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Abstract—Feature description is an essential component of
many computer vision applications. It encodes the visual contents
of images in a manner that is robust against various image
transformations. Computing these descriptors is computationally
expensive, which causes a performance bottleneck in many
embedded vision systems. Although many hardware architectures
have been proposed to accelerate feature description computation,
most target a single feature description algorithm under specific
constraints. The lack of flexibility of such implementations
increases development effort if deployed applications need to be
modified or upgraded. In this paper, we propose a software con-
figurable hardware architecture capable of computing different
types of histogram-based feature descriptors without the need for
re-synthesizing the hardware. The architecture takes advantage
of data streaming to reduce the computational complexity of
computing this class of descriptor. To illustrate the efficiency
of our architecture, we deploy two of the most commonly used
descriptors (SIFT and HOG) and compare their quality with
software implementations. The architecture is also evaluated in
terms of execution speed and resource usage and compared with
dedicated hardware architectures. Our flexible architecture shows
a speed up of 3× and 5× compared to state-of-the-art dedicated
hardware architectures for SIFT and HOG, with resource usage
overheads [LUTs, FFs, and DSPs] of [1.1×, 15×, and 1.6×] and
[6.4×, 7×, and 32×] for SIFT and HOG, respectively.
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I. INTRODUCTION

In computer vision, image features refer to salient points
within a scene that are distinctive, repeatable and have enough
intensity variation to be tracked reliably between images even
under different image transformations and distortions, such as
scaling, rotation, shearing, etc. Two processes are associated
with image features: feature detection, and description. In
feature detection, every pixel is examined to check if there is
a feature of a given type (e.g. edges, corners, blobs) present at
that pixel location. In feature description, the visual content
around a detected feature is captured by computing robust
numeric representations from the surrounding pixels’ low-level
information such as intensity, gradients, local binary pattern
(LBP), etc. Image features are used in many applications,
such as object detection and recognition, image retrieval, 3D
reconstruction, and image mosaicing.

Histogram-based feature descriptors are the most com-
monly used feature description type due to their distinctiveness
and robustness to various image transformations. However,
computing these descriptors is computationally expensive and
is the bottleneck of many vision systems [1]. For this reason,
many hardware architectures have been proposed in the lit-
erature to accelerate this class of descriptor. Although these
architectures achieve a high performance, most are hard-

wired to support a specific histogram-based feature descriptor
configuration, and cannot be modified without completely re-
synthesizing and reprogramming the FPGA. These architec-
tures are realized as static hardware pipelines optimized for
only a single application. The lack of programmability in these
architectures increases development effort when the deployed
applications need to be modified or upgraded.

Implementing a flexible hardware architecture capable of
computing a wide range of histogram-based descriptor variants
has many advantages. For example, in robotic applications
each feature description algorithm has been designed with
strengths and weaknesses that make them more efficient in
some scenarios compared to others [2]. Having a hardware ac-
celerator that can be re-configured at runtime to transition be-
tween many of these algorithms when the environment changes
is advantageous as compared to fixed hardware accelerators.
A configurable hardware architecture can make prototyping
new applications easier and faster for application developers.
Changing the algorithmic structure for an existing application
or designing a new application would not require writing
HDL code, which can be prone to error and time consuming.
Moreover, a configurable architecture can be used as an IP
core to speed up prototyping embedded vision systems, thus
reducing development effort.

Contributions. In this paper, we take advantage of common
characteristics between different feature description algorithms
to build a generic and flexible hardware accelerator. A major
concern that arises when implementing a generic hardware
architecture is hardware resources overhead. For this reason,
we propose optimization techniques to reduce the computa-
tional complexity and hardware resource usage. The proposed
architecture leverages data streaming to reduce the cost of com-
puting and updating histogram values. The main contributions
of this paper are: (1) Implementing a hardware architecture
capable of computing several feature description algorithms
using a single datapath. The architecture is configurable in
terms of patch sizes, number of regions, and number of bins
per region, and (2) Using optimization techniques to reduce
the complexity of computing 2D histograms from O(n2) to
O(n).

Organization. The rest of the paper is organized as follows.
Section II presents related work and compares it to our
approach. In Section III, we present the histogram binning
technique. Section IV provides a detailed description of our
hardware architecture and its main building blocks. In Section
V, we discuss the verification and evaluation methods used to
evaluate the proposed architecture and compare it with related
works. Finally, Section VII concludes the paper with outlooks
for future work.



II. RELATED WORK

Generality and efficiency of computing systems are often
inversely related to each other. The more general a computing
system is, in terms of executing a wide range of tasks, the
less efficient it tends to be in performing a specific task as
compared to a system designed for only one task. It is impor-
tant to find the right balance between these often competing
characteristics. A general-purpose computing system such as
CPUs are highly programmable but usually cannot achieve the
highest performance. While dedicated hardware architectures
can achieve high performance, but they are not programmable.
Designers might be able to compromise small degradation in
performance to increase system programmability.

Many dedicated hardware architectures for histogram-
based feature descriptors with real-time performance have been
proposed in the literature [3][4][5][6][7], but a configurable
hardware architecture capable of supporting more than one
descriptor algorithm with real time performance has not been
proposed. However, efforts for implementing flexible hardware
architectures for other image processing algorithms have been
made [8][9][10]. In [8], a generic architecture for image feature
detectors was presented. They proposed a generic hardware
architecture that integrates two image feature detectors (Harris
and SUSAN) in a single datapath. Another example of a
generic architectures appears in [9]. They proposed a generic
VHDL template for fast window-based stereo block matching
correlation. In [10], the authors proposed a parallel hardware
architecture for computing integral histogram images. The
architecture was generic in terms of its input types: grayscale
intensity, gradient, or binary pattern.

III. HISTOGRAM BINNING TECHNIQUE

Image gradients refer to the directional change in pixel
intensity and can be represented using two values: a magnitude
(M) and orientation (θ). The histogram binning technique
used in our architecture take advantage of overlapping be-
tween windows as a sliding window moves across images.
This technique reduces the number of operations required to
compute histograms by avoiding redundant operations between
consecutive windows. To compute histograms of gradients, the
entire range of gradient orientation (0◦ ≤ θ < 360◦) is divided
into classes (also called bins) from θ1 to θB , where B is number
of bins. The first histogram, H1, of a window of size N×N
pixels is computed as shown in Equation (1). Figure 1 shows
an example for a 3×3 window. It shows computing histograms
for two consecutive windows as the window slides one pixel
to the right. The new histogram values can by computed by
subtracting the left-most column and adding the right-most
column to the previously computed histogram. This concept is
applicable not only for regions with uniform shape, but also
can be applied to any connected regions. Using this technique,
we can compute histograms for a window of size N×N using
only N addition and N subtraction operations O(2N) instead of
using N×N addition operations O(N2) in the straightforward
approach. Equations (1-3) show the mathematical formulation
for this technique, where i and j represent the index of the
upper left corner pixel. Equation (1) shows the equation to
compute histograms of the first window H1(θk). Equations
(2-3) show how the histogram of the next window H2(θk) can
be computed by only updating the previous histogram H1(θk).
∀θk ∈ {θ1, θ2, ..., θn}
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Fig. 1: Computing 2D Histogram of Gradients

H1(θk) =

i+N∑
x=i

j+N∑
y=j

Mx,y, if θk ≤ θx < θk+1 (1)

H2(θk) =

i+N∑
x=i

j+N∑
y=j

Mx,y −
j+N∑
y=j

Mi,y +

j+N∑
y=j

Mi+N+1,y (2)

H2(θk) = H1(θk)−
j+N∑
y=j

Mi,y +

j+N∑
y=j

Mi+N+1,y (3)

IV. PROPOSED HARDWARE ARCHITECTURE

A 2D array of processing elements arranged in a systolic
structure is the main building block of our architecture. It
is used to buffer gradient pixels generated by the gradient
computation block, quantizes their orientations, and compute
histograms. The internal architecture of one PE is shown in
Figure 2. Each PE sends and receives data from/to its four
neighbors using four input ports: R(in), L(in), U(in), and D(in),
and four output ports: R(out), L(out), U(out), and D(out). The
size of these ports equal NBins × 2 × 8, where NBins is
number of histogram bins, each bin has 2 values for gradient
magnitude (8 bits) and orientation (8 bits). Each PE stores one
gradient magnitude and orientation (M and θ) locally. Every
time a new gradient is computed, the PE updates its gradient
value with the values coming from pixel(in) and sends the
old gradient value to its pixel(out) port. It also contains a
memory array (H) of size NBins, which is used to store the
computed histogram values.

For every new gradient pixel(in), a PE quantizes its
gradient orientation into the nearest two angular bins. For
example, if the PE is configured to compute histograms with
4 bins, that means the bin angles are : 0◦, 90◦, 180◦, and
270◦. If the input gradient orientation is 215◦, the orientation
will be quantized into the closest two angles, which are 180◦,
and 270◦. The gradient magnitude will be divided into two
values using linear interpolation. Because 215◦ is closer to
180◦, the gradient magnitude for this bin will be higher than
the 270◦ bin. The quantitation unit is shown in Figure 2 with
symbol (Q). It reads gradient angle θ and selects two bins of
the DEMUX0 output. 8 bits (S7 − S0) are used to configure
each PE. These bits configure four MUXs and one DEMUX.
It allows PEs to compute different permutations of its four
inputs and send the result to one of its four output ports. For
example, S0 controls MUX0 output to be D(in) or 0. The same
concept applies to bits S5−1. We used -R(in) to subtract the
values that leave each region (algorithm proposed in Section



IV), because we assume that the data is streaming in razer-
scan (left to right). Finally, S7−6 select the output port. For
example, when S7−6 = 00, the computed value will be sent
to the D(out) port, and when S7−6 = 01, 10, 11, the computed
value will be sent to U(out), L(out), R(out), respectively.
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Fig. 2: Processing Element (PE) Architecture and Its Configurations

To compute histograms for a window of size N×N, we
construct the 2D array architecture with N×N PEs arranged in
a systolic structure, as shown in Figure 3. It shows an example
of 4×4 array of PEs, where each PE is connected to its four
neighbors. For simplicity, in this example, we configured PEs
to compute histograms of three regions with number of bins
equal to 1. The upper right section of Figure 3 shows the
PEs’ configuration for computing histograms of three regions.
PEs located on the right edge of each region are configured
to send their gradient pixels to L(out). In our example, PEs
(PE01, PE11, PE21, PE03, PE13, PE23, and PE33) are configured
to send their gradient pixels to L(out). The architecture needs
to keep track of these pixels, because they need to be subtracted
from the total histogram to keep the computed histograms
correct. PEs located within regions such as (PE31, and PE32)
are responsible of passing the values coming from their R(in)
to L(out). PEs located at the left edge of each region such as
(PE00, PE10, PE20, PE30, PE02, PE12, and PE22) are responsible
for subtracting the values coming to their R(in) ports from their
gradient pixel. The computed results are then passed to their
U(out). For each region, one PE is needed to keep track of the
computed histogram value. In our example, we used (PE00,
PE02, and PE20) to compute histograms of the three regions
(H1, H2, and H3).
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Fig. 3: An Example of 4×4 PEs (3 Regions, 1 Bin). The Upper
Right Section Shows each PE’s Configuration Key

V. EVALUATION AND VERIFICATION

The proposed architecture is evaluated in terms of accuracy,
execution speed, and resource usage. The accuracy of the
proposed architecture is evaluated for two applications: (1)
SIFT feature matching, and (2) Pedestrian detection using
HOG and an SVM classifier.

A. SIFT Feature Matching
To validate our architecture, we compared the quality of

SIFT descriptors computed by software implementation (MAT-
LAB) and our architecture using a feature matching problem.
We used the 8 benchmarks of Oxford dataset [11] in this
experiments. Matching ability of a descriptor is measured by
the area under the ROC curve. An area of 1 represents a perfect
descriptor, and an area of 0.5 represents random guesses.
Table 1 also shows the computed areas under these curves.
To compare ROC curves, we used a statistical significance
test (Hanley method). It shows the difference in area under
the ROC curves are insignificant for the matching problem.
The results of hardware and software do not exactly match
due to using fixed point representation for gradient magnitude
and orientation instead of using floating point and using
linear interpolation instead of trilinear interpolation. An exact
match with software can be achieved at the cost of additional
hardware resources.

TABLE I: Area Under ROC (AUC) for Software and Hardware

Benc ubc leu. bikes wall graf trees boat bark
Soft. 0.94 0.88 0.85 0.79 0.56 0.82 0.67 0.58
Hard. 0.94 0.88 0.84 0.79 0.54 0.81 0.65 0.56

B. Pedestrian Detection
In this experiment, we used a HOG descriptor with a linear

SVM classifier to detect pedestrians in a diverse set of images
from the CVC-02 dataset [12]. To validate our architecture,
we implemented a MATLAB model that represents precisely
the behavior of the implemented hardware. We ran the exper-
iment on 250 images containing 587 annotated pedestrians,
the proposed hardware achieved detection accuracy of 86.2%
with 4.7% false negative, while the software implementa-
tion (floating point) achieved accuracy of 86.2% with 4.7%
false negative. This shows that our hardware implementation
achieved the same accuracy as the software implementation
for the pedestrian detection application.

C. Comparison with Dedicated Hardware Architectures
To measure the performance of the proposed architecture,

we compared the execution time of our implementation with
OpenCV implementations of SIFT and HOG algorithms run-
ning on an ARM Dual-Core Cortex-A9. We also compare
execution times with other hardware architectures implement-
ing the SIFT and HOG algorithms. Table II shows the time
required to compute one SIFT descriptor, frame sizes, frame
rates, and maximum number of SIFT descriptors that can be
computed within the frame rate mentioned (KP Ratio), where
KP represents the percentage of pixels that can be processed at
a specific frame rate. Table II shows that our architecture with
window sizes, 16×16, 8×8, and 4×4 achieved a speed-up of 4-
5 order of magnitudes compared to the ARM processor and 3-4
order of magnitudes compared to the Intel Core i7. When the
fully parallel architecture P(16×16) is used, our architecture
outperforms the work done in [5] by 3×, because our archi-
tecture can run at 167 MHz while the work in [5] is running at



21.7 MHz (one cycle= 46ns) only. However, our architecture
shows an overhead in resource usage of 1.1×, 15×, and 1.6×
for LUT, FF, and DSPs, as shown in Table III. This is due to
the generality of our architecture to support many algorithms
instead of only one. For the sequential implementaion P(8×8),
our architecture can compute one SIFT descriptor in 0.37µs
(64 cycles) which outperforms other hardware architectures by
6.1×, but with a resource overhead of 1.2×, 2.7×, and 1.5×
for LUT, FF, and DSPs compared to the fastest sequential
implementation in [4]. In the sequential implementation of
P(4×4), our architecture can compute one SIFT descriptor in
0.75µs (128 cycles), which achieved a speed up of 2.9×, with
resource overhead of 0.8×, 0.68×, and 1.6× for LUT, FF, and
DSPs.

TABLE II: SIFT Descriptor Extraction Time

Exec. time Frame Size Frame Rate
ARM A9 5.13 ms 800×640 0.11 fps
Jiang [4] 2.23 µs 512×512 150 fps, feat.<2900
John [5] 46 ns 640×480 70 fps (parallel)
P(16×16) 5.9 ns 800×640 195 fps (parallel)
P(08×08) 0.37 µs 800×640 60 fps, feat.<2600
P(04×04) 0.75 µs 800×640 30 fps, feat.<2600

TABLE III: SIFT Hardware Architectures

Paper FPGA Max Freq LUTs FFs DSPs
Jiang [4] Virtex-5 79.4MHz 26,398 10,310 89
John [5] CycloneIV 21.7MHz 120,917 6,719 77
P(16×16) ZYNQ-7 167 MHz 128,731 102,092 130
P(08×08) ZYNQ-7 167 MHz 32,871 28,004 130
P(04×04) ZYNQ-7 167 MHz 10,093 9,542 130

Table IV compares the performance of the proposed ar-
chitecture with an OpenCV implementation of HOG running
on an ARM Dual-Core Cortex-A9, Intel Core i7 processors,
and dedicated FPGA architectures proposed in the literature. It
shows frame sizes and the maximum frame rates achieved by
each work. It order to find a common metric, we computed
pixels/second from frame rates and sizes. To compute our
architecture frame rate, we multiply the number of HOG cells
in one frame by the number of clock cycles needed to finish
one cell, and divide the result by the maximum operational
frequency. Table IV shows that our architecture achieved a
speed-up of 1-2 order of magnitude compared to the ARM
processor and 1 order of magnitude compared to the Intel Core
i7. It also shows that our architecture P(16×16) outperforms
other works by 3-46×, because it can compute one HOG cell
in one clock cycle, but at the expense of resources. P(16×16)
has resource usage overheads of 6.4×, 17×, and 32× for LUT,
FF, and DSPs compared to the latest implementation in [7].
Our sequential architectures, P(8×8) and P(4×4), shows a
compromise in terms of performance to reduce the resource
usage overhead as shown in Table V.

TABLE IV: HOG Descriptor Extraction Time

Frame Size Frame Rate Pixels/Second
ARM A9 1920×1080 0.63 1.3×106

Hahnle [6] 1920×1080 64 132.7×106

Jens [7] 1920×1080 40 82.9×106

P(16×16) 1920×1080 192 398.1×106

P(08×08) 1920×1080 48 99.5×106

P(04×04) 1920×1080 12 24.8×106

TABLE V: HOG Hardware Architectures

Paper FPGA Freq. LUTs FFs DSPs
Hahnle[6] Virtex-5 270MHz 5,188 5,176 49
Jens [7] XC7z020 82.2MHz 21,297 5,942 4
P(16×16) ZYNQ-7 167MHz 128,731 102,092 130
P(08×08) ZYNQ-7 167MHz 32,871 28,004 130
P(04×04) ZYNQ-7 167MHz 10,093 9,542 130

VI. CONCLUSION

In this paper, we proposed a configurable hardware ar-
chitecture for computing different histogram-based feature de-
scription algorithms. The proposed architecture is configurable
in terms of window size, number of regions, number of bins
per region, and the pattern of these regions. We implemented
different optimization techniques to reduce hardware resources
and computational complexity for computing histograms of
gradients. The experimental results show that our architecture
can be used in a wide range of computer vision applications.
This architecture can also be used to compute histograms
for other low-level information such as local binary pattern
(LBP) or grayscale intensity without any modifications. Our
future work will investigate the possibility of extending the
proposed architecture to compute other kinds of window-based
algorithms in computer vision.
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