
A Modified Sliding Window Architecture for
Efficient BRAM Resource Utilization

Murad Qasaimeh, Joseph Zambreno and Phillip H. Jones
Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA 50010

Email: {qasaimeh, zambreno, phjones} @iastate.edu

Abstract—Sliding window is one of the most commonly used
techniques in image processing algorithms. Implementing it in
hardware requires buffering image rows on-chip to exploit data
locality and avoid redundant off-chip pixel transfers. However,
scaling this architecture to large window sizes or high resolu-
tions linearly increases on-chip memory utilization. This imposes
limitations on porting many image processing algorithms into
hardware efficiently. In this paper, we propose a new sliding
window architecture that utilizes less on-chip memory resources
while maintaining performance as compared to the traditional
method. The proposed architecture exploits that most natural
images have smooth color variations with fine details in between
these variations to compress images. It decomposes non-zero
image pixels into their wavelet components and represents each
wavelet coefficient with a minimum number of bits. The architec-
ture is also flexible to use lossless or lossy compression based on
a configurable threshold value. The FPGA implementation of our
proposed architecture shows memory saving of 25-70% compared
to the traditional architecture using lossless compression, and for
lossy compression with up to a mean square error of 5 achieves
up to 84% in memory savings.

Keywords—Image processing, Sliding Window, Compression,
BRAMs, IWT, FPGA.

I. INTRODUCTION

Many image processing algorithms use a sliding window
technique as part of their algorithm. The sliding window
operation repeatedly gathers a rectangular region of pixels,
calculates an output for that window, and then slides across
the input image. This operation is computationally and data
intensive and benefits from hardware acceleration on FPGAs,
especially for real-time applications [1]. Hardware implemen-
tations typically buffer image rows on-chip to exploit data lo-
cality and avoid redundant pixel transfers. Although these im-
plementations provide significant performance improvement,
scaling them to large window sizes or high resolutions linearly
increases on-chip memory utilization. This imposes limitations
on porting many image processing algorithms into hardware
efficiently.

There are many image processing algorithms currently
limited by the number of Block RAMs (BRAMs) available
on FPGAs [2][3][4]. For example, in object detection algo-
rithms, the maximum detectable size is limited by the window
size supported in hardware. Increasing the window size will
increase the chances of detecting more objects, but will also re-
quire more BRAMs to store additional image rows on-chip. A
common solution is to scale down and re-scan the whole image
[2]. Implementing lens distortion correction on FPGAs is an-
other example. The maximum distortion coefficients supported
by a hardware implementation is also limited by the window
size supported. Increasing the window size will increase the
mapping range supported by the distortion correction core, but

increases on-chip memory requirements [3]. Supporting larger
window sizes for image filters often increases their accuracy.
For example, for a Gaussian smoothing filter, the size of the
window should be at least 5 times its standard deviation to
not loose precision by trimming the kernel’s small values.
Moreover, most image processing algorithms consists of 2-
5 sequential sliding window operations, where the output of
one operation is fed via line buffers to the following operation.
These implementations require a high number of BRAMs for
implementing multiple sets of buffer lines [4].

In this paper, we propose a modified sliding window archi-
tecture that utilizes on-chip memory resources more efficiently
than the traditional architecture (introduced in Section III) by
storing compressed instead of raw pixels values. It uses the
2D Haar wavelet transform to decompose the active window’s
pixels into its wavelet coefficients: approximation, horizontal
details, vertical details, and diagonal details sub-bands. Then, it
finds the minimum number of bits required to represents these
coefficients. Because natural non-random images have most
of their information in the approximation sub band and small
details in the other sub-bands, the compression algorithm is
able to represent the coefficients in the details sub-bands using
less bits. The proposed sliding window architecture uses this
simple compressing method to pack the compressed bits, and
store them into the buffering system without any degradation
in computing throughput performance. The architecture is also
parametrizable to have the flexibility to change the compres-
sion ratio based on available on-chip memory and a threshold
parameter that allows lossless or lossy compression.

Contributions. In this work, we propose a new sliding
window architecture that takes advantage of most of an images’
information residing in low frequencies to reduce the required
on-chip memory. The main contributions of this paper are:
(1) A novel sliding window compression algorithm that can
be efficiently implemented in hardware and gives comparable
compression ratios to the state of the art compression algo-
rithms, (2) A parametrizable sliding window architecture that
has the flexibility of changing its compression ratio based on a
threshold parameter, (3) A fully pipelined architecture similar
to the traditional sliding window architecture with up to 84%
in BRAM resource saving.

Organization. The rest of the paper is organized as follows.
Section II discusses related work and compares it to our ap-
proach. In Section III, we present the traditional line-buffering
sliding window architecture. Section IV explains the proposed
algorithm we use for compression. In section V, we provide a
detailed description of our hardware architecture and its main
building blocks. Section VI discusses the experimental results
and architecture performance. Finally, Section VII concludes
the paper with outlooks for future work.

1



II. RELATED WORK

A number of works can be found in the literature that aim to
reduce on-chip memory requirements of the traditional sliding
window architecture. Some works try to solve the problem
by proposing new buffering methods. For example, in [5]
and [6], instead of using the traditional line-buffering method,
they use a block buffering technique. This method starts by
reading a block of pixels with size greater than the size of
the operation window. This allows for processing multiple
windows without the need to load new data. While processing
the current block, data for the next block is buffered. This
method reduces the required on-chip memory but it is not as
efficient as the traditional architecture, as its average number of
off-chip accesses is greater than 1 pixel per window operation.

Others attempt to reduce the required memory by dividing
the input image into segments and process each individually
[7]. They partition the data array into segments along a row.
Once the current segment has completed processing, the next
segment of data is processed until the current row is finished.
This approach can save some BRAMs, but is not efficient
for streaming applications when pixels come directly from a
camera sensor, as it requires pixels to be in off-chip memory.

The authors in [4] try to avoid utilizing sliding window
buffering between an algorithm’s operations by using a larger
window size for the first operation and uses several parallel
processing units to compute the next operations. This method
reduces the BRAMs usage but it consumes high amounts of
combinational logic, and is only applicable when sequential
operations can be composed into one composite operation.

In this work, we investigate reducing memory requirements
for sliding window architectures by storing compressed instead
of raw pixels values. The compression algorithm, to be suitable
for our purpose, must compress an entire column of pixels in
the current window every clock cycle. It should have a good
compression ratio and can be implemented in hardware with
low resource overhead. It should be lossless to recover the
original image and have the flexibility to be lossy to recover
an approximation of the original image with different mean
square errors when additional compression is required.

Existing lossless and lossy compression algorithms have
good compression and signal-to-noise ratios, but are not suit-
able for our purposes. For example, FPGA implementations
of the standard lossless compression algorithm, JPEG-LS [8],
consume too many resources and reduces system performance.
It has a 6-stage pipeline and its maximum operational fre-
quency is around 27MHz. The JPEG compression algorithm

[9] is also not a good choice as it uses a fixed size window
of 8×8, while in our case we want to compress the pixels in
the left-most column of the window. The number of pixels in
these columns depends on the window size.

Several other wavelet transform based compression algo-
rithms exist in the literature. The most popular algorithms are:
Embedded Zerotree Wavelet, Set Partitioning In Hierarchical
Trees, and Embedded Block Coding with Optimized Trunca-
tion [10]. These algorithms are designed for variable bit rate
image transmission and require three dynamically updated lists
that make them unsuitable for high speed applications. This
lead us to propose a new simpler image compression algorithm
based on 2D Haar transform that satisfy our needs and can
be implemented in hardware with relatively low hardware
resources compared to the other compression algorithms.

III. TRADITIONAL SLIDING WINDOW ARCHTIECTURE

Line-buffering is the most popular approach for implement-
ing sliding window architectures [1]. It consists of a set of
FIFOs connected to shift registers, as shown in Figure 1. The
number of FIFOs and their size depends on the input image
resolution and the window size. For an image of resolution
(W×H) pixels and a window of size (N×N), the number
of FIFOs is (N-1) with depth (W-N) pixels, and the size of
the window should be N×N shift registers. The input pixels
are pushed into the first line of the active window and the
processed pixels are pushed out from the last line. The shift
registers in the right-most column are connected to the input of
the next FIFO lines. The outputs of the FIFOs are connected as
inputs to the shift registers in the left-most column, as shown
in Figure 1.

The architecture has three main states: (1) Fill the FIFOs:
in which we need to wait until the FIFOs are full with valid
pixels. We only receive input pixels and push them into the
buffer lines, and no output or operations are done in this stage;
(2) Processing stage: we read one input pixel and process the
active window to generate an output. This processing is done
in one clock cycle; (3) Empty the FIFOs: in this stage, there
are no more input pixels to read. But there are still valid pixels
inside the FIFOs that need to be processed until no pixels are
left inside the FIFOs.

The sliding window architecture produces an output of size
(N×N), in other words, one value for each pixel in the input
image [11]. For example, for an image of size 512×512 and
a window of size 3×3, the first window to process is a square
between (0,0) and (2,2). The required on-chip memory for
this example, assuming 8-bit pixels, equals (512-3)×2×8 bits.

Fig. 1: Line-buffering Sliding Window Architecture

2



This relatively small example can be implemented in hardware.
However, for high resolutions and large window sizes, such
as a window of size 120×120, an image of HD resolution
(2048×2048), and 24-bit colored pixels, the required on-chip
memory is at least (2048 - 120)×120×24 bits = 5,422Kb.
While FPGAs like the XC7Z020 has a total on-chip memory
of 5,018Kb.

IV. PROPOSED COMPRESSION ALGORITHM

This section describes the proposed compression algorithm
used in our modified sliding window architecture. The al-
gorithm is composed of three main steps. First, the integer
wavelet transform (IWT) decomposes the pixels in the active
window into its wavelet components. Second, the Bitpacking
step finds the minimum number bits required to represent each
wavelet coefficient in each of the four sub-bands. The bits of
the non-zero coefficients, only, are packed into chunks and
stored in the buffering system. Third, BitUnpacking recon-
structs the original pixels from the compressed bits to be used
by the next window. The following sub-sections describe these
three steps in further detail.

A. Integer Wavelet Transform (IWT)
Forward IWT transforms image pixels into a set of integer

coefficients. The transformation is reversible, meaning the
pixels can be recovered without any loss using the inverse
integer wavelet transform (IIWT). In this paper, we use a 2D
single-level Haar wavelet transform [12] to generate four sub-
bands: (1) Approximation (LL), (2) Horizontal details (LH),
(3) Vertical details (HL), and (4) diagonal details (HH) sub-
bands. Figure 2 shows an example of a window of size 8×8
after it has been decomposed into its wavelet sub-bands.

B. Bit Packing
In the Bit Packing step, wavelet coefficients are compared

to a threshold value. If the absolute value of the coefficient
is less than the threshold, it is considered insignificant and
replaced with zero, otherwise it will not be modified. Figure
2 shows this step for a threshold value of zero (lossless).
The coefficients did not change because the thrshold value is
zero. In the next step, for each column of each sub-band the
minimum number of bits (NBits) required to encode the largest
pixel value in 2’s complement is determined and stored in the
compressed window. Then, the least significant NBits bits of
each coefficient for each sub-band column are packed together
to form the compressed version of the original coefficients.

Figure 2, for simplicity, shows only the bit packing process
for the vertical (HL) and diagional (HH) sub-bands. It shows

the NBits bits required to represents the first column of HL
(Pixels: 13, 12, -9 and 7) is 5. So, the least significant 5 bits of
the non-zero pixels (01101, 01100, 10111 and 00111) will be
packed together and stored in the compressed window. BitMap
is used to distinguish between zero or non-zero coefficients.
The BitMap of the first column is 1111 because all the
coefficients have non-zero values, while the BitMap of the last
column is 0011 because the first two coefficients are zeros.

10 20 30 40 50 60
Window Index

0

10

20

30

40

50

60

70

M
em

or
y 

R
eq

ui
re

d 
to

 s
to

re
 th

e 
bu

ffe
re

d 
pi

xe
ls

 (K
bi

ts
) 

Approximation (LL subband)
Horizontal detail(HL subband)
Vertical detail(LH subband)
Diagonal details(HH subband)
Management bits

Fig. 3: Memory Requirement as the Window slides across the Image

To see the efficiency of this algorithm on real images,
Figure 3 shows the amount of memory required to buffer
image rows (lossless compression) as a window of size 64×64
slides across an image of size 512×512. It shows that the
number of bits required for the approximation (LL) sub-band
is almost two times higher than the three detail sub-bands. It
also shows that in the worst case we need around 40 Kbits
to store the coefficients of the LH, HL and HH sub-bands
and around 65 Kbits for the LL sub-band. In total, we can
store the coefficients of the 64 image rows in 185 Kbits plus
32 Kbits of management bits (total = 217 Kbits) compared
to 230 Kbits using the traditional sliding window method. As
image resolution increases so does the memory efficiency of
this algorithm (see section VI).

In this example, the threshold value equals zero (lossless
compression), increasing the threshold value (lossy compres-
sion) reduces the total number of bits because the number of
zeros in the sub-bands increases and the algorithm uses only
one bit for zero coefficients and compresses only non-zero
coefficients. Increasing the threshold value increases the com-
pression ratio, but decreases the quality of the reconstructed
image.

Fig. 2: Example of the Compression Algorithm for an 8×8 Window Size

3



C. Bit Unpacking

To reconstruct the original coefficient values, we first read
a BitMap value. If it equals zero, then the output should
be zero, otherwise we read the least significant NBits and
sign extend to the pixel size (8 bits) and send it to the
active window. If NBits is less than 8, the remaining bits are
kept for the next output. Even if this compression algorithm
seems simple, it shows good compression ratios. But it also
introduces management bits (BitMap and NBits) that need to
be taken into consideration. For an image resolution (W×H)
and a window size (N×N), the total management bits equals
2×(W-N)×4 bits for NBits and (W-N)×N bits for BitMap.

In this algorithm, we used a one-level Haar wavelet trans-
form because adding more levels complicates the architecture
for both the forward and inverse wavelet transform blocks.
Moreover, using 2 or 3 levels of decomposition did not increase
the compression ratio significantly. We also chose the Haar
wavelet transform instead of other transformations like 5/3
and 7/9 for the same reasons. In the Bit Packing step, we
find the minimum number of bits for each column in each
sub-band instead of other options like for each coefficient or
for each sub-band because there was a tradeoff between the
compression ratio and the number of management bits.

V. PROPOSED HARDWARE ARCHITECTURE

This section presents the proposed hardware architecture
and its building blocks. The architecture consists of five
modules: (1) 2D integer wavelet transformation (IWT), (2)
Bit Packing, (3) Memory Units, (4) Bit Unpacking and (5)
2D inverse integer wavelet transformation (IIWT). Figure 4
shows an abstract high-level overview of the modified sliding
window architecture and its components. The active window
is implemented using shift registers so that a processing kernel
can directly access all pixels of the active window each clock
cycle. As an example, a 2D image filter could multiply each
pixel in the active window with a corresponding constant in
the filter kernel, and output these results as a sum or weighted
sum.

The input pixels Pixel(i) coming directly from a camera
sensor or off-chip memory are stored in the first register of the
first row in the active window and previous pixels are shifted
to the right. The Integer Wavelet Transform module reads the
right most column of the active window each clock cycle,

and decomposes the pixels into their wavelet components. The
resulting coefficients are fed to the Bit Packing module that
represents these coefficients with the minimum number of bits
and compresses them. When 8 bits have been accumlated in
the Bit Packing unit, it writes the packed bits into the Memory
Unit along with its management bits: (1) NBits: number of
bits of each compressed coefficient, and (2) BitMap: one
bit to distinguish whether the coefficient has a zero or non-
zero value. When the number of coefficients in the memory
unit equals the image width, the Bit Unpacking unit reads
the compressed bits from the FIFOs and reconstructs the
coefficients’ values. Finally, the reconstructed coefficients are
transformed back to the original pixels by the Inverse Integer
Wavelet Transform module. The results from IIWT module are
written into the left most column of the active window and the
previous pixels are shifted to the right. This process is repeated
until all pixels in the image pass through the architecture.
The following subsections describe the architecture’s blocks
in further detail.

A. Integer Wavelet Transform Module

This module receives input from the active window right-
most registers, and sends its output to the Bit Packing module.
Each clock cycle, it reads N pixels and generates N/2 low
frequency coefficients (LL), and N/2 Horizontal details (LH)
coefficients or N/2 vertical details (HL) coefficients, and N/2
diagonal details coefficients. Where N is the window size. In
this work, we used the Haar wavelet transform because it maps
to a simple hardware structure. The Haar wavelet transform
equations are shown in Equations (1) and (2), where i and j
are pixels coordinates.

L(i, j) = X(i, j + 1) +H(i, j)/2 (1)

H(i, j) = X(i, j)−X(i, j + 1) (2)

The hardware implementation of the 2D forward Haar
wavelet transformation is shown in Figure 5. Each 1D block
consists of one adder, one subtractor and one division by 2
(implemented as a shift right by 1). The 2D transformation
is implemented by connecting four 1D blocks together as
follows: the two low-frequency outputs (L) in the first stage are
connected as inputs to the top block in the next stage, and the
two high-frequency outputs (H) are connected to the bottom

IWT

Active Window

Bit Unpacking
HH

IIWT
Bit UnpackingBit Packing

Pixel (i)

Pixels_FIFO
NBits

BitMap

Pixels_FIFO
NBits

BitMap

Pixels_FIFO
NBits

BitMap

Pixels_FIFO
NBits

BitMap

Bit Unpacking
HL

Bit Unpacking
LH

Bit Unpacking
LL

Memory Units

1d IIWT

1d IIWT 1d IIWT

1d IIWT

1d IIWT

1d IIWT 1d IIWT

1d IIWT

1d IIWT

1d IIWT 1d IIWT

1d IIWT

X4 X3X4 X3

1d IIWT

1d IIWT 1d IIWT

1d IIWT

Bit Packing
LL

Bit Packing
LH

1d IWT

1d IWT 1d IWT

1d IWT

1d IWT

1d IWT 1d IWT

1d IWT

1d IWT

1d IWT 1d IWT

1d IWT

1d IWT

1d IWT 1d IWT

1d IWT

Bit Packing
HL

Bit Packing
HH

Threshold

X2 X1X2 X1

Pixels__FIFO
NBits

BitMap

Bit Unppacking
HH

Bit Unppacking
HHL

Bit UnppackingBit Unppacking
LH

Bit Unppacking
LLLLLL

1dd IIWT

1dd IIWT1dd IIWT 1dd IIWT1dd IIWT

1dd IIWT

1dd IIWT

1dd IIWT1dd IIWT 1dd IIWT1dd IIWT

1dd IIWT

1dd IIWT

1dd IIWT 1dd IIWT

1dd IIWT

1dd IIWT

1dd IIWT 1dd IIWT

1dd IIWT

Bit Packing
LLLLLL

Bit PackingBit Packing
LLH

Bit Packing
HHL

Bit Packing
HHH

X4 X3

X2 X1
IWT

Active Window

Bit Unpacking
HH

IIWT
Bit UnpackingBit Packing

Pixel (i)

Pixels_FIFO
NBits

BitMap

Pixels__FIFO
NBits

BitMap

Pixels_FIFO
NBits

BitMap

Pixels__FIFOPixels FIFO
NBits

BitMap

Pixels_FIFO
NBits

BitMap

Pixels__FIFO
NBits

BitMapBitMap

Pixels_FIFO
NBits

BitMap

Bit Unpacking
HL

Bit Unpacking
LH

Bit Unpacking
LL

Memory Units

1d IIWT

1d IIWT 1d IIWT

1d IIWT

1d IIWT

1d IIWT 1d IIWT

1d IIWT

1d IIWT

1d IIWT 1d IIWT

1d IIWT

X4 X3

1d IIWT

1d IIWT 1d IIWT

1d IIWT

Bit Packing
LL

Bit Packing
LH

1d IWWT

1d IWWT 1d IWWT

1d IWWT

1d IWWT

1d IWWT1d IWWT 1d IWWT1d IWWT

1d IWWT

1d IWWT

1d IWWT1d IWWT 1d IWWT1d IWWT

1d IWWT

1d IWWT

1d IWWT 1d IWWT

1d IWWT

1d IWT

1d IWT 1d IWT

1d IWT

1d IWT

1d IWT 1d IWT

1d IWT

1d IWT

1d IWT 1d IWT

1d IWT

1d IWT

1d IWT 1d IWT

1d IWT

Bit Packing
HL

Bit Packing
HH

Threshold

X2 X1

Fig. 4: The Proposed Sliding Window Architecture

4



block in the next stage. The inputs are four pixels (X1, X2,
X3 and X4) and the results are four sub-band coefficients: LL
(Low-low: Approximation sub-band), LH (Low-High: vertical
details), HL (High-low: horizontal details) and HH (high-high:
diagonal details).

-

/2X1

X2

+ L

H -

/2 + LL

LH

-

/2X3

X4

+ L

H -

/2 + HL

HH

H

H

Fig. 5: 2D Haar Integer Wavelet Transform Block

B. Bit Packing Module
The Bit Packing block receives input from the IWT

module, compresses each coefficient, and further packes the
compressed coefficients together before storing to the Memory
Unit. It has three steps: First, it finds the minimum number of
bits required to represent the largest of the input coefficients
(NBits). Second, it compares the coefficients values with a
threshold parameter that determines whether the compression
is lossless or lossy. If coefficients values are less than the
threshold, they will be considered as insignificant and replaced
by zero. The third step involves the actual compression. Each
clock cycle, the block collects a coefficient’s NBits least
significant bits. Once the number of collected bits reach the
maximum bit width, it writes these packed bits to the Memory
Unit along with the management information needed to restore
the original pixels later.

Yout_Reg

Threshold

Yout_CurrentCBits

&

Current >= 
BitMax

+

Load

NBits

XOut

WEN

8

Bit Packing Unit

>=

8Xin

BitMap

clk srst

enable Load

8
8

Yout_RegYout_Reg

Threshold

Yout_CurrentYout_CurrentCBitsCBits

&&&&&&&&&

BitBititMMMMaxaxax
CurCurCurururrenrenrenreren

BitBitBitBitBitMMMMM
nnnt >t >t >t >t >====

MaxMaxMaxaxax
Current >= 

BitMax

++++++

Load

NBits

XOut

WEN

8

Bit Packing Unit

>=>=>=>>=

8Xin

BitMap

clk srst

enable

Fig. 6: Bit Packing Unit

Figure 6 shows the hardware architecture of the Bit Packing
unit. It consists of three Registers: (1) Current number of bits
(CBits): a 4-bit register that keeps track of the number of
bits in the Yout current register; (2) Current concatenation of
bits (Yout Current) is an 8-bit register that stores bits during
the concatenation process; (3) The output register (Yout Reg):
is an 8-bit register used when the number of valid bits
in Yout Current reaches BitMax (8 bits), and the value of
Yout Current will be copied to Yout Reg. The Bit Packing
block also sets write enable WEN=1 to write valid output
to the Memory Unit. The block has two comparators: one
compares the input (Xin) with a threshold value. If the input
coefficient value is less than threshold, the BitMap value is set

to 0 otherwise to 1. The other comparator compares the current
number of bits (Cbits) to BitMax. It also has one adder that
is used to add Cbits to the input number of bits (NBits). The
number of Bit Packing blocks in the proposed architecture is
equal to the window size, i.e. if the window size is 100×100,
there will be 100 Bit Packing blocks.

To find the minimum number of bits required for encoding
n coefficients (X0-Xn-1) of the just inputted column of a sub-
band, we first compare the sign bit (bit7) with bits 0-6 to find
the first location that has a different value than the sign bit
for each coefficient. We used 2-input XOR gates to do the
equality comparison, as shown in Figure 7. The first input to
all XOR gates is the sign bit and the second input is bits 0-
6. To find the minimum number of bits required to represent
all the coefficients, we use n-input OR gates to find if any of
the XOR gate’s outputs was 1. If the OR gates output is 1,
the minimum number of bits should be at least 2 bits, else if
the OR gates output is less than 4, it should be 3 bits, and
so on. Figure 7 shows the block’s architecture when n=3. As
an example, for X1= (-6) 0b’11111010, X2= (-2) 0b’11111110
and X3= (6) 0b’00000110, the output of the XOR gates will
be 0000101, 0000001 and 0000110 respectively. The output
of the OR gates will be 0000111, which indicates for each
coefficient in this sub-band column the minimum number of
bits required will be 4.

C. Bit UnPacking Module
The task of the Bit Unpacking module is to reconstruct

the original pixels values from the compressed coefficients
stored in the Memory Unit. The module first reads one value
from each of the three Memory Unit buffers: (1) number of
bits (NBits), (2) Bit map, and (3) Pixel FIFO. If the Bitmap
bit equals zero, that means the original coefficient was less
than the threshold value or zero. Otherwise, it extracts the
lower NBits of the value read from the Pixel FIFO, then sign
extends and sends it to the output. If NBits is less than 8 bits,
the module keeps the remaining bits to be used for the next
coefficient.

Figure 8 shows the hardware architecture of Bit UnPacking
module. It has three registers: (1) CBits, similar to Bit Packing:
it is a 4 bit register that keeps track of the remaining bits
in the Yout current register; (2) The remaining bits register,
Yout rem, a 16 bit register that is used to store the remaining
bits after each output. For example, if the block reads 8 bits
and NBits is only 2 bits, it will keep the remaining 6 bits to be
used in the next output; (3) The output register, Yout Reg. The

OR

0123456

XORXORXORXORXORXORXORXORXORXORXORXORXORXOR

70123456

XORXORXORXORXORXORXORXORXORXORXORXORXORXOR

7 0123456

XORXORXORXORXORXORXORXORXORXORXORXORXORXOR

7

OROROROROROR

X2 X1 X0

S5S6 S3S4 S1S2 S0

Minimum NBits

0000001

000001X

00001XX

0001XXX

001XXXX

01XXXXX

1XXXXXX

2 bits

3 bits

4 bits

5 bits

6 bits

7 bits

8 bits

Minimum NBits

0000001

000001X

00001XX

0001XXX

001XXXX

01XXXXX

1XXXXXX

2 bits

3 bits

4 bits

5 bits

6 bits

7 bits

8 bits

Minimum NBits

OR

0123456

XORXORXORXORXORXORXOR

70123456

XORXORXORXORXORXORXOR

7 0123456

XORXORXORXORXORXORXOR

7

OROROROROROR

X2 X1 X0

S5S6 S3S4 S1S2 S0

Minimum NBits

0000001

000001X

00001XX

0001XXX

001XXXX

01XXXXX

1XXXXXX

2 bits

3 bits

4 bits

5 bits

6 bits

7 bits

8 bits8 bits

Minimum NBits

Fig. 7: Find Minimum Number of Bits Architecture

5



block also has two comparators: one to check if the Bitmap
bit is zero or one. Another to make sure that the block always
has enough bits for the next output by checking if the CBits
register value is less than 8. It has a multiplexer that selects
bits from Yout rem and/or Xin to be cpoied to Yout reg. It
also has one adder connected as shown in Figure 8.

Xin

/=0BitMap[i]

Bit Unpacking

REN

Yout_rem

NBits

Yout_Reg

Select

<8

Yout
0

CBits

+

clk srstenable

Yout_Regg

0

Xin

/=/=/=/=/=00000/=0BitMap[i]

Bit Unpacking

REN

Yout_remYout_rem

NBits

Yout_Reg

SeSeSeSeSeleleleeeectctctcttSelect

<8<8<8<<<8

Yout
0

CBitsCBits

++++

clk srstenable
Fig. 8: Bit Unpacking Unit

Figure 9 shows an illustrative example of the bit unpacking
process. It shows the compressed bits of five pixels (A, B, C,
D and E), and the values of Yout rem and Yout reg in the
first four steps. In the first step, the block will read 8 bits that
contain pixel (A)’s bits and part of pixel (B)’s bits. Then it
will extract the lower NBits, and sign extend and write it into
Yout reg. Because the current number of bits (CBits) is now
less than 8 bits, in the next step it will read another 8 bits
as shown in Figure 9. The same process is applied to extract
the lower NBits and sign extend the value and write it into
Yout reg. The size of Yout reg is 16 bits because the worst
case is when the previous step has NBits equals to 1 and in
the next step NBits equals the max number of bits (8). In this
case, we need the size of Yout rem to be enough to store two
consecutive reads from Pixel FIFO.

D. Inverse Integer Wavelet Transform (IIWT) Module

The inverse wavelet transform module takes input from
Bit Unpacking and regenerates the original pixels values
from the four wavelet sub-bands. The inverse Haar wavalet
transformation equations are shown in Equations (3) and (4):

X(i, j) = (H(i, j)/2− L(i, j)) +H(i, j) (3)

X(i, j + 1) = H(i, j)/2− L(i, j) (4)

Figure 10 shows the architecture of the 2D inverse wavelet
transformation block. It looks similar to the Forward Wavelet

E ABCD

081632

AB A

BBCD B

CDD C

DDE D

Yout_rem (16 bits) Yout_reg (8bits)

Example
Time =1 clk

Time = 4 clk

Cbit =8

E ABCD

081632

AB A

BBCD B

CDD C

DDE D

Yout_rem (16 bits) Yout_reg (8bits)

Example
Time =1 clk

Time = 4 clk

Cbit =8

Fig. 9: Example of Unpacking Process

Transform block. Each 1D block has one addition, one sub-
traction and one division by 2. The two low frequency outputs
(L) in the first 1D stage are connected to the input of the
top block in next stage. The two high-frequency outputs (H)
are connected to the input of the bottom block in the second
stage. For an architecture with window size N, the number of
2D inverse wavelet transform modules equals N/2.

-/2

X1

X2

+

-/2

+LL

LH

-/2

X3

X4

+

-/2

+HL

HH

L

H

L

H

H

H

Fig. 10: 2D Haar Inverse Integer Wavelet Transform Block

E. Memory Unit
The memory unit is where all the compressed pixels and

management bits are stored. It contains buffers for storing
the packed bits (the output of BitPacking blocks), number of
bits (NBits), and BitMap. Based on the compression ratio, the
output of the Bit Packing blocks can be mapped to FIFO buffer
lines by one of the following options: First, store one packed
image row in one FIFO buffer line. This option has memory
savings equals 0% because it is similar to the traditional sliding
window architecture. The second option is to store two packed
image rows in one FIFO. The memory savings will be around
50% compared to the traditional method. Third, storing four
image rows in one FIFO to have an approximate saving of
75%. Fourth, to store eight image rows in one FIFO. The
memory saving will be around 87.5%. Figure 11 shows the
four options of mapping the packed bits to buffer lines.

Because each column in the decomposed image has two
sub-bands (LL and LH or HL and HH), as shown in Figure 11,
the total number of bits required for NBits equals 2×4×(Image
width - window size) bits. For BitMap, we need one bit for
each pixel, so the total number of bits equals (image width-
window size) × window size bits. Because for each column we
need 2×4 bits for NBits, mapping NBits to Block RAMs can
be done by configuring 18Kb BRAMs to be 2K×9 in simple

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

18 Kb BRAM18 Kb BRAM

18 Kb BRAM 18 Kb BRAM

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1 HL1 LL1 HL1 LL1 HL1 LL1 HL1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

LL1

LH1

HL1

HH1

18 Kb BRAM18 Kb BRAM

18 Kb BRAM 18 Kb BRAM

Fig. 11: Memory Mapping Options

6



dual port mode. Mapping BitMap bits depends on the window
size. For example, if the window size is 8, 16, 32, 64, or 128,
and image width 512, the 18Kb BRAMs will be configured
as 2k×9, 1k×18, 512 ×36, 2×(512×36) and 4×(512×36)
respectively.

Current Limitations. Our architecture currently has one
limitation that the compression ratio should be known at
design time. That means, the number of BRAMs and their
configurations used in the memory unit should be known.
This will not be an issue in cases where the image scenes
do not change significantly. In this case the memory unit
will be configured to the worst-case scenario. But in cases
of bad frames or random images, the compression ratio will
be very low and the size of the packed bits will be greater
than the available BRAMs. This can be fixed in the future
by making threshold values automatically adjustable based
on the available memory and the current frame compression
ratio. Moreover, the Bit Unpacking block in our architecture
consumes a large number of LUTs resources compared to the
other blocks, due to a large multiplexer. But our architecture
LUTs resources is only a function of window size. While
increasing image resolution does not impact the architecture’s
LUT resources, allowing for increased BRAM savings with
higher resolutions at no additional LUT cost.

VI. RESULTS AND ANALYSIS

This section presents the experimental results for testing
the performance of the proposed compression method, and
evaluates the memory savings gained by using it in our sliding
window architecture compared to the traditional architecture. It
presents the hardware resources used to implement each block
in the architecture, and the overall system.

A. Memory resource savings
To evaluate our compression method, we used 10 randomly

selcted images from the MIT Places Database for Scene
Recognition [13]. Figure 12 shows examples of the images
used. It includes indoor and outdoor scenes. We computed the
averege memory saving gained by compressing these images
for different window sizes and image resolutions. Equation 5
shows the memory saving formula.

MemorySaving = (1− Compressed

Uncompressed
)× 100% (5)

Figure 13 shows the memory savings of our compression
algorithm in comparison to the traditional sliding window
approach for an 2048×2048 image resolution. These numbers
take into account the overhead associated with the management
bits (BitMap and NBits). For lossless compression, the saving

Fig. 12: Example Images

is around 26-34% for different window sizes. The compression
ratio increases as we increase threshold value from 0 to 2, 4
and 6 (i.e. as the algorithm becomes more lossy). The saving
is around 41-54% when threshold value is set to 6.

26.72

35.94

39.26

41.36

32.13

42.69

46.29

48.34

34.23

46.03

49.79

51.92

35.06

47.87

51.74

53.71

34.81

48.98

52.87

54.80

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00

Threshold=0
(Lossless)

Threshold=2
(Lossy)

Threshold=4
(Lossy)

Threshold=6
(Lossy)

M
em

or
y S

av
in

g (
%)

Window size =8 Window size =16 Window size =32
Window size =64 Window size =128

Fig. 13: Percentage of memory savings with 90% confidence intervals

Table 1 shows the number of BRAMs used in the traditional
sliding window architecture for different image widths (512,
1024, 2048 and 3840) and window sizes (8, 16, 32, 64 and
128). It shows that each FIFO line is realized in hardware
by one 18Kb BRAM except for image width 3840. This is
because each pixel is 8 bits and an 18Kb BRAM configured
as 2k×9 can fit up to 2048 pixels. Thus, image rows of width
512, 1024 and 2048 can fit in one BRAM, while image widths
greater than 2048 require cascading multiple BRAMs to store
one image row.

TABLE I: Number of BRAMs (18Kb)

Window size 512 1024 2048 3840
8 8 8 8 16

16 16 16 16 32
32 32 32 32 64
64 64 64 64 128
128 128 128 128 256

Tables II-V can be used to compare our approach’s memory
usage to the traditional sliding window approach. We examine
the impact of varying window size, image resolution, and
specified lossiness. Table II shows that with our compression
algorithm the packed bits for window size 8 can fit in two 18Kb
BRAMs for the lossless case (T=0) with two BRAMs for man-
agement bits. This represents a 50% memory saving compared
to the traditional architecture. Increasing the threshold value
to 6 (most lossy case considered) makes it possible to fit more
rows in one Block RAM. This represents a memory saving of
62.5%. These numbers show that the proposed architecture is
more efficient in exploiting BRAMs by compressing the pixels
and packing more than one image’s row into one BRAM.

Next, we take a closer look at the managment bits (BitMap
and NBits) memory requirements. For window size 8 and
image resolution 512×512, the size of BitMap equals 8×(512-
8) bits and the size of NBits equals 4×2×(512-8) bits. The
BitMap can be buffered in one 18Kb BRAM with a 2k×9
configuration. The NBits can also fit in one 18Kb BRAM with
a 2k×9 configuration where bits 0-3 used for low sub band
and bits 4-7 are used for the high sub band. Table 2 shows a
total of two BRAMs for window size 8 and image resolution
512×512.

7



TABLE II: Number of BRAMs (18Kb) for Resolution (512×512)

Window size
Packed bits

Management bits
T=0 T=2 T=4 T=6

8 2 2 2 1 2
16 4 4 2 2 2
32 8 8 4 4 2
64 16 16 16 8 3

128 32 32 32 16 5

TABLE III: Number of BRAMs (18Kb) for Resolution (1024×1024)

Window size
Packed bits

Management bits
T=0 T=2 T=4 T=6

8 4 4 2 2 2
16 8 8 4 4 2
32 16 16 8 8 3
64 32 32 16 16 5

128 64 64 32 32 9

TABLE IV: Number of BRAMs (18Kb) for Resolution (2048×2048)

Window size
Packed bits

Management bits
T=0 T=2 T=4 T=6

8 4 4 4 4 2
16 8 8 8 8 3
32 16 16 16 16 5
64 32 32 32 32 9

128 64 64 64 64 16

TABLE V: Number of BRAMs (18Kb) for Resolution (3840×3840)

Window size
Packed bits

Management bits
T=0 T=2 T=4 T=6

8 8 8 8 8 4
16 16 16 16 16 6
32 32 32 32 32 9
64 64 64 64 64 16

128 128 128 128 128 28

Increasing window size to 16 shows similar results for
512×512 resolution. The compressed bits of every four rows
can fit in one BRAM for lossless compression and for lossy
compression with threshold equals 2. This shows a memory
saving of 62.5%, if the compression ratio is increased by
increasing the threshold value to 4 and 6 to make every 8 rows
fit in one BRAMs. The color in Tables II-V represents number
of image rows mapped to one BRAM. Green cells represent
mapping each 8 rows in the input image to one BRAM. Blue
cells represent mapping each 4 rows to one BRAM. Yellow
cells represent mapping each two rows to one BRAM.

Increasing image width from 512 to 1024 and 2048 in-
creases the compression ratio, but the number of pixels in each
row increases, so increases the total number of bits. This can
be seen clearly when the image width increases from 1024 to
2048 in Tables III and IV. When the Threshold value is 4 and
6, the memory saving is around 75% for 1024. That means
the architecture was able to pack 8 rows of 1024 pixels in
one BRAM. Increasing the image width to 2048 allows for
packing 4 rows of 2048 pixels in one BRAM. A saving of
approximately 50% compared to the traditional architecture.

The architecture currently uses a threshold to configure the
system for lossless to varying degrees of lossy compression.
Our evaluations show thresholds of 2, 4 and 6 gives mean
square errors (MSEs) of 0.59, 3.2 and 4.8 respectively. Other
options can be investigated to vary lossiness, such as using the
average of previous pixels.

B. Hardware Resource Utilization
This section presents the Post-Synthesis hardware resource

utilization for each block in our architecture. Each table shows
the number of LUTs, registers and the maximum operating
frequency. We used Xilinx Vivado 2015.3 tool and Xilinx Zynq
7020 (XC7z020) FPGA [14] in our experiments. It has a total
of 53,200 LUTs and 106,400 registers. Table VI and Table IX
show the resources of the forward and inverse integer wavelet
transform blocks. The resources of these two blocks are similar
because they have similar architectures. Table VII shows the
resources of the Bit Packing unit for different window sizes. It
shows that resources are linearly increasing with the window
size from 1% LUTs for window size 8 to 3%,7%,16% and
32% for window sizes 16, 32, 64 and 128. The Bit Unpacking
block consumes more resources compared to the other blocks.
It consumes 15%, 29% and 59% LUTs for window size 32,
64 and 128. This is due to a large multiplexer in the block that
selects bits from both the remaining bits from the previous read
and the new input. Table X shows the overall resources of the
whole architecture. The LUTs for window size 32 and 64 was
around 33% and 67% of the total LUTs on the chip. For a
window size of 128 the LUTs exceed this device resources.

TABLE VI: Integer wavelet transform (IWT)

Window size LUTs Registers Frequency
8 386 (0%) 166 (0%) 592.1 MHz

16 770 (1%) 326 (0%) 592.1 MHz
32 1538 (2%) 646 (0%) 592.1 MHz
64 3074 (3%) 1276 (1%) 592.1 MHz

128 6146 (11%) 2566 (2%) 592.1 MHz

TABLE VII: Bit Packing unit hardware resources

Window size LUTs Registers Frequency
8 1061 (1%) 200 (0%) 538.6 MHz

16 2083 (3%) 400 (0%) 538.6 MHz
32 4047 (7%) 801 (0%) 538.6 MHz
64 8598 (16%) 1856 (1%) 538.6 MHz
128 17179 (32%) 3712 (3%) 538.6 MHz

TABLE VIII: Bit UnPacking unit hardware resources

Window size LUTs Registers Frequency
8 2130 (0%) 203 (0%) 343.1 MHz

16 4246 (7%) 387 (0%) 343.1 MHz
32 8039 (15%) 817 (0%) 343.1 MHz
64 15660 (29%) 1637 (1%) 343.1 MHz
128 31660 (59%) 3237 (3%) 343.1 MHz

TABLE IX: Inverse IWT unit hardware resources

Window size LUTs Registers Frequency
8 386 (0%) 130 (0%) 592.1 MHz

16 770 (1%) 258 (0%) 592.1 MHz
32 1538 (2%) 529 (0%) 592.1 MHz
64 3074 (3%) 1055 (1%) 592.1 MHz

128 6146 (11%) 2108 (2%) 592.1 MHz

TABLE X: The overall architecture hardware resources

Window size LUTs Registers Frequency
8 4994 (9%) 1643 (1%) 230.3 MHz

16 9432 (17%) 2792 (2%) 230.3 MHz
32 17773 (33%) 5091 (4%) 230.3 MHz
64 35751 (67%) 9680 (9%) 230.3 MHz
128 - - -

8



VII. CONCLUSION

In this paper, we present a new sliding window architecture
that efficiently utilizes the available Block RAMs on chip.
The proposed image compression algorithm gives good com-
pression ratio and can be used in our architecture to reduce
BRAMs at the expense of introducing more LUTs resources.
The architecture can be configured to perform sliding window
operations using lossless or lossy compression based on an
application’s requirement. Evaluating the proposed architecture
on a set of images selected from a benchmark dataset shows
promising results. The memory saving reached 25-70% for
lossless compression and up to 84% for lossy compression.
The proposed architecture is fully pipelined, giving similar
performance to the traditional architecture. The compression
ratio is currently configured at design time, our future work
will investigate making this automatically adjustable at runtime
based on the previous frame compression ratio.

REFERENCES

[1] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy
comparison of FPGA, GPUs, and multicores for sliding-window appli-
cations,” in Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays, pp. 47–56, ACM, 2012.

[2] C. Huang and F. Vahid, “Scalable object detection accelerators on
FPGAs using custom design space exploration,” in 2011 IEEE 9th
Symposium on Application Specific Processors (SASP), pp. 115–121,
June 2011.

[3] H. Blasinski, W. Hai, and F. Lohier, “FPGA architecture for real-time
barrel distortion correction of colour images,” in Multimedia and Expo
(ICME), 2011 IEEE International Conference on, pp. 1–6, IEEE, 2011.

[4] A. Amaricai, C. E. Gavriliu, and O. Boncalo, “An FPGA sliding
window-based architecture harris corner detector,” in 2014 24th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), pp. 1–4, Sept 2014.

[5] H. Yu and M. Leeser, “Optimizing data intensive window-based image
processing on reconfigurable hardware boards,” in IEEE Workshop on
Signal Processing Systems Design and Implementation, 2005., pp. 491–
496, Nov 2005.

[6] H. Yu and M. Leeser, “Automatic sliding window operation optimization
for FPGA-based,” in 2006 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 76–88, April 2006.

[7] Y. Dong, Y. Dou, and M. Liu, “A design space exploration algorithm
incompiling window operation onto reconfigurable hardware,” Interna-
tional Journal of Computers and Applications, vol. 30, no. 1, pp. 36–43,
2008.

[8] P. Praveena, “Implementation of loco-i lossless image compression
algorithm for deep space applications,” International Journal of Re-
configurable and Embedded Systems, vol. 3, no. 3, 2014.

[9] A. M. D. Silva, D. G. Bailey, and A. Punchihewa, “Exploring the im-
plementation of jpeg compression on FPGA,” in 2012 6th International
Conference on Signal Processing and Communication Systems, pp. 1–9,
Dec 2012.

[10] J. Jyotheswar and S. Mahapatra, “Efficient FPGA implementation of
dwt and modified spiht for lossless image compression,” Journal of
Systems Architecture, vol. 53, no. 7, pp. 369–378, 2007.

[11] G. Stitt, E. Schwartz, and P. Cooke, “A parallel sliding-window
generator for high-performance digital-signal processing on FPGAs,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 9, no. 3, p. 23, 2016.

[12] W. Zhenhua, X. Hongbo, T. Yan, T. Jinwen, and L. Jian, “Integer Haar
wavelet for remote sensing image compression,” in 6th International
Conference on Signal Processing, 2002., Aug 2002.

[13] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in Advances
in neural information processing systems, pp. 487–495, 2014.

[14] Xilinx, “Zynq-7020.” https://www.xilinx.com/support/documentation/
data sheets/ds190-Zynq-7000-Overview.pdf, 2016.

9


