
A Multi-Faceted Approach to FPGA-Based Trojan
Circuit Detection

Michael Patterson, Aaron Mills, Ryan Scheel, Julie Tillman, Evan Dye, Joseph Zambreno
Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA

Email: {mjpatter, ajmills, rascheel, tillmanj, emdye, zambreno}@iastate.edu

Abstract—Three general approaches to detecting Trojans em-
bedded in FPGA circuits were explored in the context of the 2012
CSAW Embededed Systems Challenge: functional testing, power
analysis, and direct analysis of the bitfile. These tests were used to
classify a set of 32 bitfiles which include Trojans of an unknown
nature. The project is a step towards developing a framework for
Trojan-detection which leverages the strengths of a variety of testing
techniques.

I. MOTIVATION AND BACKGROUND

In recent years, the vulnerability of chips to hardware Trojans
has garnered a great deal of attention [1], [2], [3], [4]. Many
types of Trojans have been detected, and work has even been
done to classify such Trojans [5]. It has been realized that
malicious attackers can secretly insert Trojans into chips dur-
ing the manufacturing process. This vulnerability is especially
troublesome because of the degree to which chip manufacturing
is outsourced to foreign countries, which may not share the
interests of those ordering the manufacturing [6]. The customers
send their designs off to be manufactured, but have no way of
ensuring the chips they receive back contain only their original
design and not a Trojan.

There are a few options to mitigate this vulnerability. Trusted
foundries could be used during manufacturing to ensure a
reliable final product. However, this is usually not economically
feasible or desirable. Another option is to perform destructive
testing on the final product to detect the presence of a Trojan, but
there are some obvious drawbacks to this approach. It destroys
the chip under test, it requires specialized and often expensive
equipment, and it doesn’t guarantee that the untested chips are
also Trojan-free. What is more, the technique is not useful for
FPGAs, since the end-application is not a physical construct on
the chip. Non-destructive testing methods need not suffer from
these limitations, and are therefore the focus of this paper.

This paper discusses three testing methods we explored in
order to detect the Trojans presented in the 2012 CSAW Em-
bedded Systems Challenge. It details our testing setup as well as
listing our classification for each of the provided FPGA bitfiles
and our evidence for each classification. Our testing methods are
compared to similar published methods, and various possibilities
for future work are discussed.

II. TESTING TECHNIQUES

The goal of the 2012 CSAW Embedded Systems Challenge
was to correctly identify which among the 32 provided bitfiles
contained Trojans. As shown in Figure 1, there were two circuits
provided; the ISCAS85 benchmark C6288 consisting of only
combinational logic (circuit type A), and the ISCAS89 bench-
mark S9234 which includes sequential logic (circuit type B) and
a 147 flipflop scan chain. Only rudimentary documentation was

decoder encodermult

8

16

16

32 8

5 6

test_se

test_si

test_so

clk
clk ?

(a) Design A, the C6288 ISCAS85 benchmark

decoder encodermult

8

16

16

32 8

scan chain

5 6

test_se

test_si
test_so

clk
clk

state machine

(b) Design B, the S9234 ISCAS85 benchmark

Fig. 1: Circuit designs for the 2012 CSAW Embedded Systems Challenge.

provided for these circuits, and nothing was known in advance of
the Trojans they contained. Although numerous testing strategies
were considered, we decided to focus on the following three. Our
results indicate that these techniques can also be generalized
to non-FPGA circuits. Bitfile analysis might appear to be the
exception, but in general chip design flows will produce a netlist
before fabrication, so the process is comparable.

A. Functional Testing

In functional testing, the correct output for each input over
a given range is first calculated. Then, the chip being tested is
given the same range of inputs, and the corresponding outputs
are recorded. These output sets are compared, and if any
inconsistencies are found, it can be concluded that the chip has
a Trojan. However, even if the outputs are all the same, it cannot
be definitively said that the chip does not have a Trojan, as the
Trojan may not modify the functionality.

Functional testing is an effective way to test for Trojans,
but it does have several limitations. It is most effective for
combinational circuits. Sequential circuits have an intractably
large input space, making exhaustive functional testing impossi-
ble. Additionally, the Trojan could have a trigger that activates
only at a certain time or under other circumstances completely
independent of input. It is also not useful for detecting Trojans
that don’t affect the output. Even for combinational circuits,
functional testing becomes less effective as the possible number
of inputs increases. For each extra bit of input, the time to
completely test a combinational circuit increases by a factor
of two, so testing the entire input space quickly becomes
impractical. However, even with all these limitations, functional
testing is often the best way to begin testing for Trojans. Under
the correct circumstances, it can provide a relatively easy method
to conclusively prove that a chip does have a Trojan.



Fig. 2: Functional test setup using Digilent Nexsys2 and Basys2 FPGA boards.

B. Power Analysis

As a signal inside an integrated circuit switches between
logical 1 and 0, the total power consumed by the circuit will
increase and decrease in a correlated fashion–this is known as
dynamic power. Thus, one way to indirectly observe changes
inside a circuit is to measure the current draw.

This principle can be leveraged to detect whether or not a
chip contains a Trojan [7], [8], [9]. First, the golden design is
observed while operating, and the power characteristics of the
chip are recorded. Next, each potentially infected chip is tested,
and the power characteristics are compared to those originally
measured. By analyzing these measurements, a Trojan can often
be detected without directly observing the functionality of the
Trojan itself.

However, accurate power analysis can be challenging. Many
non-obvious factors influence the power consumption of a chip,
and some Trojans can only be detected by this method when they
are triggered. Both of these factors come into play when deciding
how to configure a test, specifically what input to provide to
the chip. Two general strategies are often used: static input and
dynamic input. Static input testing, in which the same input is
applied to the chip during the test, can quickly find Trojans
which are always operating regardless of the input. However,
dynamic testing, in which many different inputs are applied to
the chip during testing, is often needed to detect Trojans that are
only triggered by certain input conditions.

C. Bitfile Analysis

The third technique that we considered involved analyzing the
bitfile itself. Even though vendors work to prevent the possibility
of reverse engineering the bitfiles generated for their FPGAs, it
has been shown that such a technique is possible [10], [11]. In
fact, tools have even been developed that attempt to automate this
process [12], [13], [14]. By analyzing the logic elements behind
each bit file’s generation, much can be learned about the actual
components in each design, and whether or not a bit file contains
a Trojan. While we did not primarily rely on this technique for
the CSAW competition, it did provide some helpful validation
of our other methods.

III. EXPERIMENTATION

A. Functional Testing

For all of our functional testing, we used the setup shown
in Figure 2. We used a Digilent Nexys2 board to send and

Fig. 3: Setup for circuit power analysis.

receive signals through the “pmod” connectors on the Basys2
board. This physical setup was used for testing both design A
and design B. The overall results are presented in Table I.

1) Design A: Design A was fairly easy to functionally test.
The Design A input is only 8 bits, so the Nexys2 testbench
only had to test 256 possible inputs to complete a functional
test. The testbench simply went through all of these inputs while
collecting the output from the Basys2. As each test was running,
the testbench would send the output over a serial connection to
a PC to be recorded. After we captured the output, we then ran
a script to parse it and compare it to the expected golden circuit
behavior. If there was a Trojan running on the board that caused
any discrepancy between input and output, then this functional
test would guarantee that we caught it.

2) Design B: Design B was much more challenging due to the
large input range and the use of sequential logic. Furthermore,
we were provided no information on the overall function, so we
could not strategically pick our inputs. Again our testbench ran
on the Nexys2 board while the bitfile under test was run on the
Basys2. The LSB of a pseudo-random number (based on a linear
feedback shift register with period 232 - 1) was shifted into the
scan chain, providing a random initial state. Subsequently each
of the 32 possible inputs were sent into the primary input. These
two steps were then repeated endlessly.

For each input, the output from the Basys2 was compared
to the output of a golden circuit running inside the testbench
and being presented the same inputs. Whenever a discrepancy
between the output of the Basys2 and the output of the golden
circuit was found, an LED would light on the board and stay
lit, signaling that a Trojan had been detected.

Unfortunately the testbench implementation was overly sensi-
tive to the noisy channel between the boards. If even a single bit
was sent incorrectly to the Basys2 over the span of thousands
of inputs, a false positive would be generated. A more reliable
solution would have been to include at least a basic level of error
detection such as a parity bit.

B. Power Analysis

The power analysis technique required using the following
tools:



Fig. 4: LabView Signal Express used to capture and process DMM data

• Agilent 34410A high performance digital multimeter
(DMM)

• Agilent E3631A DC power supply
• 1 Digilent Nexys2 board, running the testbench
• 1 Digilent Basys2 board, running the unknown bitfile
• LabView Signal Express, attached to DMM
1) Design A: The physical setup of the power analysis testing

for Design A is shown in Figure 3. For the static input test, the
DMM was connected in series with the power supply and the
Basys2 “battery” pin header. Each bitfile was programmed onto
the Basys2, and the DMM was used to find the average current
across 500 samples. Averaging is required because even with a
static input applied to the asynchronous Circuit A, the current
is not constant due to other ICs running on the Basys2 board
as well as ambient electromagnetic interference, power supply
ripple, and other factors. However, the measurement standard
deviation was around 400µA, indicating a precise reading.

For the dynamic input test, current waveforms are first gen-
erated for each bitfile. These are then cross-correlated with the
waveform of a “golden” bitfile. Cross-correlation is a mathemat-
ical process which produces a value between -1 and 1, where the
two limits correspond to strong correlation and 0 corresponds to
no correlation. Here we expect that clean bitfiles will correlate
with a value close to 1, and the tainted bitfiles will have a lower
correlation. Ideally the two classes are cleanly delineated.

The Nexys2 board was programmed with the same testbench
used in the functional test. The LEDs were removed from the
Basys2 while it was slaved to try to reduce the associated current
switching overhead. From Signal Express, the DMM was set for
a 0.03s sample period, and data was recorded for 30 seconds.
At the same time, a continuous averaging filter was applied to
the signal to reduce the noise, with a 3 sample window. This
data capture setup can be seen in Figure 4. Finally, Matlab’s
crosscorr function was used to compare the waveform data
from the unverified bitfile and the golden waveform. Simple
classification was performed based on the two highest and the
two lowest correlations.

Table I shows the measurements for power testing. The
measurements that seem to suggest the presence of a Trojan
are highlighted. It is generally assumed that the circuit with
the higher current contains a Trojan. However, if components
are removed, the reverse could be true, which is why cross
correlation can be a more valuable metric.

One limitation of this setup is that the Nexys2 needs to be

Fig. 5: Matlab’s crosscorr shows a strong correlation between an unverified
waveform and the golden waveform, with a small positive time lag, correspond-
ing to the reset delay.

reset manually, creating a synchronization problem between the
waveforms. A benefit of using the crosscorr function is that it
iterates through all possible “time lags” so that the one with
the greatest positive correlation can be identified for comparison
purposes. Figure 5 shows the crosscorr iteration over one bitfile’s
waveform. If the reset on the board and record function on
the PC were perfectly synchronized it could be assumed that
selecting the correlation at the zero time lag is sufficient for
comparison.

Another limiting factor is the number of external variables
involved in this process, such as sample rate and averaging
window. These would need to be properly tuned for a production
environment. Process variation would also become a significant
concern in this area as it would introduce additional noise.

2) Design B: Power analysis was performed on Design B
with a similar setup as Design A, except the inputs were static.
As expected, the measurements did not reveal a substantial
difference between any bitfile. The challenge for Design B is that
an inordinate amount of data may need to be recorded before an
input activates a hidden network– a more sophisticated approach
is needed in the future.

C. Bitfile Analysis

The Spartan 3 version of the debit tool [13] was used to
analyze the given bitfiles. In doing so, we were able to reverse
engineer the provided bitfiles to provide a netlist of the main
combinational circuit elements. While the output netlists could
not be trivially correlated with the original golden designs,
the tool still provided useful information for Design A. Many
of the sub-designs had clearly differentiated numbers of nets.
Unfortunately, the Spartan 3 version of the tool cannot currently
handle registers and other sequential elements, so the results
were inconclusive when run on Design B.

Table I shows the counts extracted from debit. Based on their
elevated net count, the highlighted cells are those which appear
to contain a Trojan.

IV. CONCLUSION AND FUTURE WORK

Although the functionalities of these Trojans were not pro-
vided, they can be placed within the taxonomy in [5]. Trojans 1
and 2 must be user-input triggered, and 3-6 must be always
on, since there is elevated current draw regardless of input.
Design B could either be internally triggered (e.g. time-based),



TABLE I: Classification of bitfiles based on three features. Highlighted measurements suggest the presence of Trojans.

Design Trojan Bitfile Functional Power Analysis Net Count Final Decision
Type Mismatches Iave Cross Correlation Trojan? Deciding Test

A

1

1 80 0.035625

N/A

1265 Yes

Functional2 0 0.035598 1244 No
3 0 0.035601 1247 No
4 80 0.035602 1237 Yes

2

1 0 0.035603

N/A

1217 No

Functional2 1 0.035674 1119 Yes
3 0 0.035621 1244 No
4 1 0.035646 1187 Yes

3

1 0 0.035720 0.9652 1306 Yes

Power, Bitfile2 0 0.035717 0.9652 1306 Yes
3 0 0.035606 0.9814 1162 No
4 0 0.035631 0.9730 1129 No

4

1 0 0.035600 0.9720 1120 No

Power2 0 0.035607 0.9679 1113 No
3 0 0.035684 0.9603 1367 Yes
4 0 0.035687 0.9591 1267 Yes

5

1 0 0.041586

N/A

2242 Yes

Power, Bitfile2 0 0.035599 1079 No
3 0 0.041586 2242 Yes
4 0 0.035598 1079 No

6

1 0 0.036928

N/A

1404 Yes

Power, Bitfile2 0 0.036934 1404 Yes
3 0 0.035640 1053 No
4 0 0.035636 1053 No

B

7

1 0 after 4hr 0.036105

N/A N/A

No

Functional2 1 immediately 0.036112 Yes
3 1 immediately 0.036113 Yes
4 0 after 4hr 0.036114 No

8

1 1 after 8hr 0.036120

N/A N/A

Yes

Functional2 0 after 4hr 0.036100 No
3 1 after 3.5hr 0.036140 Yes
4 0 after 4hr 0.036119 No

or based on inputs. Given this diversity, the best defense is
multi-faceted and layered. Thus the presented ways of detecting
Trojans, when used in conjunction, offer a broader coverage than
any single approach. As discussed in Section II, individual tests
used were identified based on their relevancy within the 2012
CSAW Embedded Systems Challenge, and our testing does not
fundamentally deviate from those already published, but instead
attempts to combine a variety of testing methods to achieve more
reliable Trojan identification.

Future work would involve the integration of these approaches
into a formalized framework which includes a well-defined
process and provides a numerical confidence level for the classi-
fications. It would also involve an increased focus on robustness,
repeatability, and flexibility.

V. ACKNOWLEDGEMENT

We would like to acknowledge the travel grant to participate
in the Embedded Systems Challenge, which was provided in part
by the National Science Foundation (0958510,1059328), Army
(W911NF-11-1-0470), Air Force Research Labs and Intel. The
FPGA platforms for the contest were donated by Xilinx.

REFERENCES

[1] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” in Proc. of the Usenix
Workshop on Large-Scale Exploits and Emergent Threats (LEET), 2008.

[2] R. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware Trojan: threats
and emerging solutions,” in Proc. of the International High Level Design
Validation and Test Workshop (HLDVT), Nov. 2009.

[3] Homeland Security News Wire, “Dell warns of
Hardware Trojan,” Jul. 2010. [Online]. Available:
http://www.homelandsecuritynewswire.com/dell-warns-hardware-trojan

[4] Dangerous Prototypes, “Defcon 16: Hardware Tro-
jans using FPGA,” Jan. 2011. [Online]. Avail-
able: http://dangerousprototypes.com/2011/01/25/defcon-16-hardware-
trojans-using-fpga/

[5] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
hardware: Identifying and classifying hardware trojans,” Computer, vol. 43,
no. 10, pp. 39 –46, oct. 2010.

[6] C. Brown and G. Linden, “Semiconductor capabilities in the U.S. and
industrializing Asia,” in Industry Studies, 2008.

[7] R. Rad, J. Plusquellic, and M. Tehranipoor, “A sensitivity analysis of
power signal methods for detecting hardware Trojans under real process
and environmental conditions,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 18, no. 12, pp. 1735–1744, Dec. 2010.

[8] C. Lamech, R. Rad, M. Tehranipoor, and J. Plusquellic, “An experimental
analysis of power and delay signal-to-noise requirements for detecting
Trojans and methods for achieving the required detection sensitivities,”
IEEE Transactions on Information Forensics and Security (TIFS), vol. 6,
no. 3, pp. 1170–1179, Sep. 2011.

[9] L.-W. Wang and H.-W. Luo, “A power analysis based approach to detect
Trojan circuits,” in Proceedings of the International Conference on Quality,
Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), Jun.
2011.

[10] D. Ziener, S. Assmus, and J. Teich, “Identifying FPGA IP-cores based on
lookup table content analysis,” in Proc. of the International Symposium on
Field Programmable Logic and Applications (FPL), 2006.

[11] S. Drimer, “Volatile FPGA design security a survey,” 2007.
[12] A. Megacz, “A library and platform for FPGA bitstream manipulation,” in

Proc. of the IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2007.

[13] J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in Proc. of
the International Symposium on Field Programmable Gate Arrays (FPGA),
2008.

[14] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream
reverse-engineering,” in Proc. of the International Symposium on Field
Programmable Logic and Applications (FPL), 2012.


