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Abstract

Data mining techniques are a rapidly emerging class of
applications that have widespread use in several fields. One
important problem in data mining is Classification, which
is the task of assigning objects to one of several predefined
categories. Among the several solutions developed, Deci-
sion Tree Classification (DTC) is a popular method that
yields high accuracy while handling large datasets. How-
ever, DTC is a computationally intensive algorithm, and as
data sizes increase, its running time can stretch to several
hours. In this paper, we propose a hardware implementation
of Decision Tree Classification. We identify the compute-
intensive kernel (Gini Score computation) in the algorithm,
and develop a highly efficient architecture, which is further
optimized by reordering the computations and by using a
bitmapped data structure. Our implementation on a Xilinx
Virtex-II Pro FPGA platform (with 16 Gini units) provides
up to 5.58× performance improvement over an equivalent
software implementation.

1 Introduction
Data mining is the process of transforming raw data

into actionable information that is nontrivial, previously un-
known and is potentially valuable to the user. Data mining
techniques are used in a variety of fields including marketing
and business intelligence, biotechnology, multimedia, and
security. As a result, data mining algorithms have become
increasingly complex, incorporating more functionality than
in the past. Consequently, there is a need for faster execu-
tion of these algorithms, which creates ample opportunities
for algorithmic and architectural optimizations.

Classification is an important problem in the field of data
mining. A classification problem has an input dataset called
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the training set which consists of example records with a
number of attributes. The objective of a classification algo-
rithm is to use this training dataset to build a model which
can then be used to assign unclassified records into one of
the defined classes [6]. Decision Tree Classification (DTC)
is a simple yet widely-used classification technique. In
DTC, inferring the category (or class label) of a record in-
volves two steps. The first task involves building the de-
cision tree model using records for which the category is
known beforehand. The decision tree model is then applied
to other records to predict their class affiliation.

Decision trees are used for various purposes, such as de-
tecting spam e-mail messages, categorizing cells as malig-
nant or benign based upon the results of MRI scans, and
classifying galaxies based on their shapes. They yield com-
parable or better accuracy when compared to other models
such as artificial neural networks, statistical, and genetic
models. Decision tree-based classifiers are attractive be-
cause they provide high accuracy even when the size of the
dataset increases [4].

Recent advances in data extraction techniques have cre-
ated large data sets for classification algorithms. However
conventional classification techniques have not been able to
scale up to meet the computational demands of these inputs.
Hardware acceleration of classification algorithms is an at-
tractive method to cope with the increase in execution times
and can enable algorithms to scale with increasingly large
and complex data sets. This paper analyzes the DTC al-
gorithm in detail and explores techniques for adapting it to
a hardware implementation. We first isolate the compute-
intensive kernel in the decision tree induction process, called
Gini score calculation, and then rearrange the computations
in order to reduce hardware complexity. We also use a
bitmapped index structure for storing class IDs that mini-
mizes bandwidth requirements of the DTC architecture. To
the best of our knowledge, this is the first published hard-
ware implementation of a classification algorithm.

We implement our design on an FPGA platform, as their
reconfigurable nature provides the user ample flexibility, al-
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lowing for customized architectures tailored to a specific
problem and input data size. Another property of FPGAs
that is important for our design is that they allow the design
to scale upward easily as process technology allows for ever-
larger gate counts. Overall, our system is able to achieve a
speedup of 5.58× as compared to software implementations
on the experimental platform we selected.

The remainder of this paper is organized as follows. Sec-
tion 2 contains the related work regarding hardware imple-
mentations of data mining algorithms. Section 3 describes
the DTC algorithm and Gini score calculation in detail. A
description of our architecture and techniques used to accel-
erate the Gini score computation are given in Section 4. Sec-
tion 5 contains implementation details and results, followed
by a summary of the overall effort in Section 6.

2 Related Work

There has been prior research on hardware implementa-
tions of data mining algorithms. However, to the best of our
knowledge, ours is the first attempt to implement decision
tree classification in hardware. In [5] and [9], k-Means clus-
tering is implemented using reconfigurable hardware. Baker
and Prasanna [2] use FPGAs to implement and accelerate
the Apriori [1] algorithm, a popular association rule min-
ing technique. They develop a scalable systolic array archi-
tecture to efficiently carry out the set operations, and use a
‘systolic injection’ method for efficiently reporting unpre-
dicted results to a controller. In [3], the same authors use
a bitmapped CAM architecture implementation on a FPGA
platform to achieve significant speedups over software im-
plementations of the Apriori algorithm. Compared to our
work, these implementations target different classes of data
mining algorithms.

Several software implementations of DTC have been pro-
posed (e.g., SPRINT [8], ScalParC [7]), which use com-
plex data structures for efficient implementation of the split-
ting and redistribution process. These implementations fo-
cus on parallelizing DTC using coarse-grain parallelization
paradigms. Our approach is complementary to these meth-
ods, as we tend to use a fine-grained approach coupled with
reconfigurable hardware to improve performance.

3 Introduction to Decision Tree Classification

Formally, the classification problem may be stated as fol-
lows. We are given a training dataset consisting of several
records. Each record has a unique record ID and is made up
of several fields, referred to as attributes. Attributes may be
continuous, if they have a continuous domain, or categorical
if their domain is a finite set of discrete values. The classify-
ing attribute or class ID is a categorical attribute. The DTC
problem involves developing a model that allows prediction
of the class of a record in terms of its remaining attributes.

A decision tree model consists of internal nodes and
leaves. Each of the internal nodes has a splitting decision
and splitting attribute associated with it. The leaves have
a class label assigned to them. Building a decision tree
model from a training dataset involves two phases. In the
first phase, a splitting attribute and a split index are chosen.
The second phase involves splitting the records among the
child nodes based on the decision made in the first phase.
This process is recursively continued until a stopping cri-
terion is met. At this point, the decision tree can be used
to predict the class of an incoming record, whose class ID
is unknown. The prediction process is relatively straight-
forward: the classification process begins at the root, and a
path to a leaf is traced by using the splitting decision at each
internal node. The class label attached to the leaf is then
assigned to the incoming record.

Choosing the split attribute and the split position is a crit-
ical component of the decision tree induction process. In
various optimized implementations of decision tree induc-
tion [8, 7], the splitting criteria used is to minimize the Gini
index of the split.

3.1 Computing the Gini Score

The Gini score is a mathematical measure of the inequal-
ity of a distribution. Calculating the Gini value for a par-
ticular split index involves computing the frequency of each
class in each of the partitions. The details of the Gini calcu-
lation can be demonstrated by the following example. As-
sume that there are R records in the current node. Also,
assume that there are only 2 distinct values of class IDs,
hence there can be only 2 partitions into which the parent
node can be split. The algorithm iterates over the R records
and computes the frequencies of records belonging to dis-
tinct partitions. The Gini index for each partition is then
given by Ginii = 1−∑1

j=0(
Rij

Ri
)2, where Ri is the number

of records in partition i, among which Rij records bear the
class label j. The Gini index of the total split is then calcu-
lated by using the weighted average of the Gini values for
each partition, i.e.,

Ginitotal =
1∑

i=0

Ri

R
· Ginii (1)

The values of Rij are stored in a count matrix. The partitions
are formed based on a splitting decision, which depends on
the value of a particular attribute. Each attribute is a possible
candidate for being the split attribute. Hence this process
of computing the optimal split has to be carried out over
all attributes. Categorical attributes have a finite number of
distinct class ID values, so there is little benefit in optimizing
Gini score calculation for such attributes.

However, the computation cost of the minimum Gini
score for a continuous attribute is linear in the number of
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Figure 1. Architecture for Decision Tree Classification

records. In the case of a continuous attribute A, it is as-
sumed that two partitions are formed, based on the condition
A < v, for some value v in its domain. It is initially assumed
that one of the partitions is empty, and the second partition
contains the R records. At the end of the Gini calculation
for a particular split value, the split position is moved down
one record, and the count matrix is updated according to the
class ID of the record at the split position. The Gini value
for the next split position is calculated and compared to the
present minimum Gini value.

Therefore, a linear search is made for the optimum value
of v, by evaluating the Gini score for all possible splits. This
process is repeated for each attribute, and the optimum split
index over all the attributes is chosen. Therefore, the to-
tal complexity of Gini calculation is O(|R| ∗ |A|), where
|R| and |A| represent the number of records and number
of attributes, respectively. Since each attribute needs to be
processed separately in linear time, it becomes necessary
to maintain a sorted list of records for each attribute. This
entails vertically partitioning the record list into several at-
tribute lists, which consist of a record ID and attribute value.
Each attribute list is sorted, thus introducing a random order
among the records in various attribute lists.

Previous work has shown that the largest fraction of the
execution time of representative implementations is spent in
the split determining phase [10]. For example, ScalParC [7],
which uses a parallel hashing paradigm to efficiently map
record IDs to nodes, spends over 40% of its time in the Gini
calculation phase. As the number of attributes and records
increase, it is expected that the importance of Gini calcu-
lation will increase. In this paper, we design an architec-
ture that allows for fast calculation of the split attribute and
split index. By using hardware to implement this operation,
we aim to significantly reduce the running time of the Gini

calculation process, and in turn, the decision tree induction
process.

4 Hardware Architecture

Our goal is to design an architecture that will compute the
Gini score using minimal hardware resources, while achiev-
ing significant speedups. The bottleneck in Gini calcula-
tion is the repetition of the process for each of the attributes.
Therefore, it is clear that an architecture for DTC should al-
low for the handling of multiple attributes simultaneously.
Our architecture consists of several computation modules,
referred to as ‘Gini units’, that perform Gini calculation for
a single attribute. In our generic architecture we assume
that we have nG Gini units. If nG > |A|, then the entire
Gini computation can be completed in one phase. Other-
wise � |A|

nG� runs are required to compute the minimum Gini
index for a set of records. The number of Gini units nG that
can be accommodated depends on the hardware platform.

The high-level DTC architecture is presented in Figure
1. There is a DTC controller component that interfaces with
the software and supplies the appropriate data and signals to
the Gini units. The architecture functions as follows: when
the software requests a Gini calculation, it supplies the ap-
propriate initialization data to the DTC controller. The DTC
controller then initializes the Gini units. The software then
transmits the class ID information required to compute the
Gini score in a streaming manner to the DTC controller. The
format of this data can be tweaked to optimize performance,
which will be discussed in the following sections. The DTC
controller then distributes the data to the Gini units, which
perform the Gini score computation for that level. At the end
of each cycle, the Gini score calculated at that split is com-
pared to the scores obtained at the other attributes using a
tree-like structure of hardware comparators. The minimum
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Gini value among all attributes at that cycle is then com-
pared to the global minimum Gini score. If the current Gini
score is less than the global minimum, the global minimum
is updated to reflect the current split point and split attribute.
This process is carried out until all the records have been
streamed through the Gini units. The global minimum value
at that stage is then transmitted to the DTC controller, and
subsequently to the software. If nG < |A|, several runs of
the above process are required to obtain the split value and
the split attribute.

4.1 Bitmap Generation

There is ample scope for optimization of the Gini com-
putation architecture. Commonly, the class ID assumes only
2 values, ‘0’ and ‘1’. This allows us to optimize the data
transfer process to the Gini units. In software, the class IDs
are stored in an integer data type. Transmitting the class IDs
to the Gini units in the raw form would be very inefficient,
as in each input cycle, a total of |A| · S bytes of data would
have to be transmitted, where S represents the size of the
data type used by the software implementation to store the
class IDs. In hardware, a single bit is sufficient to represent
the class ID. Thus only |A| bits are required to represent a set
of class ID inputs for a single cycle. A bitmap representation
is ideally suited to represent the data in this format. There-
fore we modify the software to generate bitmaps of class ID
information. It should be noted that our architecture can be
easily extended to support a wider range of class ID values.

Apart from the initial cycle, this procedure is carried out
each time the records are distributed among the child nodes,
after the split position and attribute have been decided. This
step has to be performed irrespective of the data representa-
tion format used, and hence the additional overhead caused
due to bitmap generation is minimal. The size of the bitmaps
generated can be adjusted to equal the number of physical
Gini units available. When the DTC controller receives the
bitmap containing the class IDs, it distributes them among
the Gini units. Each Gini unit then uses the class informa-
tion to compute the Gini score at that stage.

4.2 Optimizing the Gini Unit

From a hardware perspective, we would like to minimize
the number of computations and their complexity while cal-
culating the Gini score. An implementationion of the hard-
ware in which the Gini score calculation is unaltered will
be very complex and inefficient. A key observation is that
the absolute value of the Gini score computed is irrelevant
to the algorithm. It is only the split value and split attribute
that are required. Therefore, we attempt to simplify the Gini
computation to require minimal hardware resources, while
generating the same value of split position and split attribute
generated as earlier. Considering our assumption of only
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Figure 2. Count matrix / Gini unit architecture

two distinct values for the class ID, the Gini score computa-
tion can be simplified. First, we rewrite equation 1 for two
class IDs as follows:

gini0 = 1 − R00

R0

2

− R01

R0

2

(2)

gini1 = 1 − R10

R1

2

− R11

R1

2

(3)

ginitotal =
R0

R0 + R1
· gini0 +

R1

R0 + R1
· gini1 (4)

If the Gini unit were required to compute the above expres-
sion, it would require 6 multipliers, 6 dividers and 7 adders,
severely limiting our ability to accommodate multiple Gini
units on the hardware platform. It can be seen that

gini0 =
R0

2 − R00
2 − R01

2

R0
2 (5)

gini1 =
R1

2 − R10
2 − R11

2

R1
2 (6)

By definition,
R0 = R00 + R01

and
R1 = R10 + R11 (7)

Therefore, the equations 5 and 6 can be rewritten as

gini0 =
2 · R00 · R01

R0
2 (8)

gini1 =
2 · R10 · R11

R1
2 (9)

ginitotal =
2 · R00 · R01

R0 · (R0 + R1)
+

2 · R10 · R11

R1 · (R0 + R1)
(10)

4



Case    “0”

R00 = R00 + 1;

R10 = R10 - 1;

[R00+R01]= [R00+R01] + 1

[R10+R11]= [R10+R11] - 1

[R00*R01]= [R00*R01] + R01

[R10*R11]= [R10*R11] - R11

Case    “1”

R01 = R01 + 1;

R11 = R11 - 1;

[R00+R01]=[R00+R01] + 1

[R10+R11]= [R10+R11] - 1

[R00*R01]= [R00*R01] + R00

[R10*R11]= [R10*R11] - R10

Figure 3. Gini unit operations

We know that R0+R1 represents the total number of records
and is a constant for all split positions and split attributes.
Hence a simplified computation that is equivalent can be for-
mulated as

gini
′
total =

R00 · R01

R00 + R01
+

R10 · R11

R10 + R11
(11)

The above equation represents a value, which when mini-
mized, will give the same split index and split attribute as
that of the original Gini computation. This design can be
improved upon by observing that in each cycle, depending
on whether the incoming class ID is ‘0’ or ‘1’, only one of
R00 or R01 is incremented by one. Similarly, only one of
R10 or R11 decreases by a value of 1 in each cycle. Fur-
thermore, the values of R00 · R01 can be computed easily
without using a multiplier. This stems from the fact that the
product will increase by only a value of either R00 or R01 in
each cycle, depending on the incoming class ID. Thus, both
the products R00 ·R01 and R10 ·R11 can be computed using
a register and an adder/subtractor, instead of using a multi-
plier. It should be noted that the initial values of R10, R11,
R10 + R11 and R10 ·R11 are computed using software, and
the DTC unit loads these values into the gini units before the
start of every new iteration.

The final architecture of each Gini unit, after the appli-
cation of the above modifications, can be seen in Figure 2.
Also the operations to be carried out when the incoming
class ID is either ‘0’ or ‘1’ are detailed in the Figure 3. It can
be seen that the complex Gini computation has been simpli-
fied to a great extent, and can be performed using minimal
hardware resources.

5 Implementation and Results

The DTC architecture was implemented on a Xilinx
ML310 board which is a Virtex-II Pro-based embedded de-
velopment platform. It includes an Xilinx XC2VP30 FPGA
with two embedded PowerPC processors, 256 MB DDR
DIMM, 512 MB compact flash card, PCI slots, ethernet and
standard I/O on an ATX board. The XC2VP30 FPGA con-
tains 13696 slices and 136 Block RAM modules. We used

256 MB DDR 
DIMM

PPC 405

OCM
BRAM

PLB
Bus

DTC
MODULE

D
D
R

OCM BUS

PERIPHERALS

Figure 4. Experimental setup

Xilinx XPS 8.1i and ISE 8.1i softwares to implement our
architecture on the board.

Figure 4 shows the experimental setup for the DTC ar-
chitecture. The figure does not show the entire peripheral
components supported by the XC2VP30 FPGA, only those
relevant to the design. The DTC unit is implemented as a
custom peripheral which is fed by the PowerPC. The Pow-
erPC reads in input data stored in DDR DIMM, initializes
the DTC component, and supplies class ID data at regular
intervals. The OCM BRAM block stores the instructions for
the PowerPC operation.

While implementing the design, several tradeoffs were
considered. The use of floating point computations com-
plicate the design and increase the area overhead, hence
we decided to perform the division operations using only
fixed-point integer computations. To verify the correctness
of our assumptions, we implemented a version of ScalParC
that uses only fixed point values. It was found that the de-
cision trees generated by both the fixed-point and floating-
point versions were identical, thus validating our choice of
a divider performing fixed point computations. The divider
output was configured to produce 32 integer bits and 16 frac-
tional bits, a choice made keeping in mind the size of the
dataset and precision required to produce accurate results.
The divider was also pipelined in order to handle multiple
input class IDs at the same time.

We used the above-mentioned tools to measure the area
occupied and clock frequency of our design. Due to the in-
herent parallelism in the DTC module, it can take a new set
of class ID input every cycle. However, we were limited by
both the bus width of the PowerPC platform and the max-
imum number of Gini units that could fit upon the FPGA
device (limit of 16 for the XC2VP30). The DTC module is
designed to take as input a maximum of 32 bits per cycle.

Table 1 shows the variation in area utilization and per-
formance with varying number of Gini computation units.
As expected, the required area increases as the number of
Gini units in the design is increased. We have also observed
that a major portion of the slices are occupied by the divider
units. The area occupied by the dividers may be decreased
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nG Nslices (%)
fmax Throughput

(MHz) (Gbps)
2 4254 (31%) 102.533 3.28
4 6081 (44%) 102.341 3.27
8 8137 (59%) 100.746 3.22

16 13697 (99%) 100.361 3.21

Table 1. Variation of resource utilization with
number of Gini units

by cutting down on the pipeline length, but this will have
a detrimental effect on performance. The maximum clock
frequency and throughput of the design are, however, sta-
ble, thus indicating the scalability of our design when im-
plemented on real hardware. This is expected since all the
computations of the Gini units are performed in parallel.

The IBM DataQuest Generator was used to generate the
data used in our performance measurements. The Gini cal-
culation was also implemented in software (using C) and run
on the PowerPC under identical conditions. The speedup
provided by hardware was measured in terms of the ratio of
number of cycles taken by the hardware-enabled design to
those taken by the software implementation. Figure 5 shows
the speedups obtained when the DTC module was tested on
the FPGA. The results show significant speedups over soft-
ware implementations. As expected, the speedup increases
with the number of Gini units on board, due to the par-
allelism offered by additional hardware computation units.
The experimental hardware imposed a size limitation of 16
Gini units, which achieves a speedup of 5.58×. It would
be possible to achieve larger speedups using higher-capacity
FPGAs.

Given the fraction of execution time that the Gini score
calculation takes in ScalParC [7, 10], the overall speedup of
this particular implementation of DTC can be estimated to
be 1.5×. A direct comparison of our implementation with
other existing hardware implementations [2, 3] is difficult
since the structure and goals of the underlying data mining
algorithms are vastly different.

6 Conclusion

In this paper, we have designed a hardware implemen-
tation of a commonly used data mining algorithm, Decision
Tree Classification. The Gini score calculation is determined
to be the critical component of the algorithm. We have
developed an efficient reconfigurable architecture to imple-
ment Gini score calculation. The arithmetic calculations re-
quired to compute the optimal split point were then simpli-
fied to reduce the hardware resources required. The design
was implemented on a FPGA platform. The results show
that our designed architecture yields up to 5.58× speedup
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Figure 5. DTC module speedups

with 16 Gini units, while achieving throughput scalability
as the number of Gini units on board increases.
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