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Abstract—In this work, we discuss an interpretation of
arithmetic coding using chaotic maps. We present a hardware
implementation using 64 bit fixed point arithmetic on Virtex-
6 FPGA (with and without using DSP slices). The encoder
resources are slightly higher than a traditional AC encoder, but
there are savings in decoder performance. The architectures
achieve clock frequency of 400-500 MHz on Virtex-6 xc6vlx75
device.

I. I NTRODUCTION

Arithmetic coding is a data compression technique that
encodes data by creating a code string which represents a
fractional value on the interval [0, 1). When a string is com-
pressed using arithmetic coder, frequently-used characters
are stored with fewer bits and not-so-frequently occurring
characters are stored with more bits, resulting in fewer bits
used in total [1]

This paper discusses arithmetic coding from a slightly
different perspective. Recent work has established how arith-
metic coding can be viewed as an iteration on piece-wise
linear chaotic maps [2], [3]. Further, many researchers have
studied the use of arithmetic coding for joint encryption
and compression [4], [5], [6]. In this paper, we extend this
discussion to hardware community - to study the hardware
optimizations in design of such schemes. Particularly, we
study the implementation of arithmetic coding using piece-
wise chaotic maps [2], [3]. As we shall study, this imple-
mentation has lower decoder requirements than the com-
mercial implementations. The reduced decoding efficiency
of arithmetic coding allows it to trend towards the low
computational complexity of Huffman coders, allowing BAC
to enter embedded systems market. The aspects of context-
modeling and adaptation and renormalization, as done in
CABAC coder are beyond the scope of this work, where we
focus on architectural optimizations on encoder and decoder
processes. It allows simultaneous encryption of multimedia
content without computational overheard.
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Scope of the work

In the regular coding mode, prior to the actual arithmetic
coding process the given binary data enters the context
modeling stage, where a probability model is selected such
that the corresponding choice may depend on previously
encoded syntax elements. Then, after the assignment of a
context model, the bin value along with its associated model
is passed to the regular coding engine, where the final stage
of arithmetic encoding together with a subsequent model
updating takes place. We shall restrict the focus of further
discussions on the final arithmetic encoding (and decoding)
stages of CABAC coder.

Arithmetic coding based encryption schemes have been
proposed in research literature for joint compression and
encryption purposes [6], [?]. It would be interesting to
integrate both coding and encryption using chaotic maps at
a computational complexity lower than existing implemen-
tations. This motivates the need of coding and encryption
architecture using chaotic maps. A description of equiva-
lence between binary arithmetic coding and chaotic maps is
given in earlier works [3], [6].

II. H ARDWARE ARCHITECTURE

In this section, we discuss the hardware architecture for
arithmetic coding using chaotic maps, and N-ary chaotic
arithmetic encryption.

The chaotic encoder operation inverse inverse mapping of
interval [0,1) on the chaotic map according to input symbol.
For binary arithmetic coder, we have a fixed map to be
iterated in each cycle.

First, the control unit receives the input bit stream, which
is passed on to the chaotic map Iterator (CMI). The control
unit passes the bitstream, one symbol per cycle (unless
in the case of multiple symbol encoding, which will be
discussed later). For encoding, the initial interval passed to
CMI is [0,1), which is transmitted as the beginning (Bn)
and end (En) interval values. Both the intervals are then
iterated over CMI (using two instances of CMI), and then
the output is sorted so thatBn < En. If the difference
(Dn = En − Dn) is lower than a threshold, we need
to renormalize the encoder. The renormalization procedure
for arithmetic coding has been discussed in [7]. A similar



extension of renormalization procedure may be possible for
chaotic maps. But, for the evaluation designs considered in
this work, we have considered 64 bit encoder without any
renormalization procedure.

In case of decoding, Control Unit (CU) transmits the
coded symbol into CMI, which is then iterated over Piece-
wise linear map and reported back to CU. The CU makes
a comparison with chaotic map indicated by the key and
outputs a single bit output.

CMI has a multiplier and an adder to perform chaotic
iteration. The multiplication and addition coefficients are
obtained from a look-up table/ RAM collating the input
symbol, key value and probability value as the input address.
The Look-ed up value or a word is demultiplexed to obtain
the multiplication and addition coefficients. This option can
work fine for at most binary case, and for the case wherep

value is limited to fixed precision, say 8 bits. Such fixed pre-
cision approximations have been introduced in CABAC [8],
however it leads to approximation of results. Alternatively,
we can use a multiplexer which can implement look-up using
physical circuits to compute the return values. The second
approach has been implemented in this work, as it allows
more flexibility in design and accuracy in computation.

For implementation, the input and output intervals to the
Chaotic Map Iterator are represented in 64 fixed point (0 bits
integer and 64 bits fraction, shortly I.F0.64) arithmetic. The
symbol probability has been quantized to8 bits (I.F 0.8).

In BCAC architecture, the choice of chaotic map is made
based on a key value, and is not precomputed. For this
implementation, the CMI has 1 bit symbol input, 8 bit
symbol probability and 3 bits for choice of chaotic map
(for binary caseN = 2, hence number of different chaotic
maps isN2N = 8. The 12 bit lookup can be implemented
using a 512 words RAM or Look-up Table, with 16 bits
word. Alternatively, we used 8-to-1 multiplexer to obtain
the coefficients corresponding to a key, each coefficient
being generated based on value in Table 1 in [6]. The
implementation on target FPGA gave a clock frequency
of 500 MHz, utilizing 321 slices and 10 DSP48E1 slices
(which have optimized multiplier and accumulator operation
implemented in VLSI). Mapping these multiplication to
FPGA logic increased the slice usage to 1474, without any
change in achievable clock frequency.

The BCAC decoder hardware utilization was 173 slice
LUT with 5 DSP slices (806 slice LUTs with LUT mul-
tiplier) with a clock frequency of 510 MHz (500 MHz).
The 64x8 bit multiplier is implemented by ISE into 5
DSP slices. However, the same multiplier can be optimized
and implemented without hardware multipliers using other
multiplier such as square root multiplier, reconfigurable
constant multipliers etc. The hardware requirements are ba-
sically dependent on size of Look-up logic which increases
exponentially with increase of N. The throughput of this
implementation is 1 bit per cycle with a 510 MHz clock,

i.e. 510 Mbps. To consider the area effectiveness of this
design, we consider throughput per slice, with the second
implementation where we implement multiplication in LUTs
rather than using DSP48E1 slices present in device. The
throughput/ slice for this design is obtained as 322 Kb/slice.

III. C ONCLUSION

In this paper, we presented architecture for simultaneous
coding and encryption using chaotic maps. After presenting
the hardware requirements and computations involved in
chaotic maps, we mapped these designs into a Virtex-6
FPGA to obtain a performance analysis on real hardware.
This work is one of the earliest hardware implementation of
chaotic maps, first reported implementation of chaotic maps
for simultaneous coding and encryption.

We are looking for, and encourage other readers also for
future work in incorporating re-normalization and contextto
this encoder, so that this mode can be added to CABAC or
other encoders.
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