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Abstract—Attacks on software systems are an increasingly
serious problem from an economic and security standpoint. Many
techniques have been proposed ranging from simple compiler
modifications to full-scale re-engineering of computer systems
architecture aimed at attack detection. Traditional techniques
ignore the arguably more important problem of graceful recov-
ery. Without recovery, even a successful attack detection can be-
come an effective Denial-of-Service. We propose an architectural
approach to attack detection and recovery called rollback and
huddle that monitors a program’s execution with a lightweight
attack-detection module while continuously checkpointing the
system state. In the case of an attack, the program state
is rolled back to a time before the attack occurred and an
additional module is loaded to identify the source of the attack,
repair the original vulnerability, and prevent future attacks. The
simple hardware modules work alongside a standard computer
architecture and aid in attack detection, checkpoint creation,
and attack recovery. Experimental results show minimal run-
time overhead and resource utilization.

I. INTRODUCTION

Significant financial damage has been caused by Trojans,

worms, and other varieties of malware. At the root of most

malware is a software vulnerability such as a overflowable

buffer. In extreme cases, an attacker can gain complete control

of a system over the network without having physical access to

the user’s machine. In the traditional software cycle, patches

are released retroactively for vulnerable software. Not only

does this miss the initial damage caused by an exploit, but it

can be difficult to ensure compliance in applying the patches

to the software. In the end, this methodology leads to a back-

and-forth struggle between software vendors and attackers.

Researchers have attempted to detect and prevent attacks

against vulnerable software with varied approaches, ranging

from simple compiler modifications to fundamental changes

in processor architecture. While many of these schemes have

shown to be effective at detecting attacks, they commonly

terminate execution of the vulnerable program to prevent

further progress of the attacks. By terminating execution of

the attacked service, an effective Denial-of-Service (DoS) is

created. While this is sufficient in some situations, a deployed

embedded system lacking the ability and feasibility of direct

human interaction, requires an effective recovery scheme in

order to harden itself from attacks.

Our work attempts to bridge the gap between the traditional

software patching model and current protective schemes. In

our approach, rollback and huddle, we combine attack de-

tection and system checkpointing to create an environment

that avoids system down-time in the case of an attack and

instantly patches vulnerable software, thus preventing future

attacks. Figure 1 illustrates the basic concepts of our system.

A lightweight security mechanism continuously operates with

minimal performance overhead and periodic checkpoints are

recorded during execution that allow a program’s state to be

gracefully recovered. If this initial scheme detects that an

attack has occurred, the program is “rolled back” to a previous

state and the software is inspected for vulnerabilities. Vulner-

able instruction sequences are replaced by secure equivalents

(the “huddle” part), effectively patching the compromised

program and preventing repeat attacks.

As will be explained in Section IV, we introduce some

non-intrusive architectural features to support our proposed

approach. A Hardware Checkpoint Unit (HCU) snoops off-

chip memory accesses in order to log checkpoints and perform

rollback operations. Initial continuous security monitoring is

accomplished through the Lightweight Protection Unit (LPU),

which performs function-level verification. A Heavyweight

Protection Unit (HPU) stores a number of generic instruction

sequences which it uses to create specific patches for vulner-

able programs after rollback. Our simulation results show that

the lightweight monitoring and continuous checkpointing add

an average of less than 10% performance overhead to a variety

of benchmarks.

The remainder of this paper is organized as follows. In

Section 2 we provide an overview of related research in the

fields of hardware-supported checkpointing and software pro-

tection. Section 3 describes our conceptual approach in more

detail. In Section 4 we outline the architectural features of

our approach and in Section 5 we present experimental results

detailing the performance overhead of these features and their

effectiveness against real world vulnerabilities. Finally, the

paper is concluded in Section 6 with a look toward planned

future efforts in this project.

II. RELATED WORK

Work related to our approach falls into two distinct cate-

gories: attack detection schemes in the security domain and

checkpoint and rollback schemes in the fault tolerance and
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Fig. 1. (a) Typical schemes cause an anomaly in function E to halt the
program.(b) Our approach rolls back the program to a safe state. (c) It restarts
execution with extra safety checks in place.

software debugging domain. Our approach meshes ideas from

both domains to provide a more resilient protection.

A. Attack Detection and Prevention

Encrypted Encryption: Several approaches focus on ar-

chitectural support for encrypted execution and storage. [10]

introduces eXecute-Only Memory, or XOM, which provides

a mechanism for cryptographic separation of instruction and

data-memory space. Yang et al. [25] introduce a more efficient

implementation of XOM by moving the encryption process

off of the critical path. PointGuard [3] is a compiler-based

approach that encrypts all pointers in memory, later improved

by Tuck et al. [21] by providing hardware support to reduce

overhead and by increasing the complexity of encryption to

extend security features. An in-depth discussion of the benefits

and limitations of encrypted execution platforms can be found

in [27].

Instruction and Data Flow Enforcement: A common

theme in preventing software attacks is the use of a modified

or secondary stack to enforce a security policy. For example,

SmashGuard [14] uses additional hardware functionality to

intercept function calls and returns to manage its own hardware

stack. In [15], the Return Address Stack (RAS) is modified

to provide a software-transparent defense against buffer over-

flows. While these stack-based approaches have been shown to

be insufficient to protect against all attacks [23], the low per-

formance overheads and modest hardware requirements make

hardware stack protection an ideal candidate for a lightweight

protection scheme in our approach. Software techniques such

as StackGuard [4] and CFI [1] can also be effective but their

performance overheads tend to be considerably higher.

Many software attacks originate in data from spurious

sources which disrupt program flow. Minos [5] is an ar-

chitectural approach that tags input from untrusted sources

with an integrity bit that guards program flow accordingly.

A similar approach is presented in [20] where the operating

system is modified to tag I/O from spurious sources. Program

Shepherding [9] dynamically instruments programs to enforce

security policies which preserve the intended flow of the

program. A related family of approaches exist that rely on

static analysis to enforce program flow [7], [8], [17], [22].

While our approach shares little in common with these static

schemes, we follow a similar security model for enforcing

program flow.

B. Checkpoint and Rollback

Attack recovery is made possible in our scheme by check-

pointing execution and rolling back to a previous state. Once

execution is logged, it can be replayed off-line for the purposes

of debugging or rolled back and re-executed to recover from

errors caused by an attack. While the concept of checkpoint

and rollback began in the domains of fault tolerance and

debugging, it is receiving more attention in the software

security and attack recovery domains.

Fault Tolerance and Software Debugging: Our check-

pointing scheme is loosely based on FDR [24] which itself

can be traced back to SafetyNet [19]. SafetyNet was designed

to handle faults in shared-memory multiprocessor systems by

using hardware checkpoint logs in the processor’s cache as

well as main memory to log writes. FDR expanded the logging

found in SafetyNet to include system I/O, DMA transfers and

memory races, and added LZ77 hardware for compression.

Also stemming from FDR is BugNet [13] which logs program

execution so that it can be deterministically replayed off-line

once a bug in encountered. ReVive [16] is an approach to

multi-processor fault tolerance, where in addition to logging,

memory is supplemented with parity information to recover

from a loss of data. Recent innovations in this area have

focused on replay efficiency [11], [12].

Security and Attack Recovery: ExecRecorder [6] is a

Virtual Machine-based checkpointing scheme with a log-based

recovery mechanism in conjunction with an intrusion-detection

system and post-attack analysis tools. Like our approach,

replay is signaled by an attack-detection mechanism, but where

ExecRecorder operates at the Virtual Machine layer and uses

off-line replaying for attack analysis, our approach works with

the native architecture and uses on-line rollback.

DIRA [18] is an approach similar to our idea of heavyweight

protection. In DIRA, execution is checkpointed and rolled

back after attack detection attempting to identify the source

of the attack and repair itself. However, it suffers from

substantial run-time overhead in many benchmarks. In our

approach, we avoid the additional overhead by implementing

the identification and repair mechanisms only after an attack

has been detected.

III. CONCEPTUAL APPROACH

In this section, we present a high-level overview of our

approach consisting of three parts: Lightweight Protection Unit

(LPU), Hardware Checkpoint Unit (HCU) and Heavyweight

Protection Unit (HPU). Figure 2 shows the interaction between

traditional hardware units and our augmentation while later

sections cover implementation details in more depth.

A. Lightweight Protection

Initially, a lightweight attack detection mechanism monitors

program execution. This is not dependent on one specific



method for attack detection and in practice many of the

schemes mentioned in Section II-A could provide its basis.

Our emphasis during this phase is on minimizing performance

overhead and protecting against the most common forms of

attacks. Considering this, we will focus on a lightweight

protection mechanism similar to StackGuard [4] and its evolu-

tionary replacement, PointGuard [3]. At process creation time,

a random key is generated and subsequently used to encrypt

and decrypt function return addresses during each function call

and return. Even if an attacker overwrites the return address,

the decrypted value of the overwritten return address cannot

be predicted. This will cause the function to crash when it

tries to return to a random location. In our approach, we use

this as a sign that an attack has occurred signaling the system

to go into rollback mode.

B. Checkpoint and Rollback

In order to recover from the initial attack, execution is

checkpointed so that the compromised program can revert

its state to a point in time before the attack occurred. A

checkpoint is the precise system state including the CPU

and memory state at a specific point in time. A checkpoint

interval is the execution time between checkpoints. Longer

checkpoint intervals lead to greater rollback lengths, but a

finer granularity of error can be corrected with shorter, more

“precise” checkpoint intervals. The balance between the two

is implementation specific and our scheme follows that of

SafetyNet [19].

Both the CPU state and memory need to be saved to

construct an accurate system snapshot. At the beginning of

the checkpoint is the CPU state consisting of register values

and the program counter (PC). Memory writes cause the value

being overwritten to be logged the first time that a memory

address is written during a checkpoint interval so that the

state of the program can be restored to what it was at the

beginning of the checkpoint interval. The current checkpoint

interval ends when the memory log is filled.

Rollback, the inverse of checkpointing, occurs when the

lightweight detection scheme detects an attack. During roll-

back, the damage of the attack is nullified and the program

restored to a safe state before the attack occurred. Rolling back

a single checkpoint interval is performed by writing back the

memory values in the checkpoint log. Subsequent checkpoint

intervals are rolled back iteratively until the log containing the

compromised return address has been rolled back. Finally, the

register values of the CPU are restored to the CPU state saved

in the last rolled back checkpoint log.

In our approach, each process is monitored and check-

pointed separately so that a compromised process will not

disrupt other processes. This is in contrast to many check-

point and rollback recovery mechanisms that do full-system

recording of all the active processes and system I/O which are

later rolled back together. A full-system recording model is

appropriate for debugging purposes but may be overzealous

when considering application attack and rollback scenarios.
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Fig. 2. Architectural overview

C. Heavyweight Monitoring

Once a program has been rolled back to a safe state, the

attack can be repeated if no changes are made to the executing

program. This leads us to the final phase of our approach:

heavyweight monitoring.

Many software vulnerabilities follow similar patterns such

as iterating over a buffer without bounds checking or using

unsafe library functions such as strcpy that do not con-

sider source and destination sizes. Heavyweight monitoring

identifies the root of the attack and replaces the vulnerable

instruction sequence with a safe version that may, for instance,

perform bounds checking before the buffer is written.

Code replacement is performed through Configurable Code

Replacement Templates (CCRTs) which are parameterized

patch templates used to create a specific patch. Modifying a

program’s binary to incorporate these patches is a non-trivial

task. Safe instruction sequences are larger than their unsafe

counterparts and cannot simply replace existing instructions.

Instead, the patch is appended to the end of the program’s

binary and the unsafe instruction sequence is replaced with a

jump to the safe sequence. Once the safe sequence is executed,

the program jumps back to the instruction following the unsafe

sequence and resumes execution.

D. Limitations

Currently the issue of gracefully handling I/O with regards

to checkpointing and rollback is an open problem due to

the on-line nature of replay in our scheme. Approaches that

attempt to provide off-line deterministic replay of execution

must log I/O. However, the goal of our checkpointing scheme

is not to provide deterministic replay; instead, rollback is used

to nullify the damage of an attack. Presently, we follow the

latter model and choose not to log I/O directly, but further

studies into the effects of logging and rolling back I/O are left

for future work.

Our approach assumes a single-core processor with a write-

through memory model. Accommodating a write-back cache

requires additional logging at the cache level, similar to what is
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used for logging main memory. Likewise, supporting a multi-

core processor requires additional logging mechanisms to store

memory race conditions between cores. Both of these cases are

handled in [19] and [24] but their application to our research

is left for future work.

IV. ARCHITECTURAL IMPLEMENTATION

In this section, we outline the implementation details of the

additional architectural features that enable rollback and hud-

dle. Hardware modules include a Lightweight Protection Unit

(LPU), Hardware Checkpoint Unit (HCU), and Heavyweight

Protection Unit (HPU). These additional hardware features are

non-intrusive and integrate into a standard computer architec-

ture. Our hardware is designed to minimize the performance

impact during standard execution, as well as minimize the total

storage footprint required for checkpointing, both of which

aid in the constant resource usage constraints of embedded

systems.

A. Lightweight Protection Unit

The Lightweight Protection Unit (LPU) is based on the de-

sign introduced in [21] which implements a hardware version

of PointGuard [3]. Two instructions are added to the ISA: an

encrypting store and decrypting load that XOR the random

key generated at process creation with the return address

being stored or loaded. This approach requires recompilation

or binary modification of the target application to augment

call instructions with the encrypting store and return

instructions with the decrypting load instruction. Meanwhile

each time the LPU decrypts a return address, it stores the

encrypted address until the next decryption. If an attacker

attempts to overwrite the return address, the program returns

to a random location since the unencrypted return address

is unencrypted to a garbage value. When this happens, an

exception is thrown, the system is stalled and the LPU passes

TABLE I
SIMULATOR CONFIGURATION

Functional 2 ALU + 2 FPU
Units 2 Load / Store Units

Pipeline 64-bit, 11 stages

ROB 128 entries

L1 I-Cache 32 KB, 4-way set associative
1 cycle latency

L1 D-Cache 16 KB, 4-way set associative
1 cycle latency

L2 Cache 256 KB, 16-way set associative
6 cycle latency

L3 Cache 4 MB, 32-way set associative
16 cycle latency

Cache Block Size 64 bytes (8 words)

Main Memory 140 cycle latency

the original encrypted address to the HCU so that it can

determine how far to rollback execution. This process is

detailed in Section IV-B.

In this approach, an attacker cannot read the LPU’s key

directly, however, if an adversary is able to exploit a “read

attack” addressed in [21] it is trivial to deduce the key and

modify the attack accordingly. We do not defend against such

attacks, but a more secure encryption could be substituted for

the XOR in order to provide a better defense at the cost of

increased runtime overhead.

B. Hardware Checkpoint Unit

The Hardware Checkpoint Unit (HCU) provides the system

with checkpoint and rollback capabilities. The HCU requires

direct access to the main memory bus and implementation

can take the form of either a standalone module plugged into

the system or a modified memory controller. It is designed

to optimize the relatively common case of logging memory

addresses.

Figure 3 shows the HCU with a high-level view of how

logging works. The HCU itself consists of a basic logic

controller and internal memory. The HCU logs memory writes

for the current checkpoint interval while keeping past check-

points in a circular buffer of reserved memory such that

new checkpoints overwrite the oldest checkpoint. The internal

memory, a Content Addressable Memory (CAM), must be

large enough to store each address of the current memory

log. It is used to store the memory addresses that have been

logged during the current interval and is flushed when a new

checkpoint is created. The CAM can quickly check if an

address has been logged during the current checkpoint interval

for each write to main memory. In this way, the address is

stored in both the memory log for rollback and the CAM for

quick access.

The HCU contains simple control logic to keep track of the

current checkpoint log. When the memory log is filled, the end

of the current checkpoint interval, the HCU stalls the CPU,

flushes the CAM and finds the location of the next checkpoint

log in memory. The fixed size of checkpoint logs allows the

HCU to find the next checkpoint log without explicitly storing

its location. The controller saves the register state of the CPU



TABLE II
MAXIMUM CYCLES (MILLIONS) ROLLED BACK

Entries 512 256 128 64 32
Checkpoints 8 16 32 64 128

gzip 3.913 3.807 3.752 3.683 3.540

vpr 198.0 1.130 0.824 0.638 0.534

gcc 11.68 6.980 6.176 5.008 4.070

mcf 0.961 0.953 0.943 0.938 0.820

crafty 12.71 10.94 7.737 3.328 0.846

eon 269.5 52.39 19.50 1.122 0.599

bzip2 25.01 24.40 23.66 21.76 18.23

twolf 1.527 1.462 1.366 1.227 1.106

perlbmk 12.40 10.12 6.241 1.396 1.146

parser 10.21 9.063 6.912 4.588 2.763

gap 5.927 5.070 3.805 2.286 1.342

vortex 9.986 6.457 3.198 2.818 1.980

in the current checkpoint log and then allows execution to

resume.

Various memory parameters can be tuned for a variety of

metrics. First, the memory log granularity can be as fine as

the byte level leading to greater storage overhead or as coarse

as the memory-page level leading to lesser log utilization.

Two realistic choices are logging at the word level or at

the cache-block level. Low log utilization can lead to more

frequent checkpoints and thus decrease performance due to

excess checkpoint creation. We choose to focus on logging

memory at the cache-block level in order to keep the CAM in

the HCU at a reasonable size.

Secondly, the size of each checkpoint log and the number

of checkpoint logs can vary. A larger memory log with more

entries will allow for a longer checkpoint interval and decrease

the performance penalty due to checkpoint creation. But, not

only does the larger memory usage incur a greater cost, it also

reduces the precision of rolling back to a particular point.

When an attack is detected, the HCU enters rollback mode.

The LPU sends the HCU the encrypted value of the last return

address that was used. Starting with the current checkpoint log,

the HCU writes back the memory values from the memory

logs continuing until it finds the failed return address. When

the HCU completes the memory write-back process, it restores

the CPU register state to that of the final checkpoint log. If

all of the checkpoint logs are exhausted without finding the

return address, the HCU throws an exception and the system

terminates execution of the compromised program.

C. Heavyweight Protection Unit

The final piece of hardware, the Heavyweight Protection

Unit (HPU), is used to patch a compromised program after it

has been rolled back. The HPU is connected to the system’s

main memory bus and must have write access to a program’s

instruction space so that it can perform the additional instru-

mentation required to repair an attack.

The HPU is composed of a logic controller and a small

amount of storage for the lightweight CCRTs, which are used

to patch unsafe code sequences as described in Section III-C.

Preliminary CCRT designs consist of only 5-10 instructions

and take up 30-100 bytes of storage apiece. Although we are
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still investigating all of the possibilities for CCRTs, a mere

128 KB of HPU storage would be sufficient for storing approx-

imately 1,000 different CCRTs. Potentially, the HPU could be

extended to include additional CCRTs after deployment, but

this extra functionality is left for future work.

Once rollback has taken place, the HPU receives a signal

from the HCU that the program must be instrumented. The

HPU scans the program’s code segment for unsafe instruction

sequences, identifies the vulnerable instructions, infers the size

of the buffer being written and constructs a specific patch from

a CCRT. The HPU’s patch remains in place permanently or

until a proper patch is deployed.

V. EVALUATION

In order to evaluate the performance overhead of our

proposed approach, we incorporated a behavioral model of

the LPU and HCU modules into PTLsim Classic [26], a

cycle-accurate 64-bit x86 simulator. Simulation was performed

using PTLsim’s out-of-order core model with realistic branch

prediction and cache behaviors. The simulator configuration is

shown in Table I.

A write-through policy was used for data writes so that

any cache writes were automatically propagated through the

memory hierarchy. We assumed a 1 cycle delay for accessing

the LPU on each function call and return and a 200 cycle delay

at the HCU for storing the processor state and managing the

checkpoint data structure at the beginning of a new interval.

The HCU was configured to log memory writes at the cache-

block level with a conservative memory model that transfers 8

bytes each cycle. Therefore, each logging transaction takes 9

cycles to complete (8 words per line, plus the address). If the

HCU needs to log another location before the current logging

transaction is complete, it must stall the pipeline until logging

is finished.

We used the SPECint subset of the SPEC2000 benchmarks

suite to simulate 200 million instructions on our modified

architecture. As an initial investigation into the performance

impact of our approach, we compared the total overhead,
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Fig. 5. Breakdown of overhead sources for different HCU configurations.

maximum rollback distances and detection effectiveness for

various configurations of the HCU.

A. Performance Overhead

Figure 4 shows the total overhead for a number of HCU

configurations. We varied the size of the memory logs from

512 entries down to 32 entries where each entry consists

of a cache block containing eight 64-bit words, along with

a 64-bit address identifier. The size of the HCU was also

kept constant at 4096 total memory log entries across all

configurations which requires approximately 295 KB of total

storage. This meant that fewer checkpoints were held in

storage for configurations with larger individual checkpoints.

Overhead during the lightweight monitoring phase of our

approach comes from three sources: lightweight protection,

checkpoint creation, and HCU busy stall cycles. The overhead

related to the LPU is constant across all configurations since

it is directly related to the function call-return pairs in a given

program. Changing the size of the memory log affects the

other two sources of overhead because smaller memory logs

lead to more frequent checkpoints. Decreasing the size of the

memory logs also puts additional stress on the HCU and leads

to increased number of stall cycles. In Section V-B we provide

analysis into how each of these sources contributed to the total

overhead experienced.

As expected, Figure 4 shows that the larger memory log

configurations perform better than the smaller memory log

configurations. The 32-entry configuration performed dramat-

ically worse than the other four configurations. Across many

benchmarks, the performance impact of log size begins to

level off at 128 entries with a 9.43% average performance

impact across all benchmarks and all configurations. If we

remove the poor performance of the 32-entry configuration,

that average drops to 7.20%. Excluding both the 32-entry and

64-entry configurations, all benchmarks stayed below the 10%

mark and many of them did not exceed 5% overhead. The

one exception was mcf, which experienced a 19% slowdown

for its 512-entry configuration and more than 50% slowdown

with the 32-entry configuration. The unusually large amount

of overhead was due to its tendency to write to many unique

memory locations which stressed the HCU. Running mcf for

200 million cycles, the 512-entry configuration created 19,189

checkpoints. Many more than the others benchmarks with the

closest, twolf, creating 3,247 checkpoints.

B. Overhead Breakdown

Figure 5 shows a breakdown of how each of the overhead

sources contributed to the total overhead in each of the

SPECint benchmarks for the various HCU configurations. As

mentioned in Section V-A, LPU overhead is constant for a

given benchmark regardless of HCU configuration because the

LPU overhead is based on the number of function call-return

pairs, which does not change. Configurations with smaller

memory log sizes have a larger proportion of HCU-related

overhead due to the increased logging frequency. Conversely,

configurations with larger memory log sizes have a larger

proportion of overhead due to the LPU.

Looking at the 512-entry configuration, overhead related to

checkpoint creation is negligible compared to LPU overhead,

contributing 4% and 81% respectively. HCU stalling is also

kept to a minimum in this configuration, accounting for 15%

of the slowdown. The effects of LPU stalling are negligible

across all benchmarks, with the exceptions of mcf, bzip2,

and twolf. The mcf benchmark is the clear outlier, with over

90% of its slowdown resulting from HCU stalling. This shows

that the HCU simply cannot keep up with the large volume

of unique memory writes and the subsequent logging load. It

should be noted that the total overhead across all benchmarks

for this configuration was approximately 5%, which means

that the LPU did not negatively affect performance as much

as this figure may imply.

The 128-entry configuration in Figure 5, shows that the LPU

still accounts for the largest portion of overhead at 65%, but

checkpoint creation begins to have a more noticeable effect,

accounting for 19% of the overhead. HCU stalling remains at

16% when averaged across all benchmarks. Once again mcf

suffers the most from HCU stalling, but more benchmarks
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are noticeably affected by HCU stalling than in the larger

configurations.

The 32-entry configuration shows dramatically different

results than the 512-entry configuration in Figure 5. With

the smaller checkpoint log size, slowdown is dominated by

checkpoint creation, accounting for 56% of the total overhead,

while LPU overhead falls to only 24% for this configuration.

Similar to the larger configurations, HCU stalling accounted

for 20% of the overhead. Although the overall impact of HCU

stalling is similar when averaged across all benchmarks,the

distribution of that average has nearly evened out across

all benchmarks. This contrasts with the results of the 512-

entry configuration, where HCU stalling was isolated to a

small number of benchmarks. When comparing the results of

Figure 4 and Figure 5, it becomes clear that the poor overall

performance of the smaller configurations is due to the HCU

and the increase in checkpoint creation frequency.

C. Rollback Distance

Despite storing the same number of total checkpoints in

every configuration, many of the benchmarks are very sensitive

to changes in the HCU configuration. Table II compares the

maximum rollback distances for the same five HCU configura-

tions used in Section V-A. We observed a large amount of vari-

ation in the maximum rollback distances between benchmarks.

For instance, the 512-entry configuration was able to rollback

over 250 million cycles of the eon benchmark, but could

rollback just under 1 million cycles of the mcf benchmark.

Also, the 32-entry configuration of the eon benchmark can

only rollback 1% of the cycles of the 256-entry. In each case,

the sensitivity stemmed from an even distribution of memory

writes and a constant rate of checkpoint creations.

D. Attack Analysis

The stack segment for a function F is shown in Figure 6. It

contains an array temp, a number of local variables, and the

function’s return address. As temp is written, it grows toward

the top of the stack. If enough data is written into temp, it

TABLE III
VULNERABLE PROGRAM ROLLBACK CYCLES

Cycles to Cycles to Buffer Program
Application detection overflow size Recovery

(thousand) (thousand) (bytes) Possible?

villistextum 6,745 6,130 32,768 Yes

rngtonetools 3,640 95 1,024 Yes

csv2xml 1,841 119 1,000 Yes

2fax 728 3 256 Yes

bsb2ppm 665 86 1,024 Yes

jpegtoavi 433 99 4,096 Yes

o3read 305 92 1,024 Yes

is possible to write past its intended bounds and eventually

replace the function’s return address. If an attacker knows

that a program contains a vulnerable buffer, it is possible to

craft a specially-formulated input so that the return address

is overwritten with a specific value to return to the attacker’s

malicious code.

We tested our approach by using PTLsim to simulate our

hardware against eight vulnerabilities found in real-world

applications in order to evaluate its effectiveness. All of the

exploits contain an buffer overflow vulnerability and are found

in open source programs written for a Unix environment as

published in US-CERT Cyber Security Bulletin SB04-357 [2]

The results are summarized in Table III.

We investigated the number of cycles that need to be

rolled back to recover from an attack. Each of the vulnerable

programs was given malicious input designed to overflow

its vulnerable buffer. Within our simulation environment, we

measured the cycle count from the point that input was given

until the point that the program attempted to use the malicious

return address or the point of attack-detection. Table III shows

the results of these tests where the cycle count ranged from

304,864 in o3read to 6,745,763 in villistextum. We

then verified that our approach would be able to rollback to

the point of malicious input. Using a 32-entry HCU with

a maximum of 128 checkpoint logs the HCU contained

sufficient information to rollback to the time the input was

received in all of the tested vulnerabilities.

After verifying that our approach was able to recover from

each attack, we attempted to quantify the time required to

overflow the vulnerable buffers. We measured the cycle count

from the first write to the vulnerable buffer until the first write

past the intended bounds of the buffer. Using Figure 6 as

an example, this would be the cycle count required to write

from address 101 (temp[0]) to address 108 (local_var1).

These times are shown in Table III. The time required to

overflow a buffer is related to the size of the buffer as well as

the additional computations taking place during the vulnerable

loop. The buffer in 2fax is only 256 bytes and there are

no computations other than the data copying. At the other

extreme is villistextum which has a 32,768-byte buffer

and many additional computations are performed during each

loop iteration.



VI. CONCLUSIONS AND FUTURE WORK

We have presented a new approach to security that puts

equal emphasis on attack detection and recovery. By combin-

ing detection and recovery our approach provides a higher

level of reliability by restoring the system to a working order

instead of terminating on detection. Since the heavyweight

protection scheme is only used once an attack has occurred,

our scheme is lighter on resource usage making it a candidate

for embedded systems. Our approach was tested against real-

world buffer overflow vulnerabilities and provided promising

initial results, but we see several avenues for future work to

build upon the foundations presently laid.

We designed the checkpointing scheme so that it requires a

very small storage footprint for each process that is logged. For

instance, the HCU configurations in our benchmarks utilize

approximately 300 KB of storage per process. Using a similar

configuration, a system could manage over 100 processes and

only require 30 MB of total checkpoint storage. Checkpointing

multiple processes independently will require small modifica-

tions to the OS so that our checkpointing hardware can be

made aware of context switches and swap CAM entries.

We utilized a simple lightweight protection scheme that

only protects against the most basic of software attacks.

We chose this scheme for its simplicity and relatively low

overhead characteristics. Future implementations of “rollback

and huddle” could explore the use of more complex detection

schemes and investigate the tradeoffs involved in making such

decisions. Finally, we intend on further exploring the CCRTs

since we believe that there exists many more possibilities in

their design and implementation.
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