

Scripting 

Engine

Tournament
Scripting Engine

Syntax Error

Logic Error

Completed Code

Figure 2: General development flow for students programming our video game scripting engines.

if/else, loop, goto), and there are no instructions that allow teams to know the status of any other

player.

The scripting engines allows up to four team scripts to be combined in a head-to-head

competition, requiring different starting locations on the playing field. To allow for the scripting

strategies to be position-independent, the game board is symmetric across the two forty-five

degree symmetric lines. In addition, all commands are relevant to the starting coordinates.

Starting coordinates for each team’s starting location are positioned such that the same strategy is

executed.

The script is then simulated by running the executable for the scripting engine, which is

composed of three parts: compiler, game simulation engine and graphics rendering engine.

Figure 2 illustrates the student script development process, from initial development to execution

of finished scripts in a head-to-head competition. The compiler reads up to 4 script files (one for

each of the teams) and checks for syntax errors. Because only a limited number of instructions are

supported, compiler error messages attempt to be as specific as possible, and provide example

valid syntax for many common problems. Once the syntax check is finished, each of the team

codes are divided into individual player codes that are fed to the concurrent game engine

processors.

P
age 25.623.5



Table 1: Different player types for the Dodgeball scripting engine

Player Types

Name Speed Time between throws Catch Angle Max Catch

Attacker Fast Cheetah 20 2

Defender Fast Moderate 60 4

Enforcer Moderate Moderate 20 1

Goalie Moderate Moderate 90 3

Sprinter Cheetah Fast 20 2

Pest Slow Slow 140 8

Captain Fast Fast 20 3

The game simulation engine keeps track of all player states and applies the rules of the game. The

simulation engine also keeps track of the score in real-time and disables individual player

processors when game actions force them out of the game. While the simulation is running, the

display engine renders the playing field with all players and the current score. The visual display

allows students to debug their code by following a player in the display and referring to their

source code. The game simulation can be played at a normal speed, paused, or have the time

incremented by a small amount for every key press.

III.A. Dodgeball Game Engine

In Dodgeball, the first video game scripting engine, students control the 2D position of the

player in a gym, including their orientation (direction facing), and state (either throwing a ball or

catching). Teams receive a point for every opposing team member they hit with one of their balls

and also for every ball they catch thrown by an opposing team. If a player is hit or their ball was

caught, they are out of the game for the current round (no longer able to execute instructions). If a

ball thrown by a player’s team hits another member of the same team, the team member hit is out

and that team loses a point. Each team starts with twenty-five balls that are shared among all team

members. To increase the likelihood of balls hitting players in the open field, balls are allowed to

bounce off walls (including the bounding walls), where the number of bounces is set by a

parameter of the different dodgeball players students can select from.

When implementing a strategy, students must decide on the type of dodgeball players to use and

how they should play the game. Table 1 shows the different dodgeball player types and Table 2

shows the instructions they can use. A sample program is shown in Algorithm 1. In this program,

a Captain dodgeball player is defined. When the game starts the player moves to the 10,10 cell in

the playing field. The origin of the coordinate system is determined by the starting location (see

Figure 1). Then the player turns 45 degrees to the left and throws a ball. Degree angles are

absolute angles such that 180 degrees is parallel to the positive X axis of the coordinate system.

After that move, the player turns 90 degrees to its right and goes into catch mode, now being able

to catch a ball that would hit this player if it comes in at the right angle.

P
age 25.623.6



Table 2: The instructions for the Dodgeball scripting engine

Dodgeball Instructions

Syntax: P[Player Number].[Instruction] {Arguments}
Instruction Arguments Description

Create Player Type Creates a player

Move X,Y Position Moves player around the game field

Turn Angle (Deg) Rotates the player to face a new direction

Throw None Throw a ball in the direction the player is facing

Defend Time (Sec) Player waits to catch a ball

Algorithm 1 Example script for Dodgeball

1: P1.Create Captain

2: P1.Move 10 10

3: P1.Turn 135

4: P1.Throw

5: P1.Turn 225

6: P1.Defend 500

III.B. Boomtown Game Engine

The second scripting engine is named Boomtown (Figure 3). Students move players around on a

2D playing field. Players can drop bombs onto the playing field that explode after a set amount of

time. Bombs explode a set amount of spaces in the vertical and horizontal direction. Any player

that is in the range of the bomb is out (cannot execute code). Similar to the Dodgeball

example, a point is won for every opponent team member hit by one of the players team’s bombs,

and a point is lost for every team member hit by one of the player team’s bombs.

Students have multiple options for implementing a strategy from the different types of player

characteristics and instructions they can use (see Tables 3 and 4). Instead of using absolute values

for movement and orientation, relative values are used. Movement values are limited to whole

numbers and orientation only allows left, right and reverse direction changes. To allow for

independent starting positions, the game field is also required to be symmetric across the two 45

Table 3: Different player types for the Boomtown scripting engine

Player Types

Name Speed Bomb Radius Bombs Safe From Team Bomb

Captain Default Default Default False

Punter Slow Default Less False

Stretcher Slow Big Default False

Safety Default Small Less True

Sprinter Fastest Default Less False

Hoarder Slowest Default Most False

Hulk Slow Default More False

P
age 25.623.7



������ ������

������ �����	

Figure 3: The second video game playing field where student control four concurrent players on a

team using a custom scripting language.

degree symmetric lines and starting location and orientation.

Algorithm 2 shows a sample program for Boomtown. In this example, a stretcher character is

defined. The player moves forward three spaces, turns left, moves forward two spaces, drops a

bomb, turns right, and then moves forward six spaces. The bomb exploded while the player is in

the process of the last move instruction, but the player has moved enough spaces away from the

bomb to avoid the explosion.

III.C. Concurrent Programming

One learning objective of the scripting engines is for students to learn the challenges of

implementing their ideas in code, rather than struggling with complex syntax. The computational

thinking skills used for the scripting languages focus on students developing a strategy and then

transferring that into code. To keep students challenged with implementing different strategies,

the playing field can be customized. Customizing the playing field for both scripting engines

involves changing wall locations, creating alternate playing fields and adding or removing

obstacles. Concurrent programming is introduced by having four independent players per team.

While the code for all players is in a single file, each player code is executed in parallel. This

P
age 25.623.8



Table 4: The instructions for the Boomtown scripting engine

Boomtown Instructions

Syntax: P[Player Number].[Instruction] {Arguments}
Instruction Arguments Description

Create Player Type Creates a player

Left None Turn to face left of current orientation

Right None Turn to face right of current orientation

Reverse None Turn to face the opposite direction

Move Number of Spaces Move the player forward

Drop None Drop a bomb at current position

Wait Time (Sec) Player does not move for time specified

Algorithm 2 Example script for Boomtown

1: # Define player 1

2: P1.Create Stretcher

3: P1.Move 3

4: P1.Left

5: P1.Move 2

6: # Drop a bomb

7: P1.Drop

8: P1.Right

9: P1.Move 6

allows up to four instructions to be executed for a team at one time. The location inside the code

for each team player is not relative, allowing code for specific players to be grouped together in

the source code (allowing for easier copy and paste from programmers working in parallel on

different team players) or interleaved for better understanding of how two players may move in

parallel. To help stress the importance of communication with concurrent programming, game

actions used for increasing a team’s score when encountered by other teams will decrease the

team score if the action encounters someone from your own team. This requires students to not

only understand the complexity of working efficiently (coding team players in parallel), but also

having to stay in communication so players on the same team do not disrupt one another.

IV. Example Student Results

Both scripting engines have been used in separate high school outreach events.5 For both events,

approximately forty students participated in ten groups of four students each. The teams were

provided with a sample program and handout describing the scripting language and how to run

the application, along with the game engine configuration file. Students had one hour to become

familiar with the scripting engine language and implement a strategy. Then a round-robin

tournament was held. The round-robin tournament gave students the opportunity to study other

team’s strategies, evaluate their standing against other teams, and make changes to their code

before competing in an elimination tournament. The results of the round-robin tournament were

then used to create a tournament bracket. Each round of the tournament bracket used a different

P
age 25.623.9



Figure 4: A strategy that used the four concurrent players to cover as much of the playing field as

possible.

scripting engine configuration. Students had an additional thirty minutes to implement a strategy

if they passed to the next tournament round.

In our first example (from the Boomtown competition), a student team used the four concurrent

players to place bombs in locations that completely covered the playing field (see Figure 4). This

strategy divided the playing field into four sections, moving one of the players to each section.

The players then moved from top to bottom, evenly distributing bombs along the way. This team

selected the optimal players for speed, number of bombs and the bomb explosion width. In this

strategy, the team had a large coverage of the field, but any players missed in this single attack

could not be attacked again.

In the second example, a student team used three of their players in an attempt to create a wall of

explosions, such that any player entering that area would have a high chance of being hit. The

team positioned their players (see Figure 5) for the wall, dropped a bomb, and then moved back to

a safe spot. This strategy was continually repeated until they ran out of bombs. The fourth player

was a safety player that continually dropped bombs in the starting position. After the round-robin

tournament, students noticed that a majority of the teams sent players to the starting position of

other teams to score points off players that did not move far. Teams later countered this strategy

by keeping a player in the starting location to continually drop defensive bombs.

In both strategies presented, students realized that they were re-using part of their code over and

over again. While they were able to use copy-and-paste methods, they realized that looping

constructs (e.g. for/while) would be beneficial and time saving.

P
age 25.623.10



Figure 5: A defensive strategy that used four concurrent players to create a wall to hit any ap-

proaching opponent players.

In addition to high school students, multiple undergraduate classes have also used and help

develop the scripting engines. A senior level computer architecture course was used to stress test

the scripting engines during development in a way that taught students about designing tests for

stressing their own designs and also creating tests that simplify debugging logic errors. A

freshman-level introduction to programming course also used the source code for the scripting

engine to connect what students have learned to a more complex distributed application, allowing

them to add their own features to the scripting engines.

V. Lessons Learned

The second scripting engine (Boomtown) was created after the first outreach program using

Dodgeball. During this event, we observed some areas that could be improved to increase

student learning. First, the flexibility in the syntax checker was improved to generate more helpful

syntax error messages. These improvements gave students an easier time debugging their own

syntax errors, allowing them to pay less attention to the syntax rules.

The second observation was to implement a second video game that allowed for more complex

strategies, and therefore more intentional coding. Observations made from Dodgeball showed

that successful strategies were ones where students just threw as many balls in random directions

as possible. The only challenging part was for students to make sure that the balls thrown did not

hit their own team members. In the development of Boomtown, a key design element was to

improve on strategy planning. Consequently in Boomtown, game actions (such as bombs

exploding) take place in only small areas of the playing field, unlike throwing balls that can go all

P
age 25.623.11



over the playing field. This required students to move their players around the playing field and be

selective on their game actions. As a result, we noticed more elaborate game strategies

implemented in Boomtown than in Dodgeball.

After the second outreach event using Boomtown, additional opportunities for improvements

have been discovered. Current implementations require students to develop their code in a

separate file and then open it in the scripting engine. Developing an Integrated Development

Environment (IDE) will streamline debugging and running programs. Debugging logic errors are

also difficult since there is limited correlation between the source code and game simulation.

Further debugging options that address these problems will be implemented in future scripting

engines.

VI. Conclusion

This paper presents a framework for video game scripting engines designed as an introduction to

computer programming. Students, with little to no experience in programming, write code using a

limited set of instructions to control game characters in a head-to-head video game competition.

Since only a few instructions are available, students quickly learn the language syntax and

semantics and are able to focus their time on computational thinking skills. In our example

scripting languages, students are faced with the challenge of implementing a game strategy in

code. For students to have a competitive strategy, they must understand the challenges of team

programming and concurrent programming. The scripting languages have been used in high

school outreach programs where we have observed students successfully understanding the

challenges of working on concurrent programming to implement competitive strategies. Students’

written comments from the outreach event regarding the scripting engines were positive and

enthusiastic. Several students even requested copies of the scripting engine. School children as

young as sixth grade have also been able to develop strategies using the scripting engines. Both

the Dodgeball and Boomtown video game scripting engines are available for download at our

research group’s website.6

References

[1] Matthew Conway, Randy Pausch, Rich Gossweiler and Tommy Burnette. “Alice: A Rapid Prototyping

System for Building Virtual Environments”. IEEE Computer Graphics and Applications, vol. 15,

pages 8-11, 1994.

[2] John Maloney, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman and Mitche Resnick. “Scratch:

A Sneak Preview”. Proceedings of the Second International Conference on Creating, Connecting and

Collaborating through Computing. 2004.

[3] Casey Reas, Ben Fry. Getting Started with Processing. Make, 2010.

[4] Dave Baum. Definitive Guide to LEGO MINDSTORMS. Apress, 2002.

P
age 25.623.12



[5] Julie Rursch, Andy Luse, Doug Jacobson. “IT-Adventures – A Program to Spark IT Interest in High

School Students using Inquiry-Based Learning with Robotics, Game Design, and Cyber Defense”.

IEEE Transactions on Education, Vol. 53, Issue 1, pages 71-79, 2009.

[6] Reconfigurable Computing Laboratory, Iowa State University,

http://rcl.ece.iastate.edu/

P
age 25.623.13


