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Abstract. Trusted software execution, prevention of code and data tam-
pering, authentication, and providing a secure environment for software
are some of the most important security challenges in the design of em-
bedded systems. This short paper evaluates the performance of a hard-
ware/software co-design methodology for embedded software protection.
Secure software is created using a secure compiler that inserts hidden
codes into the executable code which are then validated dynamically
during execution by a reconfigurable hardware component constructed
from Field Programmable Gate Array (FPGA) technology. While the
overall approach has been described in other papers, this paper focuses
on security-performance tradeoffs and the effect of using compiler op-
timizations in such an approach. Our results show that the approach
provides software protection with modest performance penalty and hard-
ware overhead.

1 Introduction

The primary goal of software protection is to reduce the risk from hackers who
compromise software applications or the execution environment that runs appli-
cations. Our approach to this problem has been described in an earlier paper [1].
In this approach, bit sequences are inserted into the executable by the compiler
that are then checked by supporting hardware during execution. The idea is that,
if the code has been tampered, the sequence will be affected, thereby enabling
the hardware to detect a modification. At this point, the hardware component
can halt the processor.

Observe that the compiler can instrument executables with hidden codes
in several ways. The most direct approach is to simply add codewords to the
executable. However, this has the disadvantage that the resulting executable
may not execute on processors without the supporting hardware, and may be
easily detected by an attacker. Our approach is to employ the freedom that the
compiler has in allocating registers. Because there are many choices in allocating
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registers, compilers can use these choices to represent binary codes that can then
be extracted by the hardware. And because the register allocation is a valid one,
the executable will run on processors that do not perform any checking.

The hardware support is needed so that the checking is itself not compro-
mised, as is possible with software checking methods [10]. While it is generally
expensive to build custom hardware support for this type of run-time check-
ing, Field Programming Gate Array (FPGA) technology provides an attractive
alternative. These programmable fabrics are today available with many com-
mercial processors, and can easily be configured to perform the kind of checking
during runtime. Because FPGA’s are usually on-chip, and because they can
be optimized to perform simple computations, they are also space and time effi-
cient. Thus, the combination of compiler and FPGA technology makes the whole
approach worthy of investigation. The purpose of this paper is to explore the
performance of this approach.

Several factors can affect performance when actively checking an executable
at runtime. The computation time in the FPGA depends on the lengths of
the codes, their spread across the executable and how often the checking is per-
formed. In particular, we consider the lengths of basic blocks and simple compiler
techniques such as loop unrolling. We find that, overall, the approach imposes a
modest penalty. At the same time, we find that loop-unrolling provides negligible
performance benefit, thereby suggesting that other compiler techniques will be
needed to further reduce the performance overhead.

Because a complete survey of software protection and security-driven compi-
lation is presented in some of our earlier work [1, 9], we refer the reader to these
papers for reviews of related work.

2 The Compiler/Hardware Approach

Figure 1 depicts the overall system architecture using our earlier approach [1].
The right side of Figure 1 shows a processor and FGPA on a single chip. As
instructions stream into the chip, the FGPA secure component extracts the reg-
ister information and uses the stream of registers to extract the hidden sequences,
which are then checked. All the checking is performed by the FPGA itself.

To see how this works, consider a sample program as shown in Figure 2. The
code on the left shows the output of standard compilation, before our register
encoding is performed. The compiler approach replaces the standard register
allocation algorithm with one that embeds keys. We use an even-numbered reg-
ister to encode a 0 (zero) from the binary key, and an odd-numbered register
to encode a 1 (one). This process continues until all the available “definition”
registers of the basic block are assigned according to the key. The reverse process
is performed in the FPGA.

In this paper, we consider two fundamental ways in which an embedded bit-
sequence can be used. In the first method, the extracted bit sequence is compared
against a pre-stored key in the FPGA. This, however, requires addressing the
problem of key distribution. For systems in which such distribution or storage is
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Fig. 1. System architecture

not possible, a simpler (albeit less secure) approach can be used. In this case, the
bit-sequence is compared against a specific (say, the first) opcode in the basic
block. The overall technique relies on the fact that, when the code is tampered
with, the bit sequence will be disrupted with high probability.

Consider, for example, the second flavor mentioned above. In Figure 2, the op-
code of the first instruction of a basic block yields a key of ’110100000110000000
00’. Since the first bit of the key is ’1’ the register assigned to the first instruction
is ’R1’. From the use-def and def-use chain of the registers, the instructions that
depend on the first instruction’s register ’R1’ are updated. In the second instruc-
tion, register ’R1’ is once again chosen, as the bit value is ’1’ and the register
is also redefined. An even register ’R0’ is chosen for the fourth instruction from
the available even registers, since the third bit of the key is ’0’. This register’s
“use” locations are then updated. This process continues until all the registers
are modified based on the key chosen. A modified program with a new register
sequence is thus obtained. For the above example, Figure 2 shows the result.

How is tampered code detected? Consider an insertion of instructions. Clearly,
any instruction that uses registers is likely to disrupt the bit sequence with high

Fig. 2. Register encoding example with key 11010000011
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probability, and will therefore be detected. Although not discussed here, it is
easy to select opcodes that are at a fixed distance away, so that any insertion
or deletion of instructions will result in a different opcode being checked, and
therefore in failing the test. The security of a program can be increased by using
private keys instead of opcodes of the instructions. This includes additional per-
formance overhead of storing the keys in FPGA but can be tuned to meet the
security objectives. Note that processors with caches will need to allow FPGA
to probe the cache to fetch instructions of the encrypted basic blocks that span
across multiple cache blocks.

3 Experimental Analysis

3.1 Experimental Framework

Our experimental framework uses the gcc cross-compiler targeting the ARM
instruction set. The register allocation pass, the data flow analysis, loop unrolling
and code generation pass of GCC were modified to incorporate the register-
encoding scheme. The output of the compiler consists of the encrypted ARM
executable and a description file for the FPGA.

The FPGA is simulated using the Simplescalar toolset [8]. The FPGA is
placed between L1 cache and the main memory. It has access to the cache con-
troller and can probe the cache. We assume that there is no L2 Cache. The FPGA
is configured like a Virtex-II XC2V8000 component which is an ARM1020E type
processor running at a chosen clock speed of 150 Mhz but with a processor clock
rate of 300 MHz. The size of the on-board memory is 3MB with a memory access
delay of 2 processor cycle (1 FPGA Cycle) and delay for comparing values is 2
processor cycles. The L1 cache is configured with 16 sets with the block size and
associativity of cache being 32 and 64 respectively. The cache follows the Least
Recently Used policy with a cache hit latency of one cycle. Main memory access
latency is 15 and 2 cycles for the first and rest of the data respectively. The width
of the FPGA operator is 8 bytes, nonsequential access latency being 10 cycles
and sequential access latency being 10 cycles respectively. The FPGA validates
each cache block that is being fetched from the main memory and placed into
the L1 cache.

3.2 Benchmarks

Diverse benchmarks such as Susan (an image recognition package for Magnetic
Resonance Images), Dijkstra (the well-known shortest path algorithm), Fast
Fourier Transform, Rijndael (the AES encryption/decryption algorithm) and
Patricia (a trie data structure) are used. We study the effect on overall system
performance using basic blocks of varying lengths for purposes of encoding the
bit sequences. The results are normalized to the performance of unencrypted
case as shown in Figure 3 (left side). The overall performance for most of the
benchmarks is within 78% of the unencrypted case. Benchmarks Patricia and
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Fig. 3. Performance as a function of encryption of varying basic block lengths be-

fore(left side) and after(right side) performing loop unrolling on the benchmarks. (25%,

50%, 75% and 100% basic blocks are encrypted)

Dijkstra suffered a penalty of above 23%. This is because of instruction cache
misses that occur in the FPGA that incur high cache miss penalty. Benchmarks
Rijndael and FFT performed the best. Dijkstra suffered higher penalty due to
large number of looping instructions being committed and it also runs longer.

The effect of loop unrolling on the performance of the benchmarks was stud-
ied by selecting the basic blocks with longer instruction count. The main pur-
pose of performing loop unrolling on the benchmarks is to increase the code size
thereby increasing the number of instructions in the basic block, so that keys of
greater length can be embedded into them. Further loop unrolling reduces loop
overheads such as index variable maintenance and control hazards in pipelines,
increases the number of statements in basic block to optimize and also improves
the effectiveness of other optimizations such as common-subexpression elimina-
tion, software pipelining, etc. But its disadvantage is that the unrolled version of
the code is larger than the rolled version, thereby having a negative impact on
the performance on effectiveness of instruction cache. The effect of loop unrolling
on the benchmarks is shown in Figure 3 (right side). The optimization had lit-
tle effect on Susan and Rijndael benchmarks. FFT suffered a 0.1% decrease in
performance but performance of both computationally intensive Dijkstra and
Patricia benchmarks is increased by nearly 3%. This shows that loop-unrolling
provides negligible performance benefit, thereby suggesting that other compiler
techniques will be needed to reduce the performance overhead. The security of
the program is increased by loop unrolling, as the key length is increased since
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more number of registers are now available to embed keys due to the increase in
code size.

4 Conclusions and Future work

Because embedded processors constitute an overwhelming share (above 90%)
of the processor market, and because embedded devices are easily accessible to
hackers, security has now become an important objective in the design of em-
bedded systems. Pure-software approaches may not stop the determined hacker
and pure-hardware approaches require expensive custom hardware. A combined
compiler-FPGA approach offers the advantages of both at a fraction of the cost,
while also offering backward-compatibility. The purpose of this paper was to
study the performance of this approach using some well-known benchmarks,
and to examine the effect of some compiler optimizations.
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