
An Adaptive Memory Management Strategy
Towards Energy Efficient Machine Inference in

Event-Driven Neuromorphic Accelerators
Saunak Saha, Henry Duwe, and Joseph Zambreno

Department of Electrical and Computer Engineering
Iowa State University

Ames, Iowa, USA
Email:{saha, duwe, zambreno}@iastate.edu

Abstract—Spiking neural networks are viable alternatives to
classical neural networks for edge processing in low-power
embedded and IoT devices. To reap their benefits, neuromorphic
network accelerators that tend to support deep networks still
have to expend great effort in fetching synaptic states from a
large remote memory. Since local computation in these networks
is event-driven, memory becomes the major part of the system’s
energy consumption. In this paper, we explore various opportu-
nities of data reuse that can help mitigate the redundant traffic
for retrieval of neuron meta-data and post-synaptic weights.
We describe CyNAPSE, a baseline neural processing unit and
its accompanying software simulation as a general template for
exploration on various levels. We then investigate the memory
access patterns of three spiking neural network benchmarks that
have significantly different topology and activity. With a detailed
study of locality in memory traffic, we establish the factors
that hinder conventional cache management philosophies from
working efficiently for these applications. To that end, we propose
and evaluate a domain-specific management policy that takes
advantage of the forward visibility of events in a queue-based
event-driven simulation framework. Subsequently, we propose
network-adaptive enhancements to make it robust to network
variations. As a result, we achieve 13-44% reduction in system
power consumption and a 8-23% improvement over conventional
replacement policies.

Index Terms—Neuromorphic, Spiking Neural Networks, Re-
configurable, Accelerator, Memory, Caching, Energy efficiency

I. INTRODUCTION

While deep neural networks provide state-of-the-art per-
formance in classification, regression and even generative
tasks, they have to pay steep dividends when deployed on
conventional architectures [1]. Recently, there has been an
unprecedented increase in the depth of neural networks owing
to their application in extremely complicated tasks of percep-
tion and generation [2]. As these networks grow wider and
deeper, the number of processing elements (i.e., neurons) grow
substantially and the number of learnable parameters can grow
up to quadratically with respect to the number of processing
elements. This makes them extremely demanding in terms of
silicon real estate, especially memory, as well as compute
performance and power. To bring this computation closer to
the edge in resource-constrained devices, recently there has
been considerable interest in building special-purpose hard-

ware accelerators to support inference [3]–[6], training [7],
[8] as well as compilers to bridge the gap between software
simulation and hardware acceleration [9]. However, while
microarchitectural techniques have been able to improve on
the efficiency of neural network processing, it is nowhere near
the biological neocortex, which is not only substantially deeper
and wider but is also significantly more efficient in terms of
energy and data [10].

The major inefficiency of these networks result from con-
tinuous activation of analog neurons and expensive MAC
operations at every discrete timestep of the simulation. Spiking
neural networks (SNNs) attempt to marry the approaches of
computational neuroscience and deep learning by using more
biologically accurate processing elements, spiking neurons.
Spiking neurons activate only when they reach a certain
threshold and, thereby, only sparsely communicate their post-
synaptic weights [11]. As a result, SNNs are extremely energy
efficient, fast, noise-invariant and give great insight into neu-
roscientific understanding. Furthermore, SNNs are inherently
sensitive to temporal distribution of input data and therefore,
are universally suited to all kinds of spatiotemporal pattern
recognition. However, the processing substrate for SNNs in
common use today which can both accelerate their applications
as well as exploit their advantages is completely different from
artificial neural network accelerators. Introduced by Carver
Mead in 1990 [12], neuromorphic engineering has concerned
itself with computing fabric that is able to emulate biologically
plausible dynamics so as to perform efficient processing of
neural information. Neuromorphic hardware acceleration has
been achieved by both mixed-signal and digital hardware [13].
While analog hardware can emulate biological realism and
energy efficiency to a much greater extent [14]–[16], they are
plagued by process, voltage and temperature (PVT) variations
and is especially difficult to scale to today’s technology
nodes [17]. Digital implementations provide these advantages
and are suitable for integration to embedded systems and
software ecosystems [18]–[20]. Neural response latency in
digital circuits is orders of magnitude lower than the diffusion
time of ions across the biological membrane. Hence, neural
ensembles in silicon can achieve faster-than-real-time perfor-

TABLE I
SPIKING NEURAL NETWORK BENCHMARKS USED FOR THIS STUDY

Spiking Competitive Winner-Take-All Network (SCWN)
Layers Neurons Synapses Neuron Model Max. Input Freq. Exposure Resolution Training Max. Accuracy

3 1584 473600 LIF 63.75 Hz 500 ms 0.5 ms STDP - WTA 95%
Layer Input Layer Excitatory Layer (forward single) Inhibitory Layer (recurrent dense)

Spke Fraction 97.8% 1.1% 1.1%
Spiking Deep Belief Network (SDBN)

Layers Neurons Synapses Neuron Model Max. Input Freq. Exposure Resolution Training Max. Accuracy
4 1794 647000 LIF 6 Hz 1000 ms 1 ms CD 92%

Layer Input Layer Layer 2 (dense) Layer 3 (dense) Output Layer (dense)
Spke Fraction 15.6% 23.7% 59.0% 1.7%

Spiking Convolutional Neural Network (SCNN)
Layers Neurons Synapses Neuron Model Max. Input Freq. Exposure Resolution Training Max. Accuracy

6 13594 652800 IF 1000 Hz 100 ms 1 ms Backpropagation 97%
Layer Input Layer Layer 2 (conv2D) Layer 3 (subsampling) Layer 4 (conv2D) Layer5 (subsampling) Output Layer (dense)

Spike Fraction 47.2% 35.7% 7.6% 7.7% 1.7% 0.1%

mance. However, the usefulness of a digital neural accelerator
is strongly dependent on its energy efficiency.To that end, this
paper makes the following contributions:

• We present a digital SNN accelerator with reconfigurable
network topology and neural dynamics.

• We study the memory access patterns of several SNN
workloads and observe that spike processing is predomi-
nantly memory-intensive with respect to power consump-
tion.

• We propose a memory management strategy to reduce
the power consumption resulting from redundant memory
accesses in the baseline. Results range from 13-44%
power savings over the baseline and 8-23% over best
conventional replacement policies.

II. SPIKING NEURAL NETWORK BENCHMARKS

We have selected three different SNNs as our benchmarks
for this work. They bring significant diversity to our case study
by using different neural dynamics and training algorithms to
solve the standard task of MNIST digit recognition [21].

The first network is a winner-take-all network with lateral
inhibition trained using a biologically plausible learning rule
known as spike timing dependent plasticity (STDP) [22]. It
is built from leaky integrate and fire (LIF) neurons that
integrate leaky conductances instead of constant current which
makes these neurons more biologically realistic than usual LIF
neurons. This network achieves a maximum accuracy of 95%
on MNIST as shown in [23]. Hereafter, we call it a spiking
competitive winner-take-all network (SCWN). The second
network is a feed-forward restricted boltzmann machine that
has been trained using contrastive divergence [24], an unsuper-
vised learning technique, and has been converted to an event-
based network post-training, achieving a maximum accuracy
of 92% [25]. This network has no recurrent connections, is
built from simple LIF neurons and is referred to as the spiking
deep belief network (SDBN). The third network follows a
convolutional topology and has been trained using standard
error backpropagation [26]. Thereafter, it has been converted
into the spiking domain following the methodology advised
by [27]. It achieves a maximum accuracy of 97%, although
the loss of accuracy from the equivalent analog network is

negligible. This network is built from integrate and fire (IF)
neurons that are perfect integrators unlike LIF and have much
simpler dynamics. This network is significantly larger than the
others but the connectivity is much sparser. Hereafter, we refer
to it as the spiking convolutional neural network (SCNN).

The activity of each of these networks along with their
internal connectivity will determine the energy footprint of
these networks. Activity of a network depends on a large
number of tunable hyperparameters. SNNs have an inherent
temporal nature to them which is tunable by controlling the
maximum input frequency and/or exposure time of a single
stimulus. The network architect may want to select a high
frequency that might lead to fast inference or a low frequency
which can mean consolidation of energy by compromising on
the inference latency and/or accuracy. The minimum discrete
timestep for processing the exposure time is called the resolu-
tion. Other such hyperparameters include the range of weights,
individual neuron thresholds, refractory periods, membrane
time constants etc. As we discuss further in the following
sections, the layer-wise spiking activities and spike fractions
of the three networks show the variety of spike signatures that
we can expect. It shows that network activity can attenuate as
we go deeper, but it might also grow (for the SDBN). There
may (for the SCNN) or may not (for the SCWN) be a good
ratio between input-generated and internally-generated events.
Table I lists succinct details of the benchmarks.

III. THE CYNAPSE MICROARCHITECTURE

While existing digital SNN accelerators like [28] can
simulate SNNs that use fixed neural dynamics like LIF,
they cannot account for other phenomenonological extensions
such as leaky conductance-based synapses, spike-frequency
adaptation, excitatory and inhibitory populations. CyNAPSE
is a similar neural inference architecture with support for
reconfigurable neural dynamics. It implements a generalized
integrate and fire model of neurons [29] that provide for a
wide variety of representative neural behaviors. By reducing
this model of spiking neurons, simpler models can be obtained
which allows universal acceleration of SNNs. It works in a
co-processor configuration with a master CPU that can run
spike-supply and handling routines. Alternatively, it can be

(a)

Topology Address

Page pointer

1101001001000000001...

0xdeadbeef

W[i,j]

Page Address PA[i]

Topology Vector TV[i]

=1?+

j++

...
...

...
...

ID

Neuron-specific
addresses

Off-chip memory
stack

Bitwise
arithmetic

Weight
Address

WA[n]

(b)

Fig. 1. (a) The CyNAPSE microarchitecture. Broadly, it consists of a neuron unit with on-chip neuron circuits and dendritic status SRAMs, an input event
router, a Spike handler, FIFO priority queues and a system controller. (b) The control-flow of a single synaptic lookup in the CyNAPSE routing phase

employed in an embedded environment assisted by a spiking
retina or dynamic vision sensor and motor control. Fig. 1a
shows the baseline microarchitecture of the system.

A single CyNAPSE core can simulate a maximum number
of N logical neurons and N2 logical synapses. It uses a
smaller number X of physical on-chip neuron units, each time-
multiplexed to support the entire promised ensemble. This also
requires X on-chip dendritic trees implemented in SRAMs
storing all N intermediate neuron statuses (N and X being
design-time configurable parameters). Input neurons of an
SNN that produce the first wave of stimulus response, or input
spikes, are modeled off-chip in software while processing
neurons with spiking neural dynamics producing internal
spikes are modeled in multiplexed hardware. CyNAPSE uses
an Address Event Representation (AER) protocol [30] to
encode all spike events from a real-time representation to an
in situ biological time representation. Each individual spike is
encoded into an AER packet containing the biological timestep
and the ID of the logical neuron that produced it. These AER
spike packets are read into an input FIFO priority queue in
a streaming manner as they are produced. The input queue
pops the top event to route if its timestep matches the current
biological time. The input router performs a full synaptic
lookup for that particular neuron’s weights and routes them
to appropriate logical dendritic trees. The neuron unit updates
itself after all events of the current timestep have been routed
and refreshed statuses corresponding to all logical neurons
appear in all the on-chip scratchpad memories. All internal
spikes produced in this timestep are filtered into a spike buffer
and routed to the auxiliary queue for handling in the next
timestep. This marks the end of all computation within the
timestep and a barrier synchronization allows the system to
tick the global timer to the next timestep. The details of the
design and evaluation process are mentioned in section VI.

IV. MEMORY POWER CONSUMPTION

Depending on the average connectivity of a network, Cy-
NAPSE spends most of its time fetching weights for the
long routing process. Since the amount of storage required in
large networks is infeasible for realization on-chip, the entire
process becomes dominated by off-chip memory traffic. This
leads to a compromise of efficiency as a significant amount of
energy is consumed in fetching synaptic data from a remote
DRAM storage.

When compared with the activity factor of a representa-
tive CPU workload, SNN inference has very little switching
computation on-chip because spiking is essentially a sparse
event. In Fig. 2, we show the full power consumption profile
of the CyNAPSE system (see Section VI for details). It can be
noted that for all the benchmarks, with negligible differences,
the off-chip memory accesses makes up for a large share of
the total system power consumption. More physical neurons
on chip allow more performance and according to the use
case, may be an energy-dominated or performance-dominated
choice [31]. Regardless, the opportunity and importance of
memory power savings in such a system is clear and calls for
architectural investigation to explore possible solutions.

While algorithmic optimizations like pruning and quanti-
zation of weights [32], [33] provide some viable approaches
to relax the memory traffic, their effectiveness is limited by
the allowable degradation in accuracy. We attempt to make
microarchitectural optimizations that do not affect accuracy
while maintaining compatibility with all algorithmic changes.
We carefully investigate domain-specific access patterns and
make recommendations to cleverly mitigate large redundant
losses.

V. ENERGY EFFICIENT MEMORY MANAGEMENT
Nominally, a fixed table of neuron weights requires O(N2)

memory where N is the number of supported logical neurons

4 8 16 32 64 1280

20

40

60

80

100
SCWN

4 8 16 32 64 1280

20

40

60

80

100
SDBN

4 8 16 32 64 1280

20

40

60

80

100
SCNN

Physical neurons on chip

Sy
st

em
 P

ow
er

 C
on

su
m

pt
io

n
(%

)
Logic SRAM FIFO DRAM

Fig. 2. System power consumption of CyNAPSE broken down for each
benchmark shows significant DRAM percentage

on chip. However, often with deep networks and sparser
topologies, this is highly inefficient. We eliminate both the
hard storage requirement and the naive memory lookup strat-
egy in CyNAPSE by storing weights in pages. This adds a
second layer of indirection via a translation table that directs
the router to the relevant page that belongs to the post-synaptic
weights of the relevant neuron. This scheme is most effective
when pages are of variable sizes (so as to reserve only as
much memory as the actual number of weights of a certain
neuron) and, thus, are marked by the starting address of the
page, or a page pointer. The number of weights in a page is
determined by one row of a topology matrix which defines
every logical neuron’s connections and instructs the router
state machine to access the next D page offsets only when
a connection exists, where D is the data-width of the current
network. So each event induces the access of three data items
(in chronological order) as shown in Fig. 1b i.e. a topology
vector, a page address, and all the weights in that page via
a simple bitwise arithmetic scheme. We observe a number of
opportunities to exploit locality and reuse as a result of this
data flow.
A. Cache Management Policy

Conventional Cache policies like Least Recently Used
(LRU) and Random can capture, to a great extent, the data
localities in general purpose programs. However, their ability
to model unique references to the same block is limited
by associativity [34]. While Belady’s optimal replacement
policy [35] requires an infeasible view of the future, policies
like DIP [36], RRIP [37] and LIRS [38] have looked at
speculative techniques to predict re-reference of a cache block
in general purpose processors by collecting past information.
However, unlike general purpose programs, we already have
some knowledge about the upcoming accesses, courtesy of the
event-queue. Furthermore, for inference, we do not have to
deal with writes. In other words, it is similar to an instruction
cache in nature. Therefore, we attempt to design a new
management policy that can efficiently capture subtle behavior
particular to our applications and pattern of memory accesses
that conventional policies like LRU or Random fail to account
for.

In CyNAPSE, initially the events are stacked up into the
input FIFO queue until it is full. Thereafter, an event is
enqueued at the write pointer only when another is dequeued

from the read pointer. The input spike router routes an event
that is dequeued and looks into the memory hierarchy for the
relevant neuron’s connectivity and weights. However, since
the queue already contains up to <queue length> events, the
hardware can always look ahead of the actual execution in
terms of events that are to come. As such, we define two
different times for each event, namely the read-time i.e. when
a certain event is read (but not dequeued) from the FIFO
queue and the route-time i.e. when this event is eventually
dequeued. Before simulation starts, the cache is warmed up
with events up to a certain lookahead distance. This distance
is selected carefully to maintain sufficient reuse information
from the future without letting these events thrash the ones
that are required sooner. After the initial warm-up, each event
dequed from the top of the FIFO at its route-time means one
event from the bottom is added to the cache at its read-time.
We explain this policy in detail as follows using each type of
cache access scenario:

1) Compulsory miss at warm-up and read-time: An event
reader circuit reads the neuron ID of the first event that is on
the queue. The CyNAPSE simulator (see Section VI) provides
computation to generate all addresses associated with any
particular ID of a given network. So, the circuit will now
reserve an unallocated way in the requested index and start
bringing in the data from the main memory (i.e., DRAM). At
warm-up, there is no contending process inside the cache but
queue requests can also be processed while routing occurs. The
cache is configured with two independent read-write ports for
processing simultaneous requests. Depending on the DRAM
steady-state bandwidth and the latency of a single-route cycle,
a cache with exclusive read-write ports can complete multiple
read requests within the regime of one route request. However,
we consider one read request per route request post warm-
up to keep our study simple and our solution sufficiently
easy to achieve. A compulsory miss means this neuron ID
is encountered by CyNAPSE for the first time since the
cache was last flushed. Therefore, all blocks tagged by the
corresponding addresses are marked with a reuse score of 1,
which essentially means 1 guaranteed route accesses to this
block in the future.

2) Hit at read-time: At some point, the event circuit will
come across a neuron that it had already encountered before in
the queue. If this information still resides in the cache, it is a
hit. On a hit, the circuit will simply increment the reuse score
value by 1 and move on to the next event in the queue issuing
no further request to the next level cache or main memory.

3) Capacity or conflict miss at read-time: At a certain point
down the queue, the cache is bound to fill up considerably.
This leads to a possible capacity/conflict miss at read-time. In
this case, the naive approach is to consider evicting the way
which has the least reuse score value. However, replacement
at read-time is not compulsory. There are certain potential
concerns that can occur with replacements at read-time. Ac-
cordingly, we consider three different approaches to handle
read-time replacements:

• Conservative approach: Multiple-reuse blocks can be eas-

ily thrashed by blocks that end up not being reused much
and will lead to severe thrashing of blocks resulting in
unnecessary memory traffic and energy expense. Hence,
no replacements are allowed at read-time.

• Aggressive approach: Not allowing replacements at read-
time will lead the cache to lose out on potential op-
portunities to reuse blocks that could have been loaded
into the cache. Hence, this approach always replaces the
minimum reuse score block at read-time.

• Intelligent approach: Replace at read-time only when
the minimum reuse score in a set is below a specific,
reconfigurable reuse threshold.

If a read-time replacement occurs, the new import will be
marked with a reuse score of 1.

4) Compulsory miss at route-time: There are no compul-
sory misses at route-time in this policy. Misses happen only
when the policy opts out of read-time replacements for all
read-time references of a particular block before its route-time
arrives.

5) Hit at route-time: Hit at route-time means one promised
reuse has been realized. This is, therefore, accompanied by a
decrement of the reuse score of the corresponding cache block
by 1.

6) Policy miss at route-time: As mentioned above, there is
a finite probability of encountering misses at route-time if the
particular read-time replacement policy that is employed fails
to warrant the (pre)fetching of a certain block. This requires
the router to request an import from the next level cache or
main memory. The route-time policy simply asks the router
to replace the block with the lowest reuse score in the cache
set by the new block since it is compulsory to bring the new
cache block into the cache at route-time (unless there is a
bypass mechanism). This time we put a zero into the reuse
score field of the block on a fresh import since there are
no guaranteed reuses after this point for this particular block.
Fig. 3 summarizes the baseline memory control scheme.

B. Network-adaptive enhancements

Our domain-specific cache policy only accounts for events
in the event queue that are generated at a much higher
throughput than the expected compute-latency of processing
a single event and are visible to the event reader prior to their
individual route-time. While input events necessarily satisfy
this criterion, all internal events generated within the network
are routed in the biological timestep immediately following the
one in which they are generated, making them unsuitable for
our scheme. As our benchmarks show, input activity can have
different relative importance to internal activity and, hence,
could affect our scheme to varying degrees. It is clear that we
need flexible and dynamic network-specific enhancements that
help make our scheme robust to these variances.

The CyNAPSE core requires compile-time information
about network layer types (dense, conv2d, subsampling, etc.)
as well as neuron ID ranges corresponding to these layers.
Some of this static information can help us adaptively extend
our scheme to perform better. We attempt to extend this

ID

L1Cache Request

HitHit Miss

Reuse
++

Reuse
++

NL Cache
Request

(Reuse = 1)

HitMiss

j++

Reuse
++

NL Cache
Request

(Reuse = 1)

Read-time
replacement ?

ID

L1Cache Request

HitHit Miss

Reuse
--

Reuse
--

NL Cache
Request

(Reuse = 0)

HitMiss

j++

Reuse
--

NL Cache
Request

(Reuse = 0)

Route-time
replacement ?

Read-time Route-time

Fig. 3. Baseline read-time and route-time memory control schemes

static kernel information to include dynamic behavioral data.
Simulation statistics can dynamically provide information like
heightened areas of activity as well as dormant regions in the
network. This can be collected from the auxiliary queue over
time which contains all internal activity of the network. We
dump queue statistics during simulation of a batch of example
stimuli and use this information to dynamically improve
our policy. Fig. 4 shows the simulation statistics collected
by our simulator for each benchmark in terms of spiking
activity fraction of a layer relative to the whole network.
We use statistics at a layer granularity to consolidate storage
and computation required on-chip for this purpose. A higher
granularity would provide better results, but incur more storage
and computational overhead. We propose two techniques to
extend our scheme:

1) Cache Bypassing: Consider the SCWN benchmark. All
LIF (internal) neurons in the network demonstrate extremely
little activity relative to the input spike frequencies. CyNAPSE
routes all internal events into the auxiliary queue for further
processing, including output events, since this is a hard re-
quirement for recurrent topologies like the SCWN. Statically,
therefore, we have no information that can benefit our scheme.
However, as we will see experimentally, the distribution of
network activity is highly skewed in favor of the input layer
when compared to the processing neurons. Not only does
this help our basic strategy, but also gives us a clear path
to an adaptive extension that we can apply. For feed forward
benchmarks like the SDBN and SCNN, the distribution is not
so obviously favorable. There is considerable activity in the
deeper layers and these neurons usually pollute cache blocks
by occupying them at the cost of high reuse conflicting neurons
which could otherwise save energy. Therefore, we propose a

1 2 3 4 5 6 7 8 9 10
Test Example batch

100

101

102
Sp

ik
e

Fr
ac

tio
ns

 (%
)

(a)

1 2 3 4 5 6 7 8 9 10
Test Example batch

101

Sp
ik

e
Fr

ac
tio

ns
 (%

)

(b)

1 2 3 4 5 6 7 8 9 10
Test Example batch

100

101

Sp
ik

e
Fr

ac
tio

ns
 (%

)

(c)
Input
Layer2

Layer3
Layer4

Layer5
Output

ABT=2

Fig. 4. Spike statistics generated dynamically by the CyNAPSE simulator to
adaptively configure cache requests. (a), (b) and (c) show layer-wise activity
fractions for the SCWN, SDBN and SCNN respectively with time.

mechanism to bypass all memory accesses pertaining to sparse
activity neurons by collecting information on a layer-by-layer
granularity. Information can be statically provided to the cache
at compile-time (for e.g. output neurons for feed forward
networks can be bypassed etc.) or dynamically generated (for
e.g. low activity layers in any network can be bypassed etc.).
For dynamically arriving information to the controller, we
maintain an activity bypass threshold (ABT), which is the
minimum activity fraction a layer needs to maintain on average
for its neurons to allocate data in the cache. On a bypassed
request at route-time, the memory controller does not allocate
a cache block and directly retrieves the requested data from
the main memory or next level.

2) Line protection: As opposed to low activity LIF neurons
in SCWN, Layers 2 and 3 of SDBN and Layer 2 of SCNN
show very high activity among processing neurons (see Fig. 4).
These layers can hurt our management scheme greatly if not
accounted for. To that end, we propose a protection scheme
for processing neurons in high-activity layers by dynamically
providing them with a probable reuse score based on network
activity statistics collected over time. Fig. 5 shows the mean
reuse distances of neurons in each layer for each benchmark.
We put a probable reuse score which is inversely proportional
to the reuse distance of a neuron so as to account for all reuses
expected within a certain window of time.

VI. DESIGN METHODOLOGY

A. Low-level design

The CyNAPSE core was designed in synthesizable Verilog
HDL and functionally verified against all benchmarks1. The
logic portion (excluding the on-chip dendritic SRAMs and
FIFOs) was synthesized to a commercial 65nm TSMC library
using a nominal supply voltage of 0.9V. Synthesis was done

1 2 3 4 5 6 7 8 9 10
Test Example batch

102

103

104

105

106

M
ea

n
Re

us
e

Di
st

an
ce

(in

 #
ev

en
ts

)

Input
Layer2
Layer3
Layer4
Layer5

Layer6
SCWN
SDBN
SCNN

Fig. 5. Layer-wise mean reuse distances of neurons in each benchmark

using the Cadence SOC Encounter RTL Compiler while pre
and post-synthesis simulation were carried out in ModelSim.
We then used the synthesized netlists to dump representa-
tive activities to VCD files. Synopsys PrimeTime was used
to estimate power using a compatible SAIF format, easily
convertible from the VCD for power estimation over each of
our benchmark test-benches. All our on-chip SRAM structures
were bypassed from the CAD process and modeled only for
functional verification. For estimating timing and power of
SRAMs we used CACTI-P [39].

B. High-level exploration

For high-level architectural exploration of the memory sub-
system, we also built a software simulation of the CyNAPSE
core and an associated cache simulator. Our software simulator
generates high-level statistics like memory accesses per spike,
tag array and data array accesses per spike, hit rate, miss
profile, etc. while maintaining a deterministic one-one equiv-
alence with the hardware model thereby confirming accurate
simulations. Additionally, the simulator’s memory controller
module also generates DRAM address traces for all synaptic
lookups that go to main memory. These address traces are
used by Ramulator [40] in appropriate organization, speed
and timing configurations to dump JEDEC standard command
traces in DRAMPower [41] format. We route these commands
to DRAMPower 3.1 with consistent configurations to estimate
the energy consumption of these traces. We use a 256MB
DDR3 x8 configuration with a 1600MHz pin bandwidth which
is more than sufficient to store all synaptic and meta data for
our benchmarks. Although each network has varying tolerance
to error and, thereby, have different precision requirements,
we fix all synaptic data-widths to 8-bytes to have a fair com-
parison of memory footprint independent of any algorithmic
optimization on top of them. Using the memory consumption
of traces and CyNAPSE’s timing information, we calculate the
power consumption of the system.

In a cached configuration, we use the same infrastructure
to estimate energy consumption from the main memory. Addi-
tionally, we use high-level statistics like tag and data array read
and write accesses to the cache and plug them into CACTI’s
UCA cache energy estimates to model net power consumption
of the system for each of our benchmarks. Owing to very long
simulation times, we simulate the MNIST dataset for a repre-
sentative set of 100 examples containing a uniform distribution

1source code for the CyNAPSE neuromorphic accelerator is available at:
https://github.com/saunak1994/CyNAPSEv11

TEST
BENCHES

ADDRESS
TRACES

MEM
TRAFFIC

NETLIST
(VCD/SAIF)

LOGIC
POWER

DRAM
ENERGY

CACHE
ENERGY

TOTAL
SYSTEM
POWER

IN-HOUSE TOOLS

VENDOR PROVIDED
and/or OPEN SOURCE

DATA/METRICS

CyNAPSE
CORE RTL

BENCHMARK
SUITE

CyNAPSE
SIMULATOR

CACHE
CONFIG

SYNOPSYS
PRIMETIME

RAMULATOR +
DRAMPOWER

CACTI-P

TIMING

INFORMATION

CADENCE
ENCOUNTER

Fig. 6. Experimental Infrastructure and flow

of all digits. Fig. 6 shows our experimental infrastructure
and tool flow. For our experiments with dynamic-adaptive
schemes, we use intermediately generated statistics from our
simulator by dumping the contents of the FIFO queues after
each batch of examples. We provide a simple routine to
calculate these statistics, feed them into the simulator and
restart simulation from the checkpoint with forwarded cache
contents.

VII. RESULTS
After a binary search through three degrees of freedom in

cache design: block size, associativity and number of cache
blocks, we have selected a 256 KB 4-way set-associative cache
with 64 byte blocks as our operating point. With conventional
cache management policies, we found that this configuration
gives us the best return-on-investment, on average, over our
benchmarks within constrained memory and power budgets.
In this section, all reported results use the same configuration
as above to ensure fair comparison of similarly provisioned
alternatives. We first validate our proposal for the correct
read-time replacement philosophy by presenting experimental
results and our interpretation of the same. Using the above
verdict, we evaluate the effectiveness of simple conventional
cache management policies vis-a-vis our proposed policy for
the same configuration in reducing the power consumption of
the system. We then evaluate the relative benefit of applying
adaptive extensions to our policy. With these results, we
attempt to explain the behavior of each benchmark with
intuitive understanding and spike statistics obtained from our
simulator.
A. Read-time replacement

In Section V, we described the potential concerns with read-
time replacement of neuron data. Our simulator provides hooks
to dump and visualize cache contents at any given time in
the simulation. Further, it can provide information on which
block was replaced and the reuse score it was carrying at
the time of replacement. Using these statistics, we fixed a

1 2 3 4 5 6 7 8 9 10
Test Example Batch

400

800

1200

1600

To
ta

l S
ys

te
m

 P
ow

er
Co

ns
um

pt
io

n
(m

W
)

Conservative
Aggressive
Intelligent

SCWN
SDBN
SCNN

Fig. 7. Comparative analysis of the various read-time replacement handling
approaches

minimum reuse threshold according to the frequency of reuse
scores seen in replaced blocks for each benchmark to validate
our intelligent approach towards the handling of read-time
replacements. In Fig. 7, we show the result of exploring all
three read-time replacement policies. For all benchmarks, the
intelligent approach outperforms conservative and aggressive
approaches. Aggressive replacement defeats the purpose of
generating maximum reuse by ignoring reuse scores at read-
time. Conservative replacement has a similar effect by leading
to unnecessary route-misses that could have been avoided.
However, it does not lead to multiple unnecessary memory
accesses at read-time which makes it better than the aggres-
sive scheme. With benchmarks having short reuse distance
(e.g., SCWN), there is a bigger loss while for benchmarks
having larger reuse distances (e.g., SCNN), little difference is
observed. All results declared hereafter in this paper use the
intelligent approach for our policies.
B. LRU vs Random vs Our Policy

Fig. 8 shows the power consumption of the CyNAPSE
system as a function of test example batch for each benchmark.
It covers our selected cache configuration running on LRU and
Random replacement policies and draws a comparison with
our policy.

The SCWN network is a relatively low activity network. It
produces an average of 2.144 spikes every biological timestep
or 2144 spikes per example. Each input neuron needs to
produce multiple spikes in order to induce robust inference
which makes it ideal for exploiting temporal locality of neuron
data. LRU exploits reuse in short timescales, for instance,
within the span of an example. For each example, some winner
neurons will demonstrate heightened activity while inhibiting
others. 85-90% of cache misses remain classified as capacity
misses, so we know that it is not limited by associativity.
Random replacement fails to fully capture the essence of intra-
stimulus reuse but in a cache that has sufficient associativity
to handle conflicts, it reaches close to LRU. SCWN is also
an input-dominated network. As mentioned before, we have
97.8% of the spiking activity in the input layer of the network.
This means we have a good view of majority of the future
events in the queue. Besides, neurons in the generally excited
areas of the input field share activity across many stimuli. They
also share locality in meta-data, especially in the page address
meta data.

The SDBN network has a different activity profile. Its
synaptic weights are unnormalized, which means that the input

1 2 3 4 5 6 7 8 9 10
Test Example batch

300

400

500
To

ta
l S

ys
te

m
 P

ow
er

Co
ns

um
pt

io
n

(m
W

)

(a)

1 2 3 4 5 6 7 8 9 10
Test Example batch

480

520

560

To
ta

l S
ys

te
m

 P
ow

er
Co

ns
um

pt
io

n
(m

W
)

(b)

1 2 3 4 5 6 7 8 9 10
Test Example batch

1200
1250
1300
1350
1400
1450
1500
1550
1600

To
ta

l S
ys

te
m

 P
ow

er
Co

ns
um

pt
io

n
(m

W
)

(c)
no Caching
LRU

Random
Our Policy(static adaptive)

Our Policy(dynamic adaptive)
SCWN

SDBN
SCNN

Fig. 8. Comparative analysis of energy savings using our policy over
conventional policies for the (a) SCWN, (b) SDBN and (c) SCNN benchmarks

events, although moderate in activity, induce higher spike
frequency in subsequent layers. Particularly high activity is
observed in the third layer. With low input activity, most extra-
stimulus reuse is arrested by LRU SO not much benefit comes
from switching to our policy.

The SCNN network is a very high activity convolutional
neural network. On an average, it produces 219 spikes per
timestep. Since by definition of a biological timestep, a neuron
cannot spike more than once in a single timestep, this network
has a relatively much higher mean reuse distance than other
networks. With limited capacity, it is difficult to exploit any
reuse for conventional cache policies. However, there is a
good fraction of input activity which is effectively targeted
by our policy. We were able to collect some reuse scores
over the course of the simulation, enough to outperform both
conventional policies.

C. Applying network-adaptive enhancements

Our policy collects reuse scores in SCWN neurons from
both intra- and extra-stimulus reuse distances and significantly
outperforms conventional policies. We have set an activity by-
passs threshold of 2% and added dynamic adaptation schemes
on a layer granularity as mentioned before. This means that
any layer having a mean spiking activity less than 2% switches
to a bypass mode. However, our results show that this does
not lead to much difference for SCWN because the network
is dominated by input spikes and bypassing only affects 1.1%
of spiking activity.

However, when we apply dynamically generated protecting
schemes in SDBN, we notice great reduction in memory traf-
fic. We repeatedly apply protecting reuse scores to processing
neuron data inversely proportional to the mean reuse distances
in that particular layer as discussed before. The smaller the

TABLE II
RELATIVE ENERGY SAVINGS ACHIEVED USING DIFFERENT POLICIES

Benchmark
LRU
v/s

baseline

Random
v/s

baseline

Our Policy
(static adaptive)

v/s
baseline

Our Policy
(dynamic adaptive)

v/s
baseline

Our Policy
v/s

LRU

SCWN 28.13% 25.99% 44.13% 44.45% 22.71%

SDBN 5.46% 2.88% 7.65% 15.55% 10.67%

SCNN 5.12% 4.59% 7.4% 12.61% 7.9%

mean reuse distance, the higher protection score we need to
apply on importing the data. Most neurons in Layer 3 benefit
from the scheme and we see marked reduction in weight
access misses which brings down power consumption for this
benchmark.

In SCWN, dynamically generated protection schemes pro-
vide us with a lot more energy savings than statically generated
topological bypass requests. However, in the processing con-
volutional and subsampling layers, most neurons are dormant
in nature, irrespective of the stimulus. With a few number
of neurons requesting allocation under a protection scheme,
SCNN benefits little from an adaptive extension relative to the
SDBN benchmark. The results are summarized in Table II.

VIII. CONCLUSION

We have presented CyNAPSE, a reconfigurable architecture
for accelerating SNNs. We showed that power dissipation in
this system is dominated by memory. By using an application-
specific caching strategy, we have achieved up to 44% power
savings over the baseline and outperformed LRU by up to
22%. A possible avenue of future work within this area could
be towards core power dissipation reduction using leakage
control techniques since majority of its logic power consump-
tion is in the idle state. For benchmarks with reuse on larger-
timescales, compiler driven optimizations could be valuable
in trading off some performance for greater energy savings.
Besides, our policy can be considered for any execution
model that has a queue-based event processing in its front
end. Any event-driven simulation platform such as embedded
performance and energy counters [42], general purpose emu-
lators [43] and others can possibly benefit from this scheme, if
allocation latency at read time can be tolerated by individual
instruction latency.

ACKNOWLEDGEMENTS

This work is supported in part by the National Science
Foundation (NSF) under award CCF-1149539.

REFERENCES

[1] K. Boahen, “A neuromorph’s prospectus,” Computing in Science &
Engineering, vol. 19, pp. 14–28, 2017.

[2] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2016.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[5] A. Podili, C. Zhang, and V. Prasanna, “Fast and efficient implemen-
tation of convolutional neural networks on fpga,” in 2017 IEEE 28th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 2017, pp. 11–18.

[6] S. Wijeratne, S. Jayaweera, M. Dananjaya, and A. Pasqual, “Recon-
figurable co-processor architecture with limited numerical precision to
accelerate deep convolutiosnal neural networks,” in 2018 IEEE 29th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 2018, pp. 1–7.

[7] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang,
“F-cnn: An fpga-based framework for training convolutional neural
networks,” in 2016 IEEE 27th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2016,
pp. 107–114.

[8] Y. Li and A. Pedram, “Caterpillar: Coarse grain reconfigurable archi-
tecture for accelerating the training of deep neural networks,” in 2017
IEEE 28th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 2017, pp. 1–10.

[9] R. Zhao, S. Liu, H.-C. Ng, E. Wang, J. J. Davis, X. Niu, X. Wang,
H. Shi, G. A. Constantinides, P. Y. Cheung et al., “Hardware com-
pilation of deep neural networks: An overview,” in 2018 IEEE 29th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 2018, pp. 1–8.

[10] D. Attwell and S. B. Laughlin, “An energy budget for signaling in the
grey matter of the brain,” Journal of Cerebral Blood Flow & Metabolism,
vol. 21, no. 10, pp. 1133–1145, 2001.

[11] W. Gerstner, “Spiking neurons,” MIT-press, Tech. Rep., 1998.
[12] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,

vol. 78, no. 10, pp. 1629–1636, 1990.
[13] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,

G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[14] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128k synapses,”
Frontiers in neuroscience, vol. 9, p. 141, 2015.

[15] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R.
Voelker, C. Eliasmith, R. Manohar, and K. Boahen, “Braindrop: A
mixed-signal neuromorphic architecture with a dynamical systems-based
programming model,” Proceedings of the IEEE, vol. 107, no. 1, pp. 144–
164, 2019.

[16] T. Yu, J. Park, S. Joshi, C. Maier, and G. Cauwenberghs, “65k-neuron
integrate-and-fire array transceiver with address-event reconfigurable
synaptic routing,” in 2012 IEEE Biomedical Circuits and Systems
Conference (BioCAS). IEEE, 2012, pp. 21–24.

[17] Y. Kim, Y. Zhang, and P. Li, “A reconfigurable digital neuromorphic
processor with memristive synaptic crossbar for cognitive computing,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 11, no. 4, p. 38, 2015.

[18] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp.
1537–1557, 2015.

[19] D. Neil and S.-C. Liu, “Minitaur, an event-driven fpga-based spiking
network accelerator,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 12, pp. 2621–2628, 2014.

[20] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[21] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database.
at&t labs,” 2010.

[22] G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of neuroscience, vol. 18, no. 24, pp.
10 464–10 472, 1998.

[23] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

[24] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[25] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-
time classification and sensor fusion with a spiking deep belief network,”
Frontiers in neuroscience, vol. 7, p. 178, 2013.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[27] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in 2015 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2015, pp. 1–8.

[28] D. Ma, J. Shen, Z. Gu, M. Zhang, X. Zhu, X. Xu, Q. Xu, Y. Shen,
and G. Pan, “Darwin: A neuromorphic hardware co-processor based on
spiking neural networks,” Journal of Systems Architecture, vol. 77, pp.
43–51, 2017.

[29] R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner, “Integrate-and-
fire models with adaptation are good enough,” in Advances in neural
information processing systems, 2006, pp. 595–602.

[30] K. Boahen, “Communicating neuronal ensembles between neuromorphic
chips,” Neuromorphic Systems Engineering, pp. 229–259, 1998.

[31] A. Cassidy, A. G. Andreou, and J. Georgiou, “Design of a one million
neuron single fpga neuromorphic system for real-time multimodal scene
analysis,” in 2011 45th Annual Conference on Information Sciences and
Systems. IEEE, 2011, pp. 1–6.

[32] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[33] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2016.

[34] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Vei-
denbaum, “Improving cache management policies using dynamic reuse
distances,” in 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, 2012, pp. 389–400.

[35] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[36] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adap-
tive insertion policies for high performance caching,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 381–391, 2007.

[37] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2010, pp. 175–186.

[38] S. Jiang and X. Zhang, “Lirs: an efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” ACM
SIGMETRICS Performance Evaluation Review, vol. 30, no. 1, pp. 31–
42, 2002.

[39] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in Proceedings of the International
Conference on Computer-Aided Design. IEEE Press, 2011, pp. 694–
701.

[40] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1, pp.
45–49, 2015.

[41] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens,
“Drampower: Open-source dram power & energy estimation tool,” URL:
http://www. drampower. info, vol. 22, 2012.

[42] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating
system. ACM, 2000, pp. 37–42.

[43] J. Bauer, M. Bershteyn, I. Kaplan, and P. Vyedin, “A reconfigurable
logic machine for fast event-driven simulation,” in Proceedings 1998
Design and Automation Conference. 35th DAC.(Cat. No. 98CH36175).
IEEE, 1998, pp. 668–671.

