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Foreword

Multimedia technology has become a powerful force in modern society. Mobile
videos generated from mobile devices such as smartphones and wireless sensors
are increasing manifold in demand. Power consumption, secrecy and privacy of
multimedia content is becoming an increasing important concern for the industry
and academia. In this context, I feel privileged to introduce Embedded Multimedia
Security Systems: Algorithms and Architectures, a book written to give hands-on
understanding of multimedia coding and encryption problem to researchers.

The first three chapters form Part I of the book. They give a foundation to the
readers about multimedia coding, encryption and architecture issues. After a brief
overview of the existing approaches to secure multimedia content, the authors in-
troduce the notion of developing algorithms and architectures for joint compression
and encryption of multimedia data. The later four chapters, forming the Part II of
book, give practical examples, design considerations, derivation of building such
building blocks for joint compression and encryption issues. These chapters give a
flavor to research in this area and invite researchers to delve into and come up with
new solutions in this area.

I believe that this new book establishes a skill base for those who would wish to
practice the subject (secure embedded multimedia systems) and become seriously
involved in the design and creation of useful and effective multimedia applications
for solution of real world problems in a variety of different contexts. Moreover, it
establishes credence in terms of its usefulness, accuracy and the reliability of the
work. The book provides a wealth of knowledge for beginners as well as practition-
ers.

Prasant MohapatraProfessor
Tim Bucher Family Endowed Chair
Department of Computer Science
University of California, Davis
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Preface

Welcome to the first edition of the book “Embedded Multimedia Security Systems:
Algorithms and Architectures”. The main objective behind this book is NOT to serve
as a textbook or a book which gives readers a thorough understanding of security
approaches in embedded multimedia systems. Rather, our goal is to stimulate cre-
ative thinking in the readers to come up with newer schemes for video encryption
problems.

This book gives the perspective that architecture, coding (compression) and en-
cryption can be viewed together. Instead of designing a compression and an encryp-
tion algorithm separately and then fitting it into a target architecture, we can make
a complete design altogether. Some food for thought is given to the readers in the
form of research articles in this book, but we hope that the readers will take the
frontiers beyond what has been presented here.

Part one of this book gives a brief introduction to the security and encryption
approaches in existing literature, as well as motivation of the joint approach for
compression and encryption. The second example gives more concrete examples of
how to do this, in a modular way, by augmenting encryption to video compression
blocks. Polymorphic Wavelet Transform discusses a hardware architecture which
can be modified at run-time to suit the needs of application and requires much less
computing resources, all with the help of novel signal processing approach designed
to suit the hardware requirements. Secure Wavelet Transform is an architecture that
uses wavelet transform stage for encryption, and then optimizes the implementation
for hardware. Chaotic Filter Banks introduce the idea of chaotic maps to wavelet
filter banks for encryption. Chaotic Arithmetic Coding is presented as an interpreta-
tion of chaotic maps to replace the existing arithmetic coding scheme.

Intended Audience

This book is suitable for advanced undergraduates and first-year graduate students
in computer science, computer engineering and electrical engineering majors, and

ix



x Preface

for students in other disciplines who are interested to study the marriage of multi-
media (video) coding, encryption and hardware implementation. The book will also
be useful for many professionals, like software firmware/algorithm engineers, hard-
ware engineers, chip and system architects, technical marketing professionals and
researchers in multimedia, communication, security, semiconductor, and computer
industries.

Amit Pande
Joseph Zambreno

Davis, CA, USA
Ames, IA, USA
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Part I
Multimedia Systems

This is part one of the book. It intends to give the reader overall directions in mul-
timedia delivery problem and a strong grasp in basic concepts in coding, communi-
cation, security, and architectures for video coding—together referred to as “Multi-
media Systems”.



Chapter 1
Introduction

Abstract In the past few years, multimedia communication has gained significant
attention, particularly over mobile and embedded devices (such as wireless sensors).
Multimedia applications are data-intensive, therefore requiring special treatment as
against common data coding, communication and encryption applications. This sec-
tion discusses some basics about video coding, data encryption and computer archi-
tectures used for data processing.

Chapter goals:

• Basic introduction to video coding techniques.
• Basic introduction to video encryption techniques.
• Basic introduction to ‘general-purpose’ and ‘custom’ computer architectures.

1.1 Video Coding

Digital video takes up a very large amount of storage space or bandwidth in its
original, uncompressed form. Video compression makes it possible to send or store
digital video in a smaller, compressed form. The source video is compressed or
encoded before transmission or storage. Compressed video is decompressed or
decoded before displaying it to the end user. Consider a HD video at resolution
1920 × 1080 pixels at 60 frames per second. The three colors (red, green and
blue) are quantized at 8 bits per pixel. The size of one second of video is equal
to 1920 × 1080 × 60 × 3 × 8 bits or roughly 2.8 Gigabits per second. Transmission
of such file size is almost impossible on the best home networks (LTE-A or WiFi).
Thus, the volume of data has to be greatly compressed.

A CODEC has two parts: COder and DECoder. The COder is used to compress
or code large data into fewer bits, using a reversible conversion. It allows efficient
storage and transmission of data. The inverse process is called decompression (DE-
Coding). Video compression or the process of compressing video signals has many
stages. There are many video codecs which use a variety of stages and their variants,
however, their main functions are similar.

The first step in image or video compression is frequency-domain transformation.
A frequency-domain transformation is a necessary step because natural images can
be compactly represented in frequency domain. In other words, it takes less words

A. Pande, J. Zambreno, Embedded Multimedia Security Systems,
DOI 10.1007/978-1-4471-4459-5_1, © Springer-Verlag London 2013
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4 1 Introduction

Fig. 1.1 Operation of Discrete Cosine Transform on 8×8 blocks of an image. The texture regions
have more frequency components while the regular background (like cow skin) has less frequency
components. Implementing DWT

to describe an image in frequency domain than in spatial domain (see Fig. 1.1).
The most frequent operation for such a task is called Fourier Transform or Co-
sine Transform or Discrete Cosine Transform (DCT). These transforms are not the
same—there are some differences between them but the basic idea is conversion of
coefficients from time-domain to transform domain. There are also K-L transform,
Hadamard transform etc. The most popular of them is DCT, used in most image and
video compression algorithms. It maps real coefficients into real coefficients. The
low frequency terms have most visual information while the high frequency terms
are nearly zero and can be discarded to achieve compression. In lossy compression
schemes such as JPEG, MPEG and related codecs, the coefficients are quantized.

Applying DCT on an entire image or frame is a memory intensive task. Most
schemes apply DCT on small blocks of size 8 × 8 pixels or 16 × 16 pixels, called
macroblocks.

Another popular frequency-domain transformation is called wavelet transform.
Instead of waves (sine/cosine or exponential waveforms used in DCT-based trans-
forms, ranging from −∞ to +∞) these transforms use wavelets or finite length
waveforms, which give a time-frequency resolution. The Discrete Wavelet Trans-
form (or DWT) can also be implemented using a set of filters (comprising a filter
bank). A low and a high pass filter forms a wavelet filter bank. Some additional
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Fig. 1.2 One level
decomposition of sample
image using Discrete Wavelet
Transform. The first sub-band
has maximum information
while others have higher
frequency terms

properties of common wavelet filters are perfect reconstruction, bi-orthogonality,
and energy separation between low and high pass coefficients. The exciting prop-
erty of wavelet transform is the property of time-frequency resolution as against
frequency resolution provided by DCT. It is helpful and forms the basis of multi-
resolution analysis (see Fig. 1.2). The earliest wavelet-based codecs such as EZW
and SPIHT use this property to achieve scalability.

The frequency-domain coefficients are quantized followed by a entropy coding
technique. Many entropy coding techniques exist in literature, and they are used
to lossly squeeze the output bits to maximize entropy of output bitstream, making
them close to the Shannon optimality bound on information contained in a given
bitstream.

Arithmetic coding is the most efficient of those techniques, reaching Shannon
optimality for large strings. However, it is associated with high computational com-
plexity and several variants such as Q coder, QM coder etc. exist. Another popular
scheme is Huffman coding which is used to generate variable length codes. Huff-
man coding is less optimal than arithmetic coding but implementation efficiency is
much higher than arithmetic coding. It is therefore used in most implementations of
JPEG and MPEG codecs.

Prior to frequency-domain transformation, in the case of video coding, some de-
gree of temporal coding is used to reduce redundancy amongst frames. With DWT,
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Fig. 1.3 Consecutive frames of a video are grouped into chunks called GOP or Group of Pic-
tures. The first frame in each GOP is called I frame (intra-coded). P (Predictively coded) and
B (Bi-directionally coded) frames constitute remaining frames of a GOP

such treatment can be done after transform also. However, in most DCT-based and
other schemes, this task is done prior to spatial coding. Video is grouped into sets
called a Group-Of-Pictures (GOP), see Fig. 1.3. The first frame in each GOP is intra-
coded and called I-frame. In an I frame, prior to DCT, each macroblock is matched
to its neighbors for similarity, to reduce redundancy. The difference (or residue) is
then coded. Some frames are labeled as P frames and they are predictively coded.
The macroblocks in P frames are coded based on past P or I frame. Some frames are
optionally labeled as B frames and they are bi-directionally coded. This implies that
each B frame is coded based on 1 previous and 1 next P or I frame. While search-
ing for a match for a macroblock, the search is conducted in the vicinity of existing
macroblock location in Fα . This process is also known as motion compensation.

1.2 Embedded Systems and Reconfigurable Architectures

Embedded systems refer to all computing devices beyond the traditional desktop
and laptop-based computers. It includes most of the electronics devices and other
things we use in our day-today life. Printers, cars, home security systems, mobile
phones, digital cameras, washing machines etc. It may serve as a part of a larger unit
and provides dedicated service to that unit. It is hard to precisely give a definition
of embedded systems. Nearly any computing system other than a desktop computer
can be classified as a embedded system. Billions of such units are produced yearly
and hundreds are used per household.

Some common properties and generalities of embedded systems are enumerated
as follows: They are usually single functioned—perform a single task repeatedly.
They are tightly constrained in cost and power, size etc. In our context, we consider
examples of digital camera, surveillance cameras and smart phones (have similar
constraints although they have a more general purpose by nature).

Such system have tighter resource constraints than desktops or commodity com-
puting machines used for image and video processing. For example—one has to
consider the battery requirements, computational capabilities, memory constraints,
latency of the process, thermal specifications and so on. Hardware and software
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Fig. 1.4 Overview of different processor technologies used in embedded systems

must be co-designed in such scenarios to yield an efficient implementation. For
example—many stages of video processing pipeline can be hard coded into VLSI
chips to achieve a order of hundred speed-up over software implementations.

Processor technology refers to the architecture of the computation engine used
to implement a system’s desired functionality. It need not be programmable. A sim-
ple classification of processor technologies used in embedded systems is given in
Fig. 1.4. A general purpose processor, also known as a microprocessor, has a pro-
gram memory and a general datapath with large register files and general ALU.
Although it has low time to market and NRE costs it is not very suitable for dedi-
cated video processing devices. Desktop processors (such as the ones by Intel and
AMD) fall under this category. There are application-specific processors, such as
DSP or Digital Signal Processing cores, which have special functional units to op-
timize application-specific tasks. The fastest execution speeds, the least memory
overhead, latency and power requirements are obtained by using single-purpose or
dedicated hardware for tasks such as video processing. Digital cameras and smart
phones mostly have a dedicated video processing core that efficiently handles such
operations. Such ASIC implementations take time to ship, up to 12–24 months, and
it is possible that the video codec implemented has reached maturity by that. It is
quite possible that better codecs have been developed in the meantime. To mitigate
such problems, and to show proof-of-concept implementations on ASIC, researchers
conveniently switch to what is commonly known as FPGA.
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FPGA or Field-Programmable Gate Arrays are custom hardware, which can be
programmed to behave the way we like. Unlike a VLSI chip, the interconnects be-
tween computing elements and their functionalities can be dynamically defined,
making it possible to implement a design on FPGA in few days, which would
take months in ASICs. Moreover, modern FPGAs feature dynamic reconfiguration,
which makes it possible to re-configure the hardware resources on-the-chip in real-
time. Thus, FPGAs have the following uses, particularly for video processing appli-
cations:

1. Short time to implement the architecture on FPGA, which can serve as a proof-
of-concept for a later-date ASIC implementation. It gives significant acceleration
in run-time over microprocessors-based design.

2. Short time to implement architecture on FPGA and FPGA deployment in real-
world scenarios allows for quick re-insertion of new modules, as and when they
are developed. This is not possible for ASICs, where we have to design a new
chip altogether.

3. Run-time reconfiguration on FPGAs can be helpful for power-efficient designs.

In this book, most prototyping of proposed architectures is done on FPGAs.

1.3 Encryption Basics

The method of disguising plaintext or regular data in a manner that its substance
is hidden is called encryption. Encrypting plaintext results in unreadable gibberish
called ciphertext. The unintended users can be avoided in this manner, even though
they may see the cipher text. Once encrypted, no person (or machine) can discern
anything about the content of the original data by reading the encrypted form of
the data. The intended users can decrypt the ciphertext to get the plaintext back.
Strong cryptography generally indicates the extreme difficulty of decoding back the
plaintext by unintended user, even with use of best computers and resources. Such
cryptography is required for security of important documents such as credit card
details of a person or communications of federal government. Algorithms such as
AES and DSA are used for such operations.

In the case of videos, strong cryptography is not always required. In popular con-
sumer applications, the cost of purchasing a movie may be, say, $5.00. An attacker
will not mount attacks worth millions $ to hack such videos. Similarly, if it takes one
hour to hack an encrypted video but the video is a news feed, the provided security
may be good enough. Therefore, application-specific, partial or perceptual cryptog-
raphy can play a significant role in case of videos or other less sensitive information.
Moreover, videos are associated with high data volumes and there is ongoing effort
to reduce the latency and computational cost of strong cryptography algorithms for
videos.

In encryption, some operation is performed into plaintext using a key stream
which converts it into the ciphertext. The key stream is a common secret to sender
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and receiver. An unintended recipient has no knowledge of the key, therefore he can-
not decrypt the content back to plaintext. In symmetric key encryption, the sender
and receiver use the same key for encryption and decryption. Both the sender and
receiver have to keep the key secret and properly protected. Asymmetric key en-
cryption algorithms are also called public key algorithms. The main difference is
that the sender and receiver share different keys to lock/unlock the encrypt/decrypt
the data. For example, anyone can encrypt a message intended for A with his public
key while only A, who has prior information of his private key alone can decrypt
the data. Typically, asymmetric key encryption is more difficult than symmetric key
schemes and requires more computational steps. Our focus here is on developing
symmetric key encryption algorithms combined with compression algorithms for
videos, as described in future sections.



Chapter 2
Advances in Multimedia Encryption

Abstract Rapid advances in embedded systems and mobile communications have
flooded the market with a large volume of multimedia data. In this chapter, we
present a summary of multimedia compression and encryption schemes, and the
way they have evolved over the decades.

Chapter goals:

• Familiarize with existing deal of research approaches in the area of multimedia
encryption.

• Summary of key/popular schemes proposed in research literature.

2.1 Introduction

Security is becoming an escalating concern in an increasingly multimedia defined
world. The recent emergence of embedded multimedia applications such as mobile-
TV, video messaging, and telemedicine have increased the impact of multimedia and
its security on our personal lives. For example, a significant increase in the applica-
tion of distributed video surveillance technology to monitor traffic and public places
has raised concerns regarding the privacy and security of the targeted subjects.

Multimedia content encryption has attracted more and more researchers and en-
gineers owing to the challenging nature of the problem and its interdisciplinary na-
ture in light of challenges faced with the requirements of multimedia communica-
tions, multimedia retrieval, multimedia compression and hardware resource usage.

With the continuing development of network communications (wired and wire-
less), easily capturing videos and rapid advances in Internet technology and embed-
ded computing systems multimedia data (images, videos, audios, etc.) are of im-
portance for use more and more widely, in applications such as video-on-demand,
video conferencing, broadcasting, etc. Now, it is closely related to many aspects
of daily life, including education, commerce, defense, entertainment and politics.
In order to maintain privacy or security, sensitive data need to be protected before
transmission or distribution. The advancements in ubiquitous network environment,
and rapid developments in cloud computing have promoted the rapid delivery of
digital multimedia data to the users.

A. Pande, J. Zambreno, Embedded Multimedia Security Systems,
DOI 10.1007/978-1-4471-4459-5_2, © Springer-Verlag London 2013
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Users are eager to not only enjoy the convenience of real-time video streaming
but also share various media information in a rather cheap way without awareness of
possibly violating copyrights. In view of these, encryption and watermarking tech-
nologies have been recognized as a helpful way in dealing with the copyright protec-
tion problem in the past decade. Encryption allows secure end–end communication
of data while digital watermarking allowing still faces some challenging difficulties
for practical uses; there are no other techniques that are ready to substitute it.

Within the signal processing and multimedia communities, many schemes have
been proposed for protecting sensitive information while allowing certain legitimate
operations to be performed. These schemes typically lack a rigorous model of pri-
vacy, and their protection becomes questionable when scaled to large datasets. The
cryptography community has long developed rigorous privacy models and provably
secure procedures for data manipulations. However, these procedures are primarily
designed for generic data. As a result, they usually lead to a blow up in computa-
tional costs and overheads when applied to real-life multimedia applications.

There has been a great deal of effort to design algorithms and architectures for
multimedia security (particularly encryption) suitable for mobile and embedded de-
vices which have tighter constraints on computational resources.

2.2 Multimedia Encryption Problem

Multimedia encryption involves changing the multimedia datastream itself to ensure
secure transmission of video data between client and server (or two nodes). It can be
accomplished by means of standard symmetric key cryptography where multimedia
bitstream is treated as a binary sequence and the whole data can be encrypted using
conventional cryptosystem such as AES or DES [18].

In general, when the application requirements are not dynamic (not a real-time
streaming) we can treat bitstream as a regular binary data stream and use the con-
ventional encryption techniques. Encrypting the entire multimedia stream using
standard encryption methods is referred to as the naive algorithm. There are many
practical constraints in case of mobile multimedia which make such a scheme not
practical in real-life scenario. First there are issues with available computational re-
sources in mobile devices which combined with low battery life and limited device
area limit the application of AES or DES like ciphers. Unlike desktop processors,
dedicated AES co-processor will cause high power and area requirements. This can
be understood with the example of GSM mobile phones which use a much lighter
cryptographic cipher for data encryption. A5 is the stream cipher used to provide
over-the-air communication privacy in the GSM cellular telephone standard and is
used in various variants. A5/0 utilizes no encryption while A5/1 is the original A5
algorithm used in Europe. A deliberate weakening of the algorithm was proposed
as A5/2, but it was cryptanalyzed the same month as it was published. The A5 al-
gorithm is much simpler in implementation than AES, and is implemented using
stream ciphers. A5/3, also known as KASUMI is a stronger encryption algorithm
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created as part of the 3rd Generation partnership Project (3GPP). The Secure Real-
time Transport Protocol, or for short SRTP [22RFC3711??], is also an application
of naive approach, where multimedia data are packetized and each packet is indi-
vidually encrypted using AES. The HDTV encryption standard also uses a similar
approach, allowing one to choose from AES or the lightweight M6 cipher.

Communication encryption of multimedia content is a problem beyond the ap-
plication of established encryption algorithms, such as DES or AES, to its binary
sequence [20]. This is primarily due to the way multimedia is used commercially.
Unlike data encryption, where we want to encrypt a complete bitstream, mobile
multimedia encryption introduces several challenges. Firstly, the content providers
want to ensure real-time streaming of videos. The mobile phone users will not wait
for authentication and encryption of downloaded videos if they need to wait for
long times. Real-time streaming of secure bitstream is a serious challenge for mo-
bile multimedia delivery, because the wireless environment (in which mobile phones
are operating) already pose serious bandwidth restrictions. First of all, the user may
search (in real time) for a particular video at run-time from a digital library. Further,
video compression is done in a scalable way, to allow a single compressed copy at
server to be downloaded at multiple bit rates. Transcoding may be required at times.
We need encryption schemes which can maintain format compatibility and not slow
any of these operations.

Further, it involves careful analysis to determine and identify the optimal en-
cryption method when dealing with audio and video media. To identify an optimal
security level, we have to carefully compare the cost of the multimedia information
to be protected and the cost of the protection itself. If the multimedia to be protected
is not that valuable in the first place, it is sufficient to choose relatively light levels
of encryption. On the other hand, if the multimedia content is highly valuable or
represents a government or military secrets, the cryptographic security level must
be the highest possible. For many real-world applications such as pay-per-view, the
content data rate should be very high, but the monetary value of the content may
not be high at all. Thus, very expensive attacks are not attractive to adversaries, and
light encryption may be sufficient for distributing these videos. On the other hand,
applications such as video-conferencing or videophone require much higher level of
confidentiality. Maintaining such high level of security and still keeping a real-time
and limited-bandwidth constraints is not easy to accomplish.

2.3 Common Approaches to Video Encryption

2.3.1 Scrambling

Scrambling is one of the simplest form of encryption that can be applied to multi-
media data. It usually refers to encryption methods which perform random permu-
tations to video data using some scheme. The histogram of image generally remains
the same except for the fact that the individual positions are shuffled. Early work on
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signal scrambling was based on using an analog device to permute the signal in the
time domain or distort the signal in the frequency domain by applying filter banks or
frequency converters [22]. However, these schemes are extremely easy to crack us-
ing modern computers. With the popularization of DSP (Digital Signal Processing),
in the digital signal domain focus was placed on scrambling in the domain of orthog-
onal transforms (DFT, DCT, wavelet transform, Hadamard transform, etc.) [22]. The
security provided by scrambling alone is low. It also decreases the compression effi-
ciency of video bitstream leading to compression losses and increased size of video
file.

Scrambling is often used as an easy way to encrypt live analog/digital video
signals such as surveillance camera feeds where heavy ciphers are ruled out because
of computational delay. Some most common techniques include:

1. Line Inversion Video scrambling: In this method whole or some parts of the
signal scan lines are inverted. This scheme is relatively cheap and simple to im-
plement but the security level achieved is low.

2. Sync Suppression Video scrambling: The horizontal/vertical line syncs are hid-
den or entirely removed in this method. This provides a low-cost solution to En-
cryption and provides good quality video decoding. A typical disadvantage is
that the level of obscurity reached by this scheme depends on video content.

3. Line Shuffle Video scrambling: In this scheme each signal line is re-ordered on
the screen. Although this scheme provides reasonable security, it requires a lot
of storage to re-order the screen.

4. Cut and Rotate Video scrambling: In this method, each scan line is cut into
pieces and then re-assembled in a permuted manner. This scheme provides a
compatible video signal, gives an excellent amount of obscurity and good decode
quality and stability. However, it requires specialized scrambling equipments.

Compression algorithms have been designed for the unscrambled signals and
they use the statistical characteristics of raw data. Once the signal is scrambled,
these characteristics will change and the performance of the compression filter will
be degraded.

In Zig-Zag permutation [19], instead of mapping the 8 × 8 block (used in DCT
compression stage of video coder) to 1 × 64 vector in “Zig-Zag” order, it maps
individual 8 × 8 block to 1 × 64 vector by using a random permutation list (secret
key). This algorithm consists of three steps.

1. Generation of a permutation list with cardinality 64.
2. Splitting of coefficients according to permutation list, and passing the result to

the entropy coding procedure.

However, this method decreases the video compression rate because the random per-
mutation distorts the probability distribution of Discrete Cosine Transform (DCT)
coefficients.

A digital image-scrambling scheme should have a relatively simple implemen-
tation, amenable to low-cost decoding and low-delay operation for real-time inter-
active applications. IT should be independent of compression algorithm and should
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Fig. 2.1 Joint scrambling
and compression framework
proposed by Zeng and
Liu [23]

not incur any loss to the compression operation. We present a case study of the
technique presented by Zeng and Liu [23] to better understand the scrambling oper-
ations. An overview of their approach is presented in Fig. 2.1.

The authors first transform the input signal into the frequency domain using Dis-
crete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT). The trans-
form coefficients are then divided into subsequent operations which permute their
values within the image. The motion vectors are also subject to random sign changes
and shuffling. A cryptographic key will be used to control the scrambling. The
scrambled coefficients and motion vectors are then passed through compression
block to obtain compressed bitstream. Authorized users can obtain the original con-
tent back using the same key. The scrambling operation is performed prior to com-
pression allowing preservation of multimedia-specific compression properties such
as transcoding and scalability. Frequency domain scrambling makes it easier to con-
trol transparency (i.e., what part of the video data is allowed to be freely accessed).

The encryption/decryption operations are designed to preserve, as much as pos-
sible, the transformed image properties that allow entropy coders to efficiently com-
press an image.

Aside from easy and secure transcoding, the joint scrambling-compression
framework proposed by [23] provides some other advantages over those that per-
form scrambling on the compressed bitstreams.

1. Flexibility to perform selective encryption: In the frequency domain, it is eas-
ier to identify what parts of the data are critical for security purpose. This allows
providing different levels of security and transparency.
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2. Encrypting incompressible segments: It is also easy to identify what parts of
the data are not compressible. For example, the sign bits of the coefficients are
usually difficult to compress; yet they are critical for security purposes. This
incompressible data segment can be selected to scramble without affecting the
overall compression efficiency. Some other data segments, such as the motion
vector information, are usually losslessly compressed. They therefore can be se-
lected to encrypt without the need to consider the transcoding issue, since it
does not make much sense for the transcoder to recode this part of the com-
pressed data. Notice that the selected data can be easily located in the frequency
domain without incurring any processing overhead. On the contrary, since the
compressed bitstream is usually variable length coded, it is generally difficult
to perform fine-scale selective encryption on the compressed bitstream without
incurring processing and bit overheads.

3. Less vulnerability to channel errors: Encryption after compression such as
using AES over MPEG is more vulnerable to channel errors because a block
of 128 bits in AES are bound together so that one single bit error in a block
will cause the synchronization word/bits contained in that block to be erroneous.
Since the synchronization information is hidden in the encrypted video stream;
it will be harder to recover from transmission errors in the network. On the other
hand, spatial scrambling in the frequency domain has no adverse impact on the
error resiliency.

4. Compatibility to transform domain signal processing: Scrambling involves
changing the spatial positions of individual frequency coefficients. Watermark-
ing and other transform domain tasks can be performed without requiring cryp-
tographic key.

Some of the techniques for scrambling by the author are as follows:

1. Selective Bit Scrambling: The first basic approach scrambles selected bits in
the transform coefficients to encrypt an image. Each bit of a coefficient can be
viewed as one of three types. Significance bits for a coefficient are the most sig-
nificant bit with a value of 1, and any preceding bits with a value of 0. These bits
limit the magnitude of the coefficient to a known range. Refinement bits are the
remaining magnitude bits, used to refine the coefficient within the known range.
The sign bit determines whether the known range is positive or negative.

2. Block Shuffling: To increase the level of security, block shuffling is proposed. We
divide each subband into a number of blocks of equal size. The size of the block
can vary for different subbands. Within each subband, blocks of coefficients will
be shuffled according to a shuffling table generated using a key. The shuffling
table generally will be different for different subbands, and can vary from frame
to frame.

3. Block Rotation: To further improve security with little impact on statistical cod-
ing, each block of coefficients can be rotated to form an encrypted block.
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Fig. 2.2 Different levels of security offered by the SECMPEG algorithm (Meyer and Gadgegast
[10]). P, S, MB and GOP refer to Primary Coding Unit (Individual Image), Slice Layer (restart
points within a frame), Macro block layer (Motion Compensation Unit) and Group of Picture

2.3.2 Post-compression Encryption Algorithm

The Secure Real-time Transport Protocol, or the naive approach encrypts the com-
pressed bitstream by packetizing multimedia data and individually encrypting every
packet using AES. Although it is secure, it has huge computational overheads and it
is not conducive to different desired properties of compressed bitstreams in general,
owing to encryption of compressed data.

Many different algorithms have been proposed—which are format compliant, or
have low computational requirements. Meyer and Gadegast [10] proposed a selec-
tive video encryption scheme called Secure MPEG or SECMPEG for the MPEG-1
video coding standard. See Fig. 2.2 for details. It offers different levels of security
by encoding different parts of compressed bitstream:

• Algorithm 1: It encrypts only the headers from the sequence layer to the slice
layer.

• Algorithm 2: It encrypts additionally low frequency DCT coefficients of all
blocks in the I-frames.

• Algorithm 3: It encrypts all I-frames and all I-blocks in the P- and B-frames.
• Algorithm 4: It encrypts the whole MPEG-1 sequence with the naive algorithm.

The approach has some notable limitations: computations savings are not sig-
nificant because I-frames constitute 30–60 % of an MPEG video. Moreover Agi
and Gong [22agi96??] demonstrated that some scene contents are still discernible
by directly playing back the selectively encrypted video stream on a conventional
decoder. Maples and Spanos [17] presented a similar approach called AEGIS. All
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Fig. 2.3 The Video
Encryption Algorithm
proposed by Qiao and
Nahrstedt [14]. MPEG
packets are shuffled using key
information for fast, efficient
encryption

I-frames in an MPEG-video stream are encrypted, while P- and B-frames are left
unencrypted. The AEGIS algorithm is almost same as SECMPEG level 2.

Qiao and Nahrstedt [14] introduced the Video Encryption Algorithm (VEA)
which reduces the computational complexity to almost half. This video encryption
algorithm is detailed in Fig. 2.3. Half of the bitstream is encrypted with a conven-
tional encryption algorithm such as AES and is then used as key to XOR with the
other half stream. The basic VEA algorithm is vulnerable to plaintext-attacks as an
attacker can recover the whole frame from knowledge of either the odd or the even
list. A 2n-bits random key (KeyM) is used to split the 2n-byte chunk randomly into
two lists instead of the fixed odd-even pattern in the basic VEA. Thus, VEA also
leads to increased key management issues.

Pure permutation or scrambling algorithms scramble bytes within a frame of
MPEG stream by permutation. Adam J. Glagell demonstrates that pure permutation
algorithm is vulnerable to known-plaintext attack, and hence its use should be care-
fully considered [slagell04??]. By comparing the ciphertext with the known frames,
the adversary can recover the secret permutation list.

Chiaraluce et al. [5], Li et al. [6], Pareek et al. [11] and others propose a chaotic
scheme for video encryption. Chaotic schemes are mostly based on encrypting im-
age/ videos using chaotic maps. Logistic map is the simplest of them all and is
popular choice to chaotic encryption scheme. However, simple cryptanalysis has
been performed against these schemes.
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Fig. 2.4 Pre-compression
encryption scheme proposed
by Pazarci and Diplin [12].
The scrambler allows
unauthorized user to have an
arbitrarily degraded view of
program, yet is totally
transparent to MPEG-2
compression

2.3.3 Pre-compression Encryption Algorithm

Although it is possible to encrypt the video content before compression it has some
serious limitations which are crucial for mobile devices:

1. Pre-compression encryption implies encrypting raw or uncompressed bits which
will waste lot of computational resources.

2. Encryption output is generally a random bitstream with lack of redundancy, mak-
ing compression operation highly inefficient for general case. For example, con-
sider encrypting a HD video at bare resolution of 480p (852 × 480) with AES.
It would require 2.3 Million AES cycles per second to encode (and to decode)
that video on a mobile device (or any device)! Moreover, the compression per-
formance will be mostly lost as the AES output bits will be nearly random with
no possibility of lossless compression!

One known example is the work of Pazarci and Diplin [12]. The scrambler,
shown in Fig. 2.4, is transparent to MPEG-2 compression. They encrypt the video
in the RGB (red, green, blue) color space using four secret linear transformations
before video coding. This scheme maintains the compression efficiency of the video
codec but has been found unsafe against brute-force attacks.

2.3.4 Selective Encryption

The idea of selective encryption overlaps with post-compression approaches in some
cases but it can also be applied during the compression process. A lot of research on
integrating encryption with multimedia compression standards to reduce the overall
computation cost is focused on using some form of selective encryption. For ex-
ample, since most of the image energy in DCT domain is concentrated in the dc
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coefficient, Tang [19] proposed a system that encrypts dc coefficients with DES and
scrambles the ac coefficients using a block-based permutation. However, the energy
concentration is often unrelated to the degree of intelligibility (Wu and Kuo [21]).
It was proven that the semantic content of the image is almost unaffected by remov-
ing the dc information. Therefore, the security level of Tang’s system is reduced to
that of the block-based permutation, making it vulnerable to various attacks. Wu
and Kuo show that even encrypting some ac coefficients does not solve the prob-
lem. Shi, Wang and Bhargava [15] had proposed to encrypt every sign of DCT
coefficients, but that effort was also refuted by Wu and Kuo. Pommer and Uhl [13]
present a wavelet based selective encryption approach by using wavelet packet based
compression instead of pyramidal compression schemes. Header information of a
wavelet packet transform based image coding scheme is protected as AES is used
to encrypt the subband decomposition structure. Lian et al. [8] uses Exp-Goloumb
codes for the encryption operation. Cheng and Li [4] propose a DWT-based partial
encryption scheme which encrypts only a part of compressed data. Only 13–27 %
of the output from quadtree compression algorithms is encrypted for typical images.
A good summary of efforts in selective or partial encryption of images can be found
in Liu and Eskicioglu [9].

A syntax compliant encryption algorithm is proposed for H.264/AVC [3]. The
authors allow any decoder to decode the encrypted video (although incorrectly)
achieving up to 25–30 dB gains. Using the proposed method allows insertion of the
encryption mechanism inside the video encoder, providing a secure transmission
which does not alter the transmission process. The bits “selected for encryption”
are chosen with respect to the considered video standard such that each of their
encrypted configurations gives a non-desynchronized and fully standard compliant
bitstream. This can in particular be done by encrypting only parts of the bitstream
which have no or a negligible impact on evolution of the decoding process, and
whose impact is consequently purely a visual one. For example, an encryption op-
eration which leads to interpreting a given codeword instead of another of same
size is suitable for such scheme. About 25 % of I-slices and 10–15 % of P-slices
are encrypted. Since intracoded slices can represent 30–60 %, the encryption ra-
tio is expected to be relatively high. The main drawback of this scheme is the lack
of cryptographic security. Indeed, the security of the encrypted bitstream does not
depend more on the AES cipher.

Lian et al. [7] use a mixture of these schemes for encrypting H.264 AVC bit-
streams. During AVC encoding, such sensitive data as intra prediction mode, residue
data and motion vector are encrypted partially. Among them, intra prediction mode
is encrypted based on exp-Golomb entropy coding, the intra macroblocks DCs are
encrypted based on context based adaptive variable length coding, and intra mac-
roblocks ACs and the inter macroblocks MVDs are sign encrypted with a stream
cipher followed with variable length coding. The encryption scheme is of high key
sensitivity, which means that slight difference in the key causes great distortions
in cipher video and that makes statistical or differential attack difficult. It is diffi-
cult to apply known-plaintext attack. In this encryption scheme, each slice is en-
crypted under the control of a 128 bit sub-key. Thus, for each slice, the brute-force
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space is 2128; for the whole video, the brute-force space is 2256 (the user key is of
256 bit). According to the encryption scheme proposed here, both the texture infor-
mation and the motion information are encrypted, making it difficult to recognize
the texture and motion information in the video frames.

2.3.5 Joint Video Compression and Encryption (JVCE)
Approaches

The main idea behind joint coding is to integrate encryption into compression opera-
tion by parameterization of the compression blocks, and (in general) not modifying
the compressed bits. Two main compression blocks where these techniques have
been applied are Wavelet Transform and Entropy Coding. We will present a brief
summary of entropy coding-based approaches followed by a discussion of Wavelet
Transform based approach proposed by the authors. Next, we will present the gen-
eral rules of thumb in designing a new JVCE scheme.

Advantages JVCE approaches compression and encryption into a single opera-
tion making it feasible for mobile and embedded devices to ensure multimedia secu-
rity with their low power budgets. By integrating compression and encryption oper-
ations into one, JVCE approaches reduce the latency of encryption operation which
is useful for real-time video delivery. JVCE approaches typically do not change the
compressed bit streams themselves but change the way compressed bitstream is ob-
tained. This integration allows exploiting the hierarchical signal representation in a
transform domain, as used by most image and video compression techniques, in or-
der to provide the advanced functionalities required by many modern applications.
The ISO/IEC JPEG 2000 Part 9 (JPSEC) standard is an example of how compres-
sion and security can coexist and take advantage of each other.

2.3.6 Future of JVCE Schemes

JVCE schemes have opened an entirely new paradigm of encryption without
explicit-encryption of video content which gives them advantages in terms of
computations, mobility, and friendliness to post-compression operations. However,
many such schemes have been broken especially against known-plaintext attacks. To
design an efficient encryption key for mobile applications, we propose the following
directions: Development of JVCE algorithms for different video coding blocks and
efficient integration into a common framework. An efficient integration will refute
most of the cryptanalysis and the combined system will give a much greater degree
of security than existing ciphers. Including some efficient scrambling operations
into the design is meant to obfuscate input–output relationships at different levels.
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Chapter 3
Securing Multimedia Content Using Joint
Compression and Encryption

Abstract Algorithmic parameterization and hardware architectures can ensure se-
cure transmission of multimedia data in resource-constrained environments such as
wireless video surveillance networks, tele-medicine frameworks for distant health
care support in rural areas, and Internet video streaming. Joint multimedia compres-
sion and encryption techniques can significantly reduce the computational require-
ments of video processing systems. We present an approach to reduce the com-
putational cost of multimedia encryption, while also preserving the properties of
compressed video (useful for scalability, transcoding, and retrieval), which endan-
gers loss by naive encryption. Hardware-amenable design of proposed algorithms
makes them suitable for real-time embedded multimedia systems. This approach
alleviates the need of additional hardware for encryption in resource-constrained
scenario, and can be otherwise used to augment existing encryption methods used
for content delivery in Internet or other applications.

3.1 Introduction

In this work, we discuss design of algorithms and hardware architectures for secure
transmission of multimedia data in resource-constrained environments. Some typi-
cal application scenarios include wireless video surveillance networks, telemedicine
frameworks for distant health care support in rural areas, and Internet video stream-
ing.

Wireless Video Surveillance Networks Wireless video surveillance networks
have been recently deployed in different network settings such as WiFi, WiMAX,
and wireless sensor networks. These networks are deployed in private and public
settings, and carry sensitive visual information. For example, the live feeds from
over 10,000 cameras are used by city police departments in the NYC and Chicago
areas to monitor criminal activity. It is important to protect the video feeds of these
cameras from eavesdropping. However, the three-fold limitations of (a) wireless
network characteristics (low bandwidth, frequent packet drops), (b) QoS (real-time
delivery, low jitter), and (c) the limited computational resources at the encoder end
makes it difficult to provide real-time end-to-end encryption of video data using
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conventional cryptographic primitives. Apart from the need of a secure way of trans-
mitting videos, we need computationally efficient algorithms to save on computing
power and also enable easy access of visual information from encrypted videos in
databases.

Tele-medicine Frameworks Tele-medicine is an application of clinical medicine
where consultation, and even remote medical procedure and examinations are per-
formed using interactive audio-visual media. Extending such services to remote
locations (which lack high-speed connections and even electric power in under-
developed countries) requires efficient low-power devices. Further, the privacy of
patient information and prescriptions is an important concern for these applications,
considering the vulnerability of communication channels against eavesdropping and
other attacks.

Internet and Mobile Video The advent of embedded multimedia systems has al-
ready revolutionized the way we live. Video messaging, video-conferencing, video
surveillance and Internet video sites such as YouTube are increasingly becoming
popular and pervasive. Network traffic in next-generation cellular networks is pre-
dicted to be dominated by video [22] and it makes sense to provision for security of
videos in these applications. Most mobile devices have low computational resources
and limited battery resources.

Conventional encryption schemes such as those using AES and DES are not suit-
able for video data because of the large computational overhead. Compressed multi-
media streams also exhibit well-defined hierarchical structures that can be exploited
in several useful ways (e.g. scalability, random access, transcoding, rate shaping) in
low and variable bandwidth scenarios—these structures would not be recognizable
in traditional ciphertext.

In this work, an augmented video coding model is used for joint compression
and encryption which can significantly reduce the computational requirements. We
propose to build design blocks which enable security for these applications at the
algorithmic level, and leave domain-specific optimization to application developers.
These algorithmic optimizations map easily to fixed point hardware, allowing us to
come up with efficient architectural optimizations for resource-constrained scenar-
ios. In other application scenarios, these approaches can complement the security
provided by conventional schemes such as AES.

The proposed schemes are also low-cost in the sense that the required compu-
tational hardware is considerably smaller than existing approaches, and in some
configurations the hardware needed is no larger than that for conventional video
compression.

3.2 Basics

Multimedia compression involves large computations and large amount of data-
transfers thus requiring application-specific hardware such as ASICs and FPGAs
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to compress and deliver the media in real-time [29]. Video compression using hard-
ware accelerators has gained increased attention because of the popularity of low-
power embedded devices [1, 5, 25]. Recently, the authors in [3] proposed an embed-
ded video codec with area and external access power savings to support a real-time
encoding of CIF images, using a power-aware design for video coding in embedded
scenarios [3]. However, their approach achieves real-time coding of only small reso-
lutions up to 352 × 288 pixels. Thus, an efficient architectural design of multimedia
compression blocks is a must to ensure real-time video delivery.

While the compressed multimedia files typically exhibit well-defined hierarchi-
cal structure that can be exploited in several useful ways (e.g. for scalability, random
access, transcoding, rate shaping), these structures are not recognizable in cipher-
text, and hence, are wasted. These properties are useful to index, search and retrieve
compressed multimedia from digital libraries and also for communication over het-
erogeneous networks. We need a paradigm where encryption does not change the
compressed output, yet provides access and copy control for concerned media. Thus,
we need encryption of video data without affecting the properties of compressed bit-
stream, or affecting the compression performance.

On one hand, compression and encryption operations require large amount of
computational overhead, while on the other hand, there has been an increasing
trend towards deployment of battery-driven low-power embedded systems such as
portable mobile devices (iPods, mobile phones, and cameras). Apart from optimiza-
tions in hardware architecture, we also need to reduce the computation cost for
secure multimedia transactions through algorithmic improvements.

Related Research Efforts The research in video coding for the last five decades
has been commercially utilized in the form of state-of-the-art video coding stan-
dards such as MPEG-1, MPEG-2 and so on. MPEG-2-based schemes [9, 13, 20, 21,
23, 24, 35] are useful for DVD quality compression. In these scenarios, coding or
power efficiency are not the constraints and security was provided using end-end
encryption with AES or some variants [2]. Some work has been done for resource
optimization in these schemes in cases of low bandwidth [4, 11, 18, 32], but the
problem is not so acute.

Recent research in wireless networks (such as cognitive radio networks) and
video surveillance [10, 14] aims at optimizing the video quality for wireless trans-
mission and often uses the MPEG-4 format which produces a more compressed and
scalable bitstream. H.264 SVC is the most recently used format in this work. Many
researchers have also tried to optimize the hardware implementations of MPEG-2-
[15, 17, 27, 30, 31] and MPEG-4-based video applications [6, 16, 33].

Recent research in video encryption [7, 8, 12, 34] over wireless and other scarce
resource channels has identified the need for non-traditional approaches to video
encryption besides the use of standard cryptographic ciphers. These approaches in-
volve selective or partial encryption of video stream, chaotic encryption and shuf-
fling in compressed bitstream etc. There has also been research to accelerate these
video processing kernels in hardware such as ASIC or FPGA [19, 28, 36].

Thus, there has been little research which targets the three-fold goal of high com-
pression, low computational cost, and secrecy. As shown in Fig. 3.1, there has been
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Fig. 3.1 The broad goal of
proposed research is to
develop algorithms and
architectures to push the
operating curve towards
(1,1,1), considering all the
factors (Coding Efficiency,
Power Efficiency and
Privacy) together during
design

little research that considers the three objectives: coding efficiency (compression
achieved), power efficiency (architectural efficiency) and privacy (encryption) and
aim to optimize them together. With these three goals in mind, we propose our ap-
proach in the next section.

3.3 Our Approach

What we propose in this work is a redesign of the video compression blocks them-
selves to enable encryption and efficient mapping onto hardware. For example, if
the video coders have an additional parameter which can be changed to provide en-
cryption, we can use it as a keyspace for secret key generation. The required mixing
of the input, as required by cryptographic ciphers, is automatically provided by dif-
ferent blocks of video coding system. Similarly, if we could design the system with
the rational coefficients as a design constraint, we will obtain a hardware-amenable
implementation.

The redesign of video coding blocks enables joint compression and encryption
and also reduces the computational requirements of multimedia encryption algo-
rithms. The approach modifies the compression system properties instead of the
compressed bitstream itself. Moreover, the redesign is amenable to hardware ac-
celeration over reconfigurable computing platforms. We leverage signal process-
ing techniques to make the algorithms suitable for hardware optimizations (and
encryption), and reduce the critical path of circuits using hardware-specific opti-
mizations.

A trivial way to explain this solution (of joint encryption and compression) is to
find 2N different but similar ways to compress a video, where all ways give similar
compression performance and the compressed bitstream has the same properties.
For large values of 2N , we can say that the N bit code representing the choice of
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Fig. 3.2 Video compression
system augmented with
different operations to ensure
real-time encryption

compression system is the encryption key of the system. In order for such a system
to be secure, the combined system must follow cryptographic requirements such as
good diffusion and confusion properties [26]. The output from two closely related
keys should be nearly uncorrelated and there should not exist a way to reverse-
engineer the N bit key except by a brute-force attack.

This proposal also meets the requirements of property-preserving encryption be-
cause essentially we are trying to shuffle the compression parameters using the key
and not modifying the input bitstream itself. Each of the 2N compression systems
provides ‘property-preserving’ compression.

How Exactly Can We Augment Encryption to Video Coding System? This is
achieved by redesign of individual video coding blocks followed by integration into
a single prototype and hardware implementation (Fig. 3.2). These modifications are
briefly described below.

(a) Augmented Prediction Model: We propose to use a fuzzy prediction model,
which selects from several past and future frames and uses multiple streams,
based on a key-dependent fuzzy logic instead of the traditional use of immediate
neighbors. Similarly, the sign bits of the motion vectors can be encoded and/or
a key-based non-linear mapping of motion vectors can be performed.

(b) Augmented Spatial Model: We propose to parameterize the transform filter
(DWT), so that the choice of filter depends on key value. Different filters give
different output coefficients while the compression efficiency of each is similar.
The output sub-bands of DWT (or sub-blocks for DCT) can be re-oriented and
permuted according to a key.

(c) Augmented Entropy Coding: Modified entropy coders can be used with mul-
tiple statistical models so that the exact choice of model is governed by a key.
Similarly, arithmetic coding can be implemented using a key-based chaotic ran-
dom map. The re-iterations of chaotic map make the output appear random,
while the choice of map itself is governed by a key.

(d) All-on-a-Chip: Hardware-specific optimizations on augmented modules will
enable us to fit the prototype on a single chip.
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Part II
Examples

This is part two of the book. It discusses some specific examples of building secure
embedded multimedia systems, implementation details, and results giving a hands-
on feel to the reader.



Chapter 4
Polymorphic Wavelet Transform

Abstract Many modern computing applications have been enabled through the use
of real-time multimedia processing. While several hardware architectures have been
proposed in the research literature to support such primitives, these fail to address
applications whose performance and resource requirements have a dynamic aspect.
Embedded multimedia systems typically need a power and computation efficient
design in addition to good compression performance. In this chapter, we introduce a
Polymorphic Wavelet Architecture (Poly-DWT) as a crucial building block towards
the development of embedded systems to address such challenges. We illustrate how
our Poly-DWT architecture can potentially make dynamic resource allocation deci-
sions, such as the internal bit representation and the processing kernel, according
to the application requirements. We introduce a filter switching architecture that al-
lows for dynamic switching between 5/3 and 9/7 wavelet filters and leads to a more
power-efficient design. Further, a multiplier-free design with a low adder require-
ment demonstrates the potential of Poly-DWT for embedded systems. Through an
FPGA prototype, we perform a quantitative analysis of our Poly-DWT architecture,
and compare our filter to existing approaches to illustrate the area and performance
benefits inherent in our approach. Poly-DWT serves as an example of joint design
of algorithms and architectures for multimedia compression.

4.1 Introduction

Multimedia services over embedded devices are becoming popular with the devel-
opment of scalable encoders and rise of reconfigurable hardware to support the re-
quired high throughput. The large computational complexity and memory require-
ments involved in real-time image processing algorithms have been a bottleneck for
such systems.

The Discrete Wavelet Transform (DWT) has emerged as a powerful tool for com-
pression and is being used in many multimedia and signal processing applications.
It constitutes a significant part of the overall computations involved in image/video
compression schemes. Many image compression schemes have been derived from
DWT-based structures [30, 32, 36]. The work on using Embedded Zero-tree Wavelet
(EZW) structures [32] for image compression was a milestone research that intro-
duced subband coding to achieve high compression performance. Said and Pearl-
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man [30] introduced a more efficient DWT-based Set Partitioning in Hierarchical
Trees (SPIHT) encoding to improve the performance of Shapiro’s EZW coding.
Taubman [36] proposed the DWT-based Embedded Block Coding with Optimal
Truncation (EBCOT) coding algorithm which was accepted for scalable encoding
in JPEG2000 [8]. JPEG2000 achieves almost twice as much compression as JPEG
with the same reconstruction quality of images (in terms of PSNR or Peak Signal-
to-Noise Ratio). DWT has been incorporated in recent image and video compres-
sion research such as motion JPEG2000 [27]; 3-D, 4-D subband coding [7, 44]; and
MPEG-4 SVC (Scalable Video Coding extension, released in July 2007) [31]. Of the
14 proposals for SVC received by the MPEG committee, 12 were based on DWT,
while two were extensions of the existing DCT-based MPEG-4 AVC standard. Thus,
DWT is increasingly becoming a popular choice for image/video compression due
to high compression, scalability and other features.

We recognize that DWT serves as backbone for new generation multimedia com-
pression schemes and present a polymorphic architecture for its hardware imple-
mentation in this work. Implementations such as those using ASICs or FPGAs are
capable of accelerating these computations by exploiting the inherent algorithmic
parallelism. Stroobandt et al. [35] discuss the performance requirements of a recon-
figurable hardware architecture for a scalable wavelet-based video decoder. In [12],
the authors present a complete video deliver chain including a video server, nego-
tiation and scalable video clients using a wavelet-based coding scheme at its core.
Many hardware implementations have also been proposed in the research litera-
ture [2, 4, 5, 17, 20, 29, 43]. These implementations aim at reducing hardware com-
plexity in order to improve the system throughput.

Another concern is the fact that many typical applications of DWT have dy-
namic resource requirements. For example, consider a distributed video-surveillance
setup [40, 41]. There are low-activity (idle) times and high-activity (active) times
associated with the camera. During idle times, a low-power and low-bandwidth de-
sign may satisfy the requirements. However, during active times, the system would
require transmission of a higher quality signal over a potentially sparse resource
network. In such cases, it would be extremely beneficial to be able to distribute the
available hardware resources to allow a compression efficient implementation using
a relatively large amount of power.

In this work, we introduce a new layout and reconfiguration scheme for multime-
dia applications, which we call the Polymorphic Wavelet Architecture (Poly-DWT).
We define polymorphism as the capacity of an architecture to adapt its hardware
usage to meet the desired dynamic specifications. In the image processing domain,
these specifications would be in terms of throughput, reconstruction quality, and
power consumption, among others. Our Poly-DWT architecture allows the individ-
ual processing kernels to modify their hardware resources to suit the instantaneous
application requirements. At its highest level, the Poly-DWT provisions for optimal
device usage under the given performance and quality requirements. A fine-grained
description of Poly-DWT has been provided which allows run-time reconfigurabil-
ity of the design over commodity FPGA platforms and ASIC designs.
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Fig. 4.1 Conceptual
overview of the Polymorphic
Wavelet Architecture

Fig. 4.2 Conceptual
overview of the DWT filter
design constraints and desired
features

Figure 4.1 gives a general description of Poly-DWT and its interface with a larger
multimedia system. Some multimedia input (such as a stream of pixels for consec-
utive frames of a video) is first transformed into the time-frequency domain by the
wavelet transform (DWT). Depending upon the throughput required and the input
available from the video device, various instances of DWT kernels can be used in
the implementation. The DWT kernel can be implemented using varying lengths,
leading to varying image compression properties of the DWT block. An interface
is provided for the application to dynamically notify the architecture about its per-
formance requirements in terms of the hardware requirements and the image recon-
struction quality requirements. Besides the previously mentioned video-surveillance
application, other real-time video streaming applications such as those used in med-
ical image processing [18], remote laboratories [22], or educational video stream-
ing [24] may benefit enormously from the polymorphism of DWT kernels.

We summarize the requirements of embedded multimedia system design in
Fig. 4.2 and they are enumerated below:

• Modern embedded multimedia systems would require transmission of a high-
quality signal over a potentially sparse resource network. Thus, good compression
is a desired feature of an efficient implementation.

• High system throughput and good perceptual quality are desired features and pose
constraints on system design.

• Embedded systems have hardware and power constraints because they are typi-
cally mobile, battery-driven devices.
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• Hardware reconfiguration of the filters is the enabling technology to realize these
trade-offs. Intelligent allocation of hardware resources can achieve a run-time
trade-off between hardware resources and performance constraints.

Our Poly-DWT architecture takes these explicit run-time requirements, along with
an output feedback of the available hardware resources and image reconstruction
quality and continually makes a reconfiguration decision. The reconfiguration men-
tioned in this work refers to the ability of our hardware to reconfigure its hardware
resources. The implementation of our design can be done over FPGA, and ASICs.
Given an image quality constraint the architecture can self-reconfigure to maximize
device performance or power consumption, and given an external resource or per-
formance constraint it can reconfigure to maximize image quality. Initial results
had been presented in [23, 25]. The proposed approach can provide a set of solu-
tions for the dynamic requirements of system performance and power consumption
without any overheads in throughput or hardware cost in comparison with existing
approaches.

The contributions of this work can be summarized as follows:

• We introduce the concept of the Polymorphic Discrete Wavelet Transform (Poly-
DWT) architecture. The Poly-DWT architecture enables dynamic allocation of
hardware resources to efficiently create a dynamic response to changing external
conditions.

• We discuss the development of a family of parameterized bi-orthogonal 9/7 filters
and the derivation of binary coefficient filters for hardware-efficient implementa-
tion.

• A multiplier-free binary 9/7 wavelet filter is introduced to obtain a faster and
more efficient implementation.

• A switching scheme to allow runtime switching between 5/3 and 9/7 wavelet
structures with hardware reuse is presented.

• We present a quantitative analysis of the various factors and trade-offs involved
in a Poly-DWT implementation.

• We present a detailed area/performance trade-off analysis for the sample Poly-
DWT filters.

The remainder of this work is organized as follows. In Sect. 4.2, we give a work-
ing knowledge of DWT filters used in image compression. Section 4.3 provides a
background study of the DWT algorithm and its hardware implementation. We also
present the related research and limitations with existing hardware implementations.
This motivates us for a Polymorphic design which is presented in Sect. 4.4. The
subsections give the mathematics, numerical study and background of the design.
Next, we arrive at the candidate filters and their hardware architectures and then
choose the optimal filters for Poly-DWT. Section 4.5 gives an insight into hardware
re-allocation by changing the internal word width representation of registers by ‘bit-
width’ switching scheme. Section 4.6 introduces the ‘on-the-fly’ switching scheme
for filter coefficients. Section 4.7 also gives details of other experiments both in
ModelSim and Xilinx ISE for hardware performance and over MATLAB for rig-
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Fig. 4.3 Basic stages of a
one level 2-D wavelet
transform operation

orous image processing performance measurements. In Sect. 4.8 we conclude the
work with a look towards planned future work.

4.2 Motivation and Insight

Prior work in signal processing explains that the 1-D DWT can be viewed as a
signal decomposition using specific low-pass and high-pass filters. A single stage of
image decomposition can be implemented by successive horizontal row and vertical
column wavelet transforms. Thus one level of DWT operation is represented by
filtering with high- and low-pass filters across row and column successively and is
illustrated in Fig. 4.3. After each filtering a down sampling is done by a factor of 2
to remove the redundant information. The two most common DWT filters used in
image compression are Le Gall’s 5/3 filter and the Daubechies 9/7 filter [8]. They
are accepted in the JPEG2000 standards. The Le Gall’s filter has rational coefficients
and its hardware implementation requires less resources. The Daubechies 9/7 (also
commonly known as CDF 9/7) filter has better compression performance. However,
it has irrational coefficients therefore its hardware requirements are very large.

This work develops the Poly-DWT architecture to serve as a backbone for real-
time multimedia applications to address their dynamic demands and constraints.
In this work we discuss some dimensions that provide this polymorphism to our
architecture. The first dimension is the choice of suitable DWT filter. Differ-
ent applications such as medical image processing, High Definition Television,
video-surveillance applications, and wireless video all have different real-time con-
straints [22, 24] and different filters may serve the requirements at different times.

The complexity of DWT hardware is another important design aspect. An im-
plementation with diverse hardware requirements like multipliers, buffers, etc. will
have a lower throughput due to increased processing time and is less favorable for
Polymorphic architecture.

In this work a binary coefficients 9/7 filter is implemented to allow cheaper im-
plementation cost, higher throughput and ‘on-the-fly’ switching to 5/3 filter archi-
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tecture. The term ‘binary coefficients filter’ refers to a filter whose coefficients can
be exactly written in the form p

2q where p and q are integers. Thus, we have the de-
sired rational properties of Le Gall’s 5/3 filter and image compression performance
similar to Daubechies’ 9/7 filter.

4.2.1 Daubechies 9/7-Tap Bi-orthogonal Filter

The bi-orthogonal Daubechies 9/7 filter is the most widely used filter for DWT
operation. It is also commonly called CDF filter. These wavelets have symmetric
scaling and wavelet functions, i.e., both the low-pass and high-pass filters are sym-
metric. This filter has excellent image compression capabilities and the idea behind
their construction is same as orthogonal Daubechies wavelets.

For Daubechies filters, solutions are derived by solving the following factoriza-
tion for polynomial QI(X) where I is an integer:

(1 − X/2)IQI (X) + (X/2)IQI (2 − X) = 1

To get the series of solutions for Daubechies filters, this equation is solved us-
ing spectral factorization. However, the following factorization is used in CDF 9/7
filter:

QI(X) = qprimal(X)qdual(X)

A simple factorization is done with qprimal(X) = 1 and qdual(X) = QI(X). Solv-
ing this equation for I = 1 gives famous Haar wavelets while I = 4 gives the co-
efficients for CDF filter. The bi-orthogonal pair of sequences for wavelet filter are
calculated as follows:

G0(Z) = 2Zp

(
1 + Z

2

)2

(1 − cX) (4.1)

H0(Z) = 2Zp

(
1 + Z

2

)2

Q4

(
1 − Z + Z−1

2

)
(4.2)

where

Q4(X) = 1 + 2X + 5

2
X2 + 5

2
X3 (4.3)

There are four filters that comprise the two-channel bi-orthogonal wavelet sys-
tem. The analysis and synthesis low-pass filters are denoted by H0 and G0, re-
spectively. The analysis and synthesis high-pass filters are denoted by H1 and G1,
respectively, and are obtained by quadrature mirroring the low-pass filters.

H1(z) = z−1G0(−z),G1(z) = zH0(−z) (4.4)
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Table 4.1 Coefficients for the CDF 9/7 filter

i h0(i) h1(i) g0(i) g1(i)

±4 0.026748757411 0 0 0.026748757411

±3 −0.016864118443 0.091271763114 −0.091271763114 0.016864118443

±2 −0.078223266529 −0.057543526229 −0.057543526229 −0.078223266529

±1 0.266864118443 −0.591271763114 0.591271763114 −0.266864118443

0 0.602949018236 1.11508705 1.11508705 0.602949018236

Table 4.2 Coefficients for
Le Gall 5/3 filter i h0(i) h1(i) g0(i) g1(i)

±2 −1/8 0 0 −1/8

±1 2/8 −1/2 1/2 −2/8

0 6/8 1 1 6/8

If we define D(z) = G0(z)H0(z) the Perfect Reconstruction (PR) condition simpli-
fies to the following:

D(z) + D(−z) = 2 (4.5)

This equation is solved using Lagrange Half Band Filters (LHBF), Lk(z) where

D(z) = Lk(z) = zk

(
1 + z−1

2

)2k

α(z) (4.6)

α(z) =
k−1∑
n=0

(k+n−1
Cn

)(2 − (z + z−1)

4

)n

(4.7)

This is simplified for k = 4 to get the famous Cohen–Daubechies–Feauveau (CDF)
or simply Daubechies bi-orthogonal 9/7 filter. The filter coefficients are irrational
and their approximate values are given in Table 4.1. Ansari et al. [3] discuss the
derivation in detailed steps.

4.2.2 Le Gall’s 5/3 Filter

Le Gall and Tabatabai [14] solved the PR condition by substituting D(z) = a0 +
a2z

−2 + a3z
−3 + a2z

−4 + a0z
−6 with the condition a0 ∈ [− 1

8 ,0]. For a = 1
16 the

simplification leads to the famous Le Gall’s 5/3 filter pair. The coefficients for this
filter are given in Table 4.2.

G0(Z) = 2Zp

(
1 + Z

2

)2

(4.8)
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H0(Z) = 2Zp

(
1 + Z

2

)2

Q2

(
1 − Z + Z−1

2

)
(4.9)

This filter has lower latency than the ones studied earlier but provides lesser
image compression capabilities.

h0(i) or low53(i) = 3

4
x(i) + 1

4

(
x(i − 1) + x(i + 1)

) − 1

8

(
x(i − 2) + x(i + 2)

)
(4.10)

h1(i) or high53(i) = x(i) − 1

2

(
x(i − 1) + x(i + 1)

)
(4.11)

4.3 Background and Related Work

Our Poly-DWT architecture must enable dynamic control of the allocated resources
in order to yield high performance subject to many external parameters. Although
this architecture serves different needs depending on the target multimedia appli-
cation, one constant across many variations is the use of wavelets for high-quality
compression of image or video data.

Recent work in partial reconfiguration of FPGAs provides insight into the state-
of-the-art. Claus et al. [10] give a comparison of embedded reconfigurable video-
processing architectures. They propose a hybrid of two hardware platforms: one
providing easy reconfiguration of modules and the other providing easy implemen-
tation with higher clock frequency, to achieve an optimal FPGA-based dynamically
and partially reconfigurable platform for real-time video and image processing. The
tool ReCoBus-Builder [16] simplifies the generation of dynamically reconfigurable
systems to almost a push button process. The work also describes a communication
infrastructure for dynamically reconfigurable systems. Claus et al. [11] present an
IP core that enables fast on-chip dynamic partial reconfiguration close to the maxi-
mum achievable speed. Paulsson et al. [26] present a scheme for self-optimization of
power and performance according to the run-time specific requirements. The work
discusses power optimization of signal routing for application-specific dynamic per-
formance requirements.

Contrary to the above-mentioned approaches, in this work we refer to ‘reconfigu-
ration’ as the dynamic switching of hardware architectures to save power resources.
Thus, this switching can be implemented in both FPGA-based and ASIC-based de-
signs. We next discuss the existing work and developments in the theory of wavelet
transform and presents the motivation for hardware implementation of this algo-
rithm. Section 4.3.1 discusses the development of the theory of wavelet transform,
and its efficient image processing capabilities. Section 4.3.2 describes some recent
attempts at implementing DWT on reconfigurable platforms.
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Fig. 4.4 Result of three level
2-D wavelet transform
operation on an image

4.3.1 Wavelet Transform Background

The efficient representation of time-frequency information by the wavelet transform
has lead to its popularity for signal processing applications. DWT provides superior
rate-distortion and subjective image quality performance over existing standards.
Applying a 2-D DWT to an image of resolution M × N results in four images of
dimensions M

2 × N
2 : three are detailed images along the horizontal (LH), vertical

(HL) and diagonal (HH), and one is coarse approximation (LL) of the original im-
age. LL represents the low frequency component of the image, while LH, HL, and
HH represent the high frequency components. This LL image can be further decom-
posed by DWT operation. Three levels of such transforms are applied and shown in
Fig. 4.4. The coarse information is preserved in the LL3 image and this operation
forms the basis of Multi-Resolution Analysis for DWT [42].

Spectral factorization in the frequency domain and lifting schemes are the two
common schemes for achieving wavelet decomposition. The spectral factorization
method first pre-assigns a number of Vanishing Moments on the Bi-orthogonal
Wavelet Filter Banks (BWFBs), then obtains a trigonometric polynomial (known
commonly as a Lagrange Half-Band Filter or LHBF) and then the filter coefficients
are determined according to the perfect reconstruction condition. As will be seen in
the following section, we implement a spectral factorization-based approach which
also obtains a low hardware implementation like that achieved from lifting by using
a folding scheme.

BWFBs are commonly used for image processing but they have irrational coeffi-
cients, the associated DWT requires a high precision implementation, leading to an
increased computational complexity. In a hardware implementation, rational binary
coefficients can help in achieving a multiplier-free implementation of filter coeffi-
cients [21, 28]. These multiplier-free implementations involve image reconstruction
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quality trade-offs. Many other researchers have also faced the problem of reduc-
ing DWT complexity [2, 20, 29]. What differentiates our work is that we consider
applications that could make use of run-time (not one-time) hardware resource al-
location. To fulfill this requirement we design a new polymorphic architecture that
can enable dynamic control over the properties of the allocated hardware resources.

4.3.2 Hardware Implementation of DWT

Much research has been done in the development of DWT architectures for image
processing [4, 5, 17, 21, 29]. A good survey on architectures on DWT coding is
given by [39]. The work gives insight on hardware implementations for JPEG2000
scheme which is based on DWT computations. The computational complexity anal-
ysis of JPEG2000 by [1, 19] explains that EBCOT coding and DWT operations
together contribute more than 80 % of the overall complexity. More details of the
JPEG2000 standard are given in [8, 33].

The DWT architectures can be broadly classified into lifting-based, convolution-
based and B-spline-based architectures. The lifting-based architectures are popular
and became the mainstream because they need fewer multipliers and adders and
have a regular structure. Similarly B-spline-based architectures have been proposed
to minimize the number of multipliers by using B-spline factorization [15]. How-
ever, the lifting based architecture has a larger critical path. Convolution-based ap-
proaches have a lower critical path but require a larger number of multipliers.

In this work, we rationalize the filter coefficients which over-rides the past limi-
tations of convolution-based approaches. We introduce a multiplier-free implemen-
tation and further introduce a switching structure that enables efficient hardware
resource sharing between low- and high-pass filters of DWT. By pipelining we are
able to achieve a good performance with our approach.

Chang and Hauck [6] propose several optimization techniques aimed at providing
the developer with more control over the area-to-error trade-off during data path
precision optimization that would not be available with simple truncation. An error
model is developed for adder and multiplier circuits. However, one of the problems
faced is the uncertainty in actual error of the system which depends on the actual
value of the input. The upper bound on error skews toward larger positive values as
we reduce the bit allocated per pixel. In this work we make use of a dynamically
reconfigurable architecture to modify the resource allocation for the system based
on the image quality required by the application. Benkrid et al. [5] discuss that the
overall performance and area depends significantly on the precision of intermediate
bits used in the design. This motivates us to further look at bit allocation as another
aspect of polymorphism in our Poly-DWT structure.

Martina and Masera [21] propose a multiplier-free VLSI architecture for the fa-
mous 9/7 wavelet filters. The novelty of their architecture is the possibility of com-
bining the 5/3 wavelet data path into the 9/7 data path, resulting in a reduced num-
ber of adders compared to other solutions. This implementation approximates the
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filter coefficients into two decimal places of accuracy and then implements a folded
structure for achieving a hardware-efficient DWT implementation. This implemen-
tation requires 19 adders, an improvement over 21 adders required in their previous
implementation [20]. Our work obtains a different expression for wavelet filter coef-
ficients to obtain all binary rational coefficients. This reduces the number of adders
required by our implementation significantly and also achieves significantly better
image reconstruction results over the original filter. As will be described in Sect. 4.4,
our folded implementation reduces the number of adders to just nine.

In [37], the author presents a technique to rationalize the coefficients of wavelet
filters that will preserve bi-orthogonality and perfect reconstruction. This approach
also preserves regularity of the structure by preserving most of the zeros at z = −1.
This approach has been developed further in this work to facilitate the development
of a polymorphic structure.

4.4 Poly-DWT Filter

A look at Table 4.1 explains the inherent difficulties in the hardware implementa-
tion of the original Daubechies 9/7 filter. While this filter has high compression
performance, it will lead to lossy compression due to truncation involved in filter
coefficients in a reasonable fixed point hardware representation such as a 16-bit rep-
resentation (12-bits for integer and 4-bits for fractional part values). The number
of bits required for accurate representation increases as we increase the number of
levels of wavelet decomposition. On the other hand floating point implementation
implies a higher hardware cost (32 bits for single precision representation). More-
over hardware multipliers would be needed to implement this in our design with
reasonable precision.

We alleviate this problem by searching for an integer coefficients filter that can
offer a higher PSNR at a smaller word size. A parameterized filter design allows
us to obtain a family of 9/7 filters. This new design is then searched for rational
coefficients to obtain new filters to alleviate the above-mentioned problems.

4.4.1 Parameterized Filter Design

A parameterized design alleviates the problem of irrational coefficients. Equa-
tion (4.13) can be re-written in the following form, with Z = 1/2 · (z + z−1):

D(Z) = 2K(1 + Z)Kα(Z) (4.12)

α(Z) =
k−1∑
n=0

(k+n−1
Cn

)(1 − Z

2

)n

(4.13)

Tay [37] poses this constraint on D(z) to derive the binary rational coefficients and
achieve new sets of 9/7 filters by adding more degrees of freedom to the original
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LHBF equation (by introducing a free parameter α). Essentially, D(Z) is re-written
as follows:

D(Z) = 2K(1 + Z)k−1(β + Z)α(Z) (4.14)

α(Z) =
k−1∑
n=0

(k+n−1
Cn

)(1 − Z

2

)n

(4.15)

where β signifies free factor. The solution is then obtained for different values of K .
The values for K = 4 allow the following break-up of analysis and synthesis low-
pass filters:

H0(Z) = Kh(Z + 1)
(
Z3 + AZ2 + V Z + C

)
(4.16)

G0(Z) = Kg(Z + 1)2(Z + α) (4.17)

D(Z) = KhKg(Z + 1)3(Z + α)
(
Z3 + AZ2 + BZ + C

)
(4.18)

The PR condition on D(Z) gives simultaneous constraint equations which simplify
to give solutions for A, B , and C (and simultaneously for the filter coefficients) in
terms of α:

A = −(3 + α) (4.19)

B = 9α3 + 35α2 + 48α + 24

3α2 + 9α + 8
(4.20)

C = 8(1 + α)3

3α2 + 9α + 8
(4.21)

Setting α to −1.6848 gives back the original 9/7 filter pair.

4.4.2 Numerical Study

The parameter α can be varied to achieve a family of bi-orthogonal filter pairs for
DWT implementation. Setting α = −1.6848 gives us the CDF-9/7 filter which have
been proven to have good compression performance. Next, we perform a numeri-
cal study to explore a set of binary coefficients filter which is in close proximity
to the CDF-9/7 filter. We ran MATLAB experiments to obtain the quantization er-
ror for the filter coefficients with α varying from −1.6 to −2 (in vicinity of the
α = −1.6848 value). The results are presented in Fig. 4.5. It can be observed that
the minimization of this error occurs at α = −2, where quantization error drops
down to 0. A zero quantization error indicates that the filter coefficients derived with
α = −2 are (exactly) rational. We can also observe local minima of curves around
two regions in the vicinity of α = −1.6848 (at α = −1.66 and α = −1.8 approxi-
mately). We also derive approximate filter coefficients from these minima to obtain
a binary coefficients 9/7 filter. These filter coefficients are reported in Tables 4.3
and 4.4.
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Fig. 4.5 Numerical analysis of quantization error for seven bit finite representation of filter coef-
ficients

Table 4.3 Analysis
high-pass filter coefficients
(H1) for the bi-orthogonal
9/7 tap filter

i α

1.6848 −1.667 −1.8 −2

±3 0.091271763114 1/16 1/16 1/16

±2 −0.057543526229 −1/16 −1/16 0

±1 −0.591271763114 −9/16 −9/16 −9/16

0 1.11508705 9/8 9/8 1

Table 4.4 Analysis low-pass
filter (H0) coefficients for the
bi-orthogonal 9/7 tap filter

i α

1.6848 −1.667 −1.8 2

±4 0.026748757411 1/32 1/32 1/64

±3 −0.016864118443 −1/32 0 0

±2 −0.078223266529 −1/16 −3/32 −1/8

±1 0.266864118443 9/32 1/4 1/4

0 0.602949018236 19/32 5/8 23/32

4.4.3 Candidate Filters

Let us consider an input signal x(i). The low- and high-pass output of this filter
(low(i) and high(i), respectively) are obtained by convolution of x(i) with h0(i)

and h1(i), respectively:

low(i) =
k=4∑

k=−4

h0(k) · x(i − k) (4.22)
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high(i) =
k=3∑

k=−3

h1(k) · x(i − k) (4.23)

Substituting the values of filter coefficients from Tables 4.2, 4.3, and 4.4 we can
factorize our 9/7 filter coefficients in terms of 5/3 filter output. The subscripts A,
B , and C are used to denote the filters obtained with α = −1.67, −1.8, and −2,
respectively:

lowA(i) = 19

32
x(i) + 9

32

(
x(i − 1) + x(i + 1)

) − 1

16

(
x(i − 2) + x(i + 2)

)

− 1

32

(
x(i − 3) + x(i + 3)

) + 1

32

(
x(i − 4) + x(i + 4)

)
(4.24)

highA(i) = 9

8
x(i) − 9

16

(
x(i − 1) + x(i + 1)

) − 1

16

(
x(i − 2) + x(i + 2)

)

+ 1

16

(
x(i − 3) + x(i + 3)

)
(4.25)

lowB(i) = 5

8
x(i) + 1

4

(
x(i − 1) + x(i + 1)

) − 3

32

(
x(i − 2) + x(i + 2)

)

+ 1

32

(
x(i − 4) + x(i + 4)

)
(4.26)

highB(i) = 9

8
x(i) − 9

16

(
x(i − 1) + x(i + 1)

) − 1

16

(
x(i − 2) + x(i + 2)

)

+ 1

16

(
x(i − 3) + x(i + 3)

)
(4.27)

lowC(i) = 23

32
x(i) + 1

4

(
x(i − 1) + x(i + 1)

) − 1

8

(
x(i − 2) + x(i + 2)

)

+ 1

64

(
x(i − 4) + x(i + 4)

)
(4.28)

highC(i) = x(i) − 9

16

(
x(i − 1) + x(i + 1)

) + 1

16

(
x(i − 3) + x(i + 3)

)
(4.29)

The original Daubechies 9/7 filter has α = −1.68. Thus, the compression per-
formance of A will be slightly greater than B and C. However, we can also see
that the C architecture requires fewer number of addition operation. The simpler
coefficients value in C (coefficients being 0 or easily represented in exponents of 2)
promises a cheaper hardware implementation. This implies a trade-off between im-
age reconstruction quality vs. hardware resources required by various filters. In the
next subsection we discuss the hardware resource requirements of these architec-
tures.
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4.4.4 Hardware Architectures

We performed several optimization steps to reduce the cost of underlying hardware.
The following optimization steps were performed:

• Observe in Tables 4.2, 4.3, and 4.4 that the coefficients of x(i ± k) are the same.
Thus they can be grouped together to reduce the hardware complexity:

w0 = x(0) (4.30)

w1 = x(i − 1) + x(i + 1) (4.31)

w2 = x(i − 2) + x(i + 2) (4.32)

w3 = x(i − 3) + x(i + 3) (4.33)

The Daubechies 9/7 filter requires nine data values—four each corresponding
to four previous and next values and one for the present pixel value. After this
optimization, we reduced this number from nine to five. This also reduces the
requirement of multipliers in implementing equations such as (4.12) and (4.13)
in hardware from nine to five.

• Division by binary coefficients (e.g. 1/64, 1/16, 1/4) was performed using arith-
metic shift operations. This eliminates the need for multipliers in the circuits.
The coefficients as given in Tables 4.3 and 4.4 are rational and most of them have
some simple binary value. Therefore we switch our design to a multiplier-free
design requiring limited adders in the implementation.

• The input stream was pipelined. Thus, as shown in Fig. 4.6 our architecture takes
one pixel (or channel input) as the input and outputs the low- and high-pass signal
coefficients with a finite latency. This help us to achieve a good throughput and
a higher clock frequency. The pipeline stages are implemented by clocking the
cascaded registers to the left in the figure.

Figures 4.6(a)–(c) provide a visual overview of the three designs with the value of
α = −1.67,−1.8 and −2, respectively. As can be seen in Fig. 4.6, our Le Gall’s 5/3
filter implementation requires only six adder/subtracter units. Our 9/7 filter imple-
mentations for α = −1.67 required 19 adders. For α = −1.8, our design requires 17
adder/subtracter units. But we observe that the design for α = −2 requires only 12
adder/subtracter units. This is a significant improvement over any reported existing
work as reported in the experiment section.

As described in Fig. 4.1, the reconfigurable implementation must allow dynamic
switching between wavelet filters. Our implementation allows for easy enabling and
disabling of the extra hardware to obtain the choice between a more power-efficient
binary 5/3 filter versus a more compression-efficient 9/7 filter. In the remainder of
this section we describe an architecture to allow for this dynamic switching. Let us
consider an input signal x(i). The low- and high-pass output of this filter (low(i)

and high(i), respectively) are obtained by convolution of x(i) with h0(i) and h1(i),
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Fig. 4.6 Hardware architectures for bi-orthogonal 9/7 filter
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Fig. 4.6 (Continued)
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respectively:

low(i) =
k=4∑

k=−4

h0(k) · x(i − k) (4.34)

high(i) =
k=3∑

k=−3

h1(k) · x(i − k) (4.35)

Substituting the values of filter coefficients from Tables 4.2, 4.3, and 4.4, we can
factorize our 9/7 filter coefficients in terms of 5/3 filter output:

lowA(i) = 1/2 · low53(i) − (1/4 + 1/16) · high53(i)

+ (1/2 + 1/32) · w0 + 1/32 · (w4 − w3) (4.36)

highA(i) = 1/2 · low53(i) + (1/2 + 1/4) · high53(i)

− (1/4 + 1/16) · w1 + 1/16 · w3 (4.37)

lowB(i) = 1/2 · low53(i) + 1/4 · high53(i)

+ 1/32 · (w4 − w3) (4.38)

highB(i) = 1/2 · low53(i) + (1/2 + 1/4) · high53(i)

− (1/4 + 1/16) · w1 + 1/16 · w3 (4.39)

lowC(i) = low53(i) − 1/32 · w0 + 1/64 · w4 (4.40)

highC(i) = 1/2 · high53(i) − 1/32 · w1

+ 1/32 · w3 (4.41)

Figures 4.6(a)–(c) provide the implementation details of these architectures. The
dark (yellow) region is the hardware required for the implementation of Le Gall’s
5/3 filter. The architecture has registers, adders, and multiplexers. The right shift
operation (can be implemented by adjusting the wires) is represented by small tri-
angles. A triangle with the number x means a shift to the right over x positions, or
a division by 2x . All the architectures are designed as extensions of Le Gall’s 5/3
filter. This gives the feature of ‘on the fly’ switching from 9/7 filter to Le Gall’s
mode of operation.

The low- and high-pass filter output can be lowA/B/C(i) and highA/B/C(i), or
low53(i) and high53(i) depending upon the mode of operation. When operating in
5/3 filter mode only the yellow shaded region of the architecture would be used
thus reducing considerably the power consumption of the system. This figure shows
the conceptual design and architecture and does not include the pipeline stages of
these structures. A folded architecture can be developed for the α = −2 case where
the low- and high-pass output coefficients are dependent only on low- and high-
pass values, respectively, of 5/3 filter. This is presented in Fig. 4.6(d). This design
requires only nine adders in the circuit.
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4.5 Fixed Point Implementation

An image channel is generally represented at 8-bit precision. This encourages us to
develop a fixed point hardware. We avoid the floating point implementation of the
system to avoid non-optimal usage of resources. Chang and Hauck [6] discuss the
issues involved in the fixed point analysis with respect to the output error. There are
two conflicting issues that affect the decision to decide the hardware bit allocation
for internal representation of variables:

(a) Increased number of bits generally implies better performance in terms of image
quality and reduced error.

(b) Reduced number of bits imply a better hardware utilization, and lower power
consumption.

For certain applications such as a static HDTV encoding system we may always
require a large number of bits that ensure high-quality and high-resolution mul-
timedia transmission. However, certain applications such as remote tele-medicine
applications and remote distributed surveillance applications are highly power and
performance sensitive. They may require a dynamic trade-off. The Poly-DWT pro-
vides a good trade-off in achieving a dynamic hardware reconfiguration for such
applications. Similarly Chang and Hauck [6] report that the error (in image recon-
struction in case of DWT) is skewed or biased, only in the positive direction. Thus
static analysis may not be applicable in all situations and we need custom hardware
to adapt itself according to the present conditions. The image statistics (like Peak
Signal-to-Noise Ratio (PSNR), Mean Absolute Deviation (MAD)) provide the sys-
tem a performance feedback and allows it to take steps to lead to a more efficient
representation. These metrics can be used as performance measure of image com-
pression systems and we can switch hardware to reach a desired compression level
with minimum hardware resources.

We present a simple scheme to change the bit allocation for hardware implemen-
tation. The main factors or sources for the change in hardware bit allocation can be
summarized in the following headings:

• Functional Requirements of the Chip: There may be several computational ker-
nels such as image enhancement, noise filtering, etc, which may be optionally
required for a multimedia application. Depending on input from the source some
of them may not be required to be functional at all times. The extra hardware
available in such cases can be dedicated to the Poly-DWT architecture to improve
its performance.

• Quality Requirements of the Application: Many DWT kernels or instances of
DWT hardware may be required by different applications. Moreover, with the
change in input images we may dynamically require different levels of accuracy.

• Level of Decomposition Using DWT: In image compression algorithms such as
SPIHT, CEZW, and EBCOT more than one level of DWT operation is done. Fry
and Hauck [13] discuss the changes in numeric range in higher level decomposi-
tion using DWT. For example, the eight bit input can have maximum magnitude
of 255 and can be well represented using 8.0 fixed point format representation
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(eight bits to represent integer and zero bits for fractional part). An analysis of
the coefficients of each filter bank shows that a 2-D low-pass FIR filter at most
increases the range of possible numbers by a factor of 2.9054. As a result, the
coefficients at different wavelet levels require a variable number of bits above
the decimal point to cover their possible ranges. At fourth wavelet decomposition
level, 17 bit representation may be required to accommodate the magnitude range
of coefficients. A dynamic word width allocation may make a lower level DWT
kernel fit for decomposition at higher level if required by the application.

• User Preferences: In our proposed system, the user has the final say in all the
subjective image quality/cost trade-offs. Applications and users may differ in their
subjective view of good performance of the system. Chang and Hauck [6] also
discuss the importance of defining a user defined error constraint.

• Other Considerations: A Poly-DWT implementation may include other consid-
erations like the number of DWT kernels required, separation/folding of row and
column processing DWT kernels, etc. We have not discussed these aspects in our
present Poly-DWT analysis and they are left as a future work.

4.6 Hardware (Re)-allocation

Poly-DWT allows several levels of hardware resource (re-)allocation to obtain a
power-efficient design, which are explained as follows:

1. The number of DWT kernels in the wavelet decomposition can be varied depend-
ing upon the application requirements.

2. On-the-fly switching of filter design from 9/7 to 5/3 filter architecture in finite
cycles latency.

3. The number of bits allocated for internal registers in the design can be varied to a
obtain an application-specific trade-off between clock frequency and reconstruc-
tion quality vs. hardware usage.

The variations in number of DWT kernels in wavelet decomposition is specific to
the requirements of the multimedia encoding scheme and its dynamic requirements.
In this work, we therefore restrict our discussion to reconfiguration of design of the
individual DWT kernels to meet the performance vs. power trade-off dynamically in
hardware. Figure 4.7 gives the architecture design of Poly-DWT kernel to achieve
these trade-offs.

4.6.1 ‘On-the-Fly’ Switching

We first consider ‘on-the-fly’ switching of filter designs from 9/7 to 5/3 architec-
tures. The switchhw signal in Fig. 4.7 is used to switch between 5/3 and 9/7 archi-
tectures. The two multiplexers (unshaded in Fig. 4.7) ensure the correctness of the
input and output of Poly-DWT hardware. As seen in this figure, we can divide the
hardware into two categories:
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Fig. 4.7 Architectural details of Poly-DWT to facilitate ‘reconfiguration’

1. Type A hardware. The hardware common to both 5/3 and 9/7 filter architectures
is called type A hardware and it is unaffected by ‘on-the-fly’ switching. This
includes the registers and adders in the shaded portion of design in Fig. 4.7.

2. Type B hardware. The hardware used by 9/7 filter architecture which is obso-
lete to 5/3 filter is called type B hardware. This hardware is switched off when
switchhw signal is changed to 0. This corresponds to the registers and adders in
the unshaded portion of design in Fig. 4.7.

The following steps are involved in switching from 9/7 to 5/3 filters (the 5/3 filter
hardware is shaded in Fig. 4.6):

1. The input pipeline for the 5/3 filter is smaller than the 9/7 filter. In order to use
the same pipeline we need a latency of two cycles to ensure that the pipelining
registers have proper input. The values in the pipeline registers (x(i − 4) and
x(i − 3)) are pipelined to the 5/3 filter hardware before they are switched off.

2. The extra hardware for computation can be switched off in a single clock cy-
cle. This can be enforced by driving the signal switchhw from 1 to 0 (shown in
Fig. 4.8(b) and explained in next subsection).

3. The input and output multiplexer can be switched from input port 1 to input port
0 in one cycle.

Since the above-mentioned operations can be performed together, we require only a
latency of two cycles to switch from a 9/7 to a 5/3 filter. A similar argument can be
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Fig. 4.8 Register level details to enable reconfiguration (a) type A architecture and (b) type B
architecture

constructed to explain that it would take a latency of two cycles to switch from 5/3
to 9/7 filter architecture.

While the proposed architecture is capable of switching between 5/3 and 9/7
filter architectures at run-time of a few nanoseconds, such a design will incur a
large overhead in transmitting control information to ensure the correctness of the
output at the decoder (we will need to send one bit per clock cycle for one filter
kernel used). However, in practical scenarios we can restrict the switching between
5/3 and 9/7 filters between different levels of wavelet decomposition. Thus, the
overhead involved in such a switching is reduced to a few bits (3–10 bits per frame)
and can be integrated into frame header.

4.6.2 ‘Bit-Width’ Switching

We discuss the scheme for bit-width switching in this section. We break the internal
registers in design into multiples of four bit registers. Thus, an N = 16 bits reg-
ister is represented as four 4-bit registers. As shown in Fig. 4.7, the registers are
represented as four 4-bit registers. Figure 4.8 explains the working of ‘bit-width’
switching scheme with individual registers. The four signals R4, R8, R12 and R16
are used to switch the registers on or off at run-time. When R4, R8, and R12 are on,
the register has 12 bits available for use while the other 4-bit register is switched off
to save power. This is done with the help of chip-enable (CE) signal as indicated in
Fig. 4.8. Similar changes can be made to the design of adders to partially switch off
the LUTs corresponding to an adder hardware. Figure 4.8(a) explains the bit-width
switching of type A hardware. The two inputs switchhw and the register select in-
put (R4/R8/R12/R16) are ANDed to get the chip-enable (CE) signal for individual
4-bit type B registers. This enabling/disabling of registers for type B hardware is
illustrated in Fig. 4.8(b).

The dynamic power consumption of a circuit is given by the following equation:

P = ACV 2F
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where A is the activity factor (0 ≤ A ≤ 1), C is the switched capacitance of the cir-
cuit, V is the supply voltage and F is the clock frequency. By switching off the extra
hardware we reduce the switched capacitance C of the circuit, thereby obtaining a
useful dynamic trade-off between the power and performance constraints.

4.7 Experiments

This section presents quantitative results for the performance of Poly-DWT archi-
tecture presented in this work. We evaluate our approach on the Xilinx Virtex-V
XC5VLX30 FPGA by generating the different DWT architectures. The polymor-
phic architecture presented in this work has been analyzed in terms of image re-
construction and kernel area considerations. As previously mentioned, the trade-off
between the two is dynamically reached in a polymorphic architecture.

We present the results of analysis for various word widths for internal and ex-
ternal configurations of DWT kernel and also examine the performance of different
kernels. The standard color test images (e.g. Lena, Barbara) were used for the pur-
pose of simulation. Each pixel in a color image has three channels, with eight bits
of data per channel. Unless otherwise specified, we used 8.4 fixed point arithmetic
for internal computations.

Our design is written in VHDL and synthesized using Xilinx ISE 9.1i. ModelSim
simulations were performed to test the waveforms. The more detailed analysis of
image reconstruction performance of various filters is performed in MATLAB. To
verify the correctness of the various filters implemented in the FPGA, we compared
it against a pure software implementation on a Intel Core 2 Duo processor running at
2.0 GHz. Both implementations generate the same numerical results for transformed
output. In the following subsections, we analyze the working of our proposed DWT
hardware with respect to area, performance and quality perspectives.

4.7.1 Image Reconstruction Quality

The proposed Poly-DWT filter gives a more efficient representation than the original
Daubechies 9/7 filter as well as the Le Gall 5/3 filter as illustrated in Fig. 4.9(a). It
can be seen in the figure that Poly-DWT provides very little high-pass information
(white marks in black background in higher frequency subbands). The reduction
in high level information in our Poly-DWT filter makes it more suitable for the
compression applications.

A more accurate representation over fixed point hardware gives a better image
reconstruction for Poly-DWT filter than the Daubechies 9/7 filter. Results over sev-
eral test images showed similar results. The bars in Fig. 4.9 illustrates the superior
performance of the Poly-DWT filter for limited hardware resources. The ratio of
energy of the low- and high-pass components is measured. Poly-DWT is found to
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Fig. 4.9 (a) Results of one level of DWT and (b) energy decomposition by respective filters

outperform other filters in retaining low-pass energy. This property, also known as
energy compaction property of the filter, is helpful to achieve a better compression
efficiency.

The image compression performance of Poly-DWT filter was evaluated on a
SPIHT image coder [30]. We tested the performance on an open-source filter bank-
based implementation provided by [38]. We chose the intermediate variables in 9.4
fixed point format for this experiment setup. In case of low bit-rate applications,
this property helps in better reconstruction of images from low-pass coefficients.
The performance over some test sequences has been reported in Table 4.5. The re-
sults are reported over bit rates of 0.5 bpp (bits per pixel) and 2 bpp. It can be seen
that the compression efficiency of Poly-DWT filter is comparable to Daubechies
9/7 filter. A performance comparison with another multiplier-free implementation
provided by [21] illustrates that our design requires a fewer number of adders and
gives a higher compression performance as evident by higher PSNR values.

4.7.2 Hardware vs. Software Performance

The hardware performance of DWT kernels proposed in the work was compared
with a software-based implementation on the PC platform. Table 4.6 gives the
speedup achieved by an FPGA-based implementation of DWT kernels. The soft-
ware implementation of both Daubechies 9/7 filter and Poly-DWT (9/7) filter takes
the same time as the number of filter taps in both cases is the same. The FPGA-based
design outputs one pixel per clock cycle for every DWT kernel. The computation
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Table 4.5 Image compression performance on SPIHT coder (PSNR values)

Image Bitrate = 0.5 bpp Bitrate = 2 bpp

Daub. 9/7 Poly-DWT Martina, 07 Daub. 9/7 Poly-DWT Martina, 07

lena 28.213 29.46 27.7 38.47 38.17 36.5

surveillance 26.1 28.1 26.54 38.41 42.21 39.21

lecture 34.35 33.8 32.73 48.3 51.25 43.71

helicopter 33.75 35.7 35.01 48.59 54.72 47.14

Table 4.6 Hardware acceleration on a Virtex-5 XC5VLX30 FPGA (time in µs)

Image Le Gall 5/3 filter Daubechies 9/7 filter Poly-DWT 9/7 filter

SW HW Speedup SW HW Speedup HW Speedup

CIF 1420 197 7.06× 2980 330 9.03× 288 10.35×
Q-CIF 370 68 5.45× 790 91 8.68× 77 10.26×

times for one level of DWT for different image sizes is presented in Table 4.6. The
is reported in microseconds (µs).The proposed Poly-DWT filter obtains a speedup
of about a factor of 10 for CIF images (standard images of size 352 × 288 pixels).
The speedup for Q-CIF images (Quarter-CIF) is also about 10. The smaller speedup
in smaller sized images is attributed to the overheads in I/O operations which are
more significant in the case of small sized images. A line-based image scan archi-
tecture [9] is used for data I/O operations.

The results as summarized in Table 4.6 show the advantages of a hardware im-
plementation of this class of algorithms. This is due to the fact that the required
calculations are simple, allowing for a high throughput implementation. By pipelin-
ing the individual adder and add operations, we were able to achieve very high clock
frequencies (394 MHz on our target Virtex-5 platform and four bits word length).
The actual speedup achieved by the Poly-DWT kernel (Table 4.7) over Daubechies
filter is greater (three times more) than the results indicated in Table 4.5 because of
memory access computations involved in image compression results.

4.7.3 Hardware Comparison

Direct implementation of the CDF-9/7 filter gave a clock frequency of 107 MHz,
while requiring nine multiplier units. A clock frequency of 110 MHz was reported
when we forced the design to map the constant multiplications into Lookup Tables.
Martina and Masera [21] implement Daubechies 9/7 filter with approximate coef-
ficients and reports a clock frequency of about 200 MHz through a multiplier-free
implementation, targeting 0.13 µm VLSI technology.
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Table 4.7 Comparison of binary filter features and hardware resources requirements

Features Daub.
9/7

α = −2
folded

α =
−2

α =
−1.8

α =
−1.67

Tay,
2001

Kotteri,
2005

Huang,
2001

Martina,
2007

Martina,
2005

Adders 15 9 12 17 19 19 15 8 19 21

Multipliers 9 0 0 0 0 0 0 4 0 0

PSNR A B B A A C C A B B

Reconf. N Y Y Y Y N N N Y N

Registers 144 208 213 253 294 – – – – –

LUTs 80 175 194 217 289 – – – – –

Bit slices 210 245 259 311 375 – – – – –

Clock
(MHz)

107 389 317 311 310 – – – 200 –

Table 4.7 summarizes the performance of our Xilinx Virtex-V implementation,
and compares our results with other recent work. All the parameterized binary im-
plementations outperform the existing implementations in terms of number of re-
quired adders and clock frequency.

Our initial non-pipelined design obtained a clock frequency of about 108 MHz,
due to its long critical path. The critical path of the circuit lies from the wi registers
to the final output lowC(i) or highC(i), passing through signals lowC(i) or highC(i).
We then pipelined this computation into several stages and obtained a faster imple-
mentation. The α = −2 architecture showed a clock frequency of about 317 MHz.
This design requires less FPGA resources (registers and LUTs) than the α = −1.67
and α = −1.8 architecture and is most fit for Poly-DWT implementation.

The folded architecture variant for α = −2 was also implemented, resulting in a
faster clock frequency and less adders (leading to fewer logic slices). The design of
binary coefficients filter also helped us to achieve perfect reconstruction of image
signals. This proposed architecture can run (over line-based DWT architectures)
at 389 MHz, enabling it to process High Definition Video frames (1440 × 1080)
in an estimated 5 ms time. As previously mentioned, the shaded (yellow) regions
in Fig. 4.6 show the baseline 5/3 filter implementation. Thus the architecture can
be optimized to switch on-the-fly to 5/3 mode in order to save power. The folded
architecture and the simple architecture of Poly-DWT filter both have the same per-
formance in terms of image reconstruction and they differ only in hardware require-
ments. The input data width was eight bits corresponding to one channel of an image
stream. The proposed binary filter reaches perfect reconstruction with lesser number
of bits than the Daubechies 9/7 filter. Thus the overall area requirements are less.
The hardware resources utilized in these DWT kernels are summarized in Table 4.7.
Here, a comparison of hardware resources utilization is provided against existing
work. Martina and Masera [21] present a multiplier-free implementation which is
suitable for polymorphic switching between 9/7 and 5/3 filters. However, they ap-
proximate the original Daubechies filter coefficients to two decimal places which
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Fig. 4.10 Change in FPGA clock frequency (MHz) for variable word widths for various filters

leads to its poor PSNR performance. Our architecture provides both more efficient
hardware usage and better compression performance.

Figure 4.10 shows the change in synthesized clock frequency for the various
implementations of DWT with varying input word width. The change in external
data width as shown in Fig. 4.10 leads to reduction of clock frequency and hence
reduced throughput.

Zhang et al. [45] present a switching between 5/3 and 9/7 filters using partial
reconfiguration of the bit streams and a lifting-based implementation of the DWT.
They used a platform based on Xilinx Virtex-4 FPGA for experimental implemen-
tation. However, this implementation requires a switching time of 40.2 ms. Thus,
this system introduces a delay/lag of two frames (at CCIR resolution of 720 × 576
pixels per frame and 50 MHz clock). As compared to these results, Poly-DWT has
a very small switching time of two clock cycles (equivalent to 5.14 ns, assuming a
389 MHz clock).

4.7.3.1 ASIC Synthesis

In order to make a more fair comparison with related work, we also synthesized
our Poly-DWT architecture to ASIC technology. We used the Synopsys Design
Compiler environment to perform our experiments using the freePDK 45 nm cell
library [34]. The results of ASIC synthesis indicate that we can achieve a clock fre-
quency comparable to Le Gall’s filter with an insignificant increase in the number of
cells in the design (as reported in Table 4.8). We were able to achieve a clock speed
of 500 MHz for the folded 9/7 filter design.
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Table 4.8 Performance
comparison using standard
cell libraries

aMartina and Masera [21]
report a gate count of 2.68 K
using a 130 nm cell library

Poly-DWT Le Gall’s Daub. 9/7 [21]a

Area 2135 1370 6693 −
Cells 544 194 1022 −
Clock frequency 500 500 300 200

4.7.4 Dynamic Bit Allocation

In this subsection we study the effect of bit allocation on the clock frequency and
image quality. The implementation used fixed point arithmetic over VHDL. First
the input data were kept at 8.0 format and the word width of internal registers was
changed. Figure 4.11 shows the change in reconstruction quality of the images de-
pending on changes in hardware resources (single bit registers or flip-flops). The
x axis here refers to the total number of bits given to an internal processing register.
Figure 4.12 compares the implementation of our structure with other filters. It is
observed that changes in bit-width of internal registers from 9.0 to 9.6 fixed point
representation leads to a linear increase in hardware requirements (number of single
bit registers or flip-flops) and a slight decrease in achievable clock frequency. The
folded Poly-DWT filter register usage on an FPGA chip approaches the implemen-
tation of 5/3 filter, while its compression performance approaches the Daubechies’
9/7 filter. This indicates the hardware-efficient feature of our design.

4.7.5 Real-World Application

We consider a real-time scenario where we propose a DWT-based video-surveillance
system. Lake Pontchartrain Causeway in southern Louisiana has a bridge that runs
23.87 miles. A surveillance system featuring 29 cameras mounted at different points
along the bridge is used to keep guard with cameras placed at approximately every
3 miles. Employees monitor the bridge traffic with the help of this system. We pro-
pose a dynamic power-saving solution using Poly-DWT considering the usage of
surveillance cameras. There are two usages associated with these cameras:

1. Idle-usage. Most of the time, the cameras are used for monitoring the traffic and
a low resolution version of these 29 images is provided to the users. Essentially, a
very coarse version of the input video is provided to the employees at monitoring
station.

2. Active-usage. When a suspected activity is detected, the employee scans for a
high-resolution version of the video. A high-resolution version of the surveil-
lance video from concerned video camera is sought. This may be the case of
traffic congestion, or someone trying to commit suicide or a car broken down
mid-way on the bridge.
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Fig. 4.11 Plot of PSNR vs. the number of bits alloted for internal registers

Fig. 4.12 Comparison of register usage for the binary filter implementations

The 9/7 Poly-DWT filter has higher hardware requirements and hence consumes
more power than the 5/3 filter. Using Xilinx Xpower analyzer for our Xilinx Virtex-
5 FPGA, we obtain a power consumption of 0.34 W for the 5/3 filter and 0.46 W for
9/7 filter. Using the Poly-DWT filter during active-usage time and switching to the
5/3 filter during idle-usage time will save us 0.12 W power. The respective values
were 0.0477 W for 5/34 filter and 0.06 W for 9/7 filter using low power Xilinx
Spartan FPGAs.
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Most of the time (nearly 99 percent of time) is idle-time for each camera. We get
a power saving by a factor of 0.46

0.46·0.99+0.34·0.01 = 1.348 (for Virtex-5) and by using
our Poly-DWT filter.

Another practical scenario is the usage of speed cameras for monitoring traffic.
Speed cameras use several different types of technology, most commonly lasers or
radar, to pinpoint cars that are exceeding the marked speed limit. When a speeding
car is detected, the radar or laser signal triggers the camera to record the car’s license
plate and those data are used to issue a ticket to the car’s owner. Reading the number
plate requires a DWT filter with large taps such as the 9/7 filter. On the other hand,
the normal usage of camera can be to monitor traffic (at coarse resolution) which
is served better by 5/3 filter. The 9/7 Poly-DWT filter can be used to get a more
accurate view of car’s license plate when triggered by radar/laser signal triggers
while we can switch to Le Gall’s 5/3 filter for keeping a record of traffic movements
and also make power savings.

Time-crucial surveillance applications such as meteorology, remote scientific ex-
periments, defense applications require such rapid switching (in one-two cycles as
provided by Poly-DWT) of the hardware architectures.

4.8 Conclusions and Future Work

This work introduces the concept of polymorphic wavelet architecture for image
processing and compression. Polymorphism allows for real-time implementations
to dynamically configure the device to allocate hardware resources to suit its in-
stantaneous needs and obtain an area/power optimized design. We presented a low
hardware (binary rational) implementation of Daubechies 9/7 filter and its deriva-
tion from Le Gall’s 5/3 filter output to allow on the fly switching between the trans-
form structures upon the demands of application. Moreover, a study of filter per-
formance with the changes in word width allocation was performed. We discussed
how internal hardware resource allocation for computational purpose changes the
area/reconstruction quality performance of the DWT kernel. The experiments fa-
vored the theory of polymorphic wavelet architecture design for dynamic image
compression applications.

As a future work, such architectures can be developed for other image com-
pression modules. Moreover, most aspects of DWT implementation and dynamic
reconfiguration can be explored further. For example, the number of DWT kernels
utilized in image transform and the multiplexing between row and column kernels
can be studied to add yet another dimension of polymorphism to our architecture.
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Chapter 5
The Secure Wavelet Transform

Abstract There has been an increasing concern for the security of multimedia
transactions over real-time embedded systems. Partial and selective encryption
schemes have been proposed in the research literature, but these schemes signifi-
cantly increase the computation cost leading to tradeoffs in system latency, through-
put, hardware requirements and power usage. In this work, we propose a light-
weight multimedia encryption strategy based on a modified Discrete Wavelet Trans-
form (DWT) which we refer to as the Secure Wavelet Transform (SWT). The SWT
provides joint multimedia encryption and compression by two modifications over
the traditional DWT implementations: (a) parameterized construction of the DWT
and (b) subband re-orientation for the wavelet decomposition. The SWT has rational
coefficients which allow us to build a high throughput hardware implementation on
fixed point arithmetic. We obtain a zero-overhead implementation on custom hard-
ware. Furthermore, a Look-up table-based reconfigurable implementation allows
us to allocate the encryption key to the hardware at run-time. Direct implementa-
tion on Xilinx Virtex FPGA gave a clock frequency of 60 MHz, while a reconfig-
urable multiplier-based design gave an improved clock frequency of 114 MHz. The
pipelined implementation of the SWT achieved a clock frequency of 240 MHz on
a Xilinx Virtex-4 FPGA and met the timing constraint of 500 MHz on a standard
cell realization using 45 nm CMOS technology. SWT introduces parametrization
of a video compression operation for video encryption by generating a paramet-
ric key for encryption. Implementations over FPGA and VLSI technology are both
presented.

5.1 Introduction

The recent emergence of embedded multimedia applications such as mobile-TV,
surveillance, video messaging, and tele-medicine have increased the scope of mul-
timedia in our personal lives. These applications increase the concerns regarding
privacy and security of the targeted subjects. Another growing concern is the pro-
tection and enforcement of intellectual property rights for images and videos. These
and other issues such as image authentication, rights validation, identification of il-
legal copies of a (possibly forged) image are grouped and studied under the label of
Digital Rights Management (DRM).

A. Pande, J. Zambreno, Embedded Multimedia Security Systems,
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The computer security protocols (e.g. SSL [36], TLS [4]) and cryptographic ci-
phers (e.g. AES [10], DES [11], IDEA [18]) drive much of the world’s electronic
communications, commerce, and storage. These techniques have been used for con-
ventional multimedia encryption and authentication.

In one version of these schemes, some form of private-key encryption algorithm
is applied over the full or partial output bit stream from the video compression en-
gine. This naive approach is usually suitable for text, and sometimes for small bitrate
audio, image, and video files that are being sent over a fast dedicated channel. Secure
Real-time Transport Protocol, or for short SRTP [2], is an application of the naive
approach. In SRTP, multimedia data are packetized and each packet is individually
encrypted using AES. The naive approach enables the same level of security as that
of the used conventional cryptographic cipher.

Consequently, a multimedia compression engine (such as a MPEG or H.264 en-
coder [34]) has an additional encryption engine to ensure multimedia security. De-
pending on the scheme used, the encryption operation is performed either at some
intermediate level during compression or after the final compression. However,
these cryptographic ciphers require a large amount of computational resources and
often incur large latencies. Hardware implementations of AES are often pipelined,
leading to a significantly large latency for real-time applications (31 cycles for
AES [14]). The partial or selective encryption schemes [21] encode only the im-
portant parts of multimedia data to reduce these computational overheads.

The large data volumes, interactive operations, real-time responses, and scala-
bility features that are inherent to real-time multimedia delivery restrict the practi-
cal application of these naive cryptographic schemes. Selective encryption schemes
have been proposed in research literature [3, 9, 19, 21, 26] to reduce the computa-
tional requirements of full encryption schemes. Lian et al. [19] present a scheme for
encryption of Discrete Cosine Transform (DCT) coefficients’ signs and watermark-
ing of DCT coefficients. Lian et al. [19] use Exp-Goloumb codes for the encryption
operation. Cheng and Li [6] propose a DWT-based partial encryption scheme which
encrypts only a part of compressed data. Only 13–27 % of the output from quadtree
compression algorithms is encrypted for typical images. A good summary of efforts
in selective or partial encryption of images can be found in [21].

Furthermore, embedded multimedia systems have constraints on power con-
sumption, available computation power, and performance. Real-time embedded sys-
tems face additional constraints on power consumption, hardware size and heat
generation in the chip which requires design and mapping of computation-savvy
encryption schemes for such architectures. Recently, power-aware designs have
been proposed for video coding in embedded scenarios [5]. The authors in [5] pro-
pose a multi-mode embedded video codec with DRAM area and external access
power savings to support a real-time encoding of CIF images (having resolution of
352 × 288 pixels). Adding a sequential or pipelined encryption stage to the system
in [5] will add to system latency and further increase the power/heat budget of such
a design.

Such limitations can be alleviated through the development of parameterized
compression blocks that can achieve simultaneous encryption. Thus, the compres-
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sion operation itself uses a key to encode the input data and no external crypto-
graphic engine is required. Recently, some schemes have been developed using this
compression-combined-encryption approach. Grangetto et al. [12] introduce a pa-
rameterization in the arithmetic coding stage of multimedia compression. This pa-
rameterization is used to build a key scheme. However, the performance of such
scheme for embedded systems remains untested. Kim et al. [17] present a variation
of [12] that improves the security performance of parameterized arithmetic coding
scheme but increases the complexity in hardware implementation.

Mao and Wu [24] present a joint signal processing and cryptographic approach
to multimedia encryption. They use index mapping and constrained shuffling to
achieve confidentiality protection. This ensures that the encrypted bitstream still
complies with the state-of-the-art multimedia coding techniques. The scheme gives
good results, however, it requires extra computations (and hence extra hardware
resources) to implement such a scheme. Lian and Wang [20] present a multime-
dia encryption scheme based on wavelet coefficients confusion. However, a scheme
based on wavelet coefficients permutations alone is bound to be separable and weak
against any cryptanalysis. In this work, we do use a wavelet coefficient permuta-
tion called ‘subband re-orientation,’ which is optimized for implementation without
any computation overhead. However, our overall scheme has more parameters that
build the key space which prevents an adversary from easily cracking our scheme
by parallel brute force trials in the individual sub bands.

Fast Encryption Algorithm for Multimedia (FEA-M) has been proposed for real-
time multimedia encryption [38]. It works with Boolean matrix and can be imple-
mented efficiently on hardware. However, there have been several attacks against
such algorithms, and proposals have been written to improve the security [37].

This work presents a multimedia encryption scheme based on parameterized con-
struction of the DWT and subband re-orientation for the wavelet decomposition,
called the Secure Wavelet Transform (SWT). An efficient hardware implementation
(direct implementation and a Reconfigurable Constant Multiplier (RCM)-based im-
plementation) of the SWT using both FPGA and ASIC technology is also presented
in this work. The initial results regarding parameterized construction of the DWT
were presented in [30].

Section 5.2 gives the theory and mathematical preliminaries of the proposed
SWT architecture. Section 5.3 discusses the image security provided by the SWT. In
Sect. 5.4 we present an optimized hardware architecture for the SWT. Hardware op-
timizations, FPGA and ASIC implementation results and a Reconfigurable Constant
Multiplier implementation has been presented in this section. Section 5.5 concludes
the work with insight of future work.

5.2 Preliminaries

Prior work in signal processing establishes that the 1-D DWT can be viewed as a sig-
nal decomposition using specific low-pass and high-pass filters [33]. A single stage
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of image decomposition can be implemented by successive horizontal row and verti-
cal column wavelet transforms. Thus, one level of DWT operation is represented by
filtering with high- and low-pass filters across row and column, respectively. After
each filtering stage, down sampling is done by a factor of 2 to remove the redundant
information.

The two most common DWT filters used in image compression are the Le Gall’s
5/3 and the Daubechies 9/7 filters [7], accepted in the JPEG2000 standard. The Le
Gall’s filter has rational coefficients and its hardware implementation requires less
resources. The Daubechies 9/7 filter has better compression performance, however,
it has irrational coefficients and leads to lossy compression. Applying a 2-D DWT
to an image of resolution M × N results in four images of dimensions M

2 × N
2 .

Subsequent levels of DWT-based decomposition yield a multi-resolution structure
suitable for image compression.

5.2.1 Parameterized Construction of DWT

There are four filters that comprise the two-channel bi-orthogonal wavelet system.
The analysis and synthesis low-pass filters are denoted by H1 and H2, respectively.
The analysis and synthesis high-pass filters are denoted by G1 and G2, respectively
and are obtained by quadrature mirroring the low-pass filters. We have

G1(z) = z−1H2(−z), G2(z) = zH1(−z)

The Perfect Reconstruction (PR) condition for a DWT filter simplifies to the follow-
ing:

H1(z)H2(z) + H1(−z)H2(−z) = 2

Liu and Zheng [22] present a parameterized construction of Bi-orthogonal
Wavelets Filter Banks (typically used for image compression). For an even num-
ber of vanishing moments, H1(z) and H2(z) are represented as follows:

H1(z) = (
z− 1

2 + z
1
2
)2l1

(
α + (1 − α)

(
z

1
2 + z

1
2
)2)

H2(z) = (
z− 1

2 + z
1
2
)2l2Q(z)

where

Q(z) =
3∑

n=0

qn

(
z

1
2 + z

1
2
)2n

, l1, l2 ≥ 0, {l1, l2} ∈ Z

and α is the free parameter introduced in the design. The values qn are calculated
by the following expression:

qn =
n∑

k=0

((
L + n − k − 1

L − 1

)[
2(1 − α)

]k)
, n = 0, . . . ,L − 1
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and

qL = 1

2α

{(
2L − k − 1

L − 1

)[
2(1 − α)

]k + (1 − 2α)

L−1∑
n=0

qn

}

with L = l1 + l2.
Substituting these values, the perfect reconstruction condition can be shown to

form a Bezout’s identity. In the theory of polynomial rings, this is one specific case
of Diophantine equation. Since α �∈ 0,1, this equation is found to have infinite num-
ber of polynomial solutions (corresponding to infinite construction of wavelets). For
low taps filters, the construction is restricted to least degree [22]. For the 9/7 filter,
l1 = 2, l2 = 1 and L = 3 the values of qn were approximated using Taylor’s series
expansion and obtained as follows:

q0 = 1, q1 = 5 − 2α, q2 = 4α2 − 14α + 16

q3 = 36α − 8α2 − 60 + 32/α

Simplifying these equations, we get the following expression for H1(z) and
H2(z):

H1(z) = (−9α/64 + α2/32 + 15/64 − 1/(8α)
)(

z4 + 1/z4)
+ (−α2/16 + 11α/32 − 11/16 + 1/(2α)

)(
z3 + 1/z3)

+ (
1/8 − 1/(2α)

)(
z2 + 1/z2)

+ (−11α/32 + α2/16 + 15/16 − 1/(2α)
)
(z + 1/z)

+ (
9α/32 − α2/16 − 7/32 + 5/(4α)

)

H2(z) = (1/32 − α/32)
(
z3 + 1/z3) + (1/8 − α/16)

(
z2 + 1/z2)

+ (7/32 + α/32)(z + 1/z) + (1/4 + α/8)

There are several useful features of parameterized DWT construction that make
it suitable for being a part of the SWT.

5.2.1.1 Binary Coefficients

Although not a subject of our discussion in this section, we would briefly mention
generating binary filters using this approach. A number of families of DWT filters
can be generated by varying the values l1 and l2. By setting the parameter α to be
of the form k/2n (k and n are integers), it turns out that we can generate a number
of binary coefficients filters amenable to efficient hardware implementation, as we
discussed in Poly-DWT chapter.
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The focus here is to find parametric expression for DWT to enable generation
of key for encryption and to map it properly to custom hardware. The discussion
continues as follows.

5.2.1.2 Rational Coefficients

The expressions for H1(z) and H2(z) have product of exponents in α and z with
rational coefficients. All these rational coefficient multiplication operations can be
simplified into shift-add operations. For example, A

16 ≡ A � 4 and 15B
64 ≡ (B � 2)−

(B � 6) where � denotes a right shift operation.

5.2.1.3 Feasible Range of Parameter α

The numerical value of free parameter α can be varied over a wide range while
retaining the perfect reconstruction property of the wavelet transform. However, as
we vary the value of α over the range (−∞,+∞), the output values of the DWT
operation have a very large dynamic range requiring a larger number of bits for
representation. This would reduce the compression rates achievable with the DWT-
based coders.

Numerical experiments show that parameterized DWT has a good PSNR value
for image reconstruction with Set-Partitioning in Hierarchical Trees (SPIHT)-based
coder when α varies in the range 1 to 3. When α varies beyond this range, the
output DWT coefficients are spread over a large dynamic range. At low bit rates,
the encoder is not able to efficiently encode such a large range of input coefficients
leading to poor compression results. Figure 5.1 illustrates the significant decline in
PSNR values (in dB) for α > 3.

Fig. 5.1 PSNR values (in dB) for image reconstruction using SPIHT coder at different bitrates (in
bpp or bits per pixel)
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Fig. 5.2 MSE values for sample images with the change in number of bits assigned to one α

parameter. The image was encoded with one α value and decoded with adjacent alpha values for
various bit-widths of α. 1000 simulations were run to obtain an average value

5.2.1.4 Key Space

We divide this interval [1,3] into 2m sub-intervals. Thus, a one-dimensional DWT
operation is represented by m bits. One level of wavelet decomposition involves
successive filtering with row and column filters. If we have N levels of decomposi-
tion using DWT, we can choose different α values for all 2N filters (represented by
16mN bits).

The actual choice of N and the number of sub-intervals is subjective and depends
on input images and desired sensitivity of images. For example, the image sequences
which are input to highly crucial image processing applications such as medical
imaging can use more sub-intervals, while some applications, such as counting the
number of cars crossing an intersection, will allow a low number of bits. Figure 5.2
shows the MSE (Mean Square Values) for image encoded with one α value and
reconstructed with the adjacent α value for various bit-width. It can be seen that five
or less bits give a large MSE (MSE > 8) while some applications may allow m = 8.

Figure 5.3 shows the image performance of the parameterized DWT. We took
three sample images: the first and third being an aerial survey of some landscape
while the second image is a snapshot of Shakespeare’s written text (Scene II from
Julius Caesar). The results are presented when an encryption (or image compres-
sion) was performed with the α parameter set to 2.0 and decryption (or image re-
construction) was performed with different α values. We can see that the images
decrypted with the wrong key values (Figs. 5.3(b), (d), (e)) have poor visual quality.
These images miss many important details of the original scene or text. In this ex-
periment, we have visualized the impact of only using the parameterized DWT and
a single key for all levels of decomposition.

It can be seem that wrong guesses for DWT parameter α leads to high recon-
struction errors in images. However, we need further dimensions to increase the key



74 5 The Secure Wavelet Transform

Fig. 5.3 Image reconstruction with different keys. (a) Original images which are then encrypted
with α = 2, (b)–(e) show reconstruction with α = 1,2,3 and 3.5, respectively

space and make image reconstruction more obscure in case of wrong guesses for the
key value.

5.2.2 Subband Re-orientation

The parent-child coding gain in the DWT-based coders was quantified by [25].
These dependencies are generally credited for the excellent mean square error
(MSE) performances of zero-tree-based compression algorithms such as embed-
ded zero-tree coding of wavelet coefficients (EZW) and SPIHT. The subbands were
rotated by 90◦ with respect to the previous scale prior to zero-tree coding. These
experiments indicate that the coding gain due to these dependencies is not consid-
erable for natural images (typically around 0.40 dB for SPIHT-NC and 0.25 dB for
SPIHT-AC). However, the image reconstruction quality will considerably change
with the rotations of subbands. Simple transformations such as transposing the sub-
band matrix, reverse-ordering of the subbands along the rows and columns can be
implemented in the subband images simply by modifying the memory access pattern
of the computing block, without any computational overhead. Such simple modifi-
cations in subband orientation can highly affect image perception and can be imple-
mented without any computational overheads. It can be used as a parameter for the
SWT operation. A prior knowledge of these parameters is a must in order to decom-
press the image correctly. There are several useful features of subband re-orientation
that make it suitable for being a part of the SWT.
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Fig. 5.4 (a) Image decomposition with DWT (six levels) leading to 19 subbands. Three bits are
assigned for each subband’s re-orientation information. (b) Possible transpose relationships for
subbands. A is the original matrix. The eight permutations are achieved using transpose relation-
ship (’), and reverse-ordering of the subbands (− for reverse, + for forward read access) along
both rows and columns

5.2.2.1 Zero Computational Overhead

Subband re-orientation can be achieved by intelligently writing the output of DWT
filter to the memory without any overheads in computational costs of the system.

5.2.2.2 Feasible Subband Re-orientations

In Fig. 5.4(b), we illustrate how we can represent the same subband in eight different
orientations: we have four orientations of the subband decided by the forward or
reverse ordering of the matrix along rows or columns. We get four more orientations
by transposing the above four, summing up to eight possible transformations for
each subband. We need a 3-bit value to represent this transformation for a single
subband.

5.2.2.3 Key Space

Figure 5.4(a) shows the 19 different subbands obtained by a 6-level wavelet de-
composition. In general, we obtain 3N + 1 subbands for a N level wavelet decom-
position, each requiring three bits. Thus, we get a key space of 9N + 3 bits using
subband re-orientation.
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Fig. 5.5 Image reconstruction with different keys. A aerial map image, B San Francisco Golden
gate aerial image, C brick wall (texture) image and D airplane image. (i) Original image encrypted
with key0, (ii) image decrypted with same key, (iii)–(vi) image decrypted with randomly generated
keys

5.3 Security

In this section a brief evaluation of the security features of proposed scheme is
presented. A key space of 16mN + (9N + 3) bits can be obtained from N levels of
wavelet decomposition. For an image size of 512 × 512 pixels this upper limit of N

(Nmax) is 9. However, choosing N close to Nmax will lead to the innermost subband
size being very small.

We selected wavelet decomposition level of N = 6 for images of dimension
512 × 512 pixels to allow a standard block size of 8 × 8 pixels for the innermost
subbands. m = 8 is set for applications sensitive to image quality while m = 5 works
for all general applications.

Shannon’s 1949 work [31], which serves as the foundational treatment of modern
cryptography, calls this property the ‘confusion’ property. Ideally, change in one bit
of the key should change the cipher text completely.

Figure 5.5 gives the performance of our scheme against attacks with random
keys. The images decrypted with wrong keys have little resemblance to original
images as indicated by the PSNR values for these reconstructed images (as shown in
Table 5.1). Figures 5.6(a)–(d) gives the plot of PSNR values of reconstructed images
for the four test images. 1000 such trials were run with different random keys. The
single peak in each graph is observed for the 500th trial where the original key (for
encryption) and the decryption key are the same.
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Fig. 5.6 Image reconstruction with randomly generated keys. (a)–(d) give result of 1000 random
trials on the four sample images, respectively. The x-axis gives results with different keys. The
500th trial (with 500th key) refers to the test case with decryption with same key as the encryption
key. The y-axis represents the PSNR value of the reconstructed images

Table 5.1 PSNR values (in
dB) for image reconstruction
with various random keys
(encoded with key0)

Key0 Key1 Key2 Key3 Key4

Aerial ∞ 12.36 11.17 11.67 11.77

San Francisco ∞ 18.40 17.34 18.21 18.46

Brick Wall ∞ 14.75 13.39 14.34 13.58

Airplane ∞ 13.19 11.26 11.63 12.43

The Hamming distance (h.d .) between two strings of equal length is the number
of positions for which the corresponding symbols are different, i.e. the minimum
number of bits that must be “flipped” to go from one word to the other. An ideal
encryption scheme must give entirely random output if the h.d . between the en-
cryption and decryption keys is non-zero. That is the case with block ciphers such
as AES or DES which allow enough mixing between bit values in multiple rounds
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Fig. 5.7 Image reconstruction with different keys. A aerial map image, B San Francisco Golden
gate aerial image, C brick wall (texture) image and D airplane image. (i) Original image encrypted
with key0, (ii) image decrypted with same key, (iii)–(vi) image decrypted with Hamming distance
of 1, 4, 6 and 8

Table 5.2 Variations in
image reconstruction quality
(PSNR values) with
Hamming distance

Hamming distance 0 1 4 6 8

Aerial ∞ 50.3 23 16.04 13.18

San Francisco ∞ 36.27 30.98 22.61 21.09

Brick Wall ∞ 50.27 37.5895 25.9 23.2

Airplane ∞ 44.28 21.64 21.43 16.16

to achieve that effect. The performance of SWT is thus going to be less than the
conventional cryptographic schemes.

We tested our scheme for image reconstruction performance with small h.d . be-
tween the two keys. Our scheme provides security as evident by the low PSNR
values (for h.d. ≥ 4) in Table 5.2. 1000 simulations were run to obtain the average
PSNR value of reconstructed image with different Hamming distances between the
encoder and decoder key. It can be observed from the PSNR values that a Hamming
distance of 6 and above gives a perceptible reduction in image appearance (indi-
cated by low PSNR value). The visual results are shown in Fig. 5.7. Different bit
positions in the key have different effects on the image quality degradation. This is
attributed to the fact that changing different bit positions in value of α will lead to
different degrees of distortions. This attributes to the fact that Fig. 5.7(D)(vi) has
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Fig. 5.8 Hardware
architecture for THE 1-D
SWT filter

less quality degradation compared to Fig. 5.7(D)(v). To quantify the image degrada-
tion with increasing h.d ., we ran 1000 simulations and recorded the average values
in Table 5.2.

5.4 Hardware Implementation

Figure 5.8 gives an overview of the 1-D SWT hardware architecture. The input data
(one pixel input per cycle) x are pipelined for eight cycles. We observe that zi and
z−i values in expressions for H1(z) and H2(z) have the same coefficients. Thus,
these values can be added to simplify further computations. In Fig. 5.8, eight of the
nine inputs are passed through four adders to reduce the number of inputs to five.
These values (labeled w0,w1,w2,w3 and w4) are multiplied with α,α2 and α−1 to
obtain the necessary intermediate values which are input to shift and add logic. The
high- and low-pass filter coefficients are the final output of the 1-D SWT filter.

We performed several optimization steps to reduce the cost of the underlying
hardware. Division by binary coefficients (e.g. 1/64, 1/16, 1/4) was performed us-
ing arithmetic shift operations. This reduces the number of multipliers in the circuit
from 69 to 23. Reducing the number of inputs from nine to five reduces the number
of adders in the design from 70 to 41 and the number of multipliers from 23 to 14.

The initial work was presented in [29, 30] and there is a mistake in the count of
multipliers reported in them.

The input stream was then pipelined to achieve a higher clock frequency (and
hence higher throughput).
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A Xilinx XC5VLX330 FPGA was targeted for our experiments, using ModelSim
6.4 and Xilinx ISE 10.1 for simulations and synthesis. The non-pipelined design
had clock frequency of 60 MHz while a pipelined design with four extra cycles of
latency achieves a clock frequency of 242 MHz. The design was also implemented
using Synopsys Design Compiler with the freePDK [32] 45 nm cell library. Under
the timing constraints of 500 MHz, the design required 4259 cells and a chip area
of 22066 µm2.

The design used 14 10 × 9 bit multipliers, 41 adders (20 18-bit adders and 21
9-bit adders). The hardware requirements of our implementation are summarized
and compared with other implementations in Table 5.3. The critical path of the im-
plementation is Tm + 5Ta where Tm indicates the time delay in multiplier and Ta

indicates the time delay in adder circuit.
The subband re-orientation part in DWT is done by changing the write pattern of

the subbands after the SWT operation. Thus, no computational overhead is involved
in such an operation. It is noteworthy that ours is the first proposal for image and
video security based on SWT and its hardware implementation.

The initial parameterized DWT design obtained a clock frequency of about
around 60 MHz, due to its long critical path. The critical path of the circuit lies
from the wi registers to the final low-pass output. We then pipelined this com-
putation into several stages and obtained a faster implementation. By adding four
pipelining stages we obtained a clock frequency of 242 MHz.

5.4.1 Reconfigurable Constant Multiplier (RCM)

The expression for low- and high-pass filter coefficients were obtained in Sect. 5.2.1.
It was implemented in Fig. 5.8 using several multiplier units. The wi, i ∈ {0,1,2,

3,4} values are obtained by summing the inputs for symmetric taps in the SWT
implementation as shown in Fig. 5.8. wi is calculated as follows:

wi(k) = x(k + i) + x(k − i), i ∈ {0,1,2,3,4}
Then, we can represent the filter expressions as

H1(k) =
4∑

i=0

Ki(a) · wi(k)

and

H0(k) =
3∑

i=0

K̂i(a) · wi(k)

Here Ki(a) and K̂i(a) are the functions of the variable a, and wi are obtained from
the pipelined input. The values of functions Ki(a) and K̂i(a) remains the same as
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long as we have the same a parameter. This implies that this value of these functions
behave as a constant and changes only when we change the encryption key (and the
associated parameter a). This value can thus be computed and hard-coded into the
circuit. This constant multiplication can easily be mapped to a reconfigurable hard-
ware with programmable LUTs. The input is represented by B1 bits and constant
is represented by B2 bits. We can use (B1 + B2) B2-input LUTs to get the output
values H1(k) and H2(k). Alternatively we can break down a (B1 × B2) bit multipli-
cation into smaller input LUTs. Thus the LUTs-based multiplier can be reconfigured
corresponding to incorporate any changes in encryption key.

This idea is used to build a Reconfigurable Constant Multiplier or RCM. A RCM
has one operand which is kept constant and mapped to LUTs while the other multi-
plicand is a variable and changes its value every clock cycle. The constant operand
can be changed dynamically by reconfiguring the LUT values on-the-fly.

We discuss the implementation of a 4×4 bit RCM to explain the LUT mappings.

5.4.1.1 4 × 4 Bits Multiplier Using LUTs

Let A and B be the two operands, both being four bits long. Let us define two new
binary variables:

Pi = Ai ⊕ Bi, Gi = AiBi

The output bit and the sum at each stage can be represented as

Si = Pi ⊕ Ci Ci+1 = Gi + PiCi

On simplification [23], we get

C1 = initial carry

C2 = G1 + P1C1 = A1B1 + (A1 ⊕ B1)A0B0

C3 = G2 + P2G1 + P2P1C1

C4 = G3 + P3G2 + P3P2G1 + P3P2P1C1

and

S1 = A1 ⊕ B1 ⊕ C1 = A1 ⊕ B1 ⊕ A0B0

S2 = A2 ⊕ B2 ⊕ C2 = A2 ⊕ B2 ⊕ (
A1B1 + (A1 ⊕ B1)A0B0

)
. . .

We make some interesting observations and inferences.

• Ci values can be expanded and expressed in terms of Ai and Bi values.
• Similarly, a complex logical expression can be generated for each Si value. Each

Si value is characterized uniquely by a logical expression.
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Fig. 5.9 Building a
(K + 1)-LUT from K-LUT

• If one of the inputs (say B) is a constant, Si can be represented as a logic function
of bit values of A:

Si = fi(A3,A2,A1,A0)

• No matter how complex the function fi() may be, the truth table can be repre-
sented by a 4-LUT. Essentially, all the complex expressions for Si can be ex-
pressed in terms of truth table of 4-LUT.

• We can represent the eight output bits for 4×4 bits multiplier with eight 4-LUTs.

In general, we can implement a M × K bit constant multiplication using (M + K)
K-input LUTs.

It has been discovered that the LUT size of 4 to 6 provides the best area-delay
product for an FPGA [1]. Most commercial reconfigurable devices such as FPGAs
have 4-input LUTs. We therefore discuss the mapping of an M × K bit constant
multiplier into 4-LUTs in the next subsection.

5.4.1.2 Mapping a Generic RCM into LUTs

The multiplication of two inputs A and B (M-bit variable input A, K-bit reconfig-
urable constant B) can be mapped to LUTs similar to 4 × 4 bits multiplier by ob-
taining a generic expression for S1, S2, . . . , SM+K−1. Si values can be represented
as f (AM−1,AM−2, . . . ,A1) and can therefore be mapped into an M-input LUT. We
have (M + K − 1) Si values, requiring (M + K − 1) M-input LUTs to implement
the multiplication of A and B .

A (K+1)-input LUT can be build from two K-input LUTs (as shown in Fig. 5.9).
For example, we can build a 8-LUT from two 7-LUTs which can be synthesized
from 2 × 2 = 4 6-LUTs. Thus, one 8-LUT can be made from 24 = 16 4-LUTs.
Thus, we can build an arbitrary M-LUT from 2M−4 4-LUTs.

Figure 5.10 gives an example of multiplication of 8-bit number with 12-bit con-
stant (M = 8, K = 12). Figure 5.10(a) gives an implementation using 8-LUTs.
20 8-LUTs or equivalently 128 4-LUTs are used in the design.

Figure 5.10(b) gives an alternative implementation of the same multiplication by
breaking the input number into multiples of 4-bit values. 4-input LUTs are used
to obtain the X and Y values which are then added together using an adder. This
implementation requires 32 4-LUTs and a 20 bits adder. This design requires less
LUTs but the presence of 20-bit adder may slow down the clock speed in such a
design.
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Fig. 5.10 Illustration of
12-bit constant multiplication
with a 8-bit input. (a) The
individual bits of product are
obtained as output of a
8-LUT. (b) 4-LUTs are used
in the implementation with
the input A divided into two
4-bit values

5.4.2 Implementation Results

We estimated the hardware performance of our architecture by synthesizing the de-
sign on a Xilinx Virtex-4 XC4VLX140 FPGA, using ModelSim SE 6.4 for sim-
ulation and Xilinx ISE 10.1 for synthesis. This design just serves as the proof of
concept for our architecture. An ASIC implementation with fixed interconnects for
LUTs can achieve significant improvements in clock speed and throughputs.

Table 5.3 shows the performance comparison of SWT architecture with ex-
isting work and amongst different configurations. A direct implementation of a
Daubechies 9/7 DWT filter requires 16 multipliers and 12 adders in the design.
The critical path is Tm + 4Ta , where Tm is the time latency of the multiplier and
Ta is the time latency of the adder. Several optimizations were proposed including
those by [15, 16, 35]. Our earlier work [28] obtains a multiplier-less optimized ar-
chitecture for DWT that has time latency of only 3Ta cycles. On a Virtex-4 FPGA,
it obtained a clock frequency of 120 MHz.

A direct implementation of SWT using hardware multipliers gave a clock fre-
quency of 60 MHz. The critical path has one multiplier and five adders (Tm + 5Ta).
We removed all the multipliers in the design with RCM blocks which reduced the
critical path to four adders and one look-up operation (4Ta +Tl). (The entire expres-
sion for filter coefficients, earlier spanning many multipliers and adders is now rep-
resented by a single RCM.) The use of reconfigurable multipliers reduces the critical
path of the SWT circuit and leads to an improved clock frequency of 114 MHz.

All the reported clock frequencies except the VLSI implementation represent
implementation on Vitex-4 FPGA. These FPGAs are built on a 90 nm process tech-
nology. To test the speed of VLSI implementation of proposed architecture, we
used freepdk 45 nm cell library [32]. We were able to target a clock frequency of
500 MHz.

It can easily support HD video at 30 frames per second and resolutions higher
than 1440 × 1080.

5.5 Parameterized Lifting

DWT can also be implemented using lifting scheme. This scheme was designed by
Wim Sweldens and is used for designing and performing the wavelet transform. The
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Fig. 5.11 Illustration of
lifting-based implementation
of wavelet transform

filter bank scheme, as discussed earlier performs a convolution of low- and high-pass
filter with the signal. On the other hand, lifting scheme consists of alternating lifts.
Once the low pass is fixed, the high pass is changed and vice versa.

The basic idea of lifting is as follows: Consider a signal x = (xk)k∈Z . Let us split
it into two polyphase components: the even indexed samples xe and the odd indexed
samples xo:

xe = (x2k)k∈Z, xo = (x2k+1)k∈Z

These two sets are correlated as they sample the same real-life event. Therefore, one
set can be used as a predictor of the other, so that we need not record the details of
other but only the difference between actual value and predictor (d),

d = xo − P(xe)

A simple predictor for odd samples, for example would take average of its two
neighbors. In that case, the above equation will look like this:

dk = x2k+1 − x2k + x2k+2

2

A good predictor will lead to perfect reconstruction of values (x2k+1) from dk val-
ues. However, d will be sparse, have lower entropy and hence lead to compression.
This step is called predict step. Another step, namely the update step is used to re-
move the problems of aliasing and restores the correct running average. This is used
to smoothen the values to correct dc average:

s = xe + U(d)

A simple example of this is as follows:

sk = x2k + dk−1 + dk

4

These steps can be repeated multiple times. Figure 5.11 gives a brief illustration
of the lifting scheme. A more elaborate description of lifting procedure is given
in [8]. Lifting is also referred to as in-place computation and reduces the memory
complexity of implementation. Successive steps of same direction can be merged.
The decimation at the beginning results in a speed up of 2 and all the transforms
implemented using lifting scheme are a perfect reconstruction.
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The lifting-based implementation of a 9/7 filter is presented by Guangjun et
al. [13]. The lifting decomposition for CDF 9/7 leads to following expression:

s
(0)
k = x2k (5.1)

d
(0)
k = x2k+1 (5.2)

d
(1)
k = d

(0)
k + α

(
s
(0)
k + s

(0)
k+1

)
(5.3)

s
(1)
k = s

(0)
k + β

(
d

(1)
k + d

(1)
k−1

)
(5.4)

d
(2)
k = d

(1)
k + γ

(
s
(1)
k + s

(1)
k+1

)
(5.5)

s
(2)
k = s

(1)
k + θ

(
d

(2)
k + d

(2)
k−1

)
(5.6)

sk = δs
(2)
k (5.7)

dk = d
(2)
k /δ (5.8)

The normalization condition (namely, H0(ω) = √
2, H1(ω) = √

2), at ω = 0
leads to

h0 + 2
4∑

n=1

h0(n) = √
2 (5.9)

h1 + 2
4∑

n=1

h1(n) = √
2 (5.10)

⇒ h0 + 2
4∑

n=1

(−1)nh0(n) = 0 (5.11)

h1 + 2
4∑

n=1

(−1)nh1(n) = 0 (5.12)

2
3∑

n=1

(−1)nh1(n) = 0 (5.13)

They present the above simplification after assuming N1 = 2, N2 = 4, and calculat-
ing derivatives for expressions of H1(ω) and H2(ω). The solution gives the values
of all other variables in terms of α:

β = −1

4(1 + 2α2)
(5.14)

γ = −1 − 14α − 4α2

1 + 4α
(5.15)
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θ = 1

16

(
4 − 2 + 4α

(1 + 2α)4
+ 1 − 8α

(1 + 2α)2

)
(5.16)

δ = 2
√

2(1 + 2α)

1 + 4α
(5.17)

Like the earlier work, the free parameter α can be used to parameterize the lifting-
based wavelet transform. Engel and Uhl [9] present such a parameterization. The
range of α which gives good compression performance is {− inf,−1.4] ∪ [0.2, inf}.

5.6 Conclusion and Future Work

We proposed a DWT design in which the choice of filter coefficients and the orienta-
tion of subbands are performed in accordance with a key. The system provides both
encryption and security and thwarts brute force attacks. The major contributions of
this work are as follows:

1. DWT kernel was parameterized to incorporate the encryption feature and
promise reasonable security for real-time embedded multimedia systems.

2. A zero computation overhead subband re-orientation scheme is proposed and
implemented in this work.

3. An optimized hardware implementation of the DWT architecture is presented.
The proposed hardware implementation has low critical path and thus achieves
a high clock frequency. Reconfigurable hardware-based implementation is pre-
sented in this work to embed the key information into the reconfigurable bit
stream.

The proposed SWT operation provides a large key space for multimedia encryp-
tion when used as a part of image compression system. As a future work, we propose
to parameterize and integrate encryption to other steps in multimedia compression.
However, if used by itself, it is prone to cryptanalysis because it retains correla-
tion amongst subbands and some other properties useful in subsequent compression
operations.

References

1. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA perfor-
mance and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3), 288–298 (2004)

2. Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman, K.: The secure real-time trans-
port protocol (SRTP) (2004)

3. Brachtl, M., Uhl, A., Dietl, W.: Key-dependency for a wavelet-based blind watermarking algo-
rithm. In: Proc. ACM Workshop on Multimedia and Security (MM&Sec), pp. 175–179. ACM
Press, New York (2004). doi:10.1145/1022431.1022462

4. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in a SSL/TLS
channel. In: The 23rd Annual International Cryptology Conference, CRYPTO’03, vol. 2729,
pp. 583–599 (2003)

http://dx.doi.org/10.1145/1022431.1022462


88 5 The Secure Wavelet Transform

5. Cheng, C.-C., Tseng, P.-C., Chen, L.-G.: Multimode embedded compression Codec engine for
power-aware video coding system. IEEE Trans. Circuits Syst. Video Technol. 19(2), 141–150
(2009). doi:10.1109/TCSVT.2008.2009250

6. Cheng, H., Li, X.: Partial encryption of compressed images and videos. IEEE Trans. Signal
Process. 48(8), 2439–2451 (2000). doi:10.1109/78.852023

7. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an
overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)

8. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. Technical report
(1998)

9. Engel, D., Uhl, A.: Parameterized biorthogonal wavelet lifting for lightweight JPEG 2000
transparent encryption. In: Proc. ACM Workshop on Multimedia and Security (MM&Sec),
pp. 63–70. ACM Press, New York (2005). doi:10.1145/1073170.1073183

10. FIPS 197: Announcing the Advanced Encryption Standard (2001)
11. FIPS 46-2: Announcing the standard for Data Encryption Standard (1993)
12. Grangetto, M., Magli, E., Olmo, G.: Multimedia selective encryption by means of randomized

arithmetic coding. IEEE Trans. Multimed. 8(5), 905–917 (2006)
13. Guangjun, Z., Lizhi, C., Huowang, C.: A simple 9/7-tap wavelet filter based on lifting scheme.

In: Proceedings of 2001 International Conference on Image Processing, vol. 2, pp. 249–252.
IEEE Press, New York (2001)

14. Hodjat, A., Verbauwhede, I.: A 21.54 Gbit/s fully pipelined AES processor on FPGA. In:
Proc. IEEE Symp. Field-Programmable Custom Computing Machines (FCCM), pp. 308–309
(2004). doi:10.1109/FCCM.2004.1

15. Huang, C., Tseng, P., Chen, L.: Flipping structure: an efficient VLSI architecture for lifting-
based discrete wavelet transform. IEEE Trans. Signal Process. 52(4), 1080–1089 (2004)

16. Jou, J.M., Shiau, Y.-H., Liu, C.-C.: Efficient VLSI architectures for the biorthogonal wavelet
transform by filter bank and lifting scheme. In: IEEE Intl. Symp. Circuits and Systems (ISCAS
2001), vol. 2, pp. 529–532 (2001). doi:10.1109/ISCAS.2001.921124

17. Kim, H., Wen, J., Villasenor, J.D.: Secure arithmetic coding. IEEE Trans. Signal Process.
55(5), 2263–2272 (2007). doi:10.1109/TSP.2007.892710

18. Lai, X., Massey, J.L.: A proposal for a new Block Encryption Standard. In: EUROCRYPT’90,
pp. 389–404. Springer, New York (1991)

19. Lian, S., Liu, Z., Ren, Z., Wang, H.: Commutative encryption and watermarking in video
compression. IEEE Trans. Circuits Syst. Video Technol. 17(6), 774–778 (2007)

20. Lian, S., Wang, Z.: Comparison of several wavelet coefficient confusion methods applied in
multimedia encryption. In: Intl. Conf. Computer Networks and Mobile Computing, pp. 372–
376 (2003)

21. Liu, X., Eskicioglu, A.M.: Selective encryption of multimedia content in distribution net-
works: challenges and new directions. In: Communications, Internet, and Information Tech-
nology (CIIT 2003), pp. 276–285 (2003)

22. Liu, Z., Zheng, N.: Parametrization construction of biorthogonal wavelet filter banks for image
coding. Signal Image Video Process. 1(1), 63–76 (2007)

23. Mano, M.M., Ciletti, M.D.: Digital Design, 4th edn. Prentice-Hall, Upper Saddle River (2006)
24. Mao, Y., Wu, M.: A joint signal processing and cryptographic approach to multimedia encryp-

tion. IEEE Trans. Image Process. 15(7), 2061–2075 (2006)
25. Marcellin, M.W., Bilgin, A.: Quantifying the parent-child coding gain in zero-tree-based

coders. IEEE Signal Process. Lett. 8(3), 67–69 (2001). doi:10.1109/97.905942
26. Martin, K., Plataniotis, K.N.: Privacy protected surveillance using secure visual object coding.

IEEE Trans. Circuits Syst. Video Technol. 18(8), 1152–1162 (2008)
27. Martina, M., Masera, G.: Multiplierless, folded 9/7–5/3 wavelet VLSI architecture. IEEE

Trans. Circuits Syst. II 54(9), 770–774 (2007)
28. Pande, A., Zambreno, J.: Poly-dwt: polymorphic wavelet hardware support for dynamic image

compression. ACM Trans. Embed. Comput. Syst. 11(1), 6 (2010)
29. Pande, A., Zambreno, J.: A reconfigurable architecture for secure multimedia delivery. In:

23rd Intl. Conf. VLSI Design, pp. 258–263 (2010). doi:10.1109/VLSI.Design.2010.50

http://dx.doi.org/10.1109/TCSVT.2008.2009250
http://dx.doi.org/10.1109/78.852023
http://dx.doi.org/10.1145/1073170.1073183
http://dx.doi.org/10.1109/FCCM.2004.1
http://dx.doi.org/10.1109/ISCAS.2001.921124
http://dx.doi.org/10.1109/TSP.2007.892710
http://dx.doi.org/10.1109/97.905942
http://dx.doi.org/10.1109/VLSI.Design.2010.50


References 89

30. Pande, A., Zambreno, J.: An efficient hardware architecture for multimedia encryption and
authentication using discrete wavelet transform. In: IEEE CS Intl. Symp. VLSI, pp. 85–90
(2009)

31. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715
(1949)

32. Stine, J., Castellanos, I., Wood, M., Henson, J., Love, F., Davis, W.R., Franzon, P.D., Bucher,
M., Basavarajaiah, S., Oh, J., Jenkal, R.: FreePDK: an open-source variation-aware design kit.
In: IEEE Int. Conf. on Microelectronic Systems Education, MSE 2007, pp. 173–174 (2007).
doi:10.1109/MSE.2007.3

33. Strang, G., Nguyen, T.: Wavelets and Filter Bank. Wellesley/Cambridge University Press,
Cambridge (1996)

34. Tseng, P., Chang, Y., Huang, Y., Fang, H., Huang, C., Chen, L.: Advances in hardware archi-
tectures for image and video coding—a survey. Proc. IEEE 93(1), 184–197 (2005). doi:10.
1109/JPROC.2004.839622

35. Vishwanath, M., Owens, R.M., Irwin, M.J.: VLSI architectures for the Discrete Wavelet Trans-
form. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 42(5), 305–316 (1995).
doi:10.1109/82.386170

36. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: Proc. Second UNIX Workshop
on Electronic Commerce, pp. 29–40. USENIX Association, Berkeley (1996)

37. Wang, S.-J., Chen, H.-H., Chen, P.-Y., Tsai, Y.-R.: Security cryptanalysis in high-order im-
proved fast encryption algorithm for multimedia. In: Future Generation Communication and
Networking (FGCN 2007), vol. 1, pp. 328–331 (2007). doi:10.1109/FGCN.2007.199

38. Yi, X., Tan, C.H., Slew, C.K., Rahman Syed, M.: Fast encryption for multimedia. IEEE Trans.
Consum. Electron. 47(1), 101–107 (2001). doi:10.1109/30.920426

http://dx.doi.org/10.1109/MSE.2007.3
http://dx.doi.org/10.1109/JPROC.2004.839622
http://dx.doi.org/10.1109/JPROC.2004.839622
http://dx.doi.org/10.1109/82.386170
http://dx.doi.org/10.1109/FGCN.2007.199
http://dx.doi.org/10.1109/30.920426


Chapter 6
Chaotic Filter Banks

Abstract Chaotic filter bank schemes have been proposed in the research litera-
ture to allow for the efficient encryption of data for real-time embedded systems.
Some security flaws have been found in the underlying approaches which makes
such a scheme unsafe for application in real life scenarios. In this work, we first
present an improved scheme to alleviate the weaknesses of the chaotic filter bank
scheme, and add enhanced security features, to form a Modified Chaotic Filter Bank
(MCFB) scheme. Next, we present a reconfigurable hardware implementation of the
MCFB scheme. Implementation on reconfigurable hardware speeds up the perfor-
mance of MCFB scheme by mapping some of the multipliers in design to recon-
figurable Look-Up Tables, while removing many unnecessary multipliers. An op-
timized implementation on Xilinx Virtex-5 XC5VLX330 FPGA gave a speedup of
30 % over non-optimized direct implementation. A clock frequency of 88 MHz was
obtained.

6.1 Introduction

6.1.1 Chaos and Cryptography

Chaos theory plays an active role in modern cryptography. As the basis for devel-
oping a crypto-system, the advantage of using chaos lies in its random behavior and
sensitivity to initial conditions and parameter settings to fulfill the classical Shan-
non requirements of confusion and diffusion [26]. A tiny difference in the starting
state and parameter setting of these systems can lead to completely different out-
puts over a few iterations. Thus, sensitivity to initial conditions manifests itself as
an exponential growth of error and the behavior of system appears chaotic.

Quite a bit of research has been devoted to the study of continuous-time chaotic
systems such as the oscillator circuits [6, 15, 24]. However, these schemes need a
synchronization procedure. On the other hand, discrete-time chaotic systems behave
like private-key encryption algorithms [25] and are amenable to implementation on
fixed-point hardware.

Many chaotic block ciphers [2, 9, 12, 17, 22] have been proposed in research
literature. For example, Baptista [2] builds a block cipher based on chaotic encryp-
tion. Each character of the message is encoded as the integer number of iterations
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performed in the logistic equation, in order to transfer the trajectory from an initial
condition towards a pre-defined interval inside the logistic chaotic attractor.

Some limitations of such block ciphers and the logistic chaotic attractor can be
explained as follows.

Firstly, the distribution of the cipher text is not flat enough to ensure high security
since the occurrence probability of cipher blocks decays exponentially as the num-
ber of iterations increases. Secondly, the encryption speed of these cryptographic
schemes is very slow since at least 250 iterations of the chaotic map are required
for encrypting an 8-bit symbol. The number of iterations may vary up to 65532.
Thirdly, the length of cipher text is at least twice that of plain text, X bits of mes-
sage may result in several tens of thousands of iterations that need 2X bytes to carry.
Despite the improvements proposed by subsequent research, block ciphers based on
Baptista’s work remain slow to satisfy the encryption needs of the real-time data
encryption systems.

A stream cipher was designed over chaotic maps and presented in early 1991
by Habutsu et al. [10]. Its cryptanalysis was presented in the same conference [5].
Chen et al. [9, 17] constructed a block cipher based on three-dimensional maps
while Pichler and Scharinger [22] proposed a cipher by direct discretization of two-
dimensional Baker map. A good survey and introductory tutorial on these schemes
is found in [11, 29]. Masuda and Aihara [19] present a crypto-system based on a
discretization of the skew tent map. Masuda et al. [20] present chaotic Feistel and
chaotic uniform operations for block ciphers. Although various schemes/maps have
been proposed in the research literature, the logistic map remains one of the simplest
maps and is used in many schemes.

6.1.2 Wavelets and Chaotic Filter Banks

Chaotic Filter Banks-based cipher was first proposed in 2007 by Ling et al. [16].
It allows great flexibility in the design and gives the following advantages:

1. One can embed signals in different frequency bands by employing different
chaotic functions.

2. The number of chaotic generators to be employed and their corresponding func-
tions can be selected and designed in a flexible manner because perfect recon-
struction does not depend on the invertibility, causality, linearity and time invari-
ance of the corresponding chaotic functions.

3. The ratios of the subband signal powers to the chaotic subband signal powers can
easily be changed by the designers and perfect reconstruction is still guaranteed
no matter how small these ratios are.

4. The proposed cryptographic system can easily be adapted to the international
multimedia standards, such as JPEG 2000 and MPEG4 [16].

The encryption procedure is carried out by decomposing the input plain text
signal into two different subbands and masking each of them with a pseudo-
random number sequence generated by iterating the chaotic logistic map. Ling et
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al. [16] use the Discrete Wavelet Transform (DWT)-based filter banks in their ap-
proach to maintain compatibility with existing image compression standards such
as JPEG2000 [7].

Arroyo et al. [1] present a cryptanalysis of [16] which exposes weaknesses of
chaotic filter bank against known plain-text attacks and also exposes the limitation
of reduction of key space by use of logistic map.

6.1.3 Scope and Organization

In this work we present the design and implementation of a chaotic stream cipher
that uses less hardware, has promising security, and has high throughput to serve the
requirements of real-time embedded systems. The main contributions of this work
can be summarized as follows:

1. The proposed Modified Chaotic Filter Bank (MCFB) scheme is a lightweight
cipher designed to satisfy the resource requirements of real-time embedded
systems, security requirements of modern communication systems and format-
compliance with existing multimedia compression standards such as JPEG2000,
MPEG-4, etc.

2. To the best of the authors’ knowledge, this is the first hardware implementation
of a chaotic filter bank scheme in hardware.

3. A clock frequency of 88 MHz was obtained for a Virtex-5 XC5VLX330 FPGA.
The design was synthesized and implemented using Xilinx ISE 10.1 tool.

The work is organized as follows. Section 6.2 gives a brief overview of the
wavelet transform. Section 6.3 gives details of the chaotic filter bank scheme pro-
posed earlier. In Sect. 6.4, we discuss the MCFB Scheme and subsequently discuss
its distinguishing features in Sects. 6.5 and 6.6. Section 6.5 explains the Improved
Chaotic Oscillator and Sect. 6.6 gives an overview of wavelet parameterization. Sec-
tion 6.7 gives the details of hardware implementation over Xilinx Virtex-5 FPGA
and the proposed optimizations, while Sect. 6.8 concludes the work with directions
of future work.

6.1.4 Reconfigurable Hardware Implementation of DWT

Much research has been done in the development of DWT architectures for image
processing [3, 4, 14, 18, 23]. A good survey on architectures on DWT coding is
given by Tseng et al. [27].

Recent work in partial reconfiguration of FPGAs implements DWT in a recon-
figurable fashion. Claus et al. [8] give a comparison of embedded reconfigurable
video-processing architectures. They propose a hybrid of two hardware platforms:
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Fig. 6.1 Block Diagram
representation of the Chaotic
Filter Bank Scheme. (a) The
encryption module and
(b) the decryption module

one providing easy reconfiguration of modules and the other providing easy im-
plementation with higher clock frequency, to achieve an optimal FPGA-based dy-
namically and partially reconfigurable platform for real-time video and image pro-
cessing. The tool ReCoBus-Builder [13] simplifies the generation of dynamically
reconfigurable systems to almost a push button process. The work also describes a
communication infrastructure for dynamically reconfigurable systems.

6.2 Chaotic Filter Bank Scheme

The chaotic filter bank scheme is illustrated in Fig. 6.1. A chaotic function αi( ) is
used to create a chaotic response to the system:

αi(n) = n + si(n), i ∈ {1,2}
where si(n) is the output of chaotic map.

The various signals in Fig. 6.1 are expressed as follows:

y0[n] =
∑
∀m

x[m]h0[2n − m]

y1[n] =
∑
∀m

x[m]h1[2n − m]

z0[n] = y0[n] + α0
(
y1[n]) and

z1[n] = y1[n] − α1
(
y0[n])

⇒ z0[n] = y0[n] + y1[n] + s0[n] and

z1[n] = y1[n] + y0[n] − s1[n]
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The reconstructed signal x
′ [n] must be the same as the original signal x[n]. At the

decoder, first the effect of mixing with chaotic signals is reversed and then corre-
sponding inverse wavelet transform is applied.

y
′
1[n] = z1[n] + α1

(
z0[n]),

y
′
0[n] = z0[n] − α0

(
z1[n]),

x
′ [n] =

∑
∀m

y
′
0[m]g0[n − 2m] +

∑
∀m

y
′
1[m]g1[n − 2m]

where h0, h1 are so-called analysis and g0, g1 are synthesis filters. Choosing Le
Gall’s 5/3 filter or Daubechies 9/7 filters allow for correct recovery of the plain-
text signal.

6.2.1 Chaotic Maps

As explained above, the chaotic filter bank scheme uses two chaotic maps α0( ) and
α1( ) for its operation. These chaotic maps are based on the logistic map.

The logistic map is a polynomial mapping of degree 2. It demonstrates chaotic
behavior although using a simple non-linear dynamical equation. Mathematically,
the logistic map is written as

xn+1 = λLM · xn(1 − xn)

where λLM is a positive number.
The behavior of logistic map is dependent on the value of λLM. At λLM ≈ 3.57

is the onset of chaos, at the end of the period-doubling cascade. We can no longer
see any oscillations. Slight variations in the initial population yield dramatically
different results over time, a prime characteristic of chaos. Most values beyond 3.57
exhibit chaotic behavior, but certain isolated values of λLM appear to show non-
chaotic behavior and are called islands of stability. Beyond λLM = 4, the values
eventually leave the interval [0,1] and diverge for almost all initial values.

A rough description of chaos is that chaotic systems exhibit a great sensitivity to
initial conditions—a property of the logistic map for most values of λ between about
3.57 and 4. This stretching-and-folding does not just produce a gradual divergence
of the sequences of iterates, but an exponential divergence, evidenced also by the
complexity and unpredictability of the chaotic logistic map.

6.2.2 Key Space

Ling et al. [16] suggest using the initial values of logistic map and the value of
parameter λLM to build the key space.
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Fig. 6.2 Histogram for 50,000 samples obtained using logistic map with initial seed 0.100010 and
(a) λLM = 3.61, (b) λLM = 3.91, (c) λLM = 4, and (d) λLM = 3.83

Arroyo et al. [1] present a cryptanalysis of the above mentioned scheme and
exposes some weaknesses of the scheme. They are enumerated as follows:

1. Reduction of the key space. Ling et al. [16] propose to use the entire range
[3,4] as the key space. The values of λLM in the interval [3,3.57) does not pro-
duce any chaos. Besides this, there are many points (known as islands as islands
of singularity) in the interval [3.57,4] where iteration on logistic map leads to os-
cillation among finite values (see Fig. 6.2(d)). Another issue is the non-uniform
distribution of output values (as shown in Figs. 6.2(a)–(b)).

2. Vulnerablity to known plain-text attack. The value of λLM can be calculated
very accurately from two successive iterations of the logistic map leading to
successful plain-text attacks on the scheme.

6.3 The MCFB Scheme

The MCFB scheme makes three modifications to the original scheme, making it
more secure and also improving its frequency resolution.
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Fig. 6.3 Block Diagram
representation of the MCFB
scheme. (a) The encryption
module and (b) the
decryption module

1. The Chaotic Filter Bank scheme [16] involves mixing of low-pass and high-pass
coefficients. This mixing hampers the compression performance of the Wavelet
Transform. The equations for z0[n] and z1[n] have y1[n], and y0[n] terms in
expressions for z0[n] and z1[n], respectively, which lead to loss of frequency
resolution of the Discrete Wavelet Transform.

The new relationship between z0[n] and z1[n] is given by the following equa-
tions:

z0[n] = y0[n] + s0[n] and

z1[n] = y1[n] + s1[n]

2. We use an Improved Chaotic Oscillator (ICO) instead of the standard logistic
map. This chaotic oscillator, although derived from the standard logistic map,
is strong against known cryptanalysis of logistic map-based ciphers and chaotic
filter banks. Moreover, it has a large continuous key space as against logistic map
which has very limited key space with regions of stability within the same range.

3. We replace the DWT filter banks with a parameterized filter bank that yields has
the same properties as the original filters but allows us to choose from a very
large number of possible filters while implementing a filter bank.

The choice of filter bank and parameters for the chaotic oscillators used in the
design is governed by a key. The overall system is shown in Fig. 6.3.

The improved chaotic oscillator and parameterized wavelet transform are ex-
plained in following two sections.
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6.4 Improved Chaotic Oscillator

In this subsection, we give a brief description of an improved chaotic oscillator,
based on a modified logistic map, that alleviates the problems associated with
chaotic generator proposed in [16]. The proposed scheme is robust to the choice
of initial conditions (due to lack of any unsuitable λ values), achieves real-time en-
cryption speed and is resistant to known attacks.

6.4.1 The Modified Logistic Map (MLM)

Our initial experimentation involved generation of pseudo-random number se-
quences by varying the parameter λLM in the range [3.57,4]. It led to several obser-
vations:

1. The histogram obtained for different λLM values (with 50000 samples) is skewed
and not uniform or flat. This is illustrated for λLM = 3.61 and λLM = 3.91 values
in Figs. 6.2(a)–(b). The distribution for λLM = 4 is most flat and symmetric (see
Fig. 6.2(c)). It is desirable to have a flatter distribution of samples drawn from
the logistic map in order to increase its randomness.

2. For λLM = 4, the logistic map equation xn+1 = λLM · xn(1 − xn) has the same
domain and range intervals (0,1). For λLM < 4 and input xn in range (0,1),
the range of xn+1 in the expression is (0, λLM/4] and the distribution of random
numbers is biased towards 0 or 1 (as seen in distributions in Figs. 6.2(a)–(b)). It
is desirable to have a distribution of random numbers symmetric around 0.5.

3. There are certain isolated values of λLM that appear to show non-chaotic behavior
and are called islands of stability. For example: λLM = 1 + √

8 ≈ 3.83 shows
oscillation between three values.

4. λLM = 4.0 has most flat, uniform and symmetric histogram than other λLM val-
ues.

We address these issues by developing a MLM, defined by the following equa-
tion:

xn+1 = λ · xn(1 − xn) + μ

where the xn values are restricted to the interval [α,1 − α], α < 0.5. The maxima
of this function occurs at xn = 0.5 and the maximum value is λ/4 + μ, while the
minimum (in specified domain) occurs at xn = α or xn = 1 − α and the minimum
value is λ · α(1 − α) + μ. Equating the maximum and minimum values to the range
[α, (1 − α)] leads to the following equations:

α = λα(1 − α) + μ

1 − α = λ

4
+ μ
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Fig. 6.4 Histogram for 50,000 samples obtained using Modified Logistic map with α values cor-
responding to (a) λLM = 3.61 and (b) λLM = 3.91

On solving these equations, we get λ = 4
1−2α

and μ = α(2α−3)
1−2α

. Substituting these
values, we get a flatter histogram for the new logistic map as evident in Fig. 6.4. This
modified logistic map addresses the requirements of flatter and symmetric distribu-
tion and also avoids islands of stability by generating a flat distribution for all values
of α.

The output of the modified logistic map (xn) is quantized to get a 16 bit value
pn. xn, 0 < xn < 1 is represented in fixed point as follows:

xn =
N−1∑
j=0

{aj } · 2j−N

where aj are individual bit values.
Thus, pn is given by

pn =
15∑

j=0

{aj } · 2j−N

The quantization step or truncation of more significant bits is non-linear in nature
(it is a many-one mathematical function), thereby increasing the complexity of any
attacks that try to recover the logistic map information from the cipher text using
any cryptanalysis.

We generate another pseudo-random sequence sn from the given sequence pn by
the following operation:

sn = pn ⊕ pn−1 ⊕ pn−2

There is no linear correlation between the two sequences pn and sn. Statistical de-
correlation makes it difficult to back-track pn from sn.
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6.5 Wavelet Parameterization

We now present a new layout and configuration scheme for the parameterized DWT.
A new parameterized construction of the DWT filter with rational coefficients has
dual advantages. The parameterized construction can be used to build a key scheme
while the rational coefficients of the DWT enable an efficient hardware architecture
using fixed-point arithmetic (as shown in the previous chapter). We get the following
expression for H1(z) and H2(z):

H1(z) = (−9/64a + 1/32a2 + 15/64 − 1/8/a
)(

z4 + 1/z4)
+ (−1/16a2 + 11/32a − 11/16 + 1/2/a

)(
z3 + 1/z3)

+ (1/8 − 1/2/a)
(
z2 + 1/z2)

+ (−11/32a + 1/16a2 + 15/16 − 1/2/a
)
(z + 1/z)

+ (
9/32a − 1/16a2 − 7/32 + 5/4/a

)
H2(z) = (1/32 − 1/32a)

(
z3 + 1/z3)

+ (1/8 − 1/16a)
(
z2 + 1/z2)

+ (7/32 + 1/32a)(z + 1/z) + (1/4 + 1/8a)

We get different DWT filters simply by changing the a values. The choice of the
a value is secretly determined using a secret key. The numerical value of free pa-
rameter a can be varied over a wide range while retaining the perfect reconstruction
property of the wavelet transform. However, as we vary the value of a over the range
(−∞,+∞), the output values of the DWT operation have a very large dynamic
range requiring a larger number of bits for representation. This would reduce the
compression rates achievable with the DWT-based coders. Numerical experiments
show that parameterized DWT has a good PSNR value for image reconstruction
with Set-Partitioning in Hierarchical Trees (SPIHT)-based coder when a varies in
the range 1 to 3. When a varies beyond this range, the output DWT coefficients are
spread over a large dynamic range. At low bit rates, the encoder is not able to effi-
ciently encode such a large range of input coefficients leading to poor compression
results for natural images.

6.6 Resistance of Chaotic Generator Against Cryptanalysis

The performance and accuracy of discrete chaotic ciphers is a translation of proper-
ties of the underlying dynamical system (or chaotic map). The chaotic properties of
logistic maps and hence MLM have been established in the past decades by several
researchers [21].

Shannon [26] explains that a good crypto-system must show diffusion and con-
fusion properties. Confusion refers to making the relationship between the key and
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the cipher text as complex and involved as possible while diffusion means that the
output bits should depend on the input bits in a very complex way i.e. a change in
a bit in input plain text should imply a change in output bit with a probability of
1
2 . Chaotic systems show random behavior and inherently exhibit confusion with
respect to the initial conditions (x0) and the parameter (α) that make the key. We
perform some statistical tests to test the pseudo-random nature of the key obtained.

6.6.1 Randomness Tests

We perform the following randomness tests to study the pseudo-random nature of
sequence (bn) generated using the proposed scheme.

6.6.1.1 Frequency Test

In a randomly generated N -bit sequence we would expect approximately half the
bits in the sequence to be ones and approximately half to be zeroes. The frequency
test checks that the number of ones in the sequence is not significantly different
from N/2.

Based on 1000 simulations on strings of length 10,000 each generated using vari-
able initial values and control parameter, the probability for zero and one were ob-
tained to be 0.4993 and 0.5007, respectively, for the sequence bn. For the non-binary
sequence zn, frequency test was performed by discretizing the sequence around its
mean value. We observed the probability of zeros and one in this sequence to be
0.4981 for 1000 simulations of length 10,000.

6.6.1.2 Serial Test

The serial test checks that the frequencies of the different transitions in a binary
sequence (i.e., 11, 10, 01, and 00) are approximately equal. This will then give us
an indication as to whether or not the bits in the sequence are independent of their
predecessors.

For the sequence bn, 1000 simulations of 10,000 samples were run. The proba-
bilities for getting 00, 01, 10 and 11 were found to be 0.2503, 0.2491, 0.2480, and
0.2526, respectively (the ideal distribution would give 0.25 for all probabilities).

6.6.1.3 Runs Test

The binary sequence is divided into blocks (runs of ones) and gaps (runs of zeroes).
The runs test checks that the number of runs of various lengths in our sequence are
similar to what we would expect to find in a random sequence. This test is only
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Fig. 6.5 Correlation test of the pseudo-random sequence. (a) Generated using different initial
values x0 and (b) different initial parameter α. The plots are measured against initial value
α = 0.110000 and x0 = 0.410021

applied if the sequence has already passed the serial test in which case it is known
that the number of blocks and gaps are in acceptable limits.

This is a test of the hypothesis that the values in a sequence come in a random or-
der, against the alternative that the ordering is not random. For non-binary sequences
(such as zn) the test is based on the number of runs of consecutive values above or
below the mean of input sequence. Too few runs is an indication of tendency of
high values to cluster together, and low values to cluster together. Too many runs is
an indication of a tendency for high values and low values to alternate. Tests were
performed using Matlab simulations. The result is H = 0 if the null hypothesis (“se-
quence is random”) cannot be rejected at the 5 % significance level, or H = 1 if the
null hypothesis can be rejected at the 5 % level. We ran 10,000 simulations with
different initial values and parameter settings, giving 8916 successful simulations
with H = 0.

6.6.1.4 Statistical Properties

Some of the necessary conditions for a secure stream cipher are long period,
large linear complexity, randomness and proper order of correlation immunity [25].
A long period is ensured by taking a large value of N (say 64). Figures 6.5(a) and (b)
show the low correlation between sequences obtained using slightly different (a) ini-
tial value x0 and (b) parameter λ. It can be seen that a very poor correlation is
obtained amongst sequences generated using slightly different initial conditions or
parameters. The probability of zero in generated sequences is close to 0.5 (see Ta-
ble 6.1).
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Fig. 6.6 Bifurcation diagram for (a) logistic map showing the white spaces (islands of stability)
and asymmetricity and (b) modified logistic map with symmetric and flatter distribution

Table 6.1 Statistical performance of Generated Sequence bn

(results based on 1000 sequences of length 10,000 each)

Probabilities of zero 0.4993

Probabilities of one 0.5007

6.6.2 Bifurcation Map

If the dynamical system under consideration is a chaotic map, then the orbit derived
from any initial condition covers the whole phase space. This is seen with the help
of bifurcation diagram of logistic maps. A bifurcation diagram is the plot of sample
set of xn obtained against the variations in initial parameter λLM.

The bifurcation map of logistic map is shown in Fig. 6.6(a). It is observed that for
some value of λLM, the logistic map reaches a few stable states and oscillate around
them. These regions must be removed carefully from the key space. Hence, an ex-
haustive elimination of stable points (corresponding to white spaces in bifurcation
diagram) is necessary to build a scheme based on the logistic map.

Figure 6.6(b) shows the bifurcation map of MLM as a function of free parame-
ter α. It can be seen that there are no free white spaces in the bifurcation diagram,
indicating no in-between regions of stable oscillations in MLM. Thus, the entire
range of parameter α can be used to build the key space.

6.6.3 Lyapunov Exponent

Lyapunov exponent is a measure of stability of non-linear systems. It characterizes
the rate of separation of infinitesimally close trajectories. The maximum Lyapunov
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exponent is defined by the following expression:

Λ = lim
t→∞

1

t
ln

|δZ(t)|
|δZ0|

where δZ(t) is the separation at time t and δZ0 is the initial divergence. In our
cipher, if we choose two different initial values x0a and x0b , which are very close to
each other such that x0a − x0b ≈ δZ0, a positive Lyapunov exponent will indicate
that the two trajectories will diverge from each other. The discrete-time equivalent
expression to find Lyapunov exponent of MLM will be

Λ = lim
n→∞

1

n
ln

|δxn|
|δx0|

= lim
n→∞

1

n
ln

|δxn|
|δxn−1|

|δxn−1|
|δxn−2| · · · |δx1|

|δx0|

An analysis similar to logistic map [28] can be performed to prove the positive
Lyapunov exponent for logistic maps:

xn = λ · xn−1(1 − xn−1) + μ

Hence,
∣∣∣∣ δxn

δxn−1

∣∣∣∣ = ∣∣λ · (1 − 2xn−1)
∣∣

Therefore, we can express Λ as follows:

Λ = lim
n→∞

1

n

(
j=n∑
j=1

ln

∣∣∣∣ δxj

δxj−1

∣∣∣∣
)

= lim
n→∞

1

n

(
j=n∑
j=1

ln
∣∣λ(1 − 2xj )

∣∣
)

The value of Λ can be calculated by running a numerical trial of large number
of samples (say 10,000) starting with any randomly picked initial value x0. The
values of Lyapunov exponent for logistic map and MLM are plotted in Figs. 6.7(a)
and (b). This value was found to be ln 2 for MLM which is the same as the value
for logistic map with λLM = 4. Thus, the divergence rate of MLM, measured by
Lyapunov coefficient is always greater than or equal to the value for logistic map.
This indicates better confusion properties of MLM. Moreover, it is independent of
α indicating the invariance of confusion properties with the change in parameter α.
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Fig. 6.7 Plot of Lyapunov coefficient (Λ—solid line) for (a) logistic map as a function of param-
eter λLM indicating regions of non-chaotic behavior and (b) modified logistic map showing higher
divergence than logistic map and independence of Λ from parameter α

6.7 Security Enhancement

A serious drawback of chaotic crypto-systems is that they are weak against known-
plain-text attacks. If the plain text and the cipher text are known, it is easy to XOR
both the values and obtain the key value that was XORed to the original plain text.
Our proposed scheme has many advantages over the logistic map.

• The Modified Logistic Map has better security properties than the logistic map.
Figure 6.5 shows the sensitivity of MLM to the initial conditions. A slight differ-
ence in the initial condition leads to outputs which are completely uncorrelated.
The bifurcation maps for LM and MLM are shown in Fig. 6.6. The absence of
any white space in the keyspace of MLM allows us to build a continuous key
space. Figure 6.7 shows the graph for Lyapunov exponent for MLM which is
higher than LM. A positive and higher Lyapunov exponent indicates the rate of
divergence of two closely related inputs for the system.

• The random feedback scheme makes it difficult to predict the key value XORed
to the original plain text.

• The sequences sn and pn are linearly uncorrelated from each other making it
difficult to reverse engineer the values of pn from sn.

• The sequence pn is obtained by sampling of xn which is used to iterate the chaotic
map. In the hardware implementation (presented in next section), we sample the
Least Significant 16 bits (out of 64) of xn to get pn. Because the chaotic map is
more sensitive to the MSB than to the LSB (and we have 48 unknown MSB bits),
it is practically impossible to trace back the xn value.

• We allowed 100 iterations of MLM in the beginning to allow the diffusion of
initial key bits and parameter values. It was found that within approximately 20
iterations of logistic map the initial parameter values are fully diffused: the two
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Fig. 6.8 Hardware
architecture for the Modified
Chaotic Filter Bank scheme

logistic maps with a slight difference in initial conditions will appear completely
de-correlated in their outputs after at most 20 iterations. Allowing 100 iterations
helps us to be on a safer side to allow full diffusion of the initial key parameters.

• Use of DWT parameterization adds to the security of the scheme. The exact
choice of DWT filter is given by a secret key. Lack of this knowledge will lead to
inexact extraction of plain text after decrypting the cipher text.

The ICO shows good results against runs test, serial test, correlation test etc. which
are used to prove the randomness of output s[n] or sn.

6.8 Hardware Implementation

Figure 6.8 shows the hardware architecture for Modified Chaotic Filter Bank
(MCFB) scheme. The input x[n] is first pipelined for eight cycles and then the pa-
rameterized DWT filter is applied over it. The nine pipelined stages are then reduced
to five by adding the stages with similar wavelet coefficients together to get wi[n]
(wi[n] = x[n + i] + x[n − i], i ∈ {0,4}). These are then multiplied with the a, a−1

and a2 values and summed up to get the low-pass and high-pass values y0[n] and
y1[n]. The output of two Improved Chaotic Oscillators is then added to these two
signals to get z0[n] and z1[n], respectively.
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Fig. 6.9 Hardware
architecture for Improved
Chaotic Oscillator

The hardware architecture of ICOs is shown in Fig. 6.9. Two instances of ICOs
are required in the design.

Some optimization steps performed to reduce the cost of the underlying hardware
are summarized below:

1. Division by binary coefficients (e.g. 1/64, 1/16, 1/4) was performed using arith-
metic shift operations.

2. The input stream was pipelined. As shown in Fig. 6.8, our architecture takes
one pixel (or channel input) as the input and outputs the low- and high-pass
signal coefficients with a finite latency. Increasing the system latency allows us
to achieve a higher clock speed (and hence higher throughput).

The hardware implementation of proposed architecture was done using the Xil-
inx ISE 10.1 tool. The target device is a Xilinx Virtex-5 XC4VLX330 FPGA. The
input x[n] is eight bits wide, the intermediate values yi[n] and zi[ ] are represented
in 16 bits precision. The Chaotic Oscillator is implemented with an internal bit width
of 64 bits, while only last 16 bits of the output of Modified Logistic Map contribute
to the pseudo-random number generated by ICO. This prevents any cryptanalysis
of ICO while requiring some extra computations. The 16 bit output of each ICO is
added to the output yi[n] to get the output signal zi[n]. Modulating the amplitude
of ICO output (si[n]) allows us to change the range of the subband signal power to
the chaotic subband power dynamically.

As mentioned, the iterating value of MLM x(i) and the parameters λ and μ

are both implemented with 64 bits fixed-point precision. The permissible range
of parameter α was chosen to be (0,0.375) which is represented in fixed point
with 0 integer bits and 64 fractional bits. This is represented shortly as 0.64 in
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I.F. (Integer.Floating point) format. The range for parameter λ is then calculated
to be (4,16) which is implemented with 5.59 I.F. format. The range for μ is
(−3,−15.0975) which is represented using 5.59 I.F. format. Thus, the multipli-
cation λ · x(i) · (1 − x(i)) is truncated to 5.59 I.F. format and then added to μ to
obtain the new value for x(i).

A direct implementation gave a clock frequency of 67.8 MHz while requiring
48 DSP48E slices present in the Virtex-5 FPGA for efficient multiplication and
addition operations. We present two optimizations to improve the clock frequency
of the design while reducing the hardware requirements of the design.

Reconfigurable Constant Multiplier design and implementation for SWT has
been explained in previous chapter.

6.8.1 Hardware Optimizations for ICO

A single DSP48E slice can perform a maximum of 25 × 18 bits multiplication and
hence 12 slices are required for a 64 × 64 bits multiplication. Two multiplications
require 24 DSP48E slices.

We present an optimization of usage of DSP multipliers based on above obser-
vations for the multiplication of two 64 bit numbers X and Y . X is sign extended
to 72 bits (XSE) and represented by XaXbXc where Xa , Xb and Xc are each 24 bit
long sequences. We have

{XSE}71
0 = {Xa}71

48{Xb}47
24{Xc}23

0

Similarly, we can represent Y as combination of four 16 bit numbers YwYxYyYz,

{Y }71
0 = {Yw}63

48{Yx}47
32{Yy}31

17{Yz}15
0

Numerically,

X = XSE = Xa · 248 + Xb · 224 + Xc

and

Y = Yw · 248 + Yx · 232 + Yy · 216 + Yz

.
The product X · Y can then be represented as

X · Y = (
Xa · 248 + Xb · 224 + Xc

) · (Yw · 248 + Yx · 232 + Yy · 216 + Yz

)
⇒ X · Y = 296 · XaYw + 272 · XbYw + 248 · XcYw

+ 280 · XaYx + 256 · XbYx + 232 · XcYx

+ 264 · XaYy + 240 · XbYy + 216 · XcYy

+ 248 · XaYz + 224 · XbYz + 20 · XcYz
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Now, considering the product Xn(1 − Xn) in the logistic map, we multiply two
0.64 I.F. values to get an output which is in 0.128 I.F. format. We truncate the last
64 bits to get the 64 bit approximate value of Xn+1. Because X is represented
in 72 bits, we can discard the lower 72 bits of the product. Each of the products
XαYβ, such that α ∈ {a, b, c} and β ∈ {w,x, y, z} is of size 40 bits and can be im-
plemented in a single DSP48E slice.

Thus,

X · Y = 296 · XaYw + 272 · XbYw + 248 · XcYw

+ 280 · XaYx + 256 · XbYx

+ 264 · XaYy + 240 · XbYy

+ 248 · XaYz

The other multiplication operation can also be optimized in a similar manner. Thus,
we can reduce the hardware requirements and critical path for the implementation.

The above mentioned optimizations enhance the performance of original design.
The use of reconfigurable LUTs instead of multipliers reduces the critical path of
DWT architecture by replacing a multiplication operation with a Look-Up oper-
ation. The second optimization—truncating the extra hardware for building ICO
reduces the number of DSP slices used by the design by 33 %.

The original design required 14 10 × 9 bits multipliers and 4 64 × 64 bits mul-
tiplier which required 48 DSP48E slices and Look Up Tables for implementation.
The optimized implementation uses only 32 24 × 16 bits multiplier which are im-
plemented in 32 DSP48E slices. Moreover, the achievable clock frequency increases
by 30 % from 67.8 MHz to 88.3 MHz.

6.9 Conclusions

This work presents a novel chaotic filter bank-based scheme for cryptographic oper-
ations. The scheme, based on modified logistic map, is suitable for embedded real-
time applications and resistant to known cryptanalysis. The scheme can be used with
image compression algorithms such as JPEG2000.

This work also presents a reconfigurable hardware implementation of the pro-
posed scheme. Use of reconfigurable hardware allows partial removal of hard-
multipliers from the design and gives improvement in clock frequency by 30 %.
The hardcoded key parameters (a values) can be changed by the use of partial re-
configuration techniques.
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Chapter 7
Chaotic Arithmetic Coding

Abstract Arithmetic Coding (AC) is widely used for the entropy coding of text
and multimedia data. It involves recursive partitioning of the range [0,1) in accor-
dance with the relative probabilities of occurrence of the input symbols. In this work,
we present a data (image or video) encryption scheme based on arithmetic coding,
which we refer to as Chaotic Arithmetic Coding (CAC). In CAC, a large number of
chaotic maps can be used to perform coding, each achieving Shannon-optimal com-
pression performance. The exact choice of map is governed by a key. CAC has the
effect of scrambling the intervals without making any changes to the width of inter-
val in which the codeword must lie, thereby allowing encryption without sacrificing
any coding efficiency. We next describe Binary CAC (BCAC) with some simple Se-
curity Enhancement (SE) modes which can alleviate the security of a scheme against
known cryptanalysis against AC-based encryption techniques. These modes, namely
Plaintext Modulation (PM), Pair-Wise-Independent Keys (PWIK), and Key and ci-
phertext Mixing (MIX) modes have insignificant computational overhead, while
BCAC decoder has lower hardware requirements than BAC coder itself, making
BCAC with SE as excellent choice for deployment in secure embedded multime-
dia systems. A bit sensitivity analysis for key and plaintext is presented along with
experimental tests for compression performance.

7.1 Introduction

The issue of real-time multimedia delivery has gained an increased importance in a
world dominated by portable multimedia-capable devices, as well as with the emer-
gence of the cloud computing paradigm. The technical challenges involved in such
scenarios include providing a delivery mechanism that is highly scalable, secure,
easily search-able and index-able, all without losing the important compression
properties. Providing security in a video communication context is especially chal-
lenging, as the security requirements tend to be application- and platform-specific,
and the input data is characterized by large storage requirements, real-time process-
ing latencies, and the use of standardized video codecs.

Arithmetic coding is a data compression technique that encodes data by creat-
ing a code string which represents a fractional value on the interval [0,1). When
a string is compressed using arithmetic coder, frequently used characters are stored

A. Pande, J. Zambreno, Embedded Multimedia Security Systems,
DOI 10.1007/978-1-4471-4459-5_7, © Springer-Verlag London 2013
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with fewer bits and not-so-frequently occurring characters are stored with more bits,
resulting in fewer bits used in total [16]. It typically enables very high coding effi-
ciency as multiple symbols are coded jointly and has been adopted for use in image
compression standards, including JBIG-2, JPEG-LS, JPEG2000 as well as video
standards, including H.264/AVC to provide lossless entropy coding.

Arithmetic coding is extremely efficient for compression efficiency in large data-
sizes and it achieves the Shannon compression efficiency for large chunks of data.
However, as conventionally implemented, it is not particularly secure. A naive
choice is to use the well-known encryption methods such as the Advanced Encryp-
tion Standard (AES) in combination with traditional arithmetic coder to satisfy both
compression and security needs. However, this proposal leads to increased com-
putational complexity and the useful properties of compressed bitstream such as
rate-adaptive transmission, scalability and DC-image extraction for content search-
ing [18] are lost. These approaches encrypt the output of compression system into
ciphertext, which is completely random and uncorrelated to the compressed bits.
This makes it impossible to retain the desired properties of compressed bitstream
into the encrypted bitstream. The scheme presented in this work overcomes these
limitation because it does not modify any properties of compressed bitstream.

Recently, Grangetto et al. [9] presented a Randomized Arithmetic Coding (RAC)
scheme which achieves encryption by inserting some randomization in the arith-
metic coding procedure at no expense in terms of coding efficiency. RAC needs a
key of length 1-bit per encoded symbol. Wen et al. [13] presented a generalization
of this procedure, referred to as Secure Arithmetic Coding (SAC). The SAC coder
is constructed over a Key-Splitting Arithmetic Coding (KSAC) [30], where a key
is used to split the intervals of an arithmetic coder and it adds input and output
permutation to increase the security of coder.

7.1.1 Weakness of SAC Coder

SAC introduces loss in coding efficiency particularly for small sized inputs, which
are later restricted to a small value by putting some constraints on the keyspace.
The SAC encoder may have to work with multiple sub-intervals thereby signifi-
cantly increasing the computational cost of encoder. Successful attacks have been
demonstrated against SAC scheme [11, 28, 37, 38].

We present a joint video encryption and compression scheme based on piece-
wise linear chaotic maps, referred to as Chaotic Arithmetic Coding (CAC). The idea
of using chaotic maps for encryption was presented in [24]. However, the authors
use a skew version for data encryption which is prone to known-plaintext attacks,
and increases the computational complexity of coder exponentially.

The contributions of this work are as follows:

1. The work presents a generalized framework for video encryption using chaotic
maps called Chaotic Arithmetic Coding (CAC). Chaotic maps are highly sen-
sitive to initial conditions, so that slight wrong guess of initial conditions will
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lead to imperfect reconstruction. For introduction on chaos theory, please refer
to [14]. We discuss the general case with N alphabets and the specific case of
binary alphabets.

2. The known weaknesses of arithmetic coding-based encryption schemes are alle-
viated by security enhancements (SE) proposed in this work.

3. CAC provides goals of encryption without any computational overhead. In fact,
the decoding complexity of CAC is less than a normal Binary Arithmetic Coder
(BAC) without encryption (one multiplication and one addition per iteration vs.
one multiplication and two additions per iteration for BAC).

4. CAC provides low-cost encryption without compression losses for multimedia
data, which is suitable for application in embedded systems scenarios where
computational resources and power budget is limited.

7.2 Arithmetic Coding with Piece-wise Linear Chaotic Maps

Let us consider a scenario where we have a string S = x1x2 . . . xN consisting of N

symbols to be encoded. The probability of occurrence of a symbol si , i ∈ 1,2, . . . , n

is given by pi such that pi = Ni/N and Ni is the number of times the symbol si
appears in the given string S. We next consider a piece-wise linear map (ρ) with the
following properties:

• It is defined on the interval [0,1) to [0,1) i.e.

ρ : [0,1) → [0,1)

• The map can be decomposed into N piece-wise linear parts ρk i.e.

ρ =
N⋃

k=1

ρk

• Each part ρk maps the region on x-axis [begk, endk) to the interval [0,1) i.e.

ρk : [begk, endk) → [0,1]
The last two propositions lead to

N⋃
k=1

[begk, endk) = [0,1)

• The map ρk is one-one and onto i.e.

∀x ∈ [begk, endk) ∃y ∈ [0,1): y = ρk(x), and

∀y ∈ [0,1) ∃x ∈ [begk, endk): ρk(x) = y
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Fig. 7.1 A sample
piece-wise linear map for
arithmetic coding like
compression. (a) The entire
map is shown (ρ).
(b) A single linear part of the
map (ρk ) is zoomed. It can
have a positive or negative
slope depending on choice

• ρ is a many-one mapping from [0,1) to [0,1). This implies that the decomposed
linear maps (ρk) do not intersect each other i.e.

∀(k �= j): [begk, endk) ∩ [begj , endj ) = 0

• Each linear map ρk is associated uniquely with one symbol si . The mapping
ρk → si is defined arbitrarily but one-one relationship must hold.

• The valid-input width of each map (ρk), given by (endk − begk) is proportional
to a probability of occurrence of symbol si :

endk − begk ∝ pi

⇒ endk − begk = C · pi

We recall that
∑N

k=1(endk − begk) is same as the input width of
⋃N

k=1 ρk = ρ,
which is 1. Also,

∑N
i=1 pi = 1. Thus, we get the value of constant C to be 1:

⇒ endk − begk = pi

Figure 7.1 shows a sample map fulfilling these properties. Figure 7.1(a) shows the
full map with different parts ρ1, ρ2, . . . , ρN present while Fig. 7.1(b) zooms into
individual linear part ρk . The maps are placed adjacent to each other so that each
input point is mapped into an output point in the range [0,1). The total number of
distinct ways of arranging N maps to obtain ρ fulfilling the properties mentioned
above is given by N ! = N · (N − 1) · (N − 2) · · ·3 · 2 · 1, where ! denotes factorial
sign. It is same as arranging these N maps in a sequence, one after another, with the
end interval of one map touching the begin interval of another.

However, there are N different piece-wise maps, each with two possible orienta-
tions (with positive or negative slope). Thus, the number of total permutations pos-
sible is given by N !2N which is independent of unique symbol probability. Thus, for
N -ary arithmetic coding or arithmetic coding with N symbols, it is possible to have
N !2N different mappings each leading to same compression efficiency. Since we
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can arbitrarily choose any 1 of the N !2N maps, the key space for encoding a single
bit of data is �log2(N !2N)� bits, where � � represents the greatest integer function.
For N = 2, it gives eight mappings. If we increase N to 4, this value increases
to 384.

The equation for individual maps can be derived as follows:

y′ = ρk

(
x′) =

(
x′ − begk

endk − begk

)
or

(
1 − x′ − begk

endk − begk

)

The equation for the full map is given by

y = ρ(x) = ρk(x): begk ≤ x < endk

The coding procedure, correspondence to arithmetic coding and compression ef-
ficiency of basic chaotic coding is explained in [27].

7.2.1 Compression Efficiency

The compression efficiency of the procedure lies in the width of the final interval
from which we need to choose the initial value from. Let us consider encoding a
general sequence of N symbols such that probabilities of occurrence of ith symbol is
given by Ni

N
where Ni is the number of occurrence of the symbol in the sequence. On

every iteration, to encode an arbitrary symbol Nj , the width of interval (originally
[0,1) and length 1) shrinks by a factor of endj −begj (width of ρj ). Thus, the width
δ of final interval would be given by

δ =
N∏

j=1

(endj − begj )
Nj

We have the relation endj − begj = pj = Nj

N
, hence

δ =
N∏

j=1

(
Nj

N

)Nj

The number of bits B needed to distinguish a point in the particular interval from
points belonging to any other interval δ of the same size is �− log2(δ)�.

B = ⌈− log2(δ)
⌉

=
⌈

− log2

(
N∏

j=1

(
Nj

N

)Nj
)⌉
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=
⌈

−
N∑

j=1

log2

((
Nj

N

)Nj
)⌉

=
⌈

−
N∑

j=1

Nj log2

(
Nj

N

)⌉
(7.1)

The average number of bits required per symbol (Bav) is given by

Bav = B

N
= 1

N

⌈
−

N∑
j=1

(Nj ) log2

(
Nj

N

)⌉

This relation is derived by averaging the total number of bits which is given by
logarithm of δ. According to Shannon’s entropy equation, the number of bits needed
to encode a string of symbols is given by

Bsh = −
N∑

j=1

pi log2 pi

Knowing that the symbol probability pi is given by pi = Ni

N
, we get the following

expression for Bav:

Bsh = −
N∑

j=1

Ni

N
log2

Ni

N

Bav = 1

N
�N · Bsh� ≤ 1

N
(N · Bsh + 1)

⇒ Bav ≤ Bsh + 1

N

As N → ∞, Bav → Bsh. Thus, the proposed scheme gives optimal compression for
large codewords.

7.2.2 Binary Chaotic Arithmetic Coding (BCAC)

In the previous section we explained how arithmetic coding can be viewed as re-
iteration on chaotic maps. AC is more commonly implemented in binary mode to
reduce the computational requirements of video coders. For same considerations,
we discuss implementation and security issues with BCAC in this work after intro-
ducing CAC in last section. The Binary CAC (or BCAC) uses either of the eight
equivalent skewed binary maps (shown in Fig. 7.2) based on an input key. These
maps differ from each other in the way input is mapped into the chaotic orbit—
differ in the interval in which the arithmetic code must lie for a symbol ‘0’ or ‘1’ but
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Fig. 7.2 (a)–(h) show the eight modes of the skewed binary map (p = 0.6)

the width of interval remains the same. In next section, we will formulate a math-
ematical procedure to generate the eight maps and choose between them using the
parameter i.

We define the generalized skewed binary map with the following equations:

y =
{

n1x + c1 when x ≤ k

n2x + c2 when x > k
(7.2)

Decode

{
‘0’ when x ∈ [i1, i2]
‘1’ when x ∈ [i3, i4] (7.3)

Then, the back iteration on skewed binary map is defined by the following equations:

x =
{

m1y + b1 when ‘0’
m2y + b2 when ‘1’

(7.4)

n1, n2, c1, c2, m1, m2, b1, and b2 values can be precomputed for different maps
and stored in a table for look-up for fast access. Table 7.1 gives the value of these
parameters for all eight chaotic maps.
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Grangetto et al. [9] present a Randomized Binary Arithmetic Coding (RBAC)
scheme where they change the ordering of ‘0’ and ‘1’ intervals in a Binary Arith-
metic Coder (BAC) based on a key. RBAC can be seen as a special case of BCAC
where only two of the eight modes of BCAC are used for encryption purposes
(drawn in Figs. 7.2(a) and (e)). Similarly, KSAC [30] can be represented in terms of
piece-wise linear maps by removing the condition of continuity of individual maps
(ρi(x)). Each part ρi maps a discontinuous interval on x-axis to the interval [0,1).

7.2.3 Implementation Efficiency

For a normal binary arithmetic coder, at each iteration the starting interval [Is, Ie) is
updated at one end. On encoding a ‘0’ the final interval becomes [Is +p(Ie −Is), Ie)
while on encoding a ‘1’ the final interval becomes [Is, Is + p(Ie − Is)). Thus, ev-
ery iteration requires one multiplication and two addition operations. The decoding
procedure for a binary arithmetic coder involves updating the interval [Is, Ie) at one
end depending on whether the last decoded symbol was a ‘0’ or a ‘1’. Thus, every
iteration again requires one multiplication and two addition operations.

For BCAC, both end of interval are updated at every iteration using a linear
transformation x = my + b thus requiring two multiplications and two additions
for encoding. The decoding is simple as it involves iteration on the chaotic map
according to the linear transformation y = nx + c involving a multiplication and
an addition operation. There are some additional table look-ups (an 8-input LUT
required for BCAC to choose the exact chaotic map) involved in chaotic coding to
choose the right chaotic map at every iteration which can be efficiently implemented
in software or hardware. Thus, CAC encode requires more computations than BAC
encode while CAC decode requires less computations than BAC decode.

7.3 Security

7.3.1 Application to Multimedia/Data Encryption

CAC is Shannon-optimal in terms of compression efficiency. By varying the map-
ping ρk → si , we can obtain different maps, all of which give same compression
efficiency but different intervals for the final codeword. This parameterization of
chaotic piece-wise maps allows us to build a keyspace for data/video encryption
using chaotic arithmetic coding. The choice of mapping is thus governed by an en-
cryption key.

As such, the CAC (or BCAC) can be used as a joint compression-cum-encryption
technique for data encryption tasks particularly in low-power embedded systems
such as surveillance cameras, video sensors, mobile phones and netbooks/ipads. For
BCAC, we have eight possible maps for every encoded bit (see Fig. 7.2) giving up to
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3 bits of encryption key per encoded symbol. The large keyspace makes the scheme
secure against exhaustive trails. For full encryption, the entire volume of multimedia
data is passed through CAC encoder while in case of selective encryption, only the
important parts of data are passed through CAC encoder. Most arithmetic coders in
practice are binary, i.e. work with only two input symbols ‘0’ and ‘1’ because of the
resulting large complexity of arithmetic coder when using multiple symbols [19].
We have a keyspace of 3N bits for N bit plaintext. The large keyspace makes it
extremely difficult to launch brute-force attacks. Since the key remains the same for
multiple iterations, in effect the effective length of key bits is much less than the
plaintext bits.

If we reveal the first K bits of the key publicly, then a part of the bitstream can
be decoded correctly while decoding the entire bitstream will require knowledge of
the entire key. In that case, CAC can be used to provide conditional access to part of
multimedia content or scalable video encryption [35]. Scalable Multimedia Encryp-
tion finds its applications in modern pervasive/cloud-based multimedia applications
where different types of user want to access the same multimedia content at different
resolutions and access-privileges.

7.3.2 Threat Model

BCAC coder/decoder pair is treated as encryption/decryption oracle, respectively.
In our threat model, an attacker is able to choose a plaintext of chosen length and
obtain its corresponding ciphertext from the encryption oracle. He can repeat this
process for at most P times. In other words, we allow the attacker to adaptively
select plaintext and use the encryption/decryption oracle for a polynomial number
of times.

7.3.3 Security Enhancements (SE)

As mentioned previously (in Sect. 7.2), arithmetic coding-based encryption schemes
(such as RAC and SAC) have been found to be vulnerable to cryptographic at-
tacks (chosen-ciphertext attack [37], ciphertext-only attack and chosen-plaintext at-
tack [28]).

An attacker can guess the key, in O(N) operations by giving different known
inputs to the system (known-plaintext attack). In this section, we mention three SE
modes for BCAC, which add considerable levels of security to the design. In this
discussion, we use the following convention:

The encryption oracle has a BCAC encoder and some added operators for SEs.
K3N is the initiating key value for the encryption oracle. I (n) and O(n) are the
input and output sequences of encryption oracle for nth iteration. PT(n), CT(n) and
K(n) are the Plaintext, Ciphertext and Key values for the nth iteration of BCAC
coder. The length of PT(n) and I (n) is N bits, the compressed outputs CT(n) and
O(n) have M(n) bits (M(n) ≤ N in general), K3N and K(n) have 3N bits.
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Algorithm 1 PM mode
1: {PT(n)}: Input to CAC encoder for nth pass

{CT(n)}: Encoded Output of CAC Encoder for nth pass
{K(n)}: Key value for nth pass
{I (n)}: Plaintext Input for nth pass
{O(n)}: Ciphertext Output for nth pass
{K3N }: Initiating Key
{W}: PM parameter
PM_mode()

2: K(n) = K3N

3: for w = 1; j ≤ W ; j + + do
4: PT(w) = I (w) ⊕ K(w)

5: end for
6: O = CT = CAC.encode(PT,K)

7.3.3.1 Plaintext Modulation (PM) Mode

In the Plaintext modulation mode, the first F bits of input plaintext are XORed with
the input key values. The value of F is chosen according to application require-
ments. When F � N (F is small), there is negligible losses in compression per-
formance but the security level obtained is low. On the other side, when F ≈≈ N ,
the security level is highest but the compression performance will be compromised.
Thus, it is appropriate to choose large values of N (say N = 1000) and relatively
small f (f ≈ 30). The stepwise details of BCAC+PM algorithm is given in Algo-
rithm 1 and shown in Fig. 7.3(b). The idea of XORing the first few bits of plaintext
with key, make it behave like a one-time pad at the beginning of BCAC. Moo and
Wu [23] discuss how it is extremely difficult (exponential in F ) to reconstruct the
remaining plaintext in arithmetic coding in case, we lose the first F bits. However,
in case of BCAC encoding, this complexity compounds manifold because of large
keyspace for two reasons:

1. The uncertainty in knowledge of exact chaotic interval at end of first F iterations
of BCAC is of the order of 8F against 2F in case of arithmetic coder. This is
because, unlike BAC where any interval can split into either two intervals, the
interval can split into eight intervals in case of BCAC.

2. Lack of key information implies that decoding of remaining bitstream is impos-
sible, even if we are able to resynchronize the end interval at the end of encoding
first F bits.

7.3.3.2 Key and Output Mixing (MIX) Mode

In the MIX mode, CT(n) and K(n) are mixed with each other to obtain O(n) and
K(n + 1). This operation is performed as follows:
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Fig. 7.3 Different modes for SEs in CAC. (a) Normal CAC encoder, (b) PM mode—the N plain-
text bits are mixed with the key, (c) MIX mode—3N key bits are mixed with compressed output,
the compressed output is rotated left by L arbitrary bits and mixed with M bits of mixed key,
(d) PWIK mode—a new pair-wise-independent key is generated in each iteration by adding a Ini-
tial Value modulo a prime p in GF(256)

Algorithm 2 Mix mode
1: Mix_mode()

{A(n) � B(n)}: XOR A with cyclically extended or shrunk B , i.e. A(n) ⊕
B(n modulo(size(B))) for 1 ≤ n ≤ size(A)

{ROL(a, b)}: Rotate b to left by a bits
{L}: Number of bits to be rotated to left

2: PT(n) = I (n)

3: CT(n) =CAC.encode(PT(n),K(n))
4: K(n + 1) = K(n) � O(n)

5: O(n) = ROL(L,O(n)) � K(n + 1)

1. We XOR K(n) and O(n) to obtain K(n + 1). Since O(n) is of length
M(n) ≤ 3N , we cyclically repeat O(n) to make it 3N bits long.

2. We rotate O(n) with L arbitrary bits to the left (cyclical left shift). This operation
is easily performed in hardware using wire permutations, and in software using
simple command for left rotate.

3. We XOR rotated O(n) with first M(n) bits of K(n + 1) to get the ciphertext
output O(n) of the encryption oracle.

All XOR operations can be implemented cheaply in commercial hardware and soft-
ware. See Algorithm 2 and Fig. 7.3(c) for description and figure. There is no loss in
compression efficiency or throughput of the system.

Mix mode allows efficient mixing of Key and ciphertext, making it unintelligible
for an attacker to recover the relationship between input and key values using output
values.
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Algorithm 3 PWIK mode
1: PWIK_mode( )

{PR}: Largest prime in GF(2256)
2: K(0) = K3N ;
3: PT(n) = I (n)

4: K(p) = (K(p − 1) + InitValue2) mod 2256

5: if (K(p) < InitValue2) then
6: return K(p) = K(p) + 2256 − PR
7: end if
8: CT(n) = CAC.Encode(PT(n),K(n))

9: O(n) = CT(n)

7.3.3.3 Pair-Wise-Independent Keys (PWIK) Mode

In PWIK mode, independent keys are generated for each iteration of the BCAC
coder using initial key value. The same values can be reconstructed in the decoder
side with prior knowledge of these initial values. However, the generated key values
are pair-wise independent from each other. This method uses Galois field mathe-
matics and we take 3N ≤ 256 or N = 85 for BCAC to simplify the operation. The
generated keys are shown to be pair-wise independent by Jutla et al. [12]. There is
no loss in compression efficiency or throughput of the encoder. See Algorithm 3 and
Fig. 7.3(d) for details. This mode has the restriction that N is should be keep to a
value such that 3N ≤ 256 or an exponent of 2 (for efficient finite field implementa-
tion).

7.3.4 Resistance to Known Attacks

Assessing security for any encryption system is a challenging task because showing
robustness against known attacks does not preclude the existence of unknown at-
tacks against which the system may not be robust. This applies to mature encryption
standards such as AES [7] and DES [8] also. We therefore adopt a similar approach
that considers known attacks and ensures that they cannot be used successfully.

One great security advantage of presented scheme is that the output from the
engine is in the form of variable sized words and the individual bit output corre-
sponding to inserted symbols cannot be determined. The authors in of KSAC [13]
mention the weakness of arithmetic coding-based encryption schemes, which ap-
plies to the proposed scheme as well: ‘In the context of a secure arithmetic coder,
potential weaknesses lie in the ability to correlate the input symbol stream with at-
tributes of the output binary codeword and to use those correlations to infer key
information. The core of the encoder, the Interval Splitting AC, when implemented
without any input permutation and codeword permutation, can be attacked using
carefully constructed sequences that reveal split locations.’ They propose an input
and output permutation with KSAC which obscures this relationship as a possible
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solution. However, recent cryptanalysis of the KSAC work has shown serious weak-
nesses of these permutations [11, 28, 37, 38]. Jakimoski and Subbalakshmi [11]
present a cryptanalysis of KSAC where they reveal that a key of length 2000 bits
can be broken with as few as 50,000 plaintexts.

The decoding algorithm for CAC involves iteration on chaotic maps. Ko-
carev [14] discusses how various properties of chaotic maps have direct correla-
tion to cryptographic algorithms. For example, decoding CAC with any slightly
wrong value (making a wrong guess) will make the output appear random even
if correct knowledge of maps is given. This is analogous to diffusion property of
cryptographic ciphers. Similarly, the iterations on chaotic maps (1 iteration per en-
coded bit) is similar to rounds in encryption algorithms. Thus, the chaotic decoder
will behave like a random number generator and without exact knowledge of key
(coding parameters) and initial seed (coded message), the output of decoder will be
completely uncorrelated with the encoded message. This property of chaotic maps
implies that unlike BCAC, two closely related plaintext values may be mapped to
completely different (random) output values even with same key. The same mes-
sage will be mapped to completely different output value with two closely related
key values.

This makes it difficult to launch known-plaintext attacks on our system. It is,
however, possible to mount chosen-plaintext attacks on the system because an
attacker can modulate the plaintext input to iteratively guess the key stream begin-
ning from first bit of plaintext (last bit of BCAC encoder). Such an attack has been
mounted against KSAC [11].

The proposed SEs can alleviate the attacks at little computational overhead.
For BCAC+PM, the first few bits of plaintext are modulated, these bits and the

key bits are unknown to the encoder. Therefore, it will be impossible for an attacker
to observe and infer any correlation from chosen plaintexts. In BCAC+Mix oper-
ation, at every iteration we XOR the key with the output of encoder and update
the key. This randomizes the output (like a one-time pad) for an adversary to draw
any inference. The BCAC+PWIK mode allows us to resist chosen- and known-
plaintext attacks because the keys used in different iterations are pair-wise indepen-
dent, hence, an attacker cannot find any correlation between subsequent output bits
corresponding to same plaintext value. However, it comes with an extra implemen-
tation cost of PWI Key generation module. Either of the two proposed modes (Mix
and PWIK) have no effect on the compression efficiency, which is a significant ad-
vantage against some proposed techniques [2, 13, 24]. A drawback of PWIK mode
is that it involves GF mathematics: the length of input bits should suit the GF oper-
ations. For example, with GF(2256) implementation, the length of plaintext will be
85 bits.

BCAC, like arithmetic coding, is more sensitive to errors in the decoded bitstream
for errors in the beginning of the stream and not to those which are towards the end.
However, BCAC+Mix mode has bit rotate and XOR operations which mask this
property from the adversary.
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7.3.5 Comparison with BAC+AES

BAC followed by encryption with AES is the naive candidate which should provide
best security. AES is extremely fast when it is fully pipelined in hardware [36].
However, the sequential nature of BAC coder becomes the bottleneck in a combined
BAC+AES system.

The arithmetic operations required for one bit encoding or decoding using BAC
is two adders and one multiplier (discussed in Sect. 7.2.3). AES-128 bits require
40 sequential transformation steps composed of simple and basic operations such
as table look-ups, shifts, and XORs. It needs approximately 336 bytes of memory
and approximately 608 XOR operations or roughly 3 bytes memory and 5 XOR
operations per bit of encoding.

BCAC coder requires two adders and two multipliers for encoding and only one
adder and one multiplier for decoding. Thus, the hardware requirements of BCAC
coder are much less than BAC and AES combined. The BCAC decoder is particu-
larly simpler than CAC decoder (without AES), which is desired for most common
video applications which involve real-time decoding in mobile and embedded de-
vices.

7.3.6 Key and Plaintext Sensitivity

Confusion and diffusion are two important properties desired for operation of a
secure cipher. Confusion refers to making the relationship between the key and the
ciphertext as complex and involved as possible. This makes it very hard to find the
key even if one has a large number of plaintext–ciphertext pairs produced with the
same key. In particular, changing one bit of the key should change the ciphertext
completely.

We conducted experiments for different values of N by changing one bit in ei-
ther of the N symbols comprising the key. In the ideal case, for a single bit flip, the
ciphertext output must be changed from original value in N

2 positions, as was the
case with BCAC. Figure 7.4 shows the plot for N = 100 and p = 0.7 with mean
value of 1000 simulations. BCAC, BCAC+PWIK and BCAC+Mix have same en-
coder output for the first iteration, so we have used a single line to represent this. It
can be seen that all the schemes (including BCAC+PM) give a Hamming distance
of new ciphertext to a value around 50. Over different iterations, BCAC+Mix will
eventually lead to different key being used in different iterations, leading to a vari-
able Hamming distance. This increases the confusion property of the scheme and it
is shown in Fig. 7.5.

Diffusion means that the output bits should depend on the input bits in a very
complex way. This is ensured by the arithmetic coding (or CAC) scheme itself be-
cause the relationship between input and output bits is non-linear. The input bits
iteratively decide the interval of final output, which is then used to obtain the short-
est length code from that interval. However, it has been observed in case of BAC
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Fig. 7.4 Plot showing the number of bit flips in output text with change in one corresponding
symbol in the key

Fig. 7.5 Plot of Hamming distance between correspondingly coded values when a single bit of
key (N = 50) was changed

that the last few bits have less impact on the first bits of the ciphertext. We con-
ducted an experiment where plaintexts were varied one bit at a time and Hamming
distance of new ciphertext over last ciphertext was reported. The mean value over
1000 such simulations is reported in Fig. 7.6. BAC and BCAC show similar trend
vs. change in plaintext bits. BCAC+PWIK, BCAC+PM have similar performance
trend as BCAC.

BCAC+Mix mode result in mixing of encoder output with the key value and this
mixing leads to an excellent value of Hamming distance, as plotted in Fig. 7.6.
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Fig. 7.6 Plot showing the number of bit flips in output text vs. change in a single bit position in
the plaintext

Table 7.2 Results for image
reconstruction quality with
wrong decoding keys.
Selective encryption of DWT
coefficients was done using
BCAC

Image 0.1 % encryption 0.4 % encryption

SSIM PSNR SSIM PSNR

Tank 0.057 −6.32 0.00 −11.55

Couple −0.23 −6.56 −0.03 −8.5

Girl −0.05 −4 0.005 −7

Grass −0.08 −6.57 0.002 −11.43

Peppers 0.06 −7.936 0.012 −10.51

San Diego 0.111 −6.2 0.06 −10.22

House 0.16 −4.17 0.035 −4.21

7.3.7 Selective Encryption Using BCAC

In this section, we present results for selective image encryption using BCAC.
The sample images were taken from USC SIPI database and each has resolution
512 × 512 pixels. Two cases are considered: (a) Encryption of LL coefficients and
(b) all coefficients of 6th level DWT decomposition. This corresponds to encryp-
tion of 0.1 % and 0.4 % coefficients. SSIM (Structural Similarity Index) and PSNR
(Peak Signal to Noise Ratio) were considered to measure the image reconstruction
with corrupted keys. The results are presented in Table 7.2. It can be observed that
SSIM—Structural Similarity is close to 0 while PSNR is negative, which indicate
strong de-correlation between wrongly reconstructed image with original image.

7.4 Compression

BCAC gives the same compression efficiency as the BAC coder. We performed
some experiments to verify these facts. We ran an implementation of BCAC over
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Table 7.3 Compression
performance of BAC and
BCAC for various length
strings. The average length of
codeword is presented for
various p values and lengths
of input string

p N = 10 N = 100 N = 1000

BAC BCAC BAC BCAC BAC BCAC

0.5 0.025 8.733 120 108.16 999.1 999.84

0.55 9.025 8.983 98.17 98 992.30 992.34

0.6 8.7899 8.882 95.95 95.84 970.98 971.14

0.65 8.442 8.316 91.90 91.23 934.30 934.04

0.7 7.918 7.936 86.96 86.37 881.07 881.84

0.75 7.47 7.54 80.31 80.37 811.27 811.84

0.8 6.701 6.333 71.11 71.03 721.07 720.84

0.85 5.551 5.342 60.28 59.1 609.30 609.84

0.9 4.122 4.055 45.66 46.39 469.06 468.84

0.95 2.698 2.773 27.46 28.8 287.00 286.34

Matlab 7.11.0.584 (R2010b) and used variable precision arithmetic (vpa) tools in
Symbolic Mathematics Toolbox to run simulations for large values of N (such as
N = 100,1000).

The simulation results show a slightly better performance for CAC over normal
arithmetic coder (AC) especially for small values of N . However, as mentioned
above there is no objective reason for such occurrence. The results are presented
in Table 7.3. (The reported value is the average length of output bitstream and the
standard deviation.) 1000 simulations each were run in Matlab to obtain the mean
value of output bitstream lengths.

Figure 7.7 gives the relative compression performance of CAC, BCAC and vari-
ous SEs (for N = 100). BCAC+PM has a slight compression overhead for w = 5 or
10, but it increases drastically for w = 20, making w = 20 unsuitable for practical
applications. PWIK and MIX modes (not shown in figure) have similar compression
as BCAC.

7.5 Hardware Implementation

In the regular coding mode, prior to the actual arithmetic coding process the given
binary data enter the context modeling stage, where a probability model is selected
such that the corresponding choice may depend on previously encoded syntax el-
ements. Then, after the assignment of a context model, the bin value along with
its associated model is passed to the regular coding engine, where the final stage
of arithmetic encoding together with a subsequent model updating takes place (see
Fig. 7.8). We shall restrict the focus of further discussions on the final arithmetic
encoding (and decoding) stages of CABAC coder.
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Fig. 7.7 Compression performance of proposed schemes

Fig. 7.8 Block diagram of CABAC coder

7.5.1 Literature Review

Adaptive minimum-redundancy (Huffman) coding is expensive in both time and
memory space, and is handsomely outperformed by adaptive AC besides the advan-
tage of AC in compression effectiveness [21]. Fenwick’s structure requires just n

words of memory to manage an n-symbol alphabet, whereas the various implemen-
tations of dynamic Huffman coding [6, 29] consume more than 10 times as much
memory [22].

Hardware architectures have been proposed in research literature for arithmetic
coding using CACM model [31] or related work [10, 15, 21]. CABAC or Context-
Adaptive Binary Arithmetic Coder is used in H.264 AVC and SVC. The critical
path of coder is the multiplier, which is removed in CABAC and recent implemen-
tations [5, 17, 25] by using a look-up approximation (leading to some compression
inefficiency).

There has been little work [1, 26], however, in implementation of chaotic maps
on hardware. However, the recent trend toward joint compression and encryption
using chaotic maps and arithmetic coding for low-power embedded systems would
be greatly complemented by an efficient hardware architecture, as presented in this
paper.
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Fig. 7.9 Generalized Hardware Architecture for Chaotic Maps. (a) Generalized architecture and
(b) Circuit details for Chaotic Map Iterator

Many designs have been proposed for accelerating the CABAC decoding. The
major timing limitation is caused by the BAC, because it is inherently dependent
on control statements and arithmetic operations. As a result, the BAC becomes a
throughput bottleneck of the entire JPEG2000 encoding system, but its serial pro-
cessing nature makes it difficult to exploit parallelism.

7.5.2 Implementation Details

The chaotic encoder operation inverse inverse mapping of interval [0,1) on the
chaotic map according to input symbol. For binary arithmetic coder, we have a fixed
map to be iterated in each cycle.

Figure 7.9(a) shows the basic architecture for coding using chaotic maps. The
control unit receives the input bit stream, which is passed on to the chaotic map It-
erator (CMI). The control unit passes the bitstream, one symbol per cycle (unless in
the case of multiple-symbol encoding, which will be discussed later). For encoding,
the initial interval passed to CMI is [0,1), which is transmitted as the beginning (Bn)
and end (En) interval values. Both the intervals are then iterated over CMI (using
two instances of CMI), and then the output is sorted so that Bn < En. If the differ-
ence (Dn = En −Dn) is lower than a threshold, we need to renormalize the encoder.
The renormalization procedure for arithmetic coding has been discussed in [21].
A similar extension of renormalization procedure may be possible for chaotic maps.
But, for the evaluation designs considered in this work, we have considered 64 bit
encoder without any renormalization procedure.

In case of decoding, Control Unit (CU) transmits the coded symbol into CMI,
which is then iterated over Piece-wise linear map and reported back to CU. The CU
makes a comparison with chaotic map indicated by the key and outputs a single bit
output.

CMI has a multiplier and an adder to perform chaotic iteration. The internal
details of this operation are given in Fig. 7.9(b). The multiplication and addition
coefficients are obtained from a look-up table/RAM collating the input symbol, key
value and probability value as the input address. The Look-ed up value or a word is
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demultiplexed to obtain the multiplication and addition coefficients. This option can
work fine for at most binary case, and for the case where p value is limited to fixed
precision, say 8 bits. Such fixed precision approximations have been introduced in
CABAC [19], however, it leads to approximation of results. Alternatively, we can
use a multiplexer which can implement look-up using physical circuits to compute
the return values. The second approach has been implemented in this work, as it
allows more flexibility in design and accuracy in computation.

For implementation, the input and output intervals to the Chaotic Map Iterator
are represented in 64 fixed point (0 bits integer and 64 bits fraction, shortly I.F 0.64)
arithmetic. The symbol probability has been quantized to 8 bits (I.F 0.8).

7.5.3 Binary Arithmetic Coder (BAC) Architecture

To implement BAC in proposed architecture, we target a design which processes
1 symbol (1 bit in this case) per cycle. The CMI has 1 bit symbol input, 8 bit symbol
probability and no bits for choice of chaotic map (there is only one map in this case).
The 9 bit look-up can be implemented using a 512 words RAM or Look-up Table.
One word is 16 bits—8 bits each for multiplication and addition coefficients. Alter-
natively, this can be implemented using a multiplexer and hardware adder/subtracter
to obtain the coefficients. The latter approach was used for BAC implementation.
The design was synthesized in Xilinx Virtex-6 XC6VLX75t FPGA using Xilinx
ISE Design Suite 12.0 environment. The same target FPGA, which is one of the low
end Virtex-6 family member is used in all synthesis/translate/map/place and routes.

The two 64 × 8 bit multiplications are mapped in hardware into 10 DSP48E
slices. A slice usage of 302 was obtained and the design achieved a clock frequency
of 510 MHz, with one symbol per clock cycle. The optimized implementation of
multiplication, using carry-chains of FPGA fabric was synthesized to remove the
use of DSP slices. This implementation requires 1585 slices and achieves a clock
frequency of 500 MHz. The throughput of this implementation is 1 bit per cycle
with a 500 MHz clock, i.e. 500 Mbps.

7.5.4 Binary Chaotic Arithmetic Coder and Encryption (BCAC)
Architecture

The architecture for BCAC differs from binary arithmetic coder in the sense that the
choice of chaotic map is made based on a key value, and is not precomputed. For
this implementation, the CMI has 1 bit symbol input, 8 bit symbol probability and
3 bits for choice of chaotic map (for binary case N = 2, hence number of different
chaotic maps is N2N = 8. The 12 bit look-up can be implemented using a 512 words
RAM or Look-up Table, with 16 bits word. Alternatively, we used 8-to-1 multiplexer
to obtain the coefficients corresponding to a key, each coefficient being generated
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based on value in Table 1 in [27]. The implementation on target FPGA gave a clock
frequency of 500 MHz, utilizing 321 slices and 10 DSP48E1 slices (which have
optimized multiplier and accumulator operation implemented in VLSI). Mapping
these multiplication to FPGA logic increased the slice usage to 1474, without any
change in achievable clock frequency.

The BCAC decoder hardware utilization was 173 slice LUT with five DSP
slices (806 slice LUTs with LUT multiplier) with a clock frequency of 510 MHz
(500 MHz). The 64 × 8 bit multiplier is implemented by ISE into five DSP slices.
However, the same multiplier can be optimized and implemented without hardware
multipliers using other multiplier such as square root multiplier, reconfigurable con-
stant multipliers etc. The hardware requirements are basically dependent on size of
Look-up logic which increases exponentially with increase of N . The throughput
of this implementation is 1 bit per cycle with a 510 MHz clock, i.e. 510 Mbps.
To consider the area effectiveness of this design, we consider throughput per slice,
with the second implementation where we implement multiplication in LUTs rather
than using DSP48E1 slices present in device. The throughput/slice for this design is
obtained as 322 Kb/slice.

7.5.5 Cost of Encryption

Comparing the BAC and BCAC architectures, we obtain a zero latency, same
throughput and little hardware overhead (20 slice LUTs) in implementing this en-
cryption scheme against AES or other schemes which have significant overhead. For
instance, Chang et al. [3] reports AES implementation using 156 slices, two Block
RAMs to obtain a lower clock of 306 MHz.

To increase the throughput per slice for a bitstream, we intuitively consider the
dimension of increasing the number of symbols in dictionary used in arithmetic
coding. For example—considering three or four symbols in the dictionary.

7.5.6 N -ary Chaotic Arithmetic Coder and Encryption (NCAC)
Coding

N -ary arithmetic encryption using the entire possible key space quickly turns out-
of-bounds for a FPGA device. Moving from two to three piece-wise linear maps,
we have a tremendous increase in key size. We implemented tri-nary CAC coder
in FPGA device to obtain a device usage of 492 slices and 10 DSP48E slices
(1800 slices without DSP slices), but the achievable clock frequency dropped to 127
MHz. The tri-nary decoder hardware utilization was 419 slice LUT with five DSP
slices (1052 slice LUTs with LUT multiplier) with a clock frequency of 442 MHz
(369 MHz). The hardware requirements are basically dependent on size of Look-up
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Fig. 7.10 N -ary arithmetic coding and encryption architectures: Comparative performance. The
# of slices, # of DSP slices (×100), clock frequency (MHz) and throughput per slice (×1000) are
reported in the figure. It can be observed that increasing the size of dictionary significantly reduces
the throughput. The figure is drawn by scaling the throughput/slice legend to consider the fact that
a four symbol dictionary will require half the words of a two symbol dictionary

logic which increases exponentially with increase of N (N |!2N ), making it infeasi-
ble to scale-up the throughput/slice.

A simple way to restrict this band-width explosion is to used the algorithm for
encryption proposed in [32]. They restrict the keyspace and instead use only a small
fragment of keys from the entire range, for encryption. However, the approach pre-
sented in [32] has other computationally inefficient parts.

The results are shown in Fig. 7.10. The number of slice LUTs is reported directly,
number of DSP slices is scaled directly and clock frequency is measured in MHz.
The throughput comparison is tricky because using a 4-symbol dictionary (4-ary
coding) will lead to reduced bitstream (around 50 % reduction) than the bitstream
generated by 2-symbol dictionary. Thus, to compare these values on a graph, we
multiply each throughput with N value (2 for binary) to indicate relative throughput.
It can be observed that increasing the size of dictionary significantly reduces the
throughput, even after such considerations due to exponential increase in hardware
usage for key implementation.

Although our experiment to scale to multiple-symbol dictionary failed, the rea-
son is not the same as for traditional designs for arithmetic coding [19]. Rather, the
key explosion is the main reason for such limitations. We next consider increasing
the system throughput by encoding multiple binary symbols in a single pass. This
approach is different from the previous approach in the sense that multiple proba-
bility values are not involved.
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Fig. 7.11 Multiple symbols per cycle (BAC): Comparative performance. The # of slices, # of DSP
slices (×10), clock frequency (MHz) and throughput per slice (×1000) are reported in the figure.
It can be observed that four symbols per cycle achieve highest throughput before LUT explosion
due to increased precision and maps

7.5.7 Multiple Symbol per Cycle Arithmetic Coding

Let us consider the case of arithmetic coding where we want to encode two symbols
in a single iteration of chaotic map. In this case, the chaotic map will spit into mul-
tiple (four instead of two) piece-wise maps. Arithmetic coding with encryption is
still going to suffer with band-width expansion, but we observe that the band-width
expansion is much less (or order of 2N ) instead of N2N . Consider, for example the
case where we want to encode two symbols together (‘01’ instead of ‘0’ and ‘1’ in
two separate iterations) using BAC. In this case, the resultant chaotic iterator will
have four (instead of two) piece-wise linear maps and their precision of implemen-
tation will be increased (16 instead of 8 bits). This analysis can be extended to three,
four or more symbols.

In this case, the increase is caused by increase in fixed point precision of coef-
ficients (and hence multipliers and adders), and increase in number of piece-wise
maps. However, against the case of MCAC where there was a band-width explosion
due to increase in key size, we observe a considerable different result of implemen-
tation on Virtex-6 device. These results are reported in Fig. 7.11. The results are in-
teresting to note, because contrasting with the traditional notion of one-symbol per
cycle, we show that we can scale up to four symbols per cycle and achieve a higher
throughput per slice. As we go from two to four, we observe a increase in through-
put which is then checked by the exponential increase in hardware resources caused
by multiple-symbol use. This value of 4 cannot be a device constraint (restrictions
due to finite area or size of device) because the pure LUT mapping based imple-
mentation requires only 5480 slices out of 43,000 slices present in target xc6vls75
device. The highest throughput achievable is 431 Kbits per slice for the case of four
symbols.
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For the sake of brevity, we have restricted our discussion in last sections to NCAC
and multiple-symbol BAC encoder, but the same trend follows for the decoder also.

7.6 Related Work

While we presented chaotic arithmetic coding in this paper, it is worth presenting
other notable work related to entropy coding using the approach of joint compres-
sion and encryption. We present a brief overview here, with pointers to original
research articles for further readings.

7.6.1 Multiple Huffman Tables

The encryption cipher and the entropy coder do bear some resemblance in that both
of them turn the original data into redundancy-free bit streams, which cannot be
decoded without certain information. For encryption, the information is the key; for
entropy coding, the information is the statistical model. It is important to explore
whether hiding this model could effectively prevent decoding of the compressed bit
stream. The authors in [33] propose the use of m statistical models instead of one to
overcome the problem of limited key/model space. The m models are alternatively
used to encode the input bit stream. By hiding the manner of swapping these models
and using it as a key, the size of key space increases exponentially in m. The basic
idea of this scheme, called Multiple Huffman Table (MHT) is enumerated below:

1. Choose m different Huffman coding tables. They are numbered from 0 to
(m − 1).

2. Generate a random vector P constituting of n integers of length �log2 m� bits.
3. Use pi (mod n) table to encode ith symbol.

Multiple Huffman tables can be derived without sacrificing compression effi-
ciency as follows: From a large pool of sample or training images or audio samples
choose a representative set of images which represent the entire section of input im-
ages. This representative set can be used to obtain one table. Using different sets we
can generate a large pool of Huffman tables.

Another, relatively simpler process can be used to generate Huffman tables. This
is called Huffman tree mutation. As shown in Fig. 7.12(a), a standard Huffman
tree has every left-hand-side branch labeled ‘0’ and every right-hand-side branch
labeled ‘1’. If we permute the label-pairs as indicated in Fig. 7.12, we will get a
new Huffman tree as shown in Fig. 7.12(b). For a Huffman table with t entries, its
Huffman tree would have t leaves and (t − 1) inner nodes and label-pairs, which
provides us the opportunity to make (t − 1) decisions about whether to permute
each label-pair. Therefore, 2t−1 Huffman trees can be derived.

The major advantage of MHT method is achieving encryption with a reasonably
high level of security while compression is unaffected requiring almost negligible
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Fig. 7.12 Procedure of MHT
encoding

Fig. 7.13 Procedure of RAC
encoding

additional overhead. Nevertheless, the basic MHT method is claimed to be only se-
cure under cipher-only and known-plaintext attack and is vulnerable under chosen-
plaintext attack. To improve the security, several kinds of enhanced MHT scheme
have been proposed by either inserting random bit in the encrypted bit stream or
integrating with a stream cipher [33]. Recently, another scheme via random rotation
in partitioned bit streams has been reported [34] and has been applied to a MHT sys-
tem [4]. In [39], the authors suggest empirical criteria for Huffman table selection
to alleviate known-plaintext and chosen-plaintext attacks.

7.6.2 Randomized Arithmetic Coding

Grangetto et al. [9] propose JPEG2000 encryption by randomized arithmetic coding.
They propose an efficient scheme to encrypt multimedia contents which adopt the
entropy coding approach, and propose a scheme that provides conditional access by
means of a modified AC stage. This scheme, called Randomized Arithmetic Coding
or RAC exploits the fact that arithmetic decoding is very sensitive to errors in the
compressed data, which tend to propagate throughout the decoded block. This oth-
erwise undesirable property can be used to design a robust multimedia encryption
cum compression algorithm. A single erroneous decoding step is able to cause an
irreversible drift, thus making the data decoded any further completely useless. The
proposed scheme changes the ordering of ‘0’ and ‘1’ intervals in a Binary Arith-
metic Coder (BAC) based on a key. Figure 7.13 shows the compression of a symbol
using two keys (say ‘000’ and ‘010’). The flip in second bit leads to pre-alignment
of p1 interval in arithmetic encoding process. The RAC approach can be applied to
any AC, including adaptive and context-based ACs (CABAC used in H.264 stan-
dard) and their multiplierless approximations, which are very popular in the major
international standards.

Although the arithmetic coder of the JPEG2000 pipeline is altered, the approach
has no influence on the compression performance. This can be attributed to the
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fact that compression performance of AC is determined by the choice of symbol
probabilities and length of symbol interval and not on interval beginning position.
The basic idea of their approach is to change the order of the probability intervals
in the arithmetic encoding procedure. It is a convention (agreed upon by both the
encoder and the decoder) regarding the choice of interval (either that of the most
probable or that of the least probable symbol) is the preceding one. In RAC, the
ordering of the intervals is chosen securely randomly (by using a random bit from
the PRNG). Selective/partial application of this encryption approach is possible.

Packet header information is left unencrypted. It is noted that their method might
be susceptible to known-plaintext attacks, but it is argued that these kinds of attack
are not relevant for the proposed encryption systems. Due to performance issues,
Grangetto et al. propose the usage of a weak PRNG (with a 32 bit key) based on
the standard rand function of the Linux C library. However, a key size of 32 bit
is too short for serious security. However, more secure and efficient PRNG can be
considered, e.g., AES in OFB mode.

Both total and selective encryptions are possible by choosing the layers or reso-
lution levels to encrypt. Selective encryption of regions-of-interest is made possible
since JPEG2000 is a code block based algorithm. To encrypt a region of interest,
we have to apply the encryption on the codeblocks contributing to precincts of the
region considered as presented in [20].

RBAC can be seen as a special case of BCAC where only two of the eight modes
of BCAC are used for encryption purposes (drawn in Figs. 7.2(a) and (e)).

7.6.3 Secure Arithmetic Coding

Wen et al. [30] modified the traditional AC by removing the constraint that a single
continuous interval is used for each symbol. However, they preserve the sum of
the lengths of intervals allocated to each symbol. This is achieved by splitting the
intervals associated with one of the symbols using a key. This modified AC is called
Key Splitting AC (KSAC), and it was shown that it can provide certain level of
security while introducing vanishing coding efficiency penalty. Aiming to provide
an AC system capable of offering high level of security, they suggested an enhanced
version called the secure AC (SAC) [13], by applying a series of permutations at the
input symbol sequence and the output codeword of the ISAC encoder.

Let S = s1s2 . . . sN be the symbol sequence to be encoded, and the splitting vector
be K = k1, k2, . . . , kN . The encoding procedure of KSAC is described as follows:

1. Set the initial interval I = [0,1) and set i = 1.
2. Fetch a symbol sj from S.
3. Partition the interval I according to p(A) and p(B) and ki as shown in Fig. 7.14.

Similarly, KSAC [30] can be represented in terms of piece-wise linear maps by
removing the condition of continuity of individual maps (ρi(x)). Each part ρi maps
a discontinuous interval on x-axis to the interval [0,1).
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Fig. 7.14 Procedure of SAC
encoding

7.7 Conclusion

In this work we presented a joint compression and encryption scheme for video/im-
ages using chaotic maps. We presented some SEs to alleviate the weaknesses of
presented scheme against known cryptanalysis.

The presented scheme incurs no loss to compression performance, has a simpler
decoder, while at the same time it encrypts data. It was shown to achieve higher
throughput than the naive encryption algorithms.
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Chapter 8
Conclusion

Abstract This book gave a glimpse to joint approaches to the design of secure
embedded multimedia systems.

This book gave a glimpse to joint approaches to the design of secure embedded mul-
timedia systems. We began with a literature review of existing techniques, to under-
stand the need of selective encryption considering the large volumes of multimedia
data. Next, we studied the basics behind joint encryption and compression schemes.
We studied various examples: Poly-DWT combined architectural optimization with
compression, SWT combined compression with encryption using DWT or Discrete
Wavelet Transform while CAC combined arithmetic coding based compression with
encryption. There are no hard and fast rules on how to approach the joint compres-
sion and encryption problem. But a strong background in image coding and sig-
nal processing with knowledge of encryption basics is required to propose a new
scheme which can ideally perform encryption at no extra computational cost, pro-
viding real-time or application specific security and also without compromising on
compression performance.

The authors sincerely hope that the readers are inspired to analyze themselves
different parts of the compression system and come up with new schemes, exper-
iment with them and test their security and privacy (offered) with the application
requirements.
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